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Bioinformatics is the interdisciplinary field that focuses on handling large amounts
of biological data. The amount of data collected by modern methods is so vast that
new methods and tools for analysing, storing and organising are required, tools and
methods to create knowledge from data.

Genotype likelihood modelling is a framework developed to accurately quantify
the uncertainty in nucleotide sequencing and provide convenient statistical tools to
extract knowledge from sequencing data. The Uppsala Longitudinal Study of Adult
Men project is a longitudinal study. In ULSAM, which studies all available men
born in Uppsala County between 1920 and 1924, the participants are investigated at
the ages 50, 60, 70, 77, 82 and 88 years. The data acquired by the project has been
used in many publications.

One of the aims of this report is to give an overview of the field of genome se-
quencing, which during the last decades has evolved rapidly. Another aim of the
report was to give an overview of parts of the data from the ULSAM project and to
use this data to evaluate the accuracy of genotype likelihood modelling.

1 Introduction

The structure of the DNA double helix was described in the early 1950s (Franklin et al. 2003;
Watson and Crick 1953), yet the information contained within was still unknown.
In 1972 and 1976 the first complete gene and the first complete genome was published by

Walter Fiers and his coworkers (Min Jou et al. 1972; Fiers et al. 1976). Right after that, in
1977, Frederick Sanger published a method for rapid DNA sequencing with chain-terminating
inhibitors and also the first complete DNA genome, the genome of bacteriophageφX174 (Sanger
et al. 1977a; Sanger et al. 1977b).
In 1987 the first fully automated DNA sequencer was ABI 370 which was produced by Applied

Biosystems.
Several new methods were published during the 1990s, also known as “next generation” se-

quencing technologies. Pål Nyrén and his studentMostafa Ronaghi at the Royal Institute of Tech-
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nology in Stockholm published their method of pyrosequencing (Ronaghi et al. 1996). Massively
parallel signature sequencing, MPSS, from Lynx Therapeutics (Zhou et al. 2006) and later a par-
allelized version of pyrosequencing from 454 Life Sciences (Margulies et al. 2005) are two early
technologies considered to be “next generation” sequencing technologies. The technologies re-
lies heavily on computer processing after reading fragmented and amplified genetic material to
reassemble the fragments, known as aligning the reads.
After the completion of multiple reference genomes the task of cataloguing intra-species varia-

tion and associating genotype with phenotype was made simpler or even possible. What is known
as resequencing is when already sequenced genetic material is sequenced again to catalogue vari-
ations and mutations. The sequencing of whole genomes is still an expensive process, one has
thus aimed at lowering the cost of resequencing by limiting the scope of the process. Parts of
special interest are selected using different technologies (Stratton 2008) and these fractions of
the genome are then resequenced, giving high quality genomic maps of key parts of genomes.
Mutation take place whenever cells replicate. There are different types of mutations - addi-

tions and deletions for example. One of them is called single-nucleotide polymorphism, SNP.
SNPs are widespread non-lethal mutations of a single nucleotide. The mutations can render pro-
teins malfunctional or non-existant, but the mutations does not necessarily do anything directly.
Sometimes they are associated with other genetic variations that in turn have a direct effect on
the cells.
The detection of SNPs is enough for many applications. It is used in forensic analysis, mea-

suring predisposition to disease or somatic mutations in cancers. With the aim of detecting if a
variant is present or not the DNA microarray can be used.
The DNAmicroarray (Schena et al. 1995), or bio chip, is a plate made of class, plastic or silicon

covered in complementary single-stranded DNA, complementary to the different sequences of
interest. The amplified and labeledDNA sample is poured over the plate and the sample hybridize
with the strands attached to the plate. When the plate is read the wells where DNA hybridized
will emit light and those wells that are empty will remain dark. The position of the emitted light
will determine which sequences that have hybridized and thus are contained in the sample.
Though having different approaches and methods the many multi-step processes of DNA-

sequencing often have many steps in common. The samples need to be purified and amplified
before the analysis can take place. The data reads created by the hardware has to be translated
into genetic code, called base calling. After base calling the fragments of genetic code are aligned
and analysed. Along all these steps are obstacles and problems that need to be overcome.
One of the major problems when assessing the genetic sequence of a sample is determining

