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Predictability and performance of different non-linear mixed-
effects models for HbA1lc in patients with type 2 diabetes
mellitus

Gustaf Wellhagen

Populdrvetenskaplig sammanfattning

Typ 2-diabetes dr ett vixande problem i varlden och det berdknas att 6ver 300
miljoner manniskor kommer att vara drabbade ar 2030, vilket ar dubbelt sa
manga som ar 2000. Det ar framst i Asien och Afrika som det forutspas bli en
folksjukdom. Férhojda blodsockernivader ar det som karaktériserar sjukdomen,
vilka uppstar pa grund av en kombination av minskad insulinproduktion,
minskad insulinkanslighet och férhojd leverglukosproduktion. De befintliga
lakemedlen mot typ 2-diabetes inriktas pa att kunna kontrollera
blodsockernivderna.

Farmakometrisk modellering som anvander ickelinjara modeller med blandade
effekter (fixerade eller slumpmassiga inom en population) anvands for att
beskriva data fran kliniska studier. Man vill kunna beskriva olika biomarkorer
med hjalp av sddana modeller for att optimera kliniska studier inom
lakemedelsutvecklingen. Genom detta kan man undvika att exponera patienter
for toxiska doser, icke verksamma doser eller bestimma antalet patienter och
matningar som kravs for att uppna signifikanta resultat och dirmed spara
pengar.

[ den har studien jamfoérs fyra publicerade modeller for att beskriva HbAlc
(andelen glykosylerade roda blodkroppar av det totala antalet réda
blodkroppar). De ar uppbyggda pa olika satt och anvander olika typer av data for
att gora sina prediktioner. Vi fann att modellerna som anvander medelglukos ar
battre dn de som anvander fasteglukos for att forutspa slutvardet pa HbAlci
simulerade studier. De ar dessutom stabilare och battre pa att detektera
lakemedelseffekter. Slutligen fann vi att modeller med farre
differentialekvationer gav kortare kortid och battre stabilitet.

Genom farmakometrisk modellering kan vi paskynda utvecklingen av nya
lakemedel och forbattra den nedsldende statistiken i de kostsamma kliniska
faserna, dar mer an halften av alla lakemedelskandidater laggs ner.

Examensarbete 30 hp
Civilingenjorsprogrammet i bioinformatik
Uppsala universitet februari 2014
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Glossary of abbreviations

AUC Area under curve

BID Bis in die - twice daily

BIS Basal insulin secretion

CLG Clearance of glucose

CLGI Insulin dependent clearance of glucose
EC50 Effective concentration to get 50% of maximum response
EGP Endogenous glucose production

Emax Maximal effect

FPG Fasting plasma glucose

FSI Fasting serum insulin

GKA Glucokinase activator

HbAlc Glycosylated haemoglobin

IGI model Integrated glucose-insulin model
IGRH model Integrated glucose-red blood cell-HbA1lc model

v Inter-individual variability

MCMP Monte Carlo mapped power

MPG Mean plasma glucose

MTT Mean transit time

NONMEM® Non-linear mixed-effects modelling software
OFV Objective function value

OGTT Oral glucose tolerance test

PPAR Peroxisome proliferator-activated receptor
PsN Pearl-speaks-NONMEM

QD Quaque die - once daily

RBC Red blood cells

T2DM Type 2 diabetes mellitus



Introduction

Type 2 diabetes mellitus (T2DM) is a worldwide problem, today affecting around
150 million people (1). This number is expected to double by 2030. Itis a
metabolic disorder recognised through high blood glucose levels, which is the
result of a combination of decreased insulin secretion, reduced insulin sensitivity
and increased endogenous glucose production. T2DM is a lifelong disease and
the standard of care is the glycaemic control drug metformin, combined with
exercise and dietary advises (2).

