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Abstract

Nadarajah and Kotz (2004) introduced a generalization of the
Gumbel distribution, referred to as the Beta Gumbel (BG) distribu-
tion. It was demonstrated that the BG provided more flexible tail
behaviour compared to the Gumbel distribution. We will study the
BG and compare it to the Gumbel distribution. We will also model
extreme rainfall for series of length 51 years with the BG, GEV and
Gumbel distribution, respectively and assess whether BG can be supe-
rior to the standard distributions in modelling tail behaviour of data.
Furthermore, we derive estimates of the return periods of length 100
up to 10 000 years for the aforementioned distributions. We use the
maximum likelihood to find estimates of the model parameters and
use the delta method as well as bootstrapping with resampling to find
approximate confidence intervals of the return periods.

1 Introduction

Generalizing distributions have been discussed frequently in statistics in
problems of trying to fit and model observed data in various areas. A gener-
alized class of the Beta distribution was first given by Eugene et al. (2002) in
[4], where the Beta Normal distribution was introduced as a generalization of
the Normal distribution. In comparison to the classical normal distribution
this generalization had greater flexibility of the shape of the distribution.

Generalized distributions (often) have potential to yield significantly bet-
ter fits than the classical distributions and in this thesis we will investigate
a generalization of the Gumbel distribution, referred to as the Beta Gum-
bel (BG) distribution. The standard Gumbel distribution has been widely
applied in engineering and other fields, especially in extreme-value analysis.
In [6] (2004), Nadarajah and Kotz introduced the Beta Gumbel distribution
and showed that it had greater flexibility in explaining the variability of
the tails than the Gumbel distribution. It was demonstrated that the extra
parameters gave greater variability of the skewness and kurtosis.

Many examples in the research literature show that weather variables
such as precipitation (heavy rain) display heavy-tail behaviour. To study
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the applicability of modelling data with tail-behaviour we will study the
BG distribution in comparison to the Gumbel distribution. We decide to
compare BG to the Gumbel distribution as well as to the generalized extreme
distribution (GEV) and study the goodness of fit.

In many fields of engineering geographical variables such as hurricanes,
flooding, precipitation or earthquakes have to be modelled to estimate the
probability of rare (extreme) events. For instance, a dam must be dimen-
sioned to withstand rare extreme flooding (due to extreme rainfall). To
estimate the probability and the magnitude of events (extreme rainfall) one
may use extreme value distributions as model based on historical records.
In risk analysis one often talks about the return period which is an estimate
of rare events which has to be estimated on the basis of historical data.

A return period of 100 years (or 100-year flood) is said to have 1 % risk
of being exceeded on the average in any given year. Usually, one is interested
in estimation of return periods of 100 or 1000 years and model selection has
to be done with care.

The paper is organized as follows, first we present the basics of extreme
value theory. In Section 3 we give the definition of the Beta Gumbel distri-
bution, and in the following Section 4 we provide the means of calculating
the quantiles, confidence intervals and discuss return periods and how to fit
the BG to a given sample. In Section 5 we perform some simulation studies
to observe the behaviour of the BG and Gumbel distribution. Next, in Sec-
tion 6, we fit annual maxima of daily rainfall data to the Gumbel and BG
distribution. We will also fit the rainfall data to the generalized extreme
value distribution (GEV). Furthermore, we compare the three different dis-
tributions in terms of modelling diagnostics and how well they fit real data.
We also provide the point estimates and corresponding confidence intervals
in Section 6.4 for the 100-, 500-, 1000-year return periods for each distribu-
tion. Finally, in Section 6.5, we investigate the behaviour of longer return
periods of up to 100,000 years. Conclusions are given in Section 7.

2 Extreme-value modelling

In extreme value modelling one is interested in finding the distribution of a
series containing the maxima (or minima) over regular timed measurements.
We begin by formulating the basics of extreme value theory from (Coles)
[2]. Study the statistical behaviour of

Mn = max {X1, . . . , Xn}

where X1, . . . , Xn is a sequence of independent and identically distributed
variables. Each observation Xi is measured at equidistant intervals for ex-
ample hourly, daily, or weekly - the selection of the interval distance will not

2



be discussed thoroughly. In most cases the observations come from a com-
mon distribution F , where F is an unknown distribution and consequently
the exact behaviour of {Xi}ni=1 is usually hard to find.

