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Abstract
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Animal groups often exhibit highly coordinated collective motion in a variety of situations. For
example, bird flocks, schools of fish, a flock of sheep being herded by a dog and highly efficient
traffic on an ant trail. Although these phenomena can be observed every day all over the world
our knowledge of what rules the individual's in such groups use is very limited. Questions of
this type has been studied using so called self-propelled particle (SPP) models, most of which
assume that collective motion arises from individuals aligning with their neighbors. Here we
introduce and analyze a SPP-model based on attraction alone. We find that it produces all the
typical groups seen in alignment-based models and some novel ones. In particular, a group
that exhibits collective motion coupled with non-trivial internal dynamics. Groups that have
this property are rarely seen in SPP-models and we show that even when a repulsion term is
added to the attraction only model such groups are still present. These findings suggest that an
interplay between attraction and repulsion may be the main driving force in real flocks and that
the alignment rule may be superfluous.

We then proceed to model two different experiments using the SPP-model approach. The
first is a shepherding algorithm constructed primarily to model experiments where a sheepdog
is herding a flock of sheep. We find that in addition to modeling the specific experimental
situation well the algorithm has some properties which may make it useful in more general
shepherding situations. The second is a traffic model for leaf-cutting ants bridges. Based on
earlier experiments a set of traffic rules for ants on a very narrow bridge had been suggested. We
show that these are sufficient to produce the observed traffic dynamics on the narrow bridge.
And that when extended to a wider bridge by replacing 'Stop' with 'Turn' the new rules are
sufficient to produce several key characteristics of the dynamics on the wide bridge, in particular
three-lane formation.
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1. Introduction

1.1 Moving animal groups
Schools of fish, flocks of birds and other animal groups, can move in a highly
coordinated fashion despite the fact that each member only experiences its im-
mediate surroundings and there exists no obvious leader. These groups come
in a variety of shapes and their global as well as their internal motion of the
group varies widely. The most common discernible shapes include mills, tori,
balls, sheets, strings and various combinations of these [1–3]. The shape of
the flock as a whole may change spontaneously or in response to environmen-
tal changes, such as predator attacks [4]. The internal dynamics in a flock can
range from essentially none, where each individual maintains a fixed distance
to its neighbours, to extensive, where internal rearrangement of individuals
occur constantly [1, 5–7]. The preferred separation between flock members
vary significantly between species. From being kept apart by physical size
alone [8, 9] to being more sparsely distributed, often with a preferred inter-
individual distance [10–14].

Up until recently it has been challenging to study collective motion quantita-
tively. This is in part because detailed motion data from moving animals was
hard/impossible to obtain. However, with the recent technological develop-
ments, in for example computing, photography, positioning and tracking sys-
tems, there is now a wealth of data for collectively moving organisms across
taxa in two dimensions and even three dimensions. Data has been collected
in systems ranging from bacteria and cells [8, 9, 15–21] via insects [22–25],
fish [26–31], birds [13, 32–37], mammals [38–42] up to humans [43–46].

The advances in 3D are particularly impressive. Research has come a long
way from the projected trajectories of a small midge swarm in [47] to today
where the individual 3D trajectories of each midge in a larger swarm can be
recorded [48], as is currently being done in the COBBS Non-Biting Midge
Experiment [49]. Similarly, from being impossible a decade ago, today the
trajectory of each bird in a flock of thousands of starlings roosting over a city
can be taken [13]. Even when the flock is under attack the group dynamics
have been recorded [4]. This new data complements the older qualitative in-
formation on the general structure and dynamics of moving animal groups by
providing high resolution data of several specific instances of collective mo-
tion. Hence we may now theoretically approach the subject sensibly from both
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the general question of what types of properties flocks have and the specific
details of particular biological systems.

How does collective motion work? More precisely, what behavioral rule does
each individual use that allows the observed group level shape and dynamics
to emerge? As indicated earlier one response to this question is that it depends
on the particular species forming the group, the particular environment the
group is embedded in and that each individual is different. These statements
are certainly true, but it is also true that similarly shaped and behaved groups
are seen across taxa, forming in different environments by different aggrega-
tions of animals. This suggests that there might be a general and robust local
mechanism at work in the groups that is responsible for the overall group level
shape and dynamics.

