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Chapter 1

Introduction

An Asian option is a financial derivative for which its payoff function is characterized by in-
volvement of a stock price average. One case of this type of payoffs is when the underlying asset
is defined to be an average and fixed strike price. The other case, the strike price is defined to
be an average (floating strike). All types of averages are valid for the Asian option (discrete or
continuous, arithmetic or geometric averages). The Asian options are most common in pricing
a currency markets and commodities (eg. oil markets). These type of options reduce the risk of
manipulations of the stock price at maturity and they are cheaper than standard European and
American options. An Asian option can be classified as of European-style or American-style,
depending of its time of exercise. In our studies, we will be dealing with the continuous overages
(arithmetic and geometric cases). Hansen and Jorgensen 2000 [6], have studied the American-
style Asian option with floating strike. They established the analytical solutions for this type
of problem and they have found its numerical solutions based on the analytical ones. Also in
Tomas Bokes [2], is his Phd thesis has studied the case of American-style Asian option with
one or several underlying asset. Here he has studied the analytical valuation of the problem
and its properties and, there are considered numerical methods using the analytical solutions.

In Merton 1976 [12] studies the case of European call option for a simple contract function
(vanilla option) under jump-diffusion processes. In this paper is established the general form of
the solution for vanilla option and the particular case, when the jump sizes follow the lognormal
distribution. In a paper Huên Pham 1997 [15], is studied the American put option for a simple
contract function under jump-diffusion model and there is stated the analytical solution to the
problem, the exercise boundary and their properties. Also C. R. Gukal 2001 [5] has considered
the problem of option pricing under jump diffusion model using the idea of Merton 1976 [12],
and stated its analytical solutions.

In our studies, we will study the same problem in [6], but considering it under jump-diffusion
process, instead. So, to achieve our results, we will use the results in [6], the theory established
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by Merton 1976 [12] and the result of H. Pham 1997 [15] and other references. Here we will find
the general analytical solution of American-style Asian option under jump diffusion process, for
the case of floating strike and we will end by studying the particular cases, when the average
is geometric and arithmetic. This thesis is organized as follows: In the second chapter we give
some definition and properties of random variables and random processes. The third chapter
concerns in some notes of stochastic processes and stochastic integrals. The key points of this
chapter are diffusion and jump diffusion processes, Faynman-kac formula and Ito’s lemma for
diffusion and jump-diffusion models. The forth chapter treats about option pricing, where we
give some concepts, the Black-Sholes formula for the European option, the analytic solution
for the American option for diffusion and jump-diffusion models. In the fifth chapter we will
present our investigation of the proposed problem. Here we start by transforming the problem
into one-state variable problem. Then we will study this new problem, and to this problem,
we will first investigate about its general analytical solution and then in the nest step we will
consider the particular case when the average is geometric, for which we will investigate to figure
out its analytical solution. Furthermore, we will study the geometric average case when the
jump sizes are lognormally distributed. After the geometric average case, we will do the same
investigation as in geometric average case, for the case of arithmetic average. By Hansen and
Jorgensen 2000 [6], the dynamic of the new underlying asset isn’t a geometric Brown motion
so, first we will use the Wilkinson approximation (see P. Pirinen, [17]) in order to approximate
it into a geometric Brownian motion and then to establish its solution. To end this chapter
we have some numerical results, to compare the earliy exercise boundaries in a diffusion and
jump-diffusion cases. At the end we have the conclusions chapter.
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Chapter 2

Random Variable and random

Processes

2.1 Basic definitions and properties

In this chapter we will set some definitions and properties of random variables. Also, we will
define a random process and give some examples of random processes. In this chapter we will
not get deeper with this theories, so for details see A. Klenke [10]. Before we get into the
concept of random variable, let us give some definitions from measure theory (see M. Adams
and V. Guillemin [1]).

Let Ω be a nonempty set and let ℵ ⊂ 2n (2Ω is the set of all subsets of Ω) be a class of subsets
of Ω.

Definition 1. A class of sets ℵ ⊂ 2Ω is called a σ − algebra if it satisfies the following

properties:

1) Ω ⊂ ℵ ;

2) If A ∈ ℵ then Ac = Ω \ A ∈ ℵ (ℵ is closed under complements);

3) If A1, A2, . . . is a sequence of elements of ℵ , then
∞⋃
n=1

An ∈ ℵ .

