IT 13 075

Examensarbete 15 hp
Oktober 2013

UPPSALA
UNIVERSITET

Platform-independent indoor
positioning system

Robin Broberg
Fredrik Gadnell

Institutionen for informationsteknologi
Department of Information Technology

UPPSALA
UNIVERSITET

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besoksadress:
Angstrémlaboratoriet
Lagerhyddsvagen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 — 471 3003

Telefax:
018 — 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Platform-independent indoor positioning system

Robin Broberg and Fredrik Gadnell

The purpose of this thesis is to investigate the
possibility and feasibility of a platform-independent
positioning system capable of determining the location
of mobile devices without imposing additional
requirements on the hardware and software of the
device other than supporting Wi-Fi. Focus is on
designing a scalable system capable of positioning
devices on multiple sites. The suggested solution uses
commercially available Wi-Fi access points to observe
the received signal strength when a device probes for
nearby access points. The information gathered by the
access points is forwarded to a server cluster that uses
the signal strength data to determine the location of
the device.

Handledare: Kenneth Andersson
Amnesgranskare: Christian Rohner
Examinator: Olle Gillmo

IT 13 075

Tryckt av: Reprocentralen ITC

Table of contents

Table Of CONTENTS ...t
1 INErOAUCTION ettt 1
1.1 BACKGTOUNcoeeieeereeeeeisreessessssesesessesss s sssesse s sssesssssssssssssneanes 1
1.2 Problem DeSCriptionncsssssssssssssssssssssssssssssesssssssssens 2
1.2.1 PUIPOSE et s s s s nssessssssessansnes 2
1.2.2 MELNOM. ..ottt esesesses e sse st 3
1.2.3 Delimitations....oscerceceresreereeseessesesessessessessssssssessessssssssssssssesssssssssssssseanes 3
2 DEVICE PIODING.....ceieeereeeeeeresseeseessssesessessessessssssssssssesses s s s sssssssssssssssssassaneanes 4
2.1 ACLIVE PIODING ..ttt sss s 4
2.2 Evaluation of the tracking potential.......coomnncennesnenessensesseseenens 5
3 SYSTEIM AESIGIN ..ot s s s s aneaes 10
3.1 COMPONENLES .. s s sssssessssssesssssssssass 11
3.2 The 10ad DalanCer ... sssssessens 12
3.2.1 ASSIGNMENT ... 13
3.3 The POSItiONING SEIVETS ...coveeerererrerrerseeseessessessessssssssssssssessessssssssssssssens 14
3.3.1 Receiving an assignment ... 14
3.3.2 Updating the Model.......enereeeeeeresessesseeseesessessessssssssesnens 14
4 Positioning Methods ... sssasens 15
4.1 Simulating Signal data ... 16
5 Implementing the positioning node networkooeereereneeneessesnennes 17
5.1 Software development for embedded devicesourerrerrenirrienns 17
5.1.1 OPENWIL st sssss s s s sssssssssssnees 18
5.1.2 Development [SSUES.....cninseesssssnssssssessessss s sssssssssssssssssens 18
5.1.3 Building an imageccuvenenenrerernernesssessesessesssssssssssssessesssssssssssssssens 19
5.2 Listening to SIgNals ... sssssesessesssssssssssssssens 19
5.2.1 Capturing PACKELSoovriereeneeneereresrersesseesesessesssssssssssssessssssssssssssssssens 20
5.2.2 MONItOring SOftWATEceeieeeeereererrerseeseesesessessessesss e sssssssssssssssens 21
5.2.3 Medium Access Control headeronenensenneneneessessessennens 22
5.2.4 Obtaining the received signal strength indicator (RSSI)......... 23
5.3 Forwarding gathered data.......enenenensnsenseseessesesseessssseseenens 24
ST 3 DATZ 1 LD E- U (o) o o o TSSO 26
6 CONCIUSION ottt et et s s s s s neaes 27
6.1 FULUTE WOTK...ocviie e e e e e e e 28
6.2 Related WOTK ..o e 29
(G I VAT/0) § 1@ (=] o 1o) f VPSPPI 29

A AU (S =) 0 (6L 30

1 Introduction

Positioning mobile users using GPS became increasingly popular
with the release of smartphones. GPS gives great accuracy as long as
the device has a sufficient number of satellites within line of sight,
but quickly loose precision indoors[1].

The most common solution to indoor positioning is to measure the
signal strength to nearby Wi-Fi access points and use trilateration to
estimate the position relative to the Wi-Fi access points[2]. This
solution requires that the operating system of the device allow
developers to acquire this information, which several popular
systems such as i0OS and Windows Phone do not[3]. Apple provides a
much more abstracted point of entry to the location data. Developers
can register their app as a receiver of location updates, which use
their underlying private frameworks. These location updates are
based on a crowdsourcing approach where devices that have
acquired a location fix by GPS share their location and pair the
location with the list of nearby access points[4]. This approach is
great for global coverage, but lacks precision indoors due to the fact
that there are no good reference locations to use as the reference
locations are based on GPS. It is also possible to acquire the raw data
(i.e. signal strength to each node in range) by reverse engineering the
private framework headers, but doing so violates the AppStore
guidelines. Because of this, most existing systems are only available
for Android.

In this thesis we design and discuss the problems and solutions of
implementing a platform-independent indoor positioning system. A
system that can position a mobile device independently of what
operating system it is running.

1.1 Background

This thesis project was carried out in collaboration with The Mobile
Life in Stockholm, Sweden. The Mobile life desired a solution that
could position mobile devices indoors at large shopping malls
independent of the mobile phone’s operating system. The platform-
independency requirement originated from that they had identified
that most existing indoor positioning solutions only supported the
Android platform.

Some preliminary research was done on the subject and the
conclusion was reached that an on-device software solution is
impossible with the current version of i0S, unless custom firmware is
installed[3].