1.2 Models of collective motion
Mathematical models are a central part of understanding collective motion.
The models used are often, so called, self-propelled particle (SPP) models.
The particles represent the modeled animals. For the most part, these mod-
els are Lagrangian, which means the position and velocities of each particle
are evolved through time as the particles’ interact with their neighbors and
the environment. There are two main ways think of and represent such SPP
models, either as computer programs where the interaction rules and techni-
cal details can be implemented freely, or as a system of coupled difference-
(discrete time) or differential equations (continuous time) that can readily be
approached mathematically. Going from coupled equations to a computer pro-
gram is easy but the other way can be impossible even in simple cases, due to
for example, the combinatorial nature of the local interactions, positional up-
date scheme, asymmetric interaction zones etc. However, even if a proper sys-
tem of equations representation exists for a problem, with the Lagrangian ap-
proach the number of coupled difference/differential equations increases with
the number of particles. Thus even for systems with relatively few particles
we are often forced to use simulations for the analysis.

The main complement to Lagrangian models for collective motion are so
called Eulerian (or continuum) models, where the density of particles is evolved
rather than each particles’ position and velocity [50–58]. Eulerian models are
often partitioned into kinematic or dynamic depending on whether the flock
velocity is calculated directly from the density or if it obey its own evolu-
tion equation. The underlying equations are partial differential equations of
advection-diffusion type and using established theory for these analytical in-
formation can on occasion be obtained. Eulerian models do not have the prob-
lem that they increase in complexity with the number of particles, in contrast
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to the Lagrangian, but rather fail when a continuum description of the flock is
inappropriate.

Thus a rough heuristic for choice of type could be: Lagrangian if the number
of particles is small and/or the interaction rules are technically complicated
and/or detailed individual information is needed. Eulerian if the number of
particles is large and detailed individual information is not required. Although
numerical methods are often required to solve the advection-diffusion equa-
tions Eulerian methods are preferable if the objective is to obtain analytical
information. Motivated, in part, by this schemes for translating Lagrangian
to Eulerian models has been investigated and shown to be useful in some
cases [59–63] especially in noisy systems and when physics, e.g. hydrody-
namics, is to be incoorporated into flocking models [53]. In addition, if inher-
ent stochasticity is decided to be crucial using so called self-propelled active
Brownian particles might be preferable [64–72]. Active Brownian particles
absorb energy from their surroundings and use it to accelerate their motion
and the self-propulsion is incoorporated via negative friction. The underlying
equations are stochastic differential equations of Langevin type, but they can
be related to a Eurlerian approach.

1.2.1 The boids model
In this thesis the main focus is on flocks with relatively few particles and we
will exclusively focus on discrete Lagrangian models. A large number of such
models have been proposed in recent years [70, 73–87]. Models are used both
for general and specific questions about biology. The general question is on of
identifying similar mechanisms that underly several different forms of collec-
tive motion. More specific questions about the collective motion of a specific
species or in a specific environment are also addressed. Models of this type
are generally more elaborate as they are often based on a minimal model that
is augmented with species or environment specific components.

The main difference between different models lies in the components included
in, and the form of, the local interaction rule and how a particle determines
who its neighbors are. For example, two main schemes are used for deter-
mining the neighborhood of a particle, the metric one in which every particle
within a certain distance R is a neighbor, and the topological one where the
neighbors are the n nearest particles. One particularly influential metric model,
which we now describe, is the classical boid model [73, 78, 88]. In it a num-
ber of particles move around in two or three dimensions with constant speed
and interact with their neighbors in the following manner. If any neighbor is
too close the particle will move away from it (repulsion) and if no particle is
to close the particle will be attracted to its neighbors (attraction) while at the
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same time trying to take their average heading (orientation). This is illustrated
in figure 1.

Figure 1.1. How a particle calculates its new heading v(t +1) in the boids model.

More precisely, N individuals with position vectors Pi (i = 1..N), and unit
direction vectors vi move with constant speed δ in two or three dimensional
space. Each neighbor j of particle i is classified to belong to one of three
’zones’ depending its distance to particle i d ji = |Pj −Pi|. If di j ≤ Rr then
particle j is in the repulsion zone (Zr) of particle i, if Rr < di j ≤ Ro particle j
is in the orientation zone (Zo) of particle i and finally if Ro < di j ≤ Ra particle
j is in the attraction zone (Za) of particle i. Discrete time is used and in each
time step each particle will calculate which zone each of them is in and based
on this decide in which direction vi(t +1) to move in this time step. Let the
number of neighbors in particle i’s repulsion zone be nr, in its orientation zone
no and in its attraction zone be na. The exact rule for calculating D is the
following. If nr > 0 particle i’s new heading is given by

vi(t +1) =−
nr

∑
i 6= j

Pj−Pi

|Pj−Pi|
.
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If nr = 0 the new heading vi(t +1) will depend on an orientation term O and
an attraction term A calculated as

A =
na

∑
i6= j

Pj−Pi

|Pj−Pi|
,

and

O =
no

∑
j=1

v j

|v j|
,

respectively. If na,no > 0 then

vi(t +1) =
1
2
(A+O).