This is known as the classical block maxima model for extremes, where
we group a series into m blocks each of period n. For example, if we
choose a block size of n = 365 days, Mn corresponds to the annual max-
imum. We thus study a series containing maxima i.e. Mn,1, . . . ,Mn,m.
In the example above where the period was chosen as 365 days the series
M365,1,M365,2, . . .M365,p correspond to the annual maxima over a length of
p years.

It can be proved that under suitable conditions, the distribution of Mn

can be approximated for large values of n. This is a result of the extremal
types theorem, which states that the distribution of Mn belongs to a single
family of distributions, regardless of the unknown distribution F .

The extremal types theorem says that if there exist sequences of con-
stants {an > 0} and {bn} such that

P {(Mn − bn)/an ≤ x} → G(x) as n→∞,

where G is a non-degenerate distribution function, then the distribution
G belongs to one of the following three families of distributions: Gumbel,
Fréchet and Weibull, respectively. We also call them the extreme value dis-
tribution of type I, II and III, respectively. These families of distributions
can be combined into one single family of distributions called the General-
ized Extreme Value (GEV) distribution. The distribution of GEV has the
following form

G(x) = exp

{
−
[
1 + ξ

(
−x− µ

σ

)]−1/ξ}
, (1)

where x is defined for 1 + ξ(x − µ)/σ > 0, where −∞ < µ < ∞, σ > 0
and −∞ < ξ < ∞, where µ is a location parameter, σ a scale parameter,
and ξ a shape parameter. For ξ = 0 Eq. (1) is understood as a limit with
distribution function

G(x) = exp

{
− exp

(
−x− µ

σ

)}
, (2)

with two parameters. This distribution Eq. (2) corresponds to the Gumbel
family distribution or the extreme value distribution of type I.

The extremal types theorem may be used under certain regularity condi-
tions – for example the selection of the block size must be chosen wisely. A
too short block size may violate the conditions under which the limit exists.
On the other hand having larger blocks instead generates fewer blocks and
we incur larger variance when we make estimates. A standard block size is
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yearly blocks since this mitigates any seasonality effect. We usually assume
that time series of annual length are time-homogeneous, where we record
the observations at intervals of days. In this paper, we will study extreme
annual daily rainfall for two different locations, and investigate the annual
maxima with different alternatives to the extreme value distribution.

3 Generalization of the Gumbel distribution

3.1 Gumbel Distribution

Recall that a special case of the GEV distribution in Eq. (1) is ξ = 0 and is
called the Gumbel distribution. Its distribution function is given by

G(x) = exp

{
− exp

(
−x− µ

σ

)}
, −∞ < x <∞, (3)

where −∞ < µ <∞ and σ > 0. Nadarajah and Kotz (2004) [6] introduced
a generalization of the Gumbel distribution as the Beta Gumbel distribution
(BG) in hope it would attract greater applicability in engineering, demon-
strating that it was more flexible than the Gumbel distribution. By adding
two parameters a, b which mainly control the skewness and kurtosis it is
possible the BG can explain the tail behaviour far more superior to the
Gumbel distribution.

3.2 Beta Gumbel

Following [6], let G be the cumulative distribution function, then a general-
ized class of Beta distribution functions can be defined by

F (x) = IG(x)(a, b) (4)

where IG(x)(a, b) is the incomplete beta ratio function. In this paper we
study the Beta Gumbel distribution in which G(x) belongs to the Gumbel
distribution. The generalization in Eq.(4) can be rewritten as

IG(x)(a, b) =
BG(x)(a, b)

B(a, b)
, a > 0, b > 0 (5)

where BG(x)(a, b) is the incomplete beta function given by

BG(x)(a, b) =

∫ G(x)

0
ta−1(1− t)b−1 dt, a > 0, b > 0. (6)

If we let G correspond to the Gumbel distribution in Eq.(5) with parameters
a and b it gives us a generalization of the original (parental) distribution G
which we call the Beta Gumbel distribution, BG(µ, σ, a, b). For the special
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case where a = 1 and b = 1 the distribution coincides with the Gumbel
distribution. We can now define the probability density function as

f(x) := F ′(x) =
d

dx

1

B(a, b)

∫ G(x)

0
ta−1(1− t)b−1 dt

=
g(x)