Reducing the plasma glucose levels is the key to treating T2DM today (2). Thus,
measuring these levels is important. Self-monitoring of blood glucose on a daily
basis, is usually done by assessing fasting plasma glucose (FGP). However, these
values vary greatly between occasions. The level of glycosylated haemoglobin,
HbAlc, is a more long-term measurement of plasma glucose, which is commonly
measured by the physician or the diabetes nurse.

Glucose has a natural tendency to bind to the haemoglobin of red blood cells
(RBC) by a non-enzymatic process. This reaction is irreversible and the higher
the glucose level in the blood is the larger will the fraction of the glycosylated
RBC be. The ratio of the glycosylated RBC to the total RBC is called the HbA1lc. As
red blood cells have a life-span of about three months, the HbA1c will reflect the
glucose levels in blood over the same duration. A healthy value of HbAlc is 4-6%
and a level above 6.5% is a suggested basis for diagnosing diabetes (3).

The development of type 2 anti-diabetic drugs is made difficult because of the
high variability in drug response between patients, the disease progression and
other confounding effects. For instance, most people with T2DM are already on
metformin or some other glycaemic control drug plus a diet and exercise
schedule so isolating the effect of a new drug can be difficult. The
pharmacometric modelling approach allows incorporating inter-patient, inter-
occasion and population variability to overcome these problems.

Pharmacometric modelling uses non-linear mixed effect models to describe data
from clinical trials. Such models incorporate a number of parameters, some of
which are fixed effects, describing the main trend in the population, and some
are random effects, describing the variability in the population or between
observation occasions; hence mixed effects. Through these models one can make
longitudinal predictions of biomarkers such as glucose, insulin or HbAlc.

By simulating clinical trials with varying dosing regimens one can optimise the
study before actually conducting the trial. Optimised doses investigated in drug
development will speed up the drug development programme, which saves
money and minimises the risk of exposing patients to potentially toxic or non-
efficacious drug concentrations. Optimising the right number of individuals to
include in the study to get statistical significant results is another way of saving
money and avoiding exposing too many patients to the drug. Altogether this will
facilitate drug development in clinical stages (4).



The models investigated in this study are named after the main authors of the
respective papers where they were first published. These are de Winter (5),
Hamrén (6), Lled6 (7) and Mgller (8).

Aims
There are two main objectives in this study:

1. To investigate the predictability of four different published non-linear
mixed-effects models for HbA1lc in patients with T2DM.

2. To investigate the performance and stability of the four models to detect
drug effects, looking at both existing and possible future targets for drug
development.

By being able to describe these two objectives, both choosing the right model
and deciding the study size for further clinical trials will be facilitated.

Methods

The main tools used in this project are different pharmacometric models
executed through PsN (9,10) which runs NONMEM® 7.2 (11). Data handling and
graphics were carried out in R (12). The models used in the project are further
described below.

Models

The integrated glucose-insulin (IGI) model (13) is an established framework
for describing the complex interplay between glucose and insulin in the body,
developed for investigating glucose provocation studies. The version of the IGI
model used in this project was for oral glucose tolerance test (OGTT) data, see
Figure 1. There are some parameters describing the underlying system, some
specific to the study and some specific to the drug. The model consists of
compartments for glucose and insulin with transit compartments to describe
absorption of glucose from food and effect compartments to describe delay of
feedback mechanisms. A detailed description of the model is found in Jauslin et
al (13).
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Figure 1. A schematic picture of the integrated glucose-insulin (IGI)
model.

Schematic representation of the oral glucose tolerance test (OGTT) model. Full
arrows indicate flows, and broken arrows indicate control mechanisms. G and G,
central and peripheral compartments of glucose; G,, representation of the transit
compartments for glucose absorption; G;, effect compartment of glucose for the
control of insulin secretion; I, insulin disposition compartment; I;, effect
compartment of insulin for the control of glucose elimination; Q, CL¢, CLg, k¢, 1,
kinetic parameters of the glucose submodel; CL,, insulin clearance; kq;and kg,
rate constants for the effect compartments; E,,,,, maximal effect of the glucose
absorption rate on insulin secretion; ABSGs,, glucose absorption rate producing
50% of E,,,.. Used with permission.i

The concentrations of insulin and glucose are influenced by each other through
feedback mechanisms but also by drug effects when drug concentrations are
present. The IGI model allows for six different drug effects (some of which are
hypothetical) to be implemented. These are:

¢ Absorption, where the absorption of glucose into the blood is decreased
due to a drug inhibiting the breakdown of glucose polymers, for example
alpha-glucosidase inhibitors.