Of course one of these zones may be empty and in this case we have that
if na = 0,no > 0 then vi(t + 1) = O and if na > 0,no = 0 then vi(t + 1) = A.
Finally both zones may be empty or A+O= 0 and in this case vi(t+1)= vi. In
order to model sensory and movement error the new heading vector vi(t+1) is
rotated by an angle taken from a circular or spherical normal distribution with
standard deviation σ . This is the new heading particle i will take, unless the
angle between the old vi(t) and new heading vi(t+1) is larger than a maximum
turning angle θm, in which case it will turn this maximum amount toward its
intended new heading. The position of particle i is then updated according to

Pi(t +1) = Pi(t)+δ v̂i(t +1).

This process is repeated over a number of time steps in order to simulate group
movements.

For this model, it can be shown that in three dimensions four different groups
are produced [78]. These range from a swarm (figure 2a), torus (figure 2b),
dynamic parallel group (figure 2c) and highly parallel group (figure 2d). The
swarm is a cohesive aggregate that is fairly stationary and parallel alignment
between particles is very low. The torus (or mill) consists of particles that
rotate around an empty core producing a dough-nut shape and this shape is
also stationary. The dynamic and highly parallel groups are not stationary and
move in space with the particles more or less parallel aligned with each other.

There are lots of questions one can ask about SPP-models. For example, some
recent applications attempt model evolution in SPP-models by incorporating
birth-death and natural selection [83, 89–92].
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Figure 1.2. The shapes seen in the three dimensional boids model. a) swarm, b)
torus (mill), c) dynamic parallel group and b) highly parallel group. Adapted with
permission from [78].
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1.2.2 Minimal models
One of the goals of work on collective motion is to isolate a minimal set of
biologically plausible rules sufficient to produce the general shape and dynam-
ics exhibited by real moving animal groups. In this respect, the boids model,
with different zones, is not entirely minimal. The classical example of a truly
minimal self-propelled particle model is the Vicsek model [75]. In this, the
particles move at constant speed and take the average direction of their current
neighbors (orientation), in other words, it is the boid model without attraction
and repulsion terms. Vicsek and co-workers studied the competing effects
of orientation and noise and showed that a novel type of phase transition oc-
curred between disordered and ordered (polarized) states in the model. Similar
pure orientation models have been proposed by and in analytical information
regarding convergence have been obtained using methods from control the-
ory [82, 93].

Despite analytical tractability there are, at least, two issues with using these
pure orientation models as models of flocking. Firstly, they produce few flock
types, typically random, polarized and hybrids in between these. Secondly, lo-
cal orientation is put in and the main observation is that when it is sufficiently
strong in comparison to noise, global orientation (polarized flock) emerges. It
would be desirable to have an equally simple one-rule model where polarized
flocks emerge without the polarization force being explicitly put in and that
this model should be able to produce more shapes and a variety of dynamics.
In particular, a minimal model should be able to produce swarms, mills and
cohesively moving polarized groups with and without internal dynamics. As
described previously it has been known for a long time that the boids model
which includes repulsion, orientation and attraction can produce swarms, mills
(tori) and cohesively moving (parallel) groups [78]. Can these be found in very
minimal models?

In Paper I and the first part of paper II we show that the attraction rule coupled
with a blind angle is capable of producing swarms, mills, cohesively moving
polarized groups and in addition some novel rotating chain groups in two and
three dimensions. These results suggest that attraction, being both biologically
plausible and strong enough to produce the three typical shapes, might be the
main driving force at work in real flocks. However, a fundamental property
of real animals is that they have size and cannot move through each other,
so some kind of repulsion should be included in a minimal model. Several
attraction-repulsion models exist in the literature [70, 94, 95] but in general
the variety of groups produced is small and lack nontrivial internal dynam-
ics. In the second part of Paper II we add to the attraction model a repulsion
term that has been designed to be soft enough to allow for internal dynam-
ics but still strong enough to maintain inter-individual distance. The resulting
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attraction-repulsion model produce mills, swarms and a whole range of cohe-
sively moving groups some of which exhibit nontrivial internal dynamics in
both two and three dimensions. These theoretical findings together with recent
studies of individual interactions of mosquito fish [30] and golden shiners [31]
indicate that many real flocks and schools may well be formed and driven by
attraction and repulsion only, without any orientation rule.