An alternate approach to indoor positioning was discussed. The idea
was to position the device by measuring the received signal strength
at each access point instead of the received signal strength on the
device. This would result in a platform-independent solution with
support for tracking devices without software installed on the device.

The research department of Ericsson, Ericsson Labs, showed interest
in our project and suggested we meet monthly to discuss the
research and possibilities of the technology. Access to their maps API
was provided for use in this thesis project. The API allowed users to
visually create maps of the site of interest that was then stored in an
XML based format for positioning systems to download [5].

1.2 Problem Description

To make a platform-independent system, this thesis focuses on
passive listening of mobile phones and designing a system that can
scale to handle and locate a large amount of devices. The platform-
independent approach to indoor positioning requires a very different
architecture than on-device software solutions. Custom software on
each access point is required to forward the data received by devices
in the area, in effect becoming sensors for the tracking system.

A thorough discussion covering the theory and methods required to
develop and install such software on the access points is found in
chapter 4.

The sensor data forwarded by the sensor network has to be received
and used to compute probable locations for each device on the
network. While an on-device software solution only needs to
compute the location of a single device, the platform-independent
solution discussed in this thesis has to be scalable to handle large
networks. These issues, along with a more general overview of the
system architecture required, are discussed in chapter 3.

1.2.1 Purpose

The purpose of this thesis is to explore a platform-independent
approach to indoor positioning. By removing all requirements except
the basic need for Wi-Fi from the device, a general tracking system

2

can be developed. Indoor positioning has many uses, including
indoor navigation and visitor analytics.

The approach discussed in this thesis expands the possibilities in
these areas and enables new features such as tracking arbitrary Wi-
Fi enabled hardware, including tablets and laptops, independent
their operating system.

1.2.2 Method

First, some initial research on the subjects of indoor positioning,
distributed systems and Wi-Fi on smartphones was done. The
frequency of transmissions from common devices determines the
possibilities of implementing a platform-independent positioning
system.

A proof of concept was developed to confirm that the transmissions
of common Wi-Fi enabled devices can be monitored on local access
points and that the signal strength can be extracted and forwarded to
external servers. The software required on the access points to
monitor outgoing signals of nearby devices was implemented, as well
as the necessary communication between access points.

The general architecture of the positioning system was designed,
with focus on scalability and stability. The necessary software was
then implemented and tested locally by simulating a live
environment. The access point network and the positioning system
was then integrated and a working prototype was developed and
tested.

1.2.3 Delimitations

This thesis discusses on the general problems and issues of designing
and implementing a platform-independent indoor positioning
system, with focus on scalability and stability.

The algorithms and methods used to compute locations and track
devices are only briefly mentioned. Plotting locations on maps, path
finding and navigation are not part of this report.

2 Device probing

Mobile devices with support for the 802.11 Wireless Local Area
Network protocol emit signals that can be captured by the access
points. When a signal is captured the access point calculates the
arriving signal strength and translates it to an indicator known as
Receiving Signal Strength Indicator (RSSI).

To work around the platform dependence that is enforced on mobile
devices, extra hardware is added in addition to the mobile device in
the form of access points that listen for signals on the wireless
network frequency.

The RSSI at each access point is then used to compute the distance to
the transmitting device by using a model of the signal’s behavior in
an indoor environment. Once 3 or more nodes have estimated the
distance to the transmitting device, the position of the device can be
computed by trilateration [6]. Trilateration is the process of
computing the location of a point based on distance measurements to
other points. In the case of device positioning, the point of interest is
the device transmitting the signal. The measurements are
determined by estimating the distances to the receiving Wi-Fi access
points in range.

2.1 Active probing

Since signals transmitted by the device being positioned is required
to compute a location, it is vital that the device transmits signals
frequently. One efficient way to generate outgoing traffic from a
device is to use ping. Ping is used to test the reachability of a peer, in
this case the mobile device. When ping tests the reachability of a
peer, the peer responds with an acknowledgement saying it is
available. This response generates a signal from the mobile device
that can be used to approximate a position. But there are some
limitations to this solution as it demands that the mobile device is
connected to the same network as the device triggering the ping. In
this thesis, the access points used for capturing signals also provide a
wireless area network for the mobile device to connect to.

2.2 Passive listening

Wi-Fi enabled devices still emit signals sporadically when not
connected to any wireless local area network by sending out a type of
signal known as a probe request.

The probe request are sent out when the mobile device needs to
determine which access points are within range. The frequency at
which the probe request is sent out is controlled by the mobile device
operating system. Some devices only scan for wireless networks in
passive scanning mode. When in passive scanning mode, the device
only listens for ingoing signals from access points known as beacon
frames. Devices that passively listen for nearby networks cannot be
positioned using the system described in this thesis.

Multiple mobile devices were tested to see how often probe request
are sent out, as it is the main signal generator for mobile devices that
are not connected to the wireless network.

2.2 Evaluation of the tracking potential

A positioning approach without device-specific software still puts
several requirements on the device that can be tracked. As the
system is dependent on how often mobile devices transmit signals
without any interaction from the user, several tests were made.

Since a very popular usage of positioning systems is to track mobile
devices, a series of popular smart phones (including a tablet) were
chosen as test devices.

The test was performed by setting up an access point in monitoring
mode placed 2 meters from the device being tested. All packets
received over a period of 5 minutes were recorded and some basic
statistics were gathered from the data. Many popular smart phones
perform several synchronization operations when before entering
the sleep mode induced by locking the device, causing a burst of
packets over the network. Because of this, the devices were locked
for at least 10 seconds before each test.

Three properties were recorded and analyzed:

Number of packets

The number of outgoing packets transmitted by the device. This
value is not guaranteed to be exact because of the possibility of
packet loss over Wi-Fi.