the quality of the results. In the base calling phase there are numerous ways to estimate the
quality of each called base. A computer program which has had great impact on how we today
measure quality is phred. phred is a computer program written in the late 1990’s to accurately
determine the most likely bases in a DNA-sequence given a chromatogram and assign to each
one an accuracy value, q, accurately enough to eliminate the need for human supervision (Ewing
et al. 1998).
The quality score, q, is calculated from the error probability, p, with

q = −10 · log10(p),

thus, the larger q the more likely the base is called correctly (Ewing et al. 1998).
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Though the algorithms for assigning quality scores have changed and differ between the meth-
ods of DNA sequencing, the phred scale is widespread and is also used for other parts of the
process such as the genotype and variant calling, which are difficult due to ambiguity of data and
the accuracy needed to do it correctly.
Tools and pipelines developed for processing of DNA sequencing data often distinguish be-

tween the aims of “variant calling” and “genotype calling”. The former is referring to identifica-
tion of variable sites and regions in the genome and the latter is referring to identifying individual
samples’ characteristics at the varying sites (Nielsen et al. 2011).

1.1 The structure of sequencing data

After base calling and aligning of the fragmented sequence reads the data can be displayed as
seen in Figure 1. We see an example DNA-string where 4 reads have been aligned. The first line
is a line consisting of the consensus sequence.
The mapped read depth, MRD, of a position is a measure of how many DNA sequence reads

that after the aligning phase cover the current position. In Figure 1 the reads are aligned to a
reference sequence, and the depth of a called genotype or variant is the number of reads that
cover that particular position. The position 11 in the reference genome of Figure 1 has a read
depth of 4, meanwhile position 1 has a read depth of 1.

GGGGGGTCAACTGGTGGGGGCC
GGGGGGTCAACTG

GGGGTCAACTGGTGGGGGCC
GGTCAAC

CTGGTGG

Figure 1: Example of read depth of 4 over the
base C. The underlined line is the
previously established consensus se-
quence towhich the read fragments are
aligned.

The depth affects the quality of the read.
High coverage gives more accurate genotype-
/variant calling (Bentley et al. 2008). Thus it
is important to make sure that read depth is
deep enough and that it also is uniform across
the genome.
Since sampling of sequence fragments is

close to random the coverage is approximately
Poisson distributed (Bentley et al. 2008). To
see whether this holds one can compare the
mean read depth, m, to the variance of the
read depths, v. The Poisson distribution has
a variance equal to it’s mean and if v > m the
sample is over dispersed. In the case of read

depths, due to certain dependencies on GC content this is only approximate and the variance is
usually larger than the mean. The model might be too simple and not as fitting as believed and
another more complex model might suit better.
To measure the coverage uniformity and quality of a read the inter-quartile range, IQR, can be

utilized. The IQR is the difference between the lower and upper quartile of the read depths and
gives an indication of the variance of the coverage.
As mentioned previously, the process of calling variants depends onmany factors, among them

prior information given by, if available, the reference genome about the given position and what
the new aligned reads indicate.
In a diploid cell, the genome is in the form of two homologous chromosomes, meaning that

there are two copies of the DNA in the cell. When the genes on the two copies are identical the
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genes are called homozygotic, if they differ they are called heterozygotic.
When trying to genotype samples the result of a homozygote will contain only one genetic

sequence while a heterozygote will have approximately half of the reads with one variant and the
other half with a second variant, see Figure 2. It is impossible to know if a sample comes from a
homozygotic or heterozygotic sequence beforehand and this has to be established after aligning
using statistical methods.

GGGGGGTCAACTGGTGGGGGCC
GGGGGGTCAACTG

GGGGTCAACTGGTGGGGGCC
GGTCAAC

CTGGTGG

(a) Homozygote

GGGGGGTCAACTGGTGGGGGCC
GGGGGGTCAAATG
GGGGTCAAATGGTGGGGGCC

GGTCAAC
CTGGTGG

(b) Heterozygote

Figure 2: A fabricated heterozygote and a fabricated homozygote sample. The underlined line is
the reference genome.

The risk of errors during the amplification, read and aligning phases imposes a great deal of
uncertainty into the process. A heterozygote sample may very well give rise to results like the
one seen in Figure 2a, and a homozygote might result in Figure 2b. To decrease the level of
uncertainty you can increase the read depth.
Since the genomic material originates from a string of nucleic acids it is also important that

the machinery does not introduce a systemic bias based on the position of the base along this
string. By plotting the read depths against position one can visually discern any systemic biases
based on position.