B(a, b)
G(x)a−1 [1−G(x)]b−1 (7)

where g(x) is the density function of the parental distribution. From Eq.(7)
it follows that the density function of the Beta Gumbel distribution is given
by

f(x) =
1

σB(a, b)
ue−au

[
1− e−u

]b−1 −∞ < x <∞, (8)

for −∞ < µ <∞, σ > 0, a > 0, and b > 0, where u = exp {−(x− µ)/σ}.
In Figure 1, the density function of the (BG) is plotted for different

values of the parameters. In the left figure µ = 20 and σ = 1 and in the
right figure µ = 20 and σ = 2 where we vary the parameters a and b. It
can be noted that the parameter b affects the skewness highly whenever b
is chosen below 1, close to 0. In simple terms one could say that the b
parameter is sensitive in terms of skewness of the density curve. This was
also noted in the original paper [6] where a low value of b rapidly amplifies
the skewness and kurtosis of the density function.
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Figure 1: The density function of the BG-distribution for different values of
a, b and σ with µ held fixed at 20.
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4 Estimation techniques

Consider a random sample x1, . . . , xn that are i.i.d observations from Eq.(8).
We use the method of maximum likelihood to find the best estimates of the
parameter vector Θ = (µ, σ, a, b). The log-likelihood function following [6]
is

logL(µ, σ, a, b | x) =− n log σ + (b− 1)

n∑
i=1

log

[
1− exp

{
− exp

(
−xi − µ

σ

)}]

−
n∑
i=1

xi − µ
σ
− a

n∑
i=1

exp

(
−xi − µ

σ

)
− n logB(a, b).

(9)

Taking the partial derivatives of Eq.(9) for each parameter we obtain 1,

∂ logL
∂µ

=
n

σ
− a

σ

n∑
i=1

exp

(
−xi − µ

σ

)

+
b− 1

σ

n∑
i=1

exp(−(xi − µ)/σ) exp{− exp(−(xi − µ)/σ)}
1− exp{− exp(−(xi − µ)/σ)}

,

∂ logL
∂σ

=− n

σ
+

n∑
i=1

xi − µ
σ2

{
1− a exp

(
−xi − µ

σ

)}

+
b− 1

σ2

n∑
i=1

(xi − µ) exp(−(xi − µ)/σ) exp{− exp(−(xi − µ)/σ)

1− exp{− exp(−(xi − µ)/σ)}
,

∂ logL
∂a

=nψ(a+ b)− nψ(a)−
n∑
i=1

exp

(
−xi − µ

σ

)
,

∂ logL
∂b

=nψ(a+ b)− nψ(b) +

n∑
i=1

log

[
1− exp

{
− exp

(
−xi − µ

σ

)}]
.

The best estimates of µ, σ, a and b are found by setting the partial derivatives
to zero and solving the subsequent simultaneous equations.

1Note that ∂ logL
∂µ

is slightly different from the one in [6] which is likely due to a misprint.
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4.1 T-year return periods

In extreme analysis one is interested in estimation of the T -year return
period, which is defined to be the value xT that will on average be exceeded
once over a period of T years (time units). The T -year return period can be
found by solving the equation,

F (xT ) = 1− 1/T (10)

where F is the cdf. Solving the equation for xT by inverting the cumulative
distribution function can sometimes be difficult or impossible if no closed
formula exists. For the case of continuous distributions the inverse of a cdf
is usually a well-defined function on (0,1) and an analytical function may
sometimes be found.

4.2 Confidence intervals

Denote the maximum likelihood estimate of Θ as Θ̃. One can show that
under suitable regularity conditions as n is large, Θ̃ is asymptotically normal
distributed. In most cases we are interested in estimation of functions of Θ.
If the regularity conditions are satisfied a result with use of Taylor’s formula
enables us to find estimates of functions of the maximum likelihood estimates
(MLE) . The result says that an estimate of a function say g = g(Θ) is simply
found by g(Θ̃). In particular the return period can be viewed as a function
giving us a tool to construct approximate confidence intervals. This method
is commonly referred to as the delta method, which we will present for the
particular case where F belongs to the classical Gumbel distribution. The
inverse of the Gumbel cumulative distribution function for xT is,

xT = µ− σ ln (− ln (1− 1/T )) , T > 1 (11)

and a confidence interval for the T -year estimate with approximately 1− α
confidence is given by

xT = [x̃T ± λα/2σ̃], (12)

with variance

V (xT ) = ∇xT (µ, σ)TV∇xT (µ, σ), (13)

where V is the covariance-variance matrix evaluated at (µ̃, σ̃), and

∇xT = [
∂xT
∂µ

,
∂xT
∂σ

]. (14)