Definition 2. Let ℵ′ ⊂ 2Ω be a class of sets. The class of sets σ(ℵ′) =
⋂

ℵ⊂2Ω is a σ−algebra ℵ′⊂ℵ

ℵ

is called σ−algebra generated by ℵ′ and, ℵ′ is called a generator. Moreover, this σ−algebga

is the smallest σ−algebra containing ℵ′ .
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In the next definition, we will introduce the concept of measure. Fist of all, let us given ℵ ⊂ 2Ω

and m : ℵ 7−→ [0,∞] a set function (a function which the arguments are sets).

Definition 3. A set function m is called a measure if it satisfies the following properties:

1) m(∅) = 0;

2) If A1, A2, . . . is a sequence of elements of ℵ such that Ai ∩ Aj = ∅ for i 6= j , then

m(
∞⋃
n=1

An) =
∞∑
n=1

m(An) (m is σ−aditive).

If m(Ω) = 1, them m is called a probability measure. In this case we denote m(A) = P (A)
and A is called an event.

A set function m is said to be finite if m(A) <∞, ∀ A ∈ ℵ and it is σ−finite if there exists a
sequence Ω1,Ω2, . . . ∈ ℵ , Ω =

⋃∞
n=1 Ωn and such that m(Ωn) <∞ for all n .

Now, let Ω,ℵ,m as define above.

Definition 4. A pair (Ω,ℵ) is called a measurable space and A ∈ ℵ is called measurable set.

The triple (Ω,ℵ,m) is called measure space. If m(Ω) = 1, then (Ω,ℵ,m) is called probability

space and A ∈ ℵ is called an event.

Let m(Ω) 6= 1, then the normalized set function m(A) = m(A|Ω) =
m(A ∩ Ω)

m(Ω)
=
m(A)

m(Ω)
(mea-

sure of A conditioned to the Ω) is a probability measure. Indeed, m(Ω) =
m(Ω)

m(Ω)
= 1.

From this idea, we can define the conditional probability as follows: let A and B two events

such that P (B) 6= 0 then P (A|B) =
P (A ∩B)

P (B)
.

2.2 Lebesgue Integral

This section is based on an introduction to the Lebesgue integral, and some properties. Here
we do not go deeper on this, for more details we recommend the reader to see M. Adams and V.
Guillemin [1]. Before we start discussing about the Lebesgue integral, let us begin with some
definitions.
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Definition 5. Let (Ω,ℵ) be a measurable space. Let f : Ω −→ R be a function such that

f−1(B) (B is a set belonging to the σ−algebra generated by all open sets in R) is measurable,

then f is said measured function.

Consider the measurable space (Ω,ℵ) and s : Ω −→ R be a measurable function. We say that
s is a simple function if it takes on only finite number of values, let say c1, c2, . . . , cn .

If s takes values on the set {c1, c2, . . . , cn} then let Ei = s−1(ci) = {x ∈ Ω : s(x) = ci} i =
1, 2, . . . , n . Thus, we can write s as follows

s(x) =
n∑
i=1

ci1Ei(x),

where

1Ei(x) =

{
1 if x ∈ Ei
0 otherwise

.

Definition 6. Let s : Ω −→ R be a nonnegative simple function and consider E ∈ ℵ . Let

c1, c2, . . . , cn be the distinct nonzero values of s and Ei = s−1ci , then we define the Lebesgue

integral of s over E with respect to (w.r.t) m , as the sum

IE(s) =
n∑
i=1

cim(E ∩ Ei). (2.1)

Now, let us extend this definition to any nonnegative function.

Definition 7. Let f be a nonnegative measurable function acting from Ω into nonnegative

extended real numbers (R+ ∪{+∞} = [0,+∞]) and let E ∈ ℵ . Then the Lebesgue integral of

f on E w.r.t m is defined by

∫
E

f dm = sup{IE(s); 0 ≤ s ≤ f, s− simple}. (2.2)

Proposition 2.2.1. Let E, F ∈ ℵ, f and g be nonnegative measurable functions. Then the

following holds:

1) If f ≤ g then

∫
E

f dm ≤
∫
E

g dm;

2) If E ⊂ F them

∫
E

f dm ≤
∫
F

g dm;
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3) If m(E) = 0 then

∫
E

f dm = 0;

4) If

∫
E

f dm = 0 then f = 0 almost surely on E.