¢ Basal insulin secretion (BIS), where the endogenous production of
insulin is increased, such as sulfonylureas.



* C(Clearance of glucose (CLG), where the renal clearance of glucose from
the blood is increased, such as SGLTZ2 inhibitors.

* Endogenous glucose production (EGP), where the hepatic production
of glucose is decreased, such as biguanides.

¢ Incretin effect, where the release of insulin is stimulated after elevated
blood glucose levels, such as GLP-1 analogs.

* Insulin dependent clearance of glucose (CLGI), where the renal
clearance of glucose from the blood is increased in relation to the
concentrations of insulin. Thiazolidinediones has been hypothesized to
have this effect, however this class of drug has several mechanisms of
action (14).

The de Winter model (5) consists of linked indirect response models describing
HbA1c, FPG and fasting serum insulin (FSI), see Figure 2. This model is
developed to describe the disease progression of T2ZDM with respect to beta cell
function and insulin sensitivity, in a semi-mechanistic manner. There is a
homeostatic feedback between FSI and FPG, and FPG also affects the HbA1lc. Also
this model includes system-specific parameters as the insulin sensitivity (S) and
the beta cell function (B). Also in this model can drug effects be included on
various sites depending on the mechanism of action of the drugs. Drugs with
action on BIS and incretin would affect B, glucose absorption and EGP would
affect the input to FPG, CLG would affect output from FPG while CLGI would
affect S. A detailed description of the model is available in de Winter et al (5).
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Figure 2. A schematic picture of the de Winter model.

Schematic representation of the structure of the mechanism-based population
PD disease progression model, including the homeostatic feedback between FSI
and FPG and the feed-forward between FPG and HbA .. Used with permission.i

The Hamrén model (6) focuses at RBC in 8 compartments; 4 for non-
glycosylated and 4 for glycosylated RBC, see Figure 3. In their life-span they can
by glycosylated to HbA1c through FPG~. The FPG is modelled using an indirect
response model and the FPG~ is created by raising FPG to a power, allowing the
HbA1c production to be non-linear with FPG. This model also has a sex
difference incorporated on the RBC life-span. The distribution in the different
dose arms in the clinical study was used when randomly assigning sex to
subjects. In this model the drug effect was incorporated on the output of FPG. A
detailed description of the model is available in the paper by Hamrén et al (6).
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Figure 3. A schematic picture of the Hamrén model.

Schematic representation of the mechanism-based model for the FPG-HbA1c
relationship. Cp, tesaglitazar plasma concentration; ECsy rrs, tezaglitazar plasma
concentration achieving half-maximal effect on Emax rr6; Emax rr, maximum effect
on Kout rrg, FPG, fasting plasma glucose; Hb, hemoglobin; HbA1lc, glycosylated
hemoglobin; Kgiucose, glycosylation rate constant of RBCs to HbA1c; Kin rac, Zero-
order release constant of RBCs into the circulation; Ki, rrg, Zzero-order rate
constant for the production of FPG; Kou rrg, first-order rate constant for the
removal of FPG from the blood; K3, first-order transit rate constant; RBCs, red
blood cells. Used with permission.iii

The Lledé model (7) is similar to the Hamrén model in its structure and
focusing on RBC and their glycosylation over their life-span, see Figure 4. There
are 12 compartments for glycosylated and 12 for non-glycosylated RBC. In this
model the mean plasma glucose (MPG) governs the glycosylation of RBC in a
linear fashion. To reduce runtimes in the second part of this project the model
was reduced to 6+6 compartments for RBC. This model includes a glucose effect
on the RBC life-span; the higher the glucose the shorter the life-span. The MPG
was modelled using an indirect response model and drug effects were included
on the output of MPG.
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Figure 4. A schematic picture of the Lled6é model.