V can be approximated by Σ̂ = [−l̈(µ̂, σ̂)−1].
Since we have no analytical formula for the quantile function of the Beta

Gumbel distribution we cannot apply the delta method. Instead we use
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bootstrapping with resampling to estimate the standard errors to find ap-
proximate confidence intervals. The delta method and bootstrapping tech-
nique will be used thoroughly in this paper.

5 Simulation studies

In this section we will we make simulations to get a grasp of the Beta Gumbel
distribution. To compare with the Gumbel distribution, we will investigate
the behaviour of the parameters a and b. Recall that the special case of the
Beta Gumbel distribution happens when a and b equal to one.

To study this, we generated a sample of random numbers from the clas-
sical Gumbel distribution and used maximum likelihood estimates to fit a
Beta Gumbel distribution as well as the Gumbel distribution (the origi-
nal) to this sample. The computations were done using R and to find the
maximum likelihood estimates we used two optimizing methods; BFGS a
quasi-Newton method (1970) and Nelder-Mead a simplex algorithm that
can be applied to non-differentiable functions as well. It proved to be dif-
ficult to find maximum when we applied the log-likelihood function of the
BG due to the calculations of the gradient. For instance providing the exact
gradients of the log-likelihood function did not give us maximum but local
extreme points (saddle points). Instead we let the in-built methods carry
out the calculations of the gradient with a finite-difference approximation.
This alternative way works reasonably well. We used both the BFGS and
Nelder-Mead algorithm interchangeably.

5.1 Quantile function

The BG distribution can be written as a composition of functions. To
see this, BG can be expressed as a composed function where F (X) =
FBeta(G(X)), where G is the cdf of the parental distribution function. To
find a random number X using the uniform distribution U it suffices to solve
X = F−1(U).

FBeta(G(X)) = U

F−1Beta(G(X)) = F−1Beta(U) = B

X = G−1(B) (15)

where the inverse of the Gumbel distribution is G−1(x) = µ−σ log[− log(x)].
With the same argument and using that the distribution function of the Beta
Gumbel is right-continuous and strictly increasing on p ∈ (0, 1) for F−1(p)
the quantile function of BG is

QBG = µ− σ log{− log[QBeta(a,b)(p | a, b)]} (16)
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for p ∈ (0, 1), where QBeta(a,b)(p | a, b) is the quantile function of the Beta
distribution, with p = 1− q, q = 1/T . Note that the quantile function of the
Beta distribution must be calculated numerically.

5.2 Parameter estimates

In the first case we simulated 1000 samples of 1000 random numbers from
the Gumbel distribution with parameters µ = 10, and σ = 2. To compare
with the Beta Gumbel distribution we then find the maximum likelihood
estimates of these samples. We did not supply the gradient but let it be
approximated. In Figure 2 we provide the histograms of each estimated
parameter of the BG distribution.
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Figure 2: Histograms of parameter estimates with original µ = 10, σ = 2.

We see from the Figure 2 that µ is somewhat close to the original µ of
the Gumbel distribution, furthermore σ is almost identical. We note that
the extra parameters a has slightly larger variance than the parameter of
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b. See also Table 1. Indeed, the parameters a and b are not simultaneously
equal to one, meaning that the BG does show some flexibility in modelling.

µ σ a b

Estimate 8.41 2.01 2.25 1.01
Variance 0.11 0.038 0.099 0.026

Table 1: Parameter estimates as µ = 10 and σ = 2.

We repeated the same computations for the parameters µ = 20 and
σ = 5, simulating 1000 samples each with 1000 random numbers from the
Gumbel distribution, then fitting the BG distribution to each sample.

µ σ a b

Estimate 19.76 5.00 1.13 1.01
Variance 2.65 0.17 0.30 0.021

Table 2: Parameter estimates as µ = 20 and σ = 5.

In Table 2 the estimated parameters a and b are close to 1.0, in which
case the BG does not provide flexibility, since the fitted BG is that of the
original Gumbel distribution. This is also seen in Figure 3.
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Figure 3: Histograms of parameter estimates with original µ = 20, σ = 5.