Average silence

The average time between packets, excluding very short intervals.
"Silence" is, for this usage, defined as all packet intervals greater than
1 second.

Longest silence

The longest interval between two transmitted packets, which in turn
determines the longest delay between location updates. Again, packet
loss may cause a slightly higher value than reality.

For each device, two tests were performed. One with the device
connected to a network on the same channel as the monitoring
access point, and one with the device disconnected from all nearby
networks. In both cases, the Wi-Fi setting of the device was enabled.

Because of the already wide scope of the project, no attempts were
made to determine the cause of packets transmitted by packet
sniffing. Possible cases are probe requests made by the device,
responses to pings, and acknowledgement packets from incoming
requests from push-services to mention a few.

350
300

250

200 Connected to
network

150
B No network

100

50

0 -
iPhone 4 HTC Flyer Galaxy S2 HTC Xperia Nokia
Desire S X10 Mini Lumina

Fig 1: Number of packets transmitted over a 5 minute period

The tests resulted in varying results for each device. The iPhone 4
was the only device to transmit more packets when disconnected
from the network. This is most likely probe requests sent by the
device to probe for nearby networks. When connected to an access
point the need for probe requests diminishes, and with it the number
of packets transmitted.

Another interesting result is the lack of transmissions from several
devices when disconnected from the network. The HTC Flyer, Xperia
X10 Mini and Nokia Lumina stopped transmitting when locked and
disconnected from the network. A common property of these devices
was found and is likely the cause of the lack of transmissions: Neither
of the devices had background data enabled. Background data, more
commonly known on mobile devices as "push", are services that
passively poll a web service for updates data, resulting in updates
being almost instantly synchronized with the devices. 'Updates' can
be anything the service is interested in: Incoming messages, social
network posts or new RSS entries to mention a few.

Default settings were used for all devices and no attempts were made
to create identical behavior for all devices by, for example, having the
same push and networking settings on all devices. This was a
conscious decision based on the fact that non-power users rarely
change the default settings. Changing the network settings would not
provide us with the every day behavior of the devices that we
desired.

An observation was made that many popular smart phones only
seem to probe for new networks passively by listening for beacon
frames transmitted by nearby access points. These smart phones
only transmit while locked if background data is enabled, in which
case transmissions are made to synchronize data with online servers.
To confirm this observation, a second test was made with
background data enabled on the relevant devices. The test resulted in
packets being transmitted as expected, confirming the initial
hypothesis.

200

180

160

140

120

100

80

60

40
20 | I
0 m 'l ..

iPhone4 HTCFlyer GalaxyS2 HTC Desire XperiaX10 Nokia
S Mini Lumina

Average
silence
¥ Longest
silence

Fig 2: Transmission intervals over a 5 minute period. Device connected

to network.

The test results when measuring transmission silences were, as with
the number of packets, varied for each device. The most important
observation made was that most popular smart phones transmit with
long intervals when locked with no interaction from the user. Most
devices had an average transmission interval greater than 20
seconds, which impacts the potential to track these devices greatly.

A combination of low transmission intervals and a high number of
packets is required for good accuracy when tracking devices
passively, without pinging or custom software on the device. The
conclusion of the tests performed is that it is perfectly possible to
passively track most popular smart phones, including the iPhone,
without the need to induce additional traffic from the device. The
accuracy and update rate of the position is heavily affected by the

long transmit intervals of locked devices.

To increase accuracy, all tracked devices should be connected to a
wireless network on the same channel as the monitoring access

points used to position the device. This can be archived by

broadcasting a Service Set Identifier (SSID), which in turn the tracked

devices can connect to.

3 System design

Positioning directly on the device by gathering signal strengths to
nearby access points has the advantage of having a very simple
system architecture. Receiving sensor data, updating the model and
positioning can all be done on the same hardware as the software has
no need to be scalable. The device only keeps track of its own
position.

When creating a platform-independent system, a more advanced
architecture is required. In that scenario, the device being located
(usually a mobile phone) has no software installed and only
participates by periodically sending packets over Wi-Fi. The
requirement of periodically sending packets is satisfied by most Wi-
Fi enabled devices, including mobile phones, as probe requests are
sent with a set interval to probe for new networks in the area.

As no additional software can be added to the device, the handling of
sensor data and positioning must be performed externally on a
server. In such a system, signals emitted by device are received by
the nearby Wi-Fi access points and forwarded to a central server,
which then processes the data and provides access to the location
data generated. A mobile phone in the area can then simply access
the location data through it’s browser or an app by querying the
server.

Even a relatively small number of devices generate a large amount of
data when every single packet is considered. An iPhone 4 generates
on average 60 packets per minute when not connected to a network.
(See 2.2 - Evaluation of the tracking potential). Imagine a theoretical
site with 5000 visitors a day with an average visit of 60 minutes.
Even if only half of the visitors carried a mobile phone, this would
result in 9 million packets a day.

A platform-independent system should be capable of handling
multiple sites with any number of mobile phones and Wi-Fi access
points. With this in mind, the system created during this thesis
project was designed with scalability has a high priority. The focus of
this thesis is designing a load balancer used to distribute
responsibility for sites and devices to positioning servers that then
handle sensor data and positioning.

10

The location data produced by the system can be accessed by either a
device or a server by making a request to the responsible positioning
server. This enables a huge amount of services to be built upon the
positioning system.

3.1 Components
Two basic activity flows were identified during the system design
phase.

1. The sensor nodes (Wi-Fi access points that gather signal strengths)
must gather periodic data with the signal strength to devices within
range and forward this to the positioning servers.

2. Applications that use the positioning system must have a means to
access the location data produced by the positioning servers.
Working under the assumption that the amount of sites with sensor
nodes installed can become too great for a single server to handle, a
means to delegate the incoming sensor data and application requests
is needed.