5) If E ∩ F = ∅ then

∫
E∪F

f dm =

∫
E

f dm+

∫
F

f dm.

Now we are ready to define and discuss about a random variable.

2.2.1 Random variables

Definition 8. Let (Ω,ℵ, P ) be a probability space and (Ω′,ℵ′) be a measurable space. Then,

the function X : Ω 7−→ Ω′ is called random variable acting from (Ω,ℵ) into (Ω′,ℵ′).

Given a random variable X . The probability measure PX := PoX−1 is called a distribution of
the random variable X . In case of real random variable X , the map FX : x 7−→ P [X ≤ x] is
called a distribution function of the random variable X .

Let us give some examples of distribution of random variables.

Example 1. Let p ∈ [0, 1], P [X = 1] = p and P [X = 0] = 1 − p . So, this is a Bernoulli

distribution with parameter p , denoted Ber(p) and its distribution function is

F (x) =


0 if x < 0

1− p if x ∈ [0, 1)

1 if x ≥ 1

.

Example 2. Let λ ∈ [0,∞)] and X : Ω −→ N0 , be a random variable such that

P (X = n) = λn
e−λ

n!
, ∀ n ∈ N0 .

Then X has a Poisson distribution with parameter λ and we denote X ∼ Poi(λ).

Other important and most used distribution is described as follows:

Example 3. Let µ ∈ R , σ2 be a positive real number and X be a real random variable such

that

P (X ≤ x) =
1√
2πσ

∫ x

−∞
e−

(z−µ)2

2σ2 dz , for all x ∈ R .

Then the random variable X is normal distributed with parameters µ and σ . Symbolically

denoted by X ∼ N(µ, σ2).
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Example 4. Let λ be a positive real number an X be a nonnegative real random variable

such thut

P [X ≤ x] =

∫ x

0

e−λzλdz

then we say that X follows the exponential distribution with parameter λ .

Definition 9. A collection (Xi)i∈I (I an index set) of random variables is said to be identical

distributed if PXi = PXj for all i, j ∈ I .

Let (Ak)k∈I be a collection of events of ℵ . Then we say that a collection (Ak)k∈I is independent

if for any subset I ′ of I , we have P (
⋂
k∈I′

Ak) =
∏
k∈I′

P (Ak).

Definition 10. A collection (Xi)i∈I (I an index set) of random variables is said to be in-

dependent if the collection of σ−algebras (σ(Xi))i∈I (these σ algebra are called filtrations) is

independent. The collection (Xi)i∈I of random variables is said to be independent identical

distributed (i.i.d.) if the collectin (Xi)i∈I is independent and PXi = PXj for all i, j ∈ I .

Consider (Ω,ℵ, P ) be the probability space.

Definition 11. Let X be a real valued random variable.

1) If X integrable, then we call E[X] :=

∫
XdP the expectation or mean of the random

variable X ;

2) If X is square integrable, then we call V ar[X] = E[X2]−E[X]2 the variance of X . The

number σ =
√
V ar[X] is called the standard deviation of the random variable X .

3) If X, Y are square integrable, then we define the covariance of x and Y by Cov[X, Y ] =

E[(X − E[X])(Y − E[Y ])].

4) If X and Y are uncorrelated (independent) then Cov[X, Y ] = 0.

Theorem 2.2.2. Let X, Y , n ∈ N , be real integrable random variables on (Ω,ℵ, P ).

1) If X and Y have the same distribution then E[X] = E[Y ];

2) E[aX + bY ] = aE[X] + bE[y], a, b real numbers. This property is called linearity;

3) If X ≥ 0 a.s. then E[X] = 0⇔ X = 0 a.s.;
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4) If X ≤ Y a.s. then E[X] ≤ E[Y ].

If the random variables X and Y are independent then E[XY ] = E[X]E[Y ] .