1.2.3 Applications of models
Just like we can establish that a certain minimal model is sufficient to produce
swarms, mills and polarized groups with or without internal dynamics we can
address the sufficiency issue of interaction rules in real world systems. That
is, if the interaction rules at the individual level is thought to be known from a
biological point of view, a self-propelled particle model can be used to inves-
tigate the sufficiency of these rules to produce some feature at the group level.
This is done by implementing the proposed rules in a SPP model mimick-
ing the experimental/observational setting and comparing the outcome of the
model with the real system. This approach has been used to model collective
motion in a wide variety of different systems, for example fish [27, 96–98],
birds [37,86,99,100], insects [22,23,48,70,101], bacteria [15,80] and pedes-
trians [43, 44, 102–104]. In paper II we use this same approach to show, by
visual comparison, that attraction and repulsion alone is sufficient to produce
the overall shape and orientation of several animal groups previously thought
to require additional ingredients for their formation and persistence.

In Paper IV we apply this method to evaluate a proposed shepherding algo-
rithm against experiments where a flock of sheep was herded by a sheepdog.
The underlying model was an attraction-repulsion model similar to that in pa-
per II. The main difference in this case is the presence of one special agent,
the shepherd, which follow its own rules. Models with two types of agents are
frequently used to model leader-follower systems [105, 106] and shepherding
systems similar to ours [107–111]. In paper V we investigate the sufficiency
of a set of empirically determined traffic rules proposed in [25] to govern the
traffic on leaf-cutting ant trails. In this case we have four different types of
ants moving in the same environment and ant’s behavior in each encounter
depends on its own type, the type of the ant it encounters and to some degree
its history of previous encounters.

1.3 Analyzing self-propelled particle models
When attempting to construct a biologically realistic model of flocking the
problem of complexity arises. Often the known biology of the phenomenon
we want to model indicate that several potentially spatio-temporal dependent
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factors are crucial, e.g. distribution of neighbors, current speed, noise, type
of flocking agent, memory etc. Naturally these factors may also depend on
each other in a nontrivial way. On top of this, the local interactions between
particles may be complicated (e.g. non-physical) so our choice of model type
is often very limited. Given the correct set of rules, SPPs are flexible enough
to accurately model any given phenomenon, but the price we pay for this flex-
ibility is loss of analysis tools. Even in the simplest cases frequently the only
way to analyze an SPP is by computer simulations. In addition, even if we
are willing to make simplifications so that the SPP can be represented as a
system of difference- or differential equations, that may be approached by
conventional mathematical methods, success is not guaranteed. This lack of
analytical tractability is because the size of the system grows with number of
individuals, since both position and velocity of each particle is evolved through
time. The latter problem can circumvented is some cases if only the behavior
at the macro level is of interest and the flock (density) can be approximated
well by a continuum. However, then information at the micro level is lost. The
resulting PDEs themselves are frequently hard to analyze and in many relevant
biological systems the number/density of individuals is too low for a contin-
uum approximation to be appropriate. In a few simple cases model specific
rigorous analysis of certain aspects, e.g. existence, stability, convergence and
phase transitions, has been carried out but it is unclear if and to what extent
these approaches can be generalized and used to analyze other or more real-
istic models. Therefore, novel and generalizable methods for analyzing SPPs
are needed.

In Paper III we outline a particular approach to the analysis of SPP within the
framework of the local attraction model introduced in Paper I. This approach
does not increase in complexity with number of particles or even require that
an approachable system of equations for individual motions can be written
down, but still provides some information about the individual behavior as
well as the collective. The key idea is to focus on particle interaction and
dynamics with respect to an interaction mediating object rather than explicit
interactions with the collective of neighbors. Then we specify the dynamics of
this mediating object in order to address questions regarding formation, per-
sistence, stability, mobility and ultimately classification of shapes, each being
a key issue in the analysis of any model.