1.2 Genotype likelihood modelling

To answer the question whether reads that differ are from a heterozygotic sample or if they are
just erroneous reads one approach used is likelihood modelling (Li 2011).
The idea is to determine how likely the observed data is given a genotype and a genomic

position. Consider, for simplicity, a binary situation where the data can either equal the refer-
ence genome or to one alternative allele at a specific variant site (i.e. a biallelic SNP). Given
sample data, let k denote the number of reads spanning the variant site. The observed data,
x = (x1, . . . , xk), will then denote an event in the event space {0, 1}k. Assuming sequencing
and aligning errors are non-existing we either have the case of a heterozygotic genotype where
all 2k events are equally likely or we have the case of a homozygotic genotype were only the
events {1}k or {0}k are possible.
We then examine the likelihood of the given data under the assumption of either of cases

homozygotic with the alternative and reference allele and heterozygotic with both alleles. Let
g = 0, 1, 2 denote the number of alternative alleles. The likelihood of data given the number of
alternative alleles can be expressed as:
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L(g) = P (x | G = g) =


I{x = (0, . . . , 0)}, g = 0,

2−k, g = 1,

I{x = (1, . . . , 1)}, g = 2.

(1)

This likelihood model can be extended to take into account errors made during the base calling
and aligning phases. The error probability of switch errors, εj for j = 1, . . . , k , the probability
of a read produced being interpreted erroneously (reference interpreted as alternative and vice
versa) are estimated by the algorithms utilised by programs such as phred. These programs base
their estimates on the characteristics of the trace received from the sequencing machinery. phred
was created to create quality scores based on a chromatogram, it used parameters such as peak
spacing and peak resolution.
Assuming independence between reads, we may then extend model (1) into model (2):

L(g) = P (Data | G = g) =


∏

xj=1 εj
∏

xj=0(1− εj), g = 0,

2−k, g = 1,∏
xj=0 εj

∏
xj=1(1− εj), g = 2.

(2)

Whenever prior information is available on the prevalence of the three genotypes in the study
population, genotype likelihoods may be converted into so-called genotype posterior probabili-
ties according to Bayes’ rule:

P (G = g | Data) = P (Data | G = g)× P (G = g)

P (Data)
= L(g)× P (G = g)

P (Data)
. (3)

Since the posterior probabilities must sum to one, there is no need for prior information of the
given data in order to convert given likelihoods into posterior probabilities.
The model makes the assumption that only two nucleotides are present at a given site. This is

sub optimal but often sufficient (Li 2011) since triallelic variants are very uncommon in practice.

1.3 Calibration and verification of likelihood modelling

As stated previously, the algorithms used to assign quality values for our data are not the same
as used in the original paper describing phred, but the importance of well calibrated models is
still there.
This report will try to discern whether the posterior genotype probabilities, derived from like-

lihood estimates and prior information given by the tool chain, are well calibrated or not. Data
from “next-generation” sequencing will be compared to data from SNP microarray sequencing,
the observed error frequencies will be translated into error probabilities and compared to the
given estimate of the posterior error probabilities.
The nature of the logarithmic quality measure makes observing and verifying the error rate of

reads of high quality difficult, mostly due to the vast amount of reads needed. Therefore, in this
report only reads of lower quality will be analysed.
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2 Materials and Methods

2.1 Hardware and software

The “next-gen” sequencer used is the Illumina HiSeq 2000, it is a genome sequencer that uses
sequencing by synthesis (SBS) technology. It uses solid phase amplification of the fragmented
DNA sample. The cloned clusters are then sequenced using a proprietary four colour cyclic
reversible termination method (Metzker 2010).
Before sequencing the samples the TruSeq Exome Enrichment Kit was used to amplify sam-

ples. It is a set of reagents and probes to amplify specific regions in a sample of DNA. The
probe set spans more than 200000 exons. The targeted regions, genes or exons are isolated and
amplified.
The resulting data from the sequencing machinery was processed using the Genome Anal-

ysis Toolkit, GATK, which is a software suite that processes data from next generation se-
quencers. The pipeline does read mapping, realignment around indels, genotyping and SNP dis-
covery (McKenna et al. 2010).
The variant caller used is the Unified Genotyper from the GATK group. It uses variational

bayesian models to call SNPs and indels from one or multiple samples (DePristo et al. 2011).
The Burrows-Wheeler Aligner is a piece of software written to efficiently align reads to a