[llustration of the final IGRH model. The areas of the circles represent the relative
amount of RBC at the different stages under constant RBC production. n
represents the number of transit compartments which is fixed to 12. Used with
permission.v

The Mgller model (8) also consists of indirect response models (see Figure 5)
one for MPG and one for HbA1lc, where the production of HbAlc is driven by
MPG affecting the input of the HbA1lc model. Drug effects are driving the MPG to
a post-treatment MPG level by affecting the input to the MPG model. A detailed
description of the model is available in the paper by Mgller et al (8).

13
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Figure 5. A schematic picture of the Mgller model.

The model is an indirect response model where the production of HbAlc is
stimulated by mean plasma glucose (MPG) through the parameter ki, npbaic that is
fixed to 0.081%/mmol/] per week. The model is initialized in steady state, at the
time of the screening visit, where MPGs; is the value for MPG. MPG is assumed to
change during a washout/run-in period toward MPGyase typically obtained at the
baseline visit. MPGpostireatment iS the stable glucose value obtained after
introducing the experimental treatment. kout mpG is the rate constant defining the
rate of treatment onset on MPG. The parameter kout noai1c defines the output rate
constant for HbA1lc and is fixed to 0.226 per week. The present model further
introduces a parameter 3 that allows an offset in the linear relationship between
MPG and HbA1c in steady state. Thus, kin_tba1c is stimulated by MPG + 3. Used
with permission.v

Approach 1 - Predictability through simulation studies

For investigating predictability, a phase II study was simulated with 210
individuals evenly distributed in 6 dose arms; placebo, 25 mg twice daily (BID),
50 mg once daily (QD), 50 mg BID, 100 mg QD and 100 mg BID of a glucokinase
activator (GKA). The drug effects and parameter values were taken from the
publication Kjellsson et al (4). Daily glucose intake was assumed to be 3 large
meals and 3 snacks in between the large meals. The GKA was administered in the
morning 30 minutes prior to breakfast (QD and BID) and 30 minutes prior to
dinner (BID). Initial glucose values were set to match the inclusion criteria of the
study. The study was 12 weeks (84 days) long. To allow the glucose levels to
stabilize before drug administration a run-in period of 1 week was used. The
run-in period was omitted from the study for the results.

The IGI model was run to produce glucose and insulin data. The GKA drug has
two effects that were implemented: it lowers the EGP and increases the BIS. Five
hundred replicates of the study were performed.

The FPG, FSI and MPG were extracted from the data simulated by the IGI model

and used in the de Winter model (FPG, FSI), the Hamrén model (FPG), the Lledd
model (MPG) and the Mgller model (MPG) to simulate HbAlc. The FPG and FSI
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were assessed as the glucose and insulin concentrations before the first meal in
the morning while MPG was calculated as the mean of each day, meaning
AUC/24. The placebo and baseline corrected HbA1lc was then compared with the
outcome of the study that was performed by Hoffman-La Roche (4).

The aim for this part was to investigate the final predictions of HbAlc and the
overall fit to the experimental data across the four models.

Approach 2 - Power calculations

To investigate the power to detect a drug effect plus stability and runtimes of the
models a hypothetical study was simulated. Four dose arms were used, with
individuals evenly distributed in: Placebo, 25 mg BID, 50 mg BID and 100 mg
BID.

The IGI model was modified to incorporate the six drug effects separately and
used for simulating FPG, FSI and MPG. As the Lled6 model is the most
mechanistic of the four models regarding formation of HbA1c, it was used to
simulate HbA1c observations using the MPG from the IGI runs.