Another concept which is of our interest is a conditional expectation which can be defined as
follows

Definition 12. Let X and Y be two random variables and F be a filtration. We say that a

random variable Y is a conditional expectation of X given F and we write

Y := E[X|F]

if Y is F−measurable and for any A ∈ F , E[X1A] = E[Y 1A] .

By this definition we have the following proposition

Proposition 2.2.3. Let X and Y be two square integrable random variables. Then

E[V ar[Y |X] + V ar(E[Y |X]) = V ar[Y ]. (2.3)

Proof. Using the definition of variance we have

V ar(Y |X) = E[Y 2|X]− (E[Y |X])2 then

E[V ar[Y |X] = E[E[Y 2|X]− (E[Y |X])2] = E[Y 2]− E[(E[Y |X])2]. (2.4)

In other hand

V ar(E[Y |X]) = E[E[Y |X]2]− E[Y ]2. (2.5)

From (2.4) and (2.5) we have

E[V ar[Y |X] + V ar(E[Y |X]) = V ar[Y ].

Next we provide the definition of a random process (or stochastic process).
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2.3 Random processes

In this we will have a brief consideration of random processes, as well called stochastic processes.
For more details we suggest the reader to see A. Klenke [10].

Definition 13. A random process (or stochastic process) is a collection of random variables

(Xt), t ∈ I , where I is an index set.

An example about random process which we will use in this text, is the Poisson process. We
will study further about this process in the next section.

2.3.1 Poisson process

Our aim in this part of the text, is to define the Poisson process and to mention some of its
properties. The definitions and properties which we will consider in this thesis, can either be
found in [10]. So the Poisson process is defined as follows:

Definition 14. Let (τi)i≥1 be a sequence of an exponential random variables with parameter

λ and Tn =
n∑
i=1

τi . The process {Nt} =
∑
n≥1

1t≥Tn is called a Poisson process with parameter

λ .

From this definition one can mention the following properties of a Poisson processes

1) N(0)=0;

2) For 0 ≤ t1 < t2 < . . . , the increments N(t1), N(t2)−N(t1), . . . are independent;

3) ∀ t > s ≥ 0, the increment N(t)−N(s) is a Poisson process with parameter λ and

P (N(t)−N(s) = n) = e−λ(t−s) (λ(t− s))n

n!
;

4) For each ω ∈ Ω, N(ω, t) is continuous in t ;

5) The expected value and the variance are equal, i.e. E[N(t)] = V ar[N(t)] = λt ;

6) P [an event does not occur at the interval (t,t+h)] = 1− λh+O(h);

7) P [an event occur once at the interval (t,t+h)] = λh+O(h);

8) P [an event occurs more than one time at the interval (t,t+h)] = O(h).
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Compound Poisson process

In order to set the definition of compound Poisson process, let us consider (Zk)k≥1 being a square
integrable sequence of i.i.d. random variable with probability distribution ν(dy). Wherefore,

P (Zn ∈ [a, b]) = ν[a, b] =

∫ b

a

ν(dy).

Definition 15. The process

Yt =
Nt∑
k=1

Zk, t ∈ R+

is called compound Poisson process.

Proposition 2.3.1. The expectation and variance of a poisson process are given by

E[Yt] = λtE[Z1]

and V ar[Yt] = λtE[|Z1|2].

Proof: E[Yt] = E

[
Nt∑
k=1

Zk

]
=
∞∑
n=0

(λt)neλt

n!
E

[
Nt∑
k=1

Zk|Nt = n

]

=
∞∑
n=0

(λt)neλt

n!
E

[
n∑
k=1

Zk

]
= λtE[Z1] . Here we have used the fact that Z ′ks are i.i.d random

variables and independent to Nt . To calculate the variance of Yt , we use the proposition (2.2.3)
and the previous calculations. So,

V ar[Yt] = E[V ar[Yt|Nt]] + V ar(E[Yt|Nt]) = E[NtV ar[Z1]] + V ar[NtE[Z1]]
= λtE[Z1] + λtE[Z1]2 = λtE[Z2

1 ] . �

We end this section by setting the following definition.

Definition 16. Let Tt be a compound Poisson process with mean λtE[Z1] with Z1 defined

above. The process M = Yt − λtE[Z1] , is called compensated compound Poisson process.