1.4 Issues: past, present and the future
As with most fields of research there are several problematic issues concerning
self-propelled particle models of collective motion. These range from philo-
sophical and conceptual via technical to practical. Some are well known and
considered, some are well known and less considered and some cannot really
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be addressed nor resolved at present. In a review from 2005 [81], Parrish et al.
sum up several issues relating to the realism of individual based models pro-
posed up until that time. In particular they mention technical issues such as
the simulations typically consist of few particles (up to 128), ignorance of den-
sity dependence on individual perception and not properly local interactions.
They also highlight the key practical problem which was the non-existence
of trajectory data from real animals over long enough periods. The technical
issues are now generally considered and some have even devoted entire pa-
pers to explicitly implement models where they, by construction, are avoided,
e.g. [96], and the data issue is currently being overcome. Moreover, several
important general insights have been gained since 2005. In particular, they
stated that only models including an explicit alignment term, or an implicit
alignment term via leaders, exhibit polarized groups and that "rule sets need
to be explored that allow individuals to shift location within the school, rather
than simply aggregate and remain in a static configuration." Since 2006 we
have been aware, via [70, 94, 95], that attraction and repulsion alone can pro-
duce polarization but non-trivial internal shifts remained a problem. In papers
I and II we show that attraction alone can produce polarization and in addition
produce non-trivial internal dynamics via the ’figure of eight’. Furthermore,
as established in Paper II, adding a tailored repulsion term to the attraction
only model allow groups to exhibit non-trivial internal dynamics which ap-
pear more realistic than the ’figure of eight’.

Parrish et al. [81] then question the relevance of concepts such as stability and
convergence to models of, in particular, fish since it is an observable fact that
schooling fish typically rearrange within the group, leave the group only to re-
join it immediately and even leave the group in search for a new group to join.
In particular, they state that "In the next generation of agent-based school-
ing simulations, rule sets must allow a simultaneous exploration of individual
movements provoking group-level pattern and fission-fusion of groups." This
point of view appear not to have been taken by many researchers since even
today models are frequently being simplified/modified in order to allow sta-
bility and convergence results to be established, and although this might be
the correct approach in engineering applications reconsidering it for biologi-
cal applications seems unavoidable.

In addition to problems with the biological realism of the rules themselves and
the results they produce, there appears to be a generic problem with model se-
lection from data. It is well known that the same rule can produce different
shapes depending on initial conditions [78, 85, 112]. It is also known that
different rules can produce the same shapes and dynamics [101, 113–115].
Both these issues naturally reduce the explanation and predictive power of
these models. The resolution to this problem, or even establishing whether
the degeneracy is a problem [116], remains unclear. However, the research
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community seems to have adopted a number of sensible strategies. In addition
to requiring biologically plausible rules, the aim is to seek minimality in the
general setting (minimal models), in part because of an Occam’s razor type
argument. In particular cases where data exists the use of statistical model
selection methods is used to try as far as possible to distinguish between com-
peting models (or infer the rules) [30, 31, 98, 115, 117–120]. However, it is
always important to think about if the models are indeed competing/mutualy
exclusive with respect to their underlying assumptions and the question(s) be-
ing addressed in the first place [116].

Just as important as the establishment of interaction rules from biological ob-
servations is the question of how they are implemented. When implementing
a SPP model as a computer program many decisions have to be made not
directly involving the interaction rules we wish to investigate. It could be ev-
erything from large decisions such as choosing between lattice or continuous
environment, constant or variable speed, continuous or discrete time, inter-
action update scheme (simultaneous, sequential or Gillespie), open space or
special topologies, restrictions on neighbor detection or possible movement,
type of noise, to apparently smaller decisions such as if a particle is consid-
ered its own neighbor. Logically each such choice results in a different model
and generally it is not clear a priori how different the models are going to be.
As has been pointed out several times in mathematical biology, each assump-
tion, or line of code, may be important and failure to consider this properly
may have undesirable consequences [121, 122].

It is often not feasible to try every possible choice of model so again heuristics
are needed and it is clear that the choice depends heavily on the purpose of the
model. Two common heuristics seem to be 1. Make decisions that preserve
the analytical tractability of the model and 2. Make each decision as biolog-
ically realistic as possible. The first one is frequently adopted by engineers,
physicists and mathematicians and the latter frequently by biologists. How-
ever, both of these are problematic. The first because analytical tractability
typically comes at the expense of realism and the second because in striving
for the ideal of realism on the micro scale an understanding of the connection
between the micro and the macro scales can be lost. In the worst case a com-
plicated model cannot even be analyzed sensibly via simulations. Therefore,
it is crucial to strike a proper balance between these extremes, biological real-
ism and simplifying assumptions, where a limited set of key components and
decisions are included/made. The most natural choices are those thought to
crucially influence the phenomenon the model is intended to shed light. How-
ever, one may consciously or unconsciously be drawn toward one of these ex-
tremes by a-priori assumptions on how big this set of key assumptions should
be. This can happen, for example, because of the norms in ones original field
of study and/or publication opportunities. In order to avoid this personally,
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coming from mathematics and physics, I constantly remind myself of what I
have heard Prof. Mats Gyllenberg say once in a lecture at the Royal Academy
of Sciences, namely that (in mathematical biology) "we must stop adapting
the problems to the methods and start adapting the methods to the problems".
This is in conjunction with ’specific question’-oriented modeling, be it data
driven or purely theoretical, seems like a sensible way forward.
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2. Paper Summary

2.1 Paper I
Collective motion from local attraction

Daniel Strömbom. (2011) Collective motion from local attraction. Journal
of Theoretical Biology 283(1) 145-151.