The aim was to investigate which model is the best at detecting the drug effect
and assess how many individuals would be needed to maintain power in a
clinical study. The hypothetical drug effect was titrated to give a difference in
10% in AUC compared to placebo for the highest dose arm; values for the
corresponding Emax and EC50 are shown in Table 1. The drug effect was
assumed to be proportional and was calculated as 1 - Emax*C/(EC50+C) for drug
effects on absorption and EGP or 1 + Emax*C/(EC50+C) for drug effects on BIS,
CLG, CLGI and incretin.

Table 1. Emax and EC50 values used to titrate the drug effect to a 10% drop in
HbA1c for the highest dose.

Drug effect Emax EC50
Glucose absorption 0.75 0.03
BIS 3.5 0.5
CLG 3 0.3
EGP 1 0.2
Incretin 2.5 0.1
CLGI 2 0.1

The Monte Carlo Mapped Power method (MCMP) is a quick algorithm for finding
the number of patients in a clinical study required to get a statistically significant
power to detect a drug effect (15). In short, the method needs two model files: a
full and a reduced model. Instead of performing repeated estimations for data set
with increasing number of individuals as traditionally is done when assessing
power, two estimations with a very large data set are performed, individuals are
sampled from the data set with replacement and increasing sample size until full
power is achieved or all individuals are included and the difference in objective
function value (OFV) between the full and reduced model is calculated. The
power at different significance levels is assessed through a chi-squared
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distribution decided by the degrees of freedom. Since the drug effect was
modelled using Emax-models with two parameters, EC50 and Emax, the degrees
of freedom were set to 2 in this study. In Table 2 are listed the fixed parameters
and their respective values used in the MCMP runs.

Table 2. A list of the fixed parameters and their values used for the MCMP runs.

Model Parameter Value

Koutr FPG 1

de Winter reduced

o

Emax

Hamrén reduced

EC50

—_

KinHbAlc

—_

Exp Glucose-Hb 0.381

IV LS 0.0822

[IV LSP 0.115

KinHbAlc 1

Exp Gluc-Hb 0.381

IV LS 0.0822

[IV LSP 0.115

EC50 1

Kour 0.226

Mgller reduced

Kin 0.081

EC50 35

To reduce runtime and increase stability, the Lled6 model was reduced to 13
differential equations for this part; 1 for MPG, 6 for non-glycosylated RBC and 6
for glycosylated RBC.
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As the change of FPG and FSl is fast compared to HbAlc, the de Winter model
could be reduced to a steady state solution for FPG and FSI with one differential
equation of the HbA1lc. The number of parameters estimated for each model in
the MCMP runs is shown in Table 3, where the two extra parameters in the full
model are Emax and EC50.

Table 3. Number of parameters estimated for each model.

Model Full model Reduced model
de Winter 15 13

Hamrén 13 11

Lledé 7 5

Mgller 11 9

The standard simulation setup was defined as sampling on weeks 0, 4, 6, 8 and
12. To investigate the effect of sparser sampling, also the schemes of sampling on
weeks 0, 4 and 8 or weeks 0, 6 and 12 were tested, where sampling up to 8
weeks also represents performing the study for a shorter duration. To
investigate the power to detect a change from placebo with a lower power, one
setup was defined using the placebo and the lowest dose arm. The simulation
setup is summarised in Table 4.

Table 4. Summary of the simulation setups with different arms, sampling
schedules and study durations.

Simulation setup Arms Sampling schedule Duration of study
Standard 0,25,50,100 0,4,6,8,12 12

Fewer samples 0,25,50,100 0,6,12 12

Shorter duration 0, 25,50,100 0,48 8

Fewer dose arms 0,25 0,4,6,8,12 12

Initial estimates in the models were continuously updated throughout the
investigation to increase the probability of a successful run.

Results

Predictability

The 95% confidence intervals around the mean for the baseline and glucose
corrected HbA1c for the different models stratified on dose arm are shown in
Figure 6, Figure 7, Figure 8 and Figure 9. The true values from the clinical study
by Hoffman-La Roche are included.