Server Server
Application | sever |
VE— Load | - -
(app’ Server) - SElETE Server Server
| 1 1 1 1
Sensor Sensor Sensor Sensor Sensor

Fig 1. The system architecture

The load balancer acts as a gateway into the server cluster that
handles sensor data and positioning requests. As new sites are
added, the load balancer assigns the site to a positioning server in the
cluster. Sensor data received from nodes in this site is then
forwarded to the assigned server. Application requests to locate
devices in the site are made to the load balancer, which then
forwards the request to the assigned server.

11

Load balancing can be achieved in different ways. One approach is
using load-balancing properties of the Domain Name System. The
DNS Round Robin technique keeps a pool of IP addresses bound to a
domain name. Upon receiving a DNS request, it hands over one of the

I[P addresses from the pool in a round robin manner [9]. This

approach has some major issues when used with the architecture
explained in this report. Firstly, the DNS server does not keep track of
online servers in this IP pool. There are third parties software to
handle this, but globally updating a DNS can take from several hours
to days. Another issue is the process of adding a new server. A new
public IP address would have to be obtained and added to all the IP

pools on the DNS servers involved.

To avoid the issues of using DNS, a custom software load balancing

approach was used.

3.2 The load balancer

Sensor data generated by the
positioning nodes installed on the site
are received as batches of received
signal strength indicators (RSSI) to
nearby devices. The positioning nodes
are configured to send this data
periodically to the load balancer.

When the load balancer receives a new
batch of sensor data, it determines
which server is currently assigned to the
site and forwards the data. If no server
has been assigned, the site-relevant data
is sent to the server in an assignment

request. This procedure creates a highly dynamic architecture. If the
connection between the load balancer and one of the servers is lost,
the load balancer simply considers all assignments to this server
invalid. When a new batch is received from one of the dead server's
sites, the load balancer handles this like it would any new site and a

new server is assigned to the site.

Forward batch to
assigned server

/

Allocate space on server
for the buildings' node

table

Yes

)

Choose a server
(by round robin)

‘
No

Building has an
assigned
server?

‘ Determine which server is responsible for the source building |

+

Receives a packet batch

As the load balancer is the entity responsible for keeping track of
sites and servers, it needs to be easily configurable. Information of
each site using the system must be available to the load balancer as
well as the internal IP address of all positioning servers in the cluster.

The amount of positioning nodes a load balancer can handle is
mainly determined by how fast it can handle and forward incoming
sensor data. Each node sends a new batch on average every 200 ms
and the assigned server of each batch must be quickly determined
upon arrival.

3.2.1 Assignment

By applying a subnet mask to the IP of the positioning node, the site
can quickly be determined. The subnet address of the node is then
used to perform a hash table lookup to find the currently assigned
server.

If no such entry is found, a new server must be assigned. There are
many possible techniques for choosing a new server. If the load of
each incoming request is roughly the same a suitable approach is
Round Robin, where the load balancer keeps a list of all available
servers and simply picks the next server in the list each time a
request is received [8].

A different, more advanced, approach takes several factors into
account such as the current workload of each server [8]. The load of
each server can be estimated by counting the number of sites
currently assigned to the server. The number of positioning nodes
and/or devices of each site can also be used as weights when
determining the load of a server.

A very simple approach was used in the prototype created during
this thesis. A new server is selected using Round Robin and the
selected server is sent an assignment request. The server then
approves or denies the request depending on its current load. If the
server is overburdened the load balancer simply continues the
Round Robin and selects the next server in the list until a suitable
server is found.

13

3.3 The positioning servers

The positioning servers are responsible for a set amount of sites.
Each server handles incoming sensor data and can respond to
positioning requests from applications.

Once a site has been assigned to a server, all incoming signal data
batches are forwarded directly to the server. The server then
unbatches the packets and updates the model accordingly. How the
received signal data can be used to locate the source device is
discussed briefly in this paper, but is not entirely within the scope of
the thesis.

In the prototype created, the received signal data is averaged over
time and stored on the server. The server makes no attempt to locate
the device unless a request is made from an application using the
system.

3.3.1 Receiving an assignment

When the server receives an assignment request from the load
balancer it either denies the request (because of too high workload)
or acknowledges it and allocates space for the new site. The site-
specific data, such as node information and floors, is received from
the load balancer. Device-specific data is dynamically allocated as
new devices are discovered in incoming batches.

To ensure a stable system, the positioning servers periodically send
an "I'm alive"-message to the load balancer over UDP. If the
connection is lost, all sites currently assigned to the server is
assigned to a new server.

3.3.2 Updating the model

The system architecture explained in this paper makes platform-
independent positioning possible while keeping the positioning
algorithms loosely coupled to the under laying system. Most existing
methods used to locate devices from signal strength data can be used
in conjunction with the system, as long as the MAC address of the
mobile device (used as unique identifier by our system) can be
acquired. As the platform-independent solution was the focus of this
thesis only the basics of indoor positioning is discussed, as well as the
most popular positioning methods.

14

3.4 Indoor Positioning

The signal strength between devices and access points in a building
are noisy and heavily affected by the environment. A single wall can
have great impact on the signal strength value. Water also has a
resonance frequency of 2.4 GHz and since the human body contains
over 70% water, people in the building become moving signal
absorbers [11].

These factors turn the indoor positioning problem into a matter of
determining an appropriate signal propagation model. An exception
is the fingerprinting method, which avoids this problem by learning
the environment manually, explained in 3.4.1.

The height of the access points also have great impact on the signal
strength values received. By placing the receivers a few meters
higher than the normal walking height (preferably the roof) the
problem of people absorbing the signal can be avoided [10].