longer reference sequence, i.e. the human genome. It was used to align the genetic fragments. It
uses two different algorithms, one for reads shorter than 200bp called bwa-short (Li and Durbin
2009) and one for longer reads up to 100kbp called bwa-SW (Li and Durbin 2010).
VCFtools is a program package designed for working with VCF files, such as those generated

by the 1000 Genomes Project. The aim of VCFtools is to provide methods for working with VCF
files: validating, merging, comparing and calculate some basic population genetic statistics.
SAM tools is a toolkit for manipulating SAM (Sequence alignment/Map) formatted data. SAM

is a flexible and generic storage format for sequence alignment data.
R together with the libraries tikzDevice, ggplot2, reshape, plyr, binom, scales were used for

the creation of graphics and the final statistical analysis.

2.2 Data

The Uppsala Longitudinal Study of Adult Men (Gustafsson 2013; ULSAM 2013), ULSAM, is
a cohort study that was initiated 1970-73 when all 50 year old men in Uppsala County were
invited to participate in the study. Two thousand (2322) persons agreed to participate and were
examined. They were later reinvited for another examination at the age of 70. At this stage
1221 participated, the decrease in participation is mostly due to death and the fact that some
participants moved out of Uppsala County. There has also been followups at the age of 50, 60,
70, 77, 82 and 88. Though the number of participants has decreased with the passing of time, a
large portion of the subjects died and another large portion moved out of Uppsala county.
The participants answered a questionnaire regarding general as well as medical health. The

examination was done in fasting state and blood samples were collected and blood pressure mea-
sured using a calibrated sphygmomanometer after 10 minutes of rest.

6



The ULSAM project has been approved by the Ethics committee of Uppsala University. The
participants were informed and provided written consent.
This report studies 12 samples from the ULSAM project that were selected and sequenced

using both microarray and “next-gen” techniques. SNPs detected during sequencing with the
”next-gen” technique was compared to SNPs found using the more reliable, but less flexible,
microarray chip. The chip contains information about roughly 1.6 · 106 variants and the data
sequenced using the “next-gen” technology contains data of the samples’ entire exomes. In this
analysis only 2.4 · 105 of these were scrutinised. The reasons for this are a) that the statistical
strength is not enough to identify variations unique to a sample in this small material and b) that
only the samples’ exome has been purified and sequenced, the exome makes up about 1% of the
entire genome, and the chip does contain intron specific sequences as well.
Microarray sequencing

Illumina Omni2.5M and Illumina Metabochip was used for microarray genotyping. Quality con-
trol was performed on the samples and samples were excluded from the study based on genotype
call rate < 95%, heterozygosity < 3 standard deviations, gender discordance, duplicated sam-
ples, identity-by-descent match and ethnic outliers. The variant calls were furthermore excluded
if they were monomorphic SNPs, had a Hardy-Weinberg equilibrium P-value < 1 × 10−6, had
a genotype call rate < 99.9% and MAF < 1%. Furthermore, SNPs were excluded if they had
large position disagreements, did not map to genome, mapped more than once or had bad probe
assays (Gustafsson 2013).
After quality control the genotyped data in part one of the ULSAM consisted of 1,179 samples

and 1,621,833 SNPs.
Twenty four of these 1,179 samples were randomly selected for sequencing and the 12 best

ones, based on number of reads, were selected. These 12 were also genotyped using ”next-gen”
sequencing. A summary of the data available for analysis can be seen in Table 1.
This data was used to create the prior information needed in the likelihood model described

previously. The prior information consists of normalised allele frequencies from the all the 1,179
samples sequenced with the microarray technology.
”Next-gen” sequencing

Exome sequencing was done at the SNP & SEQ Technology Platform, Department of Medical
Sciences, Uppsala University(MOLMED). Sequencing libraries where prepared with TruSeq
DNA library preparation kit (Illumina Inc.) and the TruSeq Exome Enrichment Kit (Illumina
Inc.) was used for exome capture on the libraries. The enriched libraries where sequenced on
the Illumina HiSeq2000 using 100bp paired-end sequencing. BWA was used to align reads and
The Genome Analysis Toolkit (GATK) with the UnifiedGenotyper was used for variant calling
and to refine the data.
The following variables were available for each SNP.