Furthermore, the process Mt is a martingale.
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Chapter 3

Stochastic Differential Equations

3.1 Definitions and properties

In this section are presented some concepts, definitions and properties of diffusion processes.
We will not give much details. In the case of details we refer the reader to see Bernt Öksendal
[13]. Therefore, diffusion process S is a stochastic process such that its increment can be
approximated by the stochastic difference equation,

S(t+ ∆t)− S(t) = µ(t, S(t))∆t+ σ(t, S(t))Z(t), (3.1)

where Z(t) is a normal random variable (the disturbance term) which is independent of all
information up to time t . The functions µ and σ are deterministic and, µ is a locally drift
and σ the diffusion term.

Definition 17. The stochastic process W is called Wiener process (or Brownian motion) if it

satisfies the following properties:

1) W (0) = 0;

2) The process W has independent increments i. e. 0 ≤ t1 ≤ t2 ≤ . . . , then W (t1), W (t2)−
W (t1), . . . are independent stochastic variables;

3) For s ≤ t the increment W (t)−W (s) has normal distribution N(0, t− s);

4) The stochastic process W has continuous trajectories.
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If we replace the process Z(t) in (3.1) by ∆W = W (t+ ∆t)−W (t) and taking ∆t −→ 0, we
can rewrite the difference equation (3.1) as follows

dS(t) = µ(t, S(t))dt+ σ(t, S(t))dW (t) (3.2)

S(0) = s. (3.3)

In a stochastic calculus we have the following proparties for the increments dt and dW :

1) (dt)2 = 0;

2) dtdW (t) = 0;

3) (dW (t))2 = dt .

Definition 18. Let X be a random variable. We say that FX
t is a filtration generated by X

if FX
t is a σ−algebra generated by all the information of X up to time t . If Yt ∈ FX

t , we say

that Yt is adapted to the filtration FX
t .

Let g be a process satisfying the following conditions:

1)

∫ b

a

E[g2(s)]ds <∞ ;

2) The process g is FW
t adapted.

Then,

E

[∫ b

a

g(s)dW (s)

]
= 0, E

[(∫ b

a

g(s)dW (s)

)2
]

=

∫ b

a

E[g2(s)]ds.

Let given a random process S . The process S is said to be a Ft−martingale, if it satisfies:

1) The process S is an adapted process to the filtration Ft ;

2) ∀ t , E[|S(t)|] is finite;

3) ∀ s and t such that s ≤ t E[S(t)|Fs] = S(s).

If ∀ s ≤ t , S satisfies E[X(t)|Fs] ≤ S(s) (E[S(t)|Fs] ≥ S(s)) then S is called a super-
martingale (submartingale).
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Theorem 3.1.1. (Ito’s lemma) Let S be a stochastic process satisfying the stochastic differ-

ential equation (SDE)

dS(t) = µ(S(t), t)dt+ σ(S(t), t)dW (t). (3.4)

where µ and σ are adapted processes and let F be a C1,2−function. Let F = F (t, S(t)),

then the stochastic differential equation for F is given by

dF =

(
Ft + µ(t, S(t))Fs +

1

2
σ2(t, S(t)Fss

)
dt+ σ(t, S(t))FsdW (t). (3.5)

3.1.1 Partial differential equations

Let µ(t, s), σ(t, s) and G(s) be a deterministic functions, and let F be a function satisfying
the following boundary problem on [0, T ]×R

Ft + µ(t, S(t))Fs +
1

2
σ2(t, S(t))Fss − rF = 0 (3.6)

F (T, s) = G(s), (3.7)

where S satisfies the SDE

dS(t) = µ(t, S(t))dt+ σ(t, S(t))dW (t).

Applying Ito’s lemma to F we get

F (T, S(T ))− F (t, S(t)) = r

∫ T

t

F (τ, S(τ))dτ +

∫ T

t

σ(τ, S(τ))FsdW (τ)dτ.

Taking expectation value conditioned to S(t) = s , we have

Et,s[F (T, S(T ))− F (t, S(t))] = r

∫ T

t

Et,s[F (τ, S(τ))]dτ.

Let
y(T ) = Et,s[F (T, S(T ))

then,

y(T )− y(t) = r

∫ T

t

y(τ)dτ.