The de Winter model predicted a greater decrease in HbAlcthan the clinical data
shows. The slopes for all dose arms seemed to level out by the end of 12 weeks.

17



The Hamrén model predicted a slower time to reach the new HbA1c than the
other models and that dosing twice daily seemed to have a greater effect than
once daily dosing schedule.

The Lledé model overpredicted the drop in HbA1c in all scenarios.

The Mgller model overpredicted greatly for the 50 mg BID dose arm, but for the
other dose arms it was less off.

18
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Figure 6. Longitudinal predictions of baseline and placebo corrected
HbA1c. The 95% confidence interval around the predicted mean of the
simulated data for the de Winter model is shown as the shaded area. The
crosses are the clinical data.
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Figure 7. Longitudinal predictions of baseline and placebo corrected
HbA1c. The 95% confidence interval around the predicted mean of the
simulated data for the Hamrén model is shown as the shaded area. The
crosses are the clinical data.
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Figure 8. Longitudinal predictions of baseline and placebo corrected
HbA1c. The 95% confidence interval around the predicted mean of the
simulated data for the Lled6 model is shown as the shaded area. The
crosses are the clinical data.
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simulated data for the Mgller model is shown as the shaded area. The
crosses are the clinical data.
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Figure 10. Longitudinal predictions of baseline and placebo corrected
HbA1c by dose arm for the four HbA1lc models. The first row shows plots
for dosing BID and the second row for dosing QD and placebo.

In Figure 10, the mean prediction of the relative change in HbA1lc for all the
models for each dose arm is plotted. The first row with dosing BID and
increasing doses shows a similar pattern, where the de Winter model predicts
the greatest drop, while the second row with dosing QD indicates that the Lled6
model predicts the greatest drop. Also, the HbAlc + MPG driven models (Lledo
and Mgller) have similar predictions in the QD arms, but diverged in the BID
arms.
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Stability

Stability was assessed using the termination message from NONMEM® with
minimisation terminated used as a definition of crash. When taking into account
the four different setups and six drug effects investigated (totalling 24
combinations), it is evident that the Mgller and Hamm models are superior in
stability, see Table 5.

Table 5. Stability of all setups and all drug effects assessed through number of
runs with results and successful runs. Success rates are given in parentheses.

Model Runs with results Successful runs
de Winter 16 (67%) 16 (67%)
Hamrén 23 (96%) 23 (96%)

Lledé 5(21%) 2 (8%)

Mgller 24 (100%) 23 (96%)

It should be noted that with most of the runs with the Lledé model, the full run
ends up at an OFV value significantly better than the reduced even though the
power calculation cannot be performed. For all models, the problems occurred
more frequently with the full model file run than with the reduced model file.

Runtimes

In Table 6 and Table 7 the runtimes for the standard setup (with sampling on
week 0, 4, 6, 8 and 12) is shown for two of the drug effects. As the runtimes are
depending on how close the initial values are to the final estimates, it was
difficult to find any clear trends. As expected, the run time with the full models
was in most cases longer than the runtimes for the reduced model, as this model
contains more parameters to estimate, see Table 3. Overall, the runtimes for the
Hamrén model were long while the Mgller model was quite quick to run.

Table 6. Runtimes in (hours:minutes:seconds) for standard setup runs of the
drug effect on basal insulin secretion.

Model Full Reduced
de Winter 0:50:03* 0:47:44*
Hamrén 11:18:14 5:47:28
Lled6 17:55:12 15:05:32
Mgller 3:38:05 0:37:14
*crash

Table 7. Runtimes in (hours:minutes:seconds) for standard setup runs of the
drug effect on endogenous glucose production.

Model Full Reduced
de Winter 3:23:37 1:43:14
Hamrén 4:43:17 3:11:50
Lledé 0:01:46* 0:15:11
Mgller 0:54:01 0:20:39
*crash
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Performance

As seen in Figure 11, in the standard settings, the Mgller and Lledé models have
superior power to detect the drug effect over the de Winter and the Hamrén
model. This is most likely related to Mgller and Lled6 models being driven by
MPG while de Winter and Hamrén are driven by FPG. The Lledé model crashed
however for two of these runs, and is thus not presented in Figure 11.