4 Positioning methods

Many techniques exist for determining the position of a device using
the ingoing or outgoing signal strength of the device. The router-
based approach proposed in this thesis measures the outgoing signal
strength of the device. Most, if not all, of these techniques fall in one
of two categories: Trilateration or fingerprinting [6].

The method of trilateration attempts to determine the distance
between the sender and receiver using a propagation model based on
the characteristics of the signal and the environment. This distance
information, combined with previous knowledge of the exact
locations of each access point, can then be used to compute the
location of the device.

The second approach, fingerprinting, consists of two phases: The
offline learning phase and the positioning phase. During the learning
phase, the signal strength to each access point is measured from a
predefined set of locations. The information gathered in this phase is
used to construct a map of the signal strength received at each
location [6][7]. In the (live) positioning phase, gathered data is
compared to the map created during the learning phase.

15

By comparing the received signal strengths to each access point with
the stored data from the learning phase, one of the predefined
locations are chosen as the most probable location. The most simple
approach is to choose the location that minimizes the euclidean

distance of the signal strengths of the live sample and the learned
data [7].

4.1 Simulating signal data

A simulation tool was developed to assist in testing how the various
components handled different situations. By simulating an
environment where the access points brake down seemingly at
random, the simulation tool helps evaluate and improve the system.
The simulation tool creates signal batches programmatically and
sends these to the load balancer with static site and access point
identifiers, effectively simulating any number of sites and access
points.

A big weakness of simulating packets in this way is the unnatural
signal strength values. To create a more natural simulated
environment, randomized noise (using a normal distribution) was
added to the signal values before the simulated packets were batched
and sent to the load balancer. Despite adding randomized noise,
signal values created programmatically poorly match a real
environment. Real signals are affected by many factors such as
reflection, multi-path phenomena and moving objects that absorb the
signal.

Due to the problems of creating a simulated natural environment for
the system, a secondary method of testing was used. By recording the
received packets during live experiments, a replay file was created
which could be played back by a replay tool. The replay tool parses
the replay file, reconstructs the packets in the replay file and sends

these to the load balancer at the specified timestamps in the replay
file.

16

5 Implementing the positioning node network

In this chapter we describe the topics of implementing a positioning
node network as described in chapter 4. As each Wi-Fi access point
(AP) must be able to forward the packets to an external positioning
server, they must all be connected to some sort of network. As each
of the access points have a wireless network controller they can offer
a wireless network for the mobile device. But this wireless network
also allows them to connect to each other, creating an environment
that does not require wired connections between the access points.
In this thesis, the network was implemented using Wireless
Distribution System, commonly known as WDS. WDS is a static
configuration that states what other access point an access point is to
be connected to. As an access point is now forwarding data wirelessly
and offering a wireless network to mobile devices it is no longer in
monitoring mode, rather it is in the WDS mode

5.1 Software development for embedded devices

With the demand on the embedded device to capture all incoming
signals as well as determine the arriving signal strength of each
signal, software performing these tasks is needed. Developing
software for an embedded device compared to developing for a
major platform such as Windows or Mac OS X requires some
additional steps. As the embedded devices (in this case access points)
are small and designed for routing traffic rather than to be a
developing machine, they suffer from limited memory and CPU.
Developing tools and compilers take a fair amount of disk space,
more then most of the access points can offer. For this reason, it is
preferred that the development of software is not done on the device
itself but rather on a separate machine.

Most compilers compile programs to be executable on the
development machine. But for the software created for the access
points a concept called cross compiling was used. Cross compiling
allows one CPU architecture to compile for a different CPU
architecture, allowing the development machine to create a software
that can be run on the access points.

Much like on an ordinary PC, the software cannot run without a
operating system that communicates with the hardware. In this
thesis a modifiable operating system called OpenWrt was used.

17

5.1.1 OpenWrt

OpenWrt provides a fully writable file system that can be customized
through the usage of packages. OpenWrt own description of their
operating system:

"OpenWrt is a highly extensible GNU/Linux distribution for embedded
devices. Unlike many other distributions for these routers, OpenWrt is
built from the ground up to be a fully-featured, easily modifiable
operating system for your routers. In practice, this means that you can
have all features you need with none of the bloat, powered by Linux
kernel that's more recent than most other distributions.".[12]

There are a few other choices available such as DD-Wrt or Tomato.
The choice of OpenWrt was made because of its open architectures.
This makes it easier to inspect arriving packets to determine the RSSI
value. OpenWrt also uses a powerful tool called Buildroot that makes
OpenWrt stay bleeding edge compared to the other options. Last, but
not least, OpenWrt have by far the largest community of these three
candidates. [12]

5.1.2 Development Issues

Tools needed to develop a firmware image for an embedded device
are somewhat specific. These tools are not included in any common
operating system. Installing Linux on a development machine as well
as a compiler and every development tool offered would still not
suffice to produce a firmware image. The firmware image stores
read-only memory and program code inside the image itself. The
reason for this is that the embedded device is likely to be
incompatible with the development machine as it represents an
entirely new hardware platform. This issue is solved by cross
compiling. As previously mentioned, cross compiling allows one CPU
architecture to compile for a different CPU architecture. Using cross
compiling, combined with tools such as Buildroot, a complete
firmware image can be created for a targeted embedded device. The
firmware image can then be installed on the embedded device using
a web interface supplied by the device vendor. [13]

18

The second issue raised when developing for embedded devices is
how to get the software to the embedded device itself. OpenWrt
offers by default the possibility of using programs such as secure
copy, more commonly known as SCP. Making it easy to transfer the
executable to the embedded device.