From this we get the following initial value problem

15



y′(T ) = ry(T ), y(T )|T=t = y(t). (3.8)

Solving this problem we have,

y(T ) = y(t)er(T−t).

Substituing y(T ) and y(t) we get the well known Feynman-Kǎc formula

F (t, S(t)) = e−r(T−t)Et,s[G(S(T ))]. (3.9)

Definition 19. We say that the diffusion process S(t) is a geometric Brownian motion if it

satisfies the following SDE

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t), (3.10)

S(0) = s0. (3.11)

Let z = lnS(t) then, using Ito’s lemma we have

dZ = [µ(t)− 1

2
σ2(t)]dt+ σ(t)dW (t),

with solution

Z(t)− z0 =

∫ t

0

[µ(s)− 1

2
σ2(s)]ds+

∫ t

0

σ(s)dW (s).

Therefore, S(t) will be presented by the following formula

S(t) = s0e
{
∫ t
0 [µ(s)− 1

2
σ2(s)]ds+

∫ t
0 σ(s)dW (s)}. (3.12)

If µ and σ are constant, then the solution (3.12) becomes

S(t) = s0e
(µ− 1

2
σ2)t+σW (t). (3.13)
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3.1.2 Jump diffusion process

Definition 20. A stochastic process S is called a Jump diffusion process, if it satisfies the

following stochastic differential equation

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t) + (X − 1)dNt, S(0) = s, (3.14)

where

1) µ(t) is a drift of the process;

2) σ the volatility of the stock price;

3) W (t) is a standard Brownian motion;

4) Nt is a Poisson process with parameter λt ;

5) X is a jump size in stock, if the a jump in the process Nt occurs;

6) X are i.i.d. random variables and X − 1 is an impulse function producing a finite jump

in S to XS (see Merton (1976) [12]);

7) W (t), N(t), X are mutually independent.

In this text, we will always consider the case that if there is a jump at time t then the value of
a price is determined after the jump. This leads us to have a right continuous stock price S(t).
Merton in his paper of 1997 [12], has considered that if the jump process is included, then
dN = 1 and if it is not included, then dN = 0. In our studies we we will be dealing with such
type of events.
Let suppose that in interval [0, t] the jump process does not occur so, the dynamics of the stock
price will have the following form:

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t). (3.15)

By the solution (3.12), S(t) will be presented by

S(t) = s0e
{
∫ t
0 [µ(s)− 1

2
σ2(s)]ds+

∫ t
0 σ(s)dW (s)}. (3.16)

Now, let us suppose that in the interval [t, t + h] , the jump process has occurred, then (see
Merton (1976) [12]),

S(t+ h)− S(t) = (X − 1)S(t).
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Therefore, S(t+ h) = XS(t). The solution of (3.14) is as follows:

S(T ) = S(t) exp

{∫ T

t

µ(s)ds+

∫ T

t

σ(s)dW (s)− 1

2

∫ T

t

|σ(s)|2ds
} NT∏
k=Nt+1

Xk. (3.17)

In particular, if µ and σ are constant, then (3.17) will take the form,

S(T ) = S(t) exp

{
(µ− 1

2
σ2)(T − t) + σ(W (T )−W (t))

} NT∏
k=Nt+1

Xk. (3.18)

In order to make e−rtS(t) a martingale, let us choose µ = r − E[X − 1], where r is a risk-
free rate. Suppose that in the interval [0, t] Nt jumps has occurred, then the solution (3.18)
becomes,

S(t) = S(0) exp{(r − 1

2
σ2)t+ σW (t)− λE[X − 1]t}

Nt∏
k=1

Xk. (3.19)

and it can be presented as follows

S(t) = S(0) exp{(r − 1

2
σ2)t+ σW (t)− λE[X − 1]t+

Nt∑
k=1

lnXk}. (3.20)

Here, Nt is a Poisson process with parameter λ and, independent to Nt , X and W (t).