Overall, the models had the highest power to detect a drug effect on CLGI with
the study design in the standard setting, followed by a drug effect on EGP.

The Hamrén model was the least powerful to detect a drug effect on glucose
absorption or the incretin effect, which is related to this model using FPG as the
driver of HbAlc formation. The de Winter model, which also uses FPG,
performed slightly better in these drug effects, indicating that usage of FSI does
contribute with important information for these drug effects. For the remaining
drug effects: BIS, CLG, EGP and CLGI, the de Winter model was the least powerful,
indicating that for these drug effects the FSI contributes only to a small extent
and the mechanistic HbA1lc formation expressed in the Hamrén model is of more
importance..

Figure 12 shows the results from the setting with only one drug arm. As
expected, the power of the models to detect the drug effect was lower for this
design and more runs crashed and could not be displayed in the figure.

Figure 13 shows the results from the setting with study duration of only 8 weeks.
Again, as expected the power of the models to detect the drug effect was lower
than with study duration of 12 weeks.

In Figure 14 the results of the setting with fewer sampling points (three instead
of five) are shown. The power to detect the drug effect is hardly affected by the

reduction of sampling points.

A summary of the number of individuals needed to get 95% power in the study
for each model and drug effect is shown in Table 8.
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Figure 11. Power for the standard setup (sampling weeks 0, 4, 6, 8 and
12) against number of individuals. The drug effects are a) absorption, b)
basal insulin secretion, c) insulin independent clearance of glucose, d)
endogenous glucose production, e) the incretin effect and f) insulin
dependent clearance of glucose. Note that the axes are varying between
the panels.
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Figure 12. Power for the fewer dose arms setup (placebo + dose arm 25

mg BID, sampling weeks 0, 4, 6, 8 and 12) against number of individuals.
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the axes are varying between the panels.
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Figure 14. Power for the fewer samples setup (sampling weeks 0, 6 and
12) against number of individuals. The drug effects are a) absorption, b)
basal insulin secretion, c) insulin independent clearance of glucose, d)
endogenous glucose production, e) the incretin effect and f) insulin
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29



Table 8. The number of individuals needed to get 95% power in a study for each
model and drug effect.

Setup de Winter Hamrén Lledé Mgller

Standard

Shorter duration 20

Standard

Shorter duration 4

Standard

Shorter duration 120

Shorter duration 28

Standard

Shorter duration 624

Standard

Shorter duration 4

* crash
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Discussion

Predictability

The predictions from the various HbA1lc models differed a little. All models, but
the Hamrén model reached a new steady-state of the HbA1lc before the end of the
study. As no parameters were re-estimated from published values the time to
reach steady-state for the models would be highly dependent on the study design
and the drug tested in the original publication. The Hamrén model was
developed using tezaglitazar, a peroxisome proliferated-activated receptor
(PPAR) agonist, which alters whole body metabolism. An explanation for the
long time to reach steady-stated could be that even though glucose has reached
steady-state the HbA1c formation is altered by other mechanisms and would
thus be slower than the RBC life-span.

No placebo model was used, even though it is known that patients will improve
through partaking in a study of this kind. Diet and exercise, plus stricter
compliance to the drug regimen (i.e. metformin for the placebo patients) are the
main factors driving this change. Implementing a placebo model would make the
simulations more realistic and overall reduce the power to detect a drug effect.
To make the simulations even more realistic, a less strict meal schedule could be
implemented. The simulations were now performed assuming 3 large meals and
3 snacks for all people of the exact same size with no deviation of meal time.

The last point (at week 12) in the clinical data shows deterioration from the
previous measurement (week 8). This could be a wearing-off of the drug effect,
which was not incorporated in our models but has been reported for previous
substances in the GKA family (16) and might be a reason to discontinue the drug
development. Another improvement might be to investigate if the two drug
effects of the GKA are additive, which was modelled but might not be the case.