As can be noticed in Figure 3 the estimated parameter a has some out-
liers for some samples. A provided boxplot in Figure 4 confirms this, only a
few of the parameter estimates of a are above 4.
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Figure 4: Boxplot of the estimated parameter a from 5000 samples with
Gumbel(µ = 20, σ = 5).

5.3 Quantile estimation

In this section we discuss the behaviour of the quantiles of the BG and the
Gumbel distribution. For calculations of the quantiles of the Beta Gumbel
distribution we use the formula in Eq.(16), but this gives us by no means a
methodology to find standard errors (the formula is not closed). For that
we had to use bootstrapping techniques to find approximate confidence in-
tervals. Estimates of the quantiles and the corresponding standard errors
of the Gumbel distribution was calculated using the delta method. The
simulation was carried out as follows, in principle we simulated one single
sample of 1000 numbers from the Gumbel distribution. For the bootstrap-
ping procedure we bootstrapped this sample 5000 times with resampling.
In the Table 3 the mean and variance of these 5000 estimates are given. We
also provide the histograms of these estimates in Figure 5.
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µ σ a b

Estimate 18.38 4.28 1.45 0.86
Variance 3.86 2.80 1.18 0.83

Table 3: Parameter estimates after 5000 bootstraps, µ = 20 and σ = 5.
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Figure 5: Histogram of the parameters after 5000 bootstraps.
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Figure 6: Boxplot for the single estimated parameter a from 5000 bootstraps.

In Figure 6 we see there are some outliers for the estimates of the pa-
rameter a.

To study the behaviour of the return periods of both BG and Gumbel
of longer return periods, we calculate the return periods of 100 up to 10,000
years and the corresponding confidence intervals. In Figure 7 we notice that
the Beta Gumbel has wider confidence intervals. From a reliability point
of view, this may be of interest when we want to estimate an upper bound
used as a threshold value.
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(a) Return periods for Beta Gumbel.
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(b) Return periods for Gumbel.

Figure 7: Return periods and confidence intervals from 100 of up to 10,000
years.

It should be mentioned that these exact computations for samples of 100
random numbers instead of 1000 yielded indefinite values, which is likely
due to numerical issues. The problem originates from the calculation of
the inverse of the Beta Gumbel for different sets of parameter estimates.
In this case, 5000 bootstrapping samples gives sets of parameter estimates
that gives difficulty with computations of the inverse of the Beta Gumbel
distribution function. A provided boxplot in Figure 8 gives reasonable doubt
of the estimates a and b for some of the parameter sets after bootstrapping.
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(a) Estimated parameter a.
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(b) Estimated parameter b.

Figure 8: Boxplots for some of the estimated parameters after bootstrapping
5000 times.
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6 Real data

Investigating the applicability of modelling real data we will study annual
maximum daily rainfall in Sweden for two different locations; Stockholm
and Härnösand. The series of annual maximum daily rainfall extends from
1961 to 2011 and was retrieved from http://www.hurvarvadret.se which
handles weather data with courtesy of SMHI, Swedish Meteorological and
Hydrological Institute. The locations, Stockholm and Härnösand lie in areas
of Sweden where some of the most extreme rainfall events (defined as at
least 90 mm precipitation during 24 hours) have occurred, especially the
latter one [11]. Most extreme rainfall events in Sweden happen in the region
of Svealand and in the southern coast of Norrland; regions in which the
investigated locations are situated.

6.1 Tools of measurements and error sources

Precipitation can be measured in two main ways, either by gathering and
measuring the fallen precipitation in a fixed location, say one weather sta-
tion, or by using numerous weather stations scattered around a large area
of at least 1000 km2 and combining data from all stations in the location
and finding the most extreme one.

Measuring the amount of rainfall is done by rain gauges which gathers
and measures the accumulated amount of liquid over a specific period of
time. Due to limitations the amount of precipitation cannot be measured
accurately. During hurricanes or windy weather it is difficult to gather the
rainfall which leads to underestimation of the precipitation. Moreover, any
evaporation will reduce the amount of measured precipitation. In numbers
the total underestimation is on average of 5-10 %. In winter any snow
gathered by the instrument will be melted and the melted water is measured.