Many animal groups, for example schools of fish or flocks of birds, exhibit
complex dynamic patterns while moving cohesively in the same direction.
These flocking patterns have been studied using self-propelled particle mod-
els, most of which assume that collective motion arises from individuals align-
ing with their neighbours. Here, we propose a self-propelled particle model in
which the only social force between individuals is attraction. We show that this
model generates three different phases: swarms, undirected mills and moving
aligned groups. By studying our model in the zero noise limit, we show how
these phases depend on the relative strength of attraction and individual inertia.
Moreover, by restricting the field of vision of the individuals and increasing
the degree of noise in the system, we find that the groups generate both di-
rected mills and three dynamically moving, rotating chain structures. A rich
diversity of patterns is generated by social attraction alone, which may provide
insight into the dynamics of natural flocks.

2.2 Paper II
The shape and dynamics of local attraction

Daniel Strömbom, Mattias Siljestam, Jinha Park & David JT Sumpter. Sub-
mitted.

Moving animal groups, such as flocks of birds or schools of fish, exhibit com-
plex internal dynamics while moving cohesively in the same direction. This
kind of flocking behavior has been studied using self-propelled particle mod-
els, in which the ‘particles’ interact with their nearest neighbors through re-
pulsion, attraction and alignment responses. Recently, it has been shown that
models based on attraction alone can generate a range of dynamic patterns.
Here we investigate the conditions under which attraction-based models are
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able to reproduce the three dimensional, complex, dynamical patterns seen in
natural animal groups. We provide a phase diagram of how attraction strength
and blind angle determine the pattern generated in this model. We show that
adding repulsion to the model changes the shapes produced, making them
look more like natural flocking patterns. We compare our simulations to ob-
servations of surf scoters, starlings, moving and rotating fish schools and other
flocks. Our results suggest that many biological instances of collective motion
might be explained without animals explicitly responding to each others di-
rection. Instead, complex collective motion is explained by the interplay of
attraction and repulsion forces.

2.3 Paper III
On the stability and mobility of shapes in the local attraction model

Daniel Strömbom. Manuscript.

Many animal groups, for example schools of fish or flocks of birds, exhibit
complex dynamic shapes while moving cohesively in the same direction. The
main theoretical tools used to study the formation and dynamics of these
shapes are so called self-propelled particle models. However, even the sim-
plest models typically require computer simulations for their analysis, espe-
cially when the number of particles is small. For example, this is the case for
the local attraction model with a blind angle. Here we explore three geomet-
rical ideas based on transferring the attention from the particles themselves to
the local center of mass they detect and the shapes they constitute. We use
these methods to investigate the persistence and mobility of shapes in a local
attraction model with a blind zone. More specifically, we address the persis-
tence/stability of the mill shape. Then we investigate how the dynamics of
the detected local center of mass relate to the shapes we observe, including
a moving figure of eight shape generated by the model. Finally, we provide
some insight into why some rotating chains exhibit translational motion and
some do not. Although this work is in its infancy we believe that these ideas
have potential and may facilitate analysis of similarly complex models.

2.4 Paper IV
Solving the shepherding problem: Heuristics for herding autonomous, locally
interacting agents

Daniel Strömbom, Richard P Mann, Alan M Wilson, Stephen Hailes, A Jen-
nifer Morton, David JT Sumpter & Andrew J King. Submitted.

22



The herding of sheep by dogs is a powerful example of how one individual
can cause many unwilling individuals to move in the same direction. Similar
phenomena are seen in systems as diverse as crowd control, cleaning the envi-
ronment, and collecting other animals or robot drones. Although single dogs
are seen to solve this "shepherding problem" every day around the world, it re-
mains unknown which algorithm they employ or whether a general algorithm
exists for shepherding. Here we describe such an algorithm, based on adap-
tive switching between collecting the sheep when they are too dispersed and
driving them once they are aggregated. We show, in a self-propelled particle
model, that our shepherding algorithm can effectively herd large numbers of
autonomous, locally interacting agents. A side-to-side motion of the shepherd
behind the group emerges from interactions between the dog and the sheep.
We show that this and other aspects of the herding interactions in our model
are consistent with empirical data of real sheep herds. It appears that the shep-
herding algorithm applied by dogs is simpler and more effective than those
previously proposed by engineers, suggesting new methods for the develop-
ment of mobile robots designed to influence movements of living and artificial
agents.