If the last data point is disregarded, the models would generally be closer to
predicting the reported final HbA1lc from the clinical study. In all, the Hamrén
model shows the worst fit as it assumes an almost straight line in the decrease of
HbAlc.

Stability

The Lledé model is very sensitive to initial estimates and only 4 out of 48 MCMP
runs could be finished with satisfactory results. Since HbA1lc observations were
created using the Lledé model, one would think that the MCMP would be biased
towards that model. Indeed, if only looking at the drop in OFV, it seems to be
performing very well but nevertheless it has troubles finishing the runs,
something that can perhaps be ascribed to the complex structure of the model.

The de Winter model also seems to be sensitive to initial estimates, as it does not
complete with a successful minimisation in more than 7 of 48 runs.

The Hamrén and Mgller models are similar in stability and are to prefer if that is
important for the study.
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Runtimes

The complexity, if counted as the number of differential equations, of the models
studied is reflected in their runtimes. The Mgller model has an advantage over
the other models in this aspect, as it has the shortest runtimes. This is most
probably due to its simple structure with only 2 differential equations.

Even though the Lled6 model was reduced to 13 compartments from the original
25 for the second part of the project it still had the longest runtimes.

Runtimes are highly dependent on initial estimates and how many parameters
that needs to be estimated. For consecutive runs the initial estimates were
updated, which would have shortened runtimes. Thus one should be careful
when interpreting the reported runtimes. As the runs were performed on a
computer cluster with nodes of varying processor capacity, the runtime would
be highly dependent also on the node processor it was assigned to.

Performance

There are six drug effects investigated in this project. A further analysis could be
to look at combinations of these. Also, looking at exactly where to implement the
drug effect would perhaps improve the performance in some cases.

All models make use of HbA1c data, but which glucose measurement to use
seems to make a great difference in some cases.

The FSI measurements seem to add little information for most drug effects as the
Hamrén model mostly outperforms or performs equally good as the de Winter
model, though it does not utilise FSI data, even when looking at drug effects
linked to insulin, e.g. basal insulin secretion. It should be noted that the MPG-
driven models are generally performing better than the FPG-driven, as
illustrated in Figure 11c.

Changing to a sparser sampling schedule, such as only weeks 0, 6 and 12, makes
the models lose power but more importantly it makes them less stable. Power
loss is shown by the difference in Figure 11e and Figure 13e, where especially
the de Winter model loses power so that it requires over 600 individuals to get
95% power. The stability loss is seen through the number of runs that crashed,
which is higher for all the reduced setups than the standard setting. The de
Winter model is most usually the model that need most individuals to reach a
certain power, but also the Hamrén model seems to be sensitive to the amount of
data provided, see Figure 13a. Putting it differently - reducing the sampling
schedule for the Mgller and Lled6 models can in many cases be done without
losing any significant power in the study.

Finding the optimal sampling schedule for a study could save money and time,
which is valuable in clinical stages of drug development. It seems that this is
highly dependent on which mechanism of effect the drug has and what model is
used to describe it. There is a clear trade-off between power and stability.
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When looking at the reduced schedule with only the placebo and 25 mg BID arm,
it can be seen that more than half the runs crash. This setup only uses 2000
individuals instead of 4000, and since the drug effect was titrated to have a
noticeable effect for the highest dose arm, it is not surprising that the power is
low in this setup. Nevertheless, the Mgller and Hamrén models show stability
and good performance while the de Winter and Lled6 models crash.

Concluding remarks

We have compared the predictability, stability, runtimes and power to detect
drug effect of four previously published models. Overall, using a model where
MPG is the driver for HbAlc is superior in stability and power to detect drug
effect and the fewer the differential equations in the model the more stable and
faster is the analysis. This greatly favours the Mgller model. There are however
instances where a more mechanistic model may be of greater importance.
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