5.1.3 Building an image

As mentioned above, OpenWrt uses a tool called Buildroot. Buildroot
is essentially a set of makefiles or rules that controls the
configuration and compiling process of a firmware image. Buildroot
downloads all sources needed, including sources for the cross
compiler and makes sure everything is up to date. Normally, the
cross compiler created for an access point is supplied by the access
point vendor, rather than that the developer creates its own. While
this saves time, the binary containing the cross compiler is likely to
be outdated and not use the latest set of tools [13]. As Buildroot
downloads the latest sources for the cross compiler and kernel
automatically it keeps OpenWrt bleeding edge.

5.2 Listening to signals

The task dedicated to the embedded devices in this thesis is to listen
to arriving signals and determine the transmitter of the signals along
with the arriving signal strength. To be able to both send and listen to
signals the access points has a component called the Wireless
Network Interface Controller (WNIC). WNIC can operate in six
different modes: Master (acting as an access point for other devices),
managed (more commonly known as client or station in a wireless
network), repeater, mesh, ad-hoc and monitor mode. The mode most
frequently discussed in this thesis is the monitor mode.

While the WNIC operates in monitoring mode, no frames are
transmitted. However, while operating in monitoring mode the WNIC
accepts all frames, including those that are not dedicated to the
monitoring device and would usually be dropped. As wireless
network frames are essentially packets encapsulated with headers
used when transmitting over the wireless network, packet capture
software that works on Ethernet can with a small extension also
work on wireless networks.

19

5.2.1 Capturing packets

Packet capturing software on Ethernet based network works as
follows. When a frame is received at the network card it checks that
the destination MAC address matches the MAC address of the
network card. If a match is found it generates an interrupt request
that is handled by the network card driver. The network card driver
then handles the interrupt request and timestamps the arrival time
of the packet. Normally when there is no packet capture software
running, the packet is forwarded to the protocol stack. But when a
packet capture software is running it is also copied and sent to the
packet filter. What the packet filter accepts is user defined and by
default it accepts all packets. This process is also performed for
transmitted packets. [14]

]
|
|
: Sniffer
|
' Transmitted
: Packet
: » | Packet Filter
|
|
[A |
' | Network
Recelved I Monitor
NETWORK CARD Packet !
E———— |
|
- |
- |
[|/ Web Browser
I
I
I
I Proctocol Stack
I
I
[|
! ! FTP Server
[1
[1
[1
[1
Hardware 1 Kernel Space 1 User Space
[[

Fig 3: Monitoring packets [14]

Frames captured contain all data needed to determine the RSSI value
and transmitter of the signal. But this data must be parsed out of
headers that have been applied around the data for each layer in the
TCP/IP stack.

20

5.2.2 Monitoring software

The tasks of the monitoring software deployed on the embedded
devices is to capture all arriving signals, measure the signal strength
of each arriving signal and determine the source of the signal. The
following section explains how these tasks are accomplished.

In computer networking there are several layers that are
encapsulated around the actual data being sent. These layers main
purpose is to guide the data to its destination. The layers also offer
features such as encryption and authentication. This model is
commonly known as the OSI model but in this thesis we will refer to
the more compact and simple version called the TCP/IP stack.

Application
layer

Data

Transport
h:’:d':r UDP data |ayepr

P Network
header IP data
layer

Link
:;:g':r Frame data :;2:': |
ayer

Fig 4: Headers and layers of the TCP/IP stack

The lowest layer in the TCP/IP stack is the Link layer [15]. The Link
layer contains information used when sending frames over the
wireless network, including information about the receiver and
transmitter. A frame that is to be sent over the wireless network will
be encapsulated by a frame header and a frame footer.

21

The information regarding the packet that needs to be extracted on
the access points lie in the header, which is why the focus of this
section is mainly on the frame header. The definition of the frame
header is ambiguous. In some cases it includes both the Physical
Layer Convergence Protocol header as well as the Medium Access
Control header, while in other cases it contains only the Medium
Access Control header.

5.2.3 Medium Access Control header

To be able to identify the transmitter of a signal there is a unique
identifier for each Network Interface Card called Medium Access
Control Address or MAC address [16]. The MAC address of a sent
signal is found in the MAC header. The MAC header contains four
address fields, and the difficulty of extracting the MAC address lies in
determining which of these four fields contain the MAC address. The
content of the fields is controlled by two bits, commonly referred to
as ToDS and FromDS [17].

In the 802.11 protocol the MAC headers format depends on what
type of packet it is handling. There are three types of packets: Data
packets, network management packets and control packets [17].

802.11 MAC header

Frame | Duration | Address | Address | Address (Sequence| Address | Network Data | FCS
Control ID 1 2 3 Control 4

2Bytes |2Bytes 6Bytes 6Bytes 6Bytes 2Bytes 6Bytes 0to2312Bytes 4 Bytes

Protocol To From | More Power | More
Version Type Subtype DS DS Frag Retry Mgmt | Data WEP | Order
2 bits 2 bits 4 bits 1bit 1bit 1 bit 1 bit 1 bit 1 bit 1 bit 1 bit

Fig 5: The 802.11 MAC header [17]

The difference between the three packet types is that the
management and the control packets only have the first three out of
four address fields shown in fig 5. One of the tasks assigned to the
monitoring software is to determine the transmitter of the frame.

22

This information is stored in one of the address fields. However the
ToDS and FromDS (To- and From Distributed System) bits that
controls routing in the wireless network also changes the content of
the address fields [17]. Depending on if the sender or receiver is
inside or outside the network, the ToDS and FromDS bits assume

different values, as specified in fig 6.

To DS FromDS | Address 1 | Address 2 | Address 3 | Address 4
0 0 DA SA BSSID N/A
0 1 DA BSSID SA N/A
1 0 BSSID SA DA N/A
1 1 RA TA DA SA

Fig 6: FromDS and ToDS address location table

Abbreviations
DA - Destination Address

SA - Source Address
RA - Receiving Address

TA - Transmitting Address

BSSID - Base Service Set Identifier

The sender of the signal is either the Transmitting Address or the
Source Address and it is these two that the monitoring software

parses out and binds together with the RSSI value.