2.5 Paper V
Self-organized traffic via priority rules in leaf-cutting ants Atta colombica

Daniel Strömbom & Audrey Dussutour. Manuscript.

Ants, termites and humans often form well-organized and highly efficient
trails between different locations. Yet the microscopic traffic rules responsible
for this organization and efficiency are not fully understood. Recent experi-
mental work with leaf-cutting ants (Atta colombica) on a very narrow trail has
suggested a set of priority rules thought to govern the traffic dynamics. Here
we implement an agent-based model to investigate the sufficiency of these
rules with respect to producing the observed spatio-temporal properties of the
traffic. We compare the model results to four statistics of the real ant flow and
find that they share several key characteristics. Then we extend the model to
a wider trail and compare the simulation results with new experimental data
from this setting. We find that the extended model is able to reproduce the gen-
eral features of the flow seen in the experiments, including the formation of
three-lane traffic. The experimental finding that Atta colombica indeed orga-
nize the flow into three-lane traffic is important in its own right and contradicts
the previously held belief that Atta in general do not. Due to the simplicity of
the proposed rules we believe that they may be responsible for organizing the
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traffic flow on trails in other species of ant, and perhaps even other trail form-
ing animals such as termites and humans.
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3. Summary in Swedish

Djurgrupper i rörelse, exempelvis fiskstim och fågelflockar, rör sig ofta på
ett mycket koordinerat sätt trots att varje medlem endast kan uppleva och
interagera med sin närmaste omgivning, och utan att någon självklar ledare
för gruppen finns. Välkända exempel är ankor som går på rad, ringformade
fiskstim, bisvärmar och gigantiska tubformade starflockar. Hur fungerar detta?
Mer specifikt, vilka lokala regler använder individerna i en grupp som möjlig-
gör att gruppens övergripande form och dynamik kan uppstå? Ett svar på
denna fråga är att det beror på vilken art som utgör gruppen, miljön som grup-
pen rör sig i och att varje individ är unik. Dessa påståenden är sanna, men det
är också sant att grupper av djur från vitt skilda arter uppvisar samma form
och rörelsemönster, uppstår i olika miljöer med olika individer. Detta tyder
på att det kan finnas en allmän och robust lokal mekanism som verkar i grup-
perna och ger upphov till den övergripande gruppstrukturen och dess dynamik.
Sökandet efter, och analysen av, en sådan generell mekanism (minimal mod-
ell) är en av huvudinriktningarna inom forskningsområdet kollektiv rörelse.
En annan är modellering av kollektiv rörelse hos djur av en viss art och/eller
i en specifik miljö. Modeller av denna senare tillämpade typ är allmänt mer
komplicerade då de ofta bygger på en minimal modell som är utökad med art-
eller miljöspecifika komponenter. I båda fallen används ofta partikel-modeller
(SPP-modeller) där en samling självframdrivna partiklar följer ett antal inpro-
grammerade/definierade interaktionsregler medan de rör sig runt i rummet.