- Position Reference position on the given chromosome.
- Reference Variant according to reference genome used when calling.
- Alternative Alternative allele.
- Chip call Number of alternative alleles for a given individual at the given position, ac-
cording to microarray genotyping.
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Property Value
Mean mapped read depth, MRD 28.4
Number of samples 12.0
Entries removed 2905.0
Analysed SNPs 240384.0
SNPs per sample 20032.0

Table 1: Summary of data

- “next-gen” call Number of alternative alleles for a given individual at the given position,
according to sequence based genotyping.

- Quality value Conditional genotype quality, encoded as a phred quality, for HiSeq2000
genotyping, the given individual and the given position.

- Read depth HiSeq2000 read depth for the given individual and the given position.
- Priors Prior information about each SNP used as weights in the likelihood model given as
a 3-valued vector.

- Likelihoods Raw likelihoods used to call variants given as a 3-valued vector with the
first value corresponding to the likelihood that 0 alleles differ from the reference genome,
second value that 1 allele differs and the last value the likelihood that 2 alleles differ from
the reference genome.

The data contains entries with multiple alternative alleles, these are ambiguous. These 2905
entries were therefore removed prior to analysis.

3 Results

The data analysed consists of samples from 12 individuals that were analysed as one to achieve
enough data of the quality of interest.

3.1 Read depth

Investigating how read depth, D, is distributed over the length of the chromosomes was done by
plotting D against position, see Figure 3c. The genome was sliced into 100 different slices, each
covering an equal range of positions, and the mean read depth in each slice was plotted against
the mean position of the corresponding slice. This was done because the plot otherwise would
be unreadable. Figure 3c shows no sign of systemic bias.
To get a picture of how evenly the variants are covered by aligned reads we used a histogram

showing the depths, seen in Figure 3b from one sample, looked at the IQR and also if it was
overdispersed or not.
The difference between the 1st(17) and 3rd(37) quartile, the IQR, was 20 for the whole data

set. The mean mapped read depth, m, was 28.4 and the variance of the depths, v, was 254
for the complete data set. This gives an overdispersion of read depths since the read depths were
approximate Poisson distributed and v > m. The sample with the smallest variance had a sample
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variance of 106 and the most varying sample had the variance 368. Mean variance per sample
was 219.
The values mentioned above applied to the data set as a whole. If we broke it down to chro-

mosome basis or sample basis the values differed slightly as seen in Table 2.

Property Complete data set Chromosome 8 Sample 7
IQR 20.0 19.0 19.0
MRD 28.4 28.5 35.2
Variance 254.0 214.0 316.0
Mean var. per sample 219.0 178.0
Min. variance 106.0 76.4
Max. variance 368.0 305.0

Table 2: Comparison of properties of data from the entire data set, from data from a single chro-
mosome and from a single sample.
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Figure 3: 3a) Bar plot showing individual samples’ mean phred scaled quality± SD (circles) and
mean read depth± SD (triangles). 3b) Histogram showing distribution of read depths
in sample 7. The dashed lines indicate the first and third quartile. IQR: 23 MRD: 35.24
VAR: 315.6. 3c) Graph displaying the average depth at evenly spaced intervals in data
from chromosome 8.

3.2 Genotype likelihoods

Due to the nature of things there will be errors in sequencing. To compensate for the errors we
try to predict the error frequency for genotype calls. As a measure of quality for the call so they
can be discarded if the quality is too low. The correctness of the prediction is important if it is to
be used for excluding collected data. To verify that the predictions and observations match we
compare them.
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The model (1) gives 3 likelihoods for each genotype call, one assuming both alleles are equal
to reference, one assuming one differing allele and lastly one that assumes that both alleles differ
from the reference genome.

L(g) = P (x | G = g) =


I{x = (0, . . . , 0)}, g = 0,

2−k, g = 1,

I{x = (1, . . . , 1)}, g = 2.

The genotype with the highest likelihood will be considered the guess, this is written as 0, 1 or
2 depending on the value g. Using data from the data microarray sequencing efforts as a golden
standard we can determine which of the genotype calls that were made correctly, according to
the microarray sequencing data.
The likelihoods computed are used to create posterior genotype probabilities using prior in-

formation, as seen in Equation 3, for each of the genotype calls. These posterior genotype prob-
abilities can be compared to the actual observed allele frequencies in the data set. The observed
frequencies are created, as mentioned previously, from comparing the microarray data with the
“next-gen” genotype guesses.

g Total NND Percentage
0 173587 2466 1.4
1 117159 16396 14.0
2 72355 2103 2.9
3 363101 20965 5.8

Table 3: Number of observations for each value of g = 0, 1, 2 or a combination of them (3).
Total contains the values for the total number of genotype calls made with a phred scaled
posterior genotype probability less than 30. The columnNND, Number not displayed, is
the number of values where the phred scaled posterior genotype probability was rounded
to 0.