5.2.4 Obtaining the received signal strength indicator (RSSI)
The Medium Access Control header itself does not contain
information about the received signal strength. The signal strength is
measured by the network card driver. The received signals are first
measured in milliWatts and then translated to a logarithmic scale. A
large issue with this none-standardized implementation is that
network card manufacturers end up using different scales in the RSSI

spectrum.

To obtain the signal strength data that the network card driver have

measured, the Packet Capture Library (Libpcap) supplies the

developer of a monitoring software with a extra layer encapsulated
around the captured frame called the Radiotap header [18].

23

Radiotap Header

-

;th__--\
-~
\
's
-

- ——— | ———— -

WLAN frame

X

I ’ ~
/ WLAN Logical Link Control
management (WLAN data) \
frame

-

Obtainable data:

{ WEPped, data rate, channel frequency,
|channel type, antenna number, signal strength.
Destination MAC address, source MAC address,
BSS id.

{ Broadcasted ESS id, supported rates

[

None.}
IPv4 source address, |IPv4 destination address.
IPv6 source address, IPv6 destination address. —

Fig 6: Packet data scheme [19]

The radiotap header was created to supply user space applications
with additional information about transmitted and received frames
[18]. As shown in fig 6 the radiotap header not only contains the
signal strength value, but also the channel type and antenna number
among other things that is known to the network card driver.

5.3 Forwarding gathered data

As the embedded devices are limited by their CPU and memory it is
not ideal to perform positioning algorithms on them. Instead, an
external positioning server is used and the monitoring software is
designed to forward the obtained information to this positioning
server.

24

The software installed on the embedded devices sends information
about received signals strength, what device that sent the captured
signal and when it arrived. As previously mentioned in this thesis.
The network card driver timestamps each received frame with the
arrival time of a signal, which is found in the radiotap header. Let us
for the sake of simplicity; call this bundled information a packet.

A problem with forwarding the assembled data about received signal
strength, source device and arrival time (packet), is that it creates an
infinite loop. Consider that each monitoring device listen to signals,
captures them, measures the signal strength and finally it timestamps
the signals time of arrival. Then it forward the information about this
signal to a remote server through the wireless network, which in turn
creates one or multiple signals of its own. Signals that other
monitoring devices captures and transfer to same remote server.
Creating an infinite loop for each captured packet that is being
forwarded.

Two solutions to the issue of an infinite loop being created would be
either to filter out packets from other monitoring devices or batch
several packets together. By batching several packets together a
monitoring device would only generate one packet for several
captured signals. The amount of captured signals would exceed the
amount of sent packets from monitoring devices and so the infinite
loop would be avoided.

By batching packets, not only is the infinite loop problem solved. But
the load on the remote server and the network is lowered as well. As
each network packet contains a certain amount of overhead, a
bundled packet contains the same amount. Meaning that for each
packet (bundled data about a signal) that can be put into the batch,
the overhead is spared. And less separate packets for the remote
server to unpack (handle in the different network layers of the
TCP/IP stack).

25

5.4 Evaluation

In this thesis, we have suggested a system that can gather signal data
from mobile phones only by passive listening, removing the need for
on-device software. By distributing an open Wi-Fi network for the
mobile phones to connect to, the amount of traffic generated by the
devices can be increased. The signal strength information gathered
and stored by the system can be used to locate the devices emitting
the signals by for example trilateration or RSSI fingerprinting (See
chapter 4). The software used by the Wi-Fi access points to gather
and forward signal data can be installed on hardware already
available on the market.

Using a load balancer backed by a server cluster of variable size the
system can scale to handle a large amount of sites (where a site is an
area covered by the custom Wi-Fi access points used to gather signal
data for the system).

The load balancer discussed can handle a very large amount of work
while still distributing work in an efficient manner when there are
only a few servers in the cluster.

Fig 7: Initial state of the system. Numbers indicate the sites assigned to
each server out of the total number of sites that can be handled.

Using the assignment strategies discussed in 3.2, fig 7 shows the state
of the system using 3 work servers when initially set up. Each server
is dormant with no sites assigned. When a batch of packets is
received from the first site, the load balancer picks the first server
using round robin and asks the server if it can be assigned a new site.
The server has no load and approves the request. Future batches
from this site are forwarded to the designated server.

26

[—
-

Fig 8: State of the system after 4 sites have been added.

Two more sites appear and the load balancer continues to select
servers using round robin. When a 4t site is introduced to the load
balancer, the first server will again be asked for site assignment. This
time, the server determines that the load of the previous site is too
great and denies the request. Continuing the round robin, the load
balancer requests that the next server handles the site and the
request is approved.

6 Conclusion

A platform-independent indoor positioning system can be
implemented using existing popular low-cost hardware on the
market. The approach explained in this thesis has many advantages
over existing on-device solutions, at the cost of ease of installation.
Once the hardware has been installed on site, the configuration
required is minimal.

The system design discussed in this report allows a highly scalable
and stable system that can handle any number of networks and
devices given that additional servers are added to the cluster as the
workload is increased. The location of tracked devices can easily be
acquired by making a request to the server, allowing new uses of
indoor positioning that are not possible with an on-device software
based solution.

While the location accuracy of devices that are not on the network is
lower than existing solutions due to the high transmission interval of
most devices, the accuracy can be greatly increased when devices are
connected to networks on the same channel as the positioning
network through pinging.

27

6.1 Future work

This thesis discusses the problems of designing and implementing
the basic architecture of a platform-independent indoor positioning
system. There are many improvements that can be made to increase
accuracy, ease of installation and performance.