For exact definitions how precipitation is measured see [9]. Extreme
precipitation is defined by SMHI if the accumulated precipitation over the
last 24 hours exceeds 90 mm. [10].
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6.2 Introductory analysis
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(b) Härnösand.

Figure 9: Maximum daily rainfall records in Stockholm (left) and Härnösand
(right).

In Figure 9, the time series of annual maxima is plotted for Stockholm and
Härnösand, respectively. We use the same scale, and, evidently Härnösand
has on average higher maximum daily rainfall. Furthermore, we notice that
there is no apparent trend. We also provide the ACF plots up to lag 15
in Figure 10 to see whether there is dependence between the observations.
By visual inspection we see that most autocorrelation values are close to
0. On the other hand the ACF of Härnösand shows a cut-off at lag 4, but
the dependence is weakly so there is no apparent reason to justify non-
stationarity of this series.
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Figure 10: ACF for both sample sets.
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6.3 Model Diagnostics

A main problem is to choose from a variety of models and assess which
model is the most appropriate one. Therefore, it is of interest to check
that the chosen model fits well to the particular data. We use two graphical
methods to assess the goodness-of fit. In Figure 11 the empirical distribution
and the fitted BG model is plotted. Our model agrees reasonably well with
the empirical cdf. We also provide the QQ-plot in Figure 12, and notice
no apparent departures from the unit diagonal except at a few points for
dataset 2 (Härnösand). From these plots we can not reject that the Beta
Gumbel distribution is a good candidate model.
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Figure 11: Empirical distribution versus CDF.
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Figure 12: QQ-plot.
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To study how well BG competes with other candidate models such as
the Gumbel distribution and the GEV, we will perform likelihood-ratio tests
and use the Akaike information criterion (AIC).

logL(Θ̂)

Dataset 1

BG -184.0948
GEV -184.1427
Gumbel -184.1654

Dataset 2

BG -195.9717
GEV -196.1058
Gumbel -196.1798

Table 4: The maximum log-likelihood values for each distribution.

The maximum log-likelihood values for each distribution are given in
Table 4. For these data sets we had to use the Nelder-Mead algorithm
for optimizing the log-likelihood function of Beta Gumbel. We notice that
the highest log-likelihood value is obtained by fitting the BG. However, the
differences in the log-likelihood values between the distributions are very
small. We can use the log-likelihood ratio test to check whether one higher
order parameter model describes the variability significantly better. A log-
likelihood statistic is D = 2[log(M1)− log(M0)] where M0 is a reduction of
the model M1. The statistic D is chi-square distributed with p−k degrees of
freedom, where p and k is the dimension of the parameter space of M1 and
M0, respectively. The null hypothesis is rejected if D > χ2

p−k, favouring the
M1 model which describes the variability of the data significantly better.
Comparing the Gumbel distribution to the GEV distribution is equal to
testing

H0 : ξ = 0 against H1 : ξ 6= 0,

and note that the test statistic is very small 2(−184.1427− (−184.1654)) =
0.0454 with p-value of almost 1. Similarly for dataset 2 the statistic is very
small. We can also test the Gumbel against the BG distribution since it is
a reduction of the BG distribution of the parameter space a× b

H0 : a = 1, b = 1 against H1 : a 6= 1, b 6= 1

with 4 − 2 = 2 d.f. For dataset 2 the test statistic is 2(−195.9717 −
(−196.1798)) = 0.4162 with p-value of about 0.81. This suggests that the
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Gumbel distribution is adequate for modelling the data equally well as the
BG distribution. The likelihood ratio test does not give us any findings
whether any distribution models the data significantly better.

In statistics it is not desirable to use complicated models, and most
frequently the simplest model is most likely to be correct, and one can
test whether the more complicated model explains the variability signifi-
cantly better. To test whether one model with higher number of param-
eters models the data significantly better than another candidate model
with lower parameters, we can use the Akaike information criterion that
is a test statistic that penalizes over-fitting. The test statistic is given by
AIC = −2 logL(Θ̂) + 2p, where p is the number of model parameters.

Parameter estimate

AIC µ σ a b ξ

Dataset 1

BG 372.1896 16.53 6.44 3.89 0.77
GEV 371.2854 27.19 7.51 0.023
Gumbel 370.3308 27.28 7.57

Dataset 2

BG 395.9434 19.17 6.50 6.43 0.56
GEV 395.2116 36.16 9.36 0.048
Gumbel 394.3596 36.41 9.55

Table 5: AIC values and parameter estimates of the different distributions.