3.1 Minimala modeller
Ett av målen när det gäller minimala modeller är att isolera en minimal up-
psättning biologiskt rimliga regler tillräckliga för att producera verkliga djur-
gruppers allmänna form och rörelsemönster. I nuläget bör en minimal modell
åtminstone kunna producera svärmar, cirklar och grupper som förflyttar sig
linjärt med och utan inre dynamik. Det har länge varit känt att en speciell
minimal modell bestående av tre regler är tillräcklig för att kunna producera
dessa tre former. Dessa tre regler är: varje individ rör sig från grannar som
är alltför nära (repulsion), varje individ tar medelriktningen av grannarna som
varken är för nära eller för långt bort (orientering) och varje individ rör sig
mot grannar som är långt borta (attraktion). Denna modell har varit väldigt
inflytelserik och använts för att modellera ett stort antal olika situationer som
involverar kollektiv rörelse. I artikel I och första delen av artikel II visar vi att
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attraktionsregeln ensam kan generera svärmar, cirklar och grupper som för-
flyttar sig linjärt med och utan inre dynamik i både två och tre dimensioner.
Detta indikerar att lokal attraktion, som både är rimlig från ett biologiskt per-
spektiv och stark nog för att producera de tre typiska formera, kanske är hu-
vuddrivkraften i många verkliga flockar och stim. En grundläggande egenskap
hos riktiga djur är dock att de har storlek och inte kan röra sig genom varan-
dra, så någon typ av repulsion bör ingå i en minimal modell. Flera modeller
av attraktion-repulsion-typ modeller finns i litteraturen, men ofta är antalet
olika grupper som kan genereras få och dessa saknar i allmänhet icke-trivial
inre dynamik. I den andra delen av artikel II utökar vi vår attraktionsmodell
med en speciell repulsions-term. Denna har utformats för att vara mjuk nog
för att tillåta inre dynamik, men fortfarande stark nog för att upprätthålla ett
visst avstånd mellan individerna. Resultatet är en attraktion-repulsions mod-
ell som kan generera svärmar, cirklar och en uppsjö grupper som förflyttar
sig linjärt och samtidigt uppvisar icke-trivial inre dynamik i både två och tre
dimensioner. Dessa teoretiska resultat tillsammans med nya experimentella
studier av interaktionsregler hos fiskar [30] [31] indikerar att många verkliga
flockar och stim kanske bildas och drivs av endast attraktion och repulsion,
utan någon orienteringsregel.

Trots att minimala modeller är relativt enkla måste vi ofta förlita oss på dator-
simuleringar för att analysera dem, och inte ens detta är alltid gångbart. Den
huvudsakliga orsaken till detta är de lokala interaktionernas kombinatoriska
karaktär. Vi kan ofta utan större problem analysera en modell för två partiklar
och för oändligt många partiklar. Men i de för tillämpningar viktigaste stor-
lekarna, hundratal eller tusental, kan vi endast i bästa fall analysera dem via
datorsimuleringar. I artikel III presenterar vi tre relaterade idéer som kan ge
oss helt nya möjligheter att analysera modeller av denna typ. Huvudidén är
att flytta fokus från de lokala interaktionerna i sig till dynamiken hos det in-
teraktionsmedierande objektet och dess påverkan på en eller flera testpartiklar.
Vi illustrerar idéerna med hjälp av den lokala attraktionsmodellen i enkla typ-
fall och beskriver hur de kan användas för att i förlängningen förhoppningsvis
besvara frågor rörande stabilitet, mobilitet, klassificering etc. av denna mod-
ell och andra modeller av samma komplexitet. Det bör dock understrykas att
detta arbete är i sin linda, men att det finns anledning att vara optimistisk.

3.2 Tillämpningar
Precis som vi kan fastställa att en viss minimal modell är tillräcklig för att pro-
ducera vissa gruppstrukturer kan vi undersöka om en mängd föreslagna inter-
aktionsregler är tillräckliga för att producera gruppstrukturen och dynamiken
i verkliga system. Det vill säga om interaktionsreglerna på individnivå tros
vara kända från biologisk synvinkel kan en SPP-modell användas för att un-
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dersöka huruvida dessa regler är tillräckliga för att producera vissa egenskaper
på gruppnivå. Detta genom att implementera de föreslagna reglerna i en SPP-
modell som härmar den experimentalla/observationella miljön och jämföra re-
sultatet av modellen med det verkliga systemet. I artikel II använder vi denna
metod för att visa att endast lokal attraktion och repulsion är tillräckliga för att
generera den övergripande strukturen och rörelsemönstret hos flera djurgrup-
per som tidigare förmodats kräva ytterligare ingredienser för att bildas och
drivas. I artikel IV tillämpar vi denna metod för att utvärdera en föreslagen
vallningsalgoritm mot experiment där en flock får blir vallade av en fårhund.
Den underliggande modellen är en attraktion-repulsion modell liknande den
i artikel II. Den största skillnaden är i detta fall förekomsten av en speciell
individ, herden, som följer sina egna regler. Naturligtvis är vi inte begrän-
sade till endast en speciell individ utan kan ha ett valfritt antal olika klasser
av individer. I artikel V undersöker vi om en uppsättning empiriskt isoler-
ade trafikregler för lövskärarmyror är tillräckliga för att styra trafiken på en
lövskärarmyrstig. I detta fall har vi fyra olika typer av myror som rör sig i
samma miljö och en myras beteende i varje möte beror på dess egen typ, typ
av myra den möter och till viss del sin historia av tidigare möten.
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