In table 3 and Figure 4 we see the results of comparing posterior genotype probabilities with
observed allele frequencies to validate the accuracy of predictions. The observed frequency for a
given probability is the fraction of correct genotype calls with an posterior genotype probability
equal to the one of interest. In Figure 4 we have phred scaled posterior genotype probabilities
on the horizontal axis and phred scaled observed allele frequency on the vertical axis. The red
line denotes a perfect match between prediction and observation. Due to small sample size many
genotype have a unique or very rare posterior genotype probability which results in very blunt
observed allele frequencies, i.e. either 0 or 1 for those genotype calls that are data set-wide
unique. To remedy this the data set was stratified, and the comparison made using the mean
posterior genotype probability and mean observed allele frequency for each of the stratae. The
stratification was made on the phred scaled posterior genotype probabilities and the length of the
stratae was chosen as a trade off between resolution and certainty. The length 3 was chosen.
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Figure 4: phred scaled observed genotype frequencies plotted against phred scaled probabilities
greater than 0 predicted by the this likelihood model. Error bars denote 95% binomial
confidence intervals, size denotes number of genotype calls used to average that point.
Upper left: One allele differ from reference Upper right: Both alleles are equal to ref-
erence Bottom left: Both alleles are not equal to reference. Bottom right: All observed
genotype frequencies vs. predicted genotype probabilities.

The data points where the phred scaled score was rounded to 0 has been omitted in Figure 4
because of the large discrepancy in number of observations, seen in table 3. The column Total
consists of the genotype calls with a phred scaled posterior genotype probability of 30 or less
and the column NND contains the number of genotype calls out of those in Total that had the
phred scaled posterior genotype probability rounded to 0. The column g uses the same grouping
as Figure 4 and is based on the genotype call made by the next-gen machinery. Only genotype
calls with a phred-scaled quality value less or equal to 30 were plotted, for larger values the
amount of data available is not enough. Error bars denote binomial 95% confidence intervals
created using the Clopper-Pearson method. The size of points is corresponding to the number
of observations in that particular strata, where the largest is composed of 3377 and the smallest
only has 59 observations.
It is noted that the observed allele frequency and the posterior genotype probabilities correlate

more closely when calculating the probabilities for heterozygotic genotypes than for homozygotic
genotypes. The homozygotic posterior genotype probabilities show a tendency to be conserva-
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tive, i.e. more correct calls are made than predicted. The overall correlation between posterior
genotype probability and observed allele frequency was shown to not deviate from the line in
Figure 4.
At certain base positions in the samples the HiSeq2000 has failed the genotype call and the

result returned is Not Available, NA. Figure 5a shows read depth at those positions and Figure 5b
shows how they were distributed throughout the genome. Figure 5a shows that the less coverage
a position has, the harder it is to make a call, NA is interpreted as not being covered at all which.
In Figure 5b we see that the density of failed variant calls followed that of successful variant
calls. The density is smoother due to not being adapted to as many points as the successful one,
only a few hundred compared to tens of thousands.
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Figure 5: Figures showing distribution of data points where variant calling for some reason failed,
resulting in a variant call not being available, these points are plotted against position
and depth. The histogram displays the number of failed calls at their respective depth,
the density plots shows the density of failed and successful calls on top of each other.

4 Discussion

The microarray is an imperfect but widely used tool. It is used for diagnosing known genetic
diseases and to categorize cancers (Hoopes 2008). One of its limitations is that you can not
effectively do explorative genotyping, since the DNA sequence has to be known beforehand.
This means that many hours of research has to be invested in determining which sequences to
look for the first time. After the completion of large consensus genomes this need has decreased
dramatically.
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One of the goals of sequencing is to make it cheap enough to personalise treatments, to se-
quence patients’ genomes in the same casual way they are sent to the radiology/imaging unit.
Since “next-gen” sequencing gives a broader and less focused view of a sample’s genetic ma-

terial than microarray sequencing it is of interest to see if the results from “next-gen” sequencing
are as accurate as the clinically used microarray technology. Because if they are, “next-gen” se-
quencing can replace microarray sequencing as a diagnostic tool, which would simplify research
and extend our knowledge of genetic disorders.
The 12 different samples are analysed in one single batch. This is motivated by them not being

significantly different when it comes to reading depth and quality assessment, seen in Figure 3a.