For both datasets the Gumbel distribution has the lowest AIC whereas
the AIC of the BG and the GEV are almost equal, meaning that the mod-
els are indistinguishable in terms of modelling. Note that in Table 5 the
scale parameter ξ for GEV, is almost zero. To test whether ξ is significantly
nonzero we use that the confidence interval for a maximum likelihood esti-
mate of a single parameter is ξ̃±λα/2σξ. We find that the standard error of
ξ is 0.13 and we can reject the null hypothesis that ξ is nonzero with 1 %
significance. So 0 lies inside a 99 % confidence interval for ξ. Therefore, one
may argue that the GEV model should be rejected and that the Gumbel
distribution models the data equally well. A reduction would be preferable
here, but for the sake of comparison we will keep the GEV. It should be
mentioned that the estimated parameters a and b of the BG for both sets
are not simultaneously equal to one, meaning that BG does indeed show
some flexibility in modelling data with tail-behaviour.
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6.4 Results

In this section we provide the estimated return periods for each distribution
and the corresponding confidence intervals. The confidence intervals of the
GEV and Gumbel distribution was derived as usual with the delta method.
To find approximate confidence intervals of the BG distribution we used
bootstrapping with resampling. Both samples were resampled 2000 times.
As usual this same procedure was done in Section 5.

Return levels with 95% C.I.

T = 100 (x100) T = 500 (x500) T = 1000 (x1000)

Dataset 1

BG 64.2 (51.2, 78.0) 77.6 (58.5, 97.6) 83.4 (61.7, 106.0)
GEV 63.6 (46.2, 81.0) 77.3 (45.4, 109.2) 83.3 (43.6, 123.1)
Gumbel 62.0 (53.6, 70.6) 74.3 (63.2, 85.4) 79.5 (67.4, 91.7)

Dataset 2

BG 85.8 (66.5, 105.9) 104.5 (74.6, 133.6) 112.5 (77.9, 145.7)
GEV 84.4 (57.6, 111.1) 104.0 (52.1, 155.8) 112.9 (47.0, 178.8)
Gumbel 80.3 (69.5, 91.1) 95.7 (81.6, 109.8) 102.3 (86.8, 117.9)

Table 6: Return level estimates and corresponding confidence intervals.

From Table 6, we notice that the both GEV and BG distribution give
higher estimates of the return periods; especially for the 1000-year return
period. Moreover, the estimates do not differ largely from a practical point
of view. The Gumbel gives lower values of the return period, thus we see
that GEV and BG are more conservative in estimating the return period.
This is valid for both datasets.

6.5 Longer return periods

Next we investigate the behaviour of longer return periods for the differ-
ent distributions. Estimating longer return periods is only meaningful if
the assumption of stationarity is valid but it is nonetheless useful to talk
about return periods of up 10,000 years. For instance in the construction
of a dam, it is not unusual that it must be designed to withstand extreme
rainfall events with return periods of 2,000–20,000 years as means of flood
protection.
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Figure 13: Return levels for Stockholm.
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Figure 14: Return levels for Härnösand.
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As noted before we see in Figure 13 and 14 that the Gumbel distribution
gives lower estimates and that the GEV gives higher estimates compared to
the BG distribution for longer return periods.

7 Conclusions

We have studied one generalization of the Gumbel distribution, the Beta
Gumbel distribution with two additional parameters which allows skewness
and varying of the tail weights. Applications of real data show that the
BG does indeed provide more flexibility than the Gumbel distribution in
modelling data with heavy-tail behaviour.