There are many improvements that can be made regardless of
positioning method. A Bayesian filter (such as the Kalman filter) can
be applied to the positioning data acquired by trilateration or
fingerprinting. By letting previous position and direction affect the
probability of new locations, not only can the tracking be made a lot
smoother but the accuracy can also be greatly increased. Other
factors can also be taken into account, such as statistics from other
users. For example, if a common pattern among users is to walk
directly from the entrance to the reception the probability of
locations along this path can be increased for future users.

There are also several techniques to increase accuracy that require
software on the device. By using device sensors such as compass
(direction) and accelerometer (acceleration and speed) to affect the
probability distribution of the tracking filter, a more accurate
location can be achieved even when signal data is sparse.

In this thesis, the wireless local area network provided by the access
points not only serves the purpose of positioning the mobile devices.
The wireless local area network also allows the access points to
connect with each other devoid of any Ethernet backbone. This is
accomplished by using an architecture known as Wireless
Distribution System.

While the Wireless Distribution System covers the needs of this
thesis it would become a bottleneck and limitation in a larger
implementation of an entirely wireless environment. The first issue
in a large implementation is the static routing of the Wireless
Distribution System. When configured, it chooses a specific access
point to interconnect with which easily creates a chain of single
points of failure. Secondly the throughput of each interconnected
client in this chain is halved [15].

28

A future implementation of this system could use Wireless Network
Mesh Protocol. The mesh network implementation solves the routing
issue that the Wireless Distribution System suffers from in larger
networks by using the routing protocol known as Optimized Link
State Routing [15]. The Optimized Link State Routing protocol
consistently sends packet over the network to determine network
topology and to create a routing table [15]. By allowing each of the
access points to create their own routing table dynamically in
comparison with the more static Wireless Distribution System, the
mesh network implementation is able to self-heal if an access points
goes offline.

6.2 Related work

Like the system described in this thesis, Ericsson Lab’s positioning
API also use a central server for computing location data from signal
data. However, their system differs on some important points. The
system described in this thesis puts no requirements on the mobile
phone being located and instead moves all responsibility to external
servers. Ericsson Lab’s solution requires that the mobile phone
gathers signal data from the Wi-Fi access points. The data is then
transmitted to their positioning server which, combined with
previously uploaded maps of the location of each access point, can
compute an estimated location. This solution greatly simplifies
system architecture at the cost of requiring special software on the
mobile phone being located.

6.3 Work report

This thesis was written in collaboration by two students and covered
two major topics on the same subject. The research and tests
performed were done in collaboration between the two.
Collaborative discussions and findings are covered in the
introduction and basic concept chapters. Fredrik Gadnell focused his
research on the design of the system and wrote chapter 3, ‘System
Design’. Robin Broberg approached the subject from a hardware and
network perspective and wrote chapter 5, 'Implementing the node
network'.

29

7 References
[1] Elliott D. Kaplan, Christopher J. Hegarty. Understanding GPS:
Principles and Applications, 2006

[2] Russell C. Brinker and Roy Minnick. The surveying handbook-2" ed,
1994

[3] Tim Burks (2013-11-20). No way to determine WiFi SSID/Network
name via SDK. Available: http://openradar.appspot.com/6407431
[2013-11-21]

[4] Apple QA on Location Data. Available:
http://www.apple.com/pr/library/2011/04/27Apple-Q-A-on-
Location-Data.html [2013-11-21]

[5] Ericsson Labs Indoor Maps and Positioning. Available:
https://labs.ericsson.com/blog/ericsson-labs-2011-highlights [2013-
11-21]

[6] B. Li1,]. Salter2, A, Dempster1 and C. Rizos. Indoor positioning
techniques based on Wireless LAN. 1st IEEE Int. Conf. on Wireless
Broadband & Ultra Wideband Communications, Sydney, Australia, 13-
16 March, paper

[7] P. Prasithsangare, P. Krishnamurthy and P.K. Chrysanthis, On
Indoor Positioning Location With Wireless LANs, IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications,
2002, 18-18 Sept, paper

[8] K.J. Salchow, Jr. Manager in Product Management at f5, Load
Balancing 101: Nuts and Bolts, http://www.f5.com/pdf/white-
papers/load-balancing101-wp.pdf

[9] S.1. Ulland, High-Level Load Balancing for Web Services, paper
[10] M. Helén,]. Latvala, H. Ikonen and]. Niittylahti, Using Calibration
in RSSI-based Location Tracking System, International Conference on

Convergence Information Technology, 2007, 21-23 Nov, paper

[11] G. Deak, K. Curran and J. Condell, Device-free Passive Localisation
using RSSI-based Wireless Network Nodes, Jun 2010, paper

30

[12] OpenWRT. Available: http://openwrt.org [2013-11-21]

[13] OpenWRT Manual. Available:
http://kamikaze.openwrt.orq/docs/openwrt.html

[14] L.Garcia, Programming With Libpcap Sniffing the Network from
our own Applications,
http://recursos.aldabaknocking.com/libpcapHakin9LuisMartinGarcia.

pdf

[15] R. Braden, Internet Engineering Task Force, Requirements for
Internet Hosts -- Communication Layers,
http://tools.ietf.org/html/rfc1122

[16] Introduction to Wireless Networking, WildPackets Inc,
https://mypeek.wildpackets.com/elements/whitepapers/Intro_to_Wire
less_Networking.pdf

[17] WLAN Packets and Protocols, WildPackets Inc,
http://www.wildpackets.com/resources/compendium/wireless_lan/wl
an_packets

[18] Radiotap Header Information, The Madwifi Project,
http://madwifi-project.org/wiki/DevDocs/RadiotapHeader

[19] Image taken from

http://www.di.unipi.it/~cornolti/iwtan/iwtan_reference.htm [2013-
11-21]

31

	Exjobbsframsida
	BlankPage
	Exjobbsabstract
	pipswed_final_3_no_front