4.1 Likelihood modelling - Calibration and accuracy

Whether you are creating consensus sequences, discovering new variants or diagnosing and de-
termining correct treatments you rely on the correctness of data material you are basing your
work on. One measure, that is widely used, of how correct genomic information is is the quality
value assigned by the sequencer. The sequencer uses many variables when determining the qual-
ity of a base/variant call, such as agreement with existing consensus sequences, read depth and
variance in between reads aligned over the current base. But regardless of what the sequencer
bases the prediction on, regardless of how it does it, the correlation between predicted error rate
and actual error rate is important, how well calibrated the sequencer is is important.
As seen in Figure 4, the heterozygotic base calls are well calibrated while the homozygotic have

a tendency to drop below the expected line. In the model (2) we note that the estimated errors,
εj for j = 1, ..., k, affect the homozygotic cases while leaving the heterozygotic cases entirely
unaffected. The heterozygotic case treats all errors as if the read is from the other allele. This part
of the model makes it more sensitive to errors and estimates from the read- and aligning phases
in the homozygotic case than in the heterozygotic and results in more conservative estimates in
homozygotic cases than in heterozygotic cases.
A few of the points’ confidence intervals lie entirely outside of the expected range. This is

most likely due to the sample size being to small to either take them all below the expected line
or make all the confidence intervals cover the line. The method used to create the intervals is the
Clopper-Pearson method which is based on the binomial distribution and not an approximation
of it. The method gives wide intervals and it is argued that they cover more than the nominal
95%, on the other hand they are guaranteed to not cover less than 95%. As it is here, the overall
impression is that the confidence intervals cover the expected line, and we err on the safe side.
The analysis of Figure 4 suggests that the overall accuracy of this likelihood model is adequate

for error estimation and quality control. Figure 4 also indicates that the likelihood model is a
sound model to estimate how likely different variants are, and that it performs particularly well
when it tries to estimate how likely, or unlikely, the heterozygotic case is.

4.2 Depth, NA and systemic error

In this material the depth has a total inter quartile range of 20 and a mapped mean depth of
28.4. This could be considered good since the MRD of the failed ones and those with a quality
value of 30 or less is 8.206 and 7.47, giving an indication that overall, the variant calls are well
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covered. On the other hand, comparing these values with larger studies such as those published
by the 1000 Genomes project (Abecasis et al. 2012; Abecasis et al. 2010) leads us to conclude
that we are on below of what is usually called high coverage sequencing. In their reports they
aim at 50-100 × exome coverage to be able to find rare single nucleotide polymorphisms. This
is a work trying to map population wide variation and must therefore analyse large amounts of
genomes and with a very high accuracy. After initial mappings have been done I suspect a lower
read depth is required to determine the genotype of later samples.
Also, we note that the mean mapped read depth is much less than the sample variance. For an

approximately Poisson distributed variable that gives that it is overdispersed. In this case perhaps
a negative binomial distribution might suit better to model the behaviour of the read depth.
In Table 2 we see that there is little variation between the entire data set, a single chromosome

and a single sample.
But of course, some bases are not covered. Those always result in a failed variant call. In

Figure 5a we see that the majority of all incorrect calls are made when the position was not
covered by any read; secondly, we see a clear negative correlation between read depth and rate
of error. In Figure 5b we see how the incorrect variant calls are distributed against position, the
distribution of correct and incorrect calls match each other well, this together with Figure 3c
indicates that there is no existing systemic position-bias.

4.3 Data amount, quality and availability

The amount of data available for analysis imposes a restriction on the analysis, quality values
scale logarithmically and to assess the calibration of quality values of 80 we would need 1079

observations, and since we only possess 240384 in total, regardless of quality value, we have
opted to restrict ourselves to variant calls made with a quality value of 30 or less.
The data obtained using microarray technology is a analytic method as any other in, it is not

perfect. The possibility that a number of variant calls have been falsely made and that it affects
this study is very high due to the large amount of calls made. One might go as far as to ponder the
possibility that if the sample used was very difficult to genotype at certain positions, that would
increase the likelihood of results from both of the two different methods being incorrect at these
positions. This information is not within reach for this study.
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