However, we encountered problems finding confidence intervals using
bootstrapping for some parameter sets. When applying the BG to real
data we had problem finding standard errors based on bootstrapping. This
was related to the calculation of the inverse of the Beta Gumbel distribu-
tion function (quantile function). The formula for the quantiles given in
Eq.(16) involves the inverse of the Beta distribution function which has to
be calculated numerically. After resampling the real data 2000 times, some
parameter sets made it tricky to find quantiles q, FBeta(q) = p, where p was
a number near 1 since it was highly sensitive to precision errors giving us
indefinite quantiles. As noted the inverse is injective only on (0, 1) and for
some parameter sets the inverse of the Beta distribution yielded us a value
of 1.0 whenever we tried to find quantiles for p close to 1.0. This is of course
not well-defined and gives us quantiles that are indefinite (infinite). All nu-
merical computations were done in R which uses finite precision arithmetic
which basically means that at most 15-20 digits are correct (or accurate) in
the computations. We therefore had to rely on an alternative software that
uses arbitrary-precision arithmetic to do the computations, meaning that
any number of precision of digits can be used. We used Mathematica (a
Computer algebra system) that uses arbitrary-precision arithmetic to calcu-
late the inverse and find that precision of at least 30 up to 39 digits had to be
used to perform the computations of the quantiles. Although a difference as
negligible as 10−39 is almost (1− 10−39

.
= 1) the logarithmic function in the

formula in Eq.(16) is not defined at 1. The quantile function also involves
computation of a composition of functions (logarithmic function within a
logarithmic function). This gives large differences in evaluating the formula
(16) for values (0, 1) close to 1.

Finding maximum likelihood estimates to the log-likelihood function was
also tricky since for arbitrary values of a, b maximum estimates could not
be found (especially with b close to 0). If this is related to the curvature of
the 4-dimensional function or a matter of numerical issue is unclear. The
generalized Beta Gumbel distribution involves the incomplete beta function
and also makes it more difficult to work with.
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We compared BG to the Gumbel distributions as well as the more stan-
dard extreme value distribution, GEV in modelling real data. We performed
likelihood ratio tests and discussed if BG could serve as a good candidate
model. It should be noted that BG which is a 4-parameter model com-
pared to the 3-parameter model of GEV makes the numerical work more
problematic. Optimizing over a 4-dimensions is highly more difficult than
over a 3-dimensional space. We found that the BG is useful for modelling
data with tail-behaviour. However, we could not conclude whether BG is a
better candidate model to use. Further work has to be done to study this
distribution and its applicability.
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A Source code

A source code listing to implement in R is given for some of the basic func-
tions related to the Beta Gumbel distribution.

#p r o b a b i l i t y dens i ty func t i on
f <− f unc t i on (x ,mu, sigma , a , b ) {

re turn ( exp(−(x−mu)/ sigma )∗1/( sigma∗beta ( a , b ) )
∗exp(−a∗exp(−(x−mu)/ sigma ) )
∗(1−exp(−exp(−(x−mu)/ sigma ) ) ) ˆ ( b−1))

}

#q u a n t i l e s beta gumbel
qbg <− f unc t i on (q , mu, sigma , a , b ) {

k<−qbeta(1−q , a , b)
x<−mu−sigma∗ l og (− l og ( k ) )

}

#l o g l i k e l i h o o d beta gumbel
l o g l <− f unc t i on ( par , x ) {

mu <− par [ 1 ]
sigma <− par [ 2 ]
a <− par [ 3 ]
b <− par [ 4 ]
n <− l ength ( x )

re turn (−n∗ l og ( beta ( a , b))−n∗ l og ( sigma )
+(b−1)∗sum( log (1−exp(−exp(−(x−mu)/ sigma ) ) ) )
−sum ( ( x−mu)/ sigma )
−a∗sum( exp(−(x−mu)/ sigma ) ) )

}
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B Datasets

25.5 40.0 22.8 38.8 27.0 43.0 33.9 31.9
36.5 22.4 25.6 35.8 23.4 41.1 30.9 28.4
39.7 56.0 32.3 49.8 26.0 23.6 21.7 44.9
20.8 31.0 18.2 54.1 27.8 26.0 25.0 45.8
40.4 31.0 31.7 22.0 38.3 32.4 25.5 33.1
34.6 14.5 23.7 29.5 23.3 24.2 24.0 20.5
32.2 27.6 59.8

Table 7: Stockholm data set.

34.7 38.7 34.3 47.2 30.5 57.0 45.2 33.2
43.4 40.9 57.9 49.0 53.9 29.6 77.0 33.9
27.1 28.5 78.4 48.0 41.3 35.6 40.1 61.8
42.9 47.3 29.7 50.4 59.0 66.2 32.4 47.7
40.1 50.2 39.5 40.0 26.0 34.5 45.8 28.4
24.2 27.2 48.3 43.1 31.4 52.9 37.2 31.0
24.7 43.0 34.0

Table 8: Härnösand data set.
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