Next we will set the Ito’s formula for a jump diffusion processes. Let us consider the F be
C1,2 -function such that F = F (t, S(t)). Then, from P. Tankov [4], we have the following
proposition:

Proposition 3.1.2. Let S(t) be a diffusion process with jumps defined by

dS(t) = µ(t, S(t))dt+ σ(t, S(t))dW (t) + (X − 1)dNt,

where µ(t, S(t)) and σ(t, S(t)) are continuous and nonantecipating processes with∫ T

0

σ2(τ, S(τ))dτ <∞.
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Then, for any C1,2−function F : [0, T ] × R+ → R , the process F (t) = F (t, S(t)) can be

represented as,

dF =

(
Ft + µ(t, S(t))Fs +

1

2
σ2(t, S(t))Fss

)
dt+ σ(t, S(t))FsdW (t)

+[F (t− + ∆t, S(t− + ∆t))− F (t−, S(t−))].

(3.21)
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Chapter 4

Options

In this chapter we will introduce some concepts and definitions about financial instruments.
We will consider the Black-Scholes model and to give the Black-Scholes equation. Using the
risk-neutral valuation formula, we will write a solution to the terminal value problem involving
the Black-Scholes equation. In the end of this chapter we will derive the pricing equation under
jump diffusion processes.

4.1 Financial derivatives and the Black-Scholes formula

Before we get into a financial derivatives study, let us first state some definition, starting with
the following definition:

Definition 21. An underlying asset is a financial instrument (e.g. stock, commodity, future)

on which a price of the derivative is based.

Definition 22. A contingent claim (financial derivative) is a stochastic variable Π of the form

Π = G(Z), where Z is a stochastic variable driving the stock price process.The function G is

called contract function.

The classical examples of a financial derivatives are well known as European options and Amer-
ican options which are defined bellow.

Definition 23. An European option is a contingent claim written on an underlying asset S(t),

with strike price (exercise price) L at the maturity time (exercise time) T , with the following

property:

The holder of the contract has the right but not the obligation to buy (sell) one share of

the underlying asset, exactly at time of maturity, at the price L . An American option gives
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the holder the right but not the obligation to buy (sell) one share of the underlying asset at

any time before (exactly) the maturity time T , at the price L .

Suppose we have a market consisting on some financial assets. So, the collection of these
financial assets is called a portfolio.

Definition 24. A contingent claim Π is said to be reachable if there exists a portfolio h such

that V h
t = Π with probability one. Here V h

t is the value of the portfolio at time t .

If for the claim Π there exists a portfolio with the property on definition above, we say that
this portfolio is hedging portfolio or replicating portfolio.

A market is said to be complete if all claims are reachable. This definition of complete market
is equivalent to the following definition:

Definition 25. A market is complete if the number of risk assets is equal to the number of

random resources.

4.1.1 Pricing equation for European options

Let us consider a financial market consisting on two assets, the bond (a bank account) price
process B(t) which is a risk free asset, and a stock with price process S(t), defined by the
following dynamics

dB(t) = rB(t)dt, (4.1)

B(0) = 1, (4.2)

where r is the risk free rate. Then B(t) = ert , and S(t) following

dS(t) = µ(t, S(t))S(t)dt+ σ(t, S())S(t)dW (t), S(0) = s, (4.3)

where µ(t, S(t)) is a drift, σ(t, S(t)) is a volatility. Now, consider the contingent claim of
the form Π = G(S(T )) with price process F (t)(t) = V (t, S(t)). This claim is called simple
claim (see T. Björk, [3]) and V is some smooth function. Using Ito’s lemma and by risk free
arguments leads to the flowing pricing equation (see again T. Björk, [3])

{
Vt + rSVs + 1

2
σ2(t, S)S2Vss − rV = 0

V (T, s) = G(s).
(4.4)
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Applying the Feynman-Kǎc formula to the problem (4.4), we get the following risk-neutral
valuation formula:

V (t, s) = e−r(T−t)EQ
t,s[G(S(T ))]. (4.5)

4.1.2 Black-Scholes formula

Let us consider the the problem (4.4) when the parameters µ and σ are constant and take a
contract function of the form G(S(T )) = [S(T )−L]+ = max(S(T )−L, 0). In this conditions,
we know from chapter 3.1 that

S(T ) = s exp{(r − 1

2
σ2)(T − t) + σ(W (T )−W (t))}

and using the formula (4.5) we have,

V (t, s) = e−r(T−t)
∫ ∞
−∞

[S(T )− L]+f(z)dz .

And, from this we get the following solution:

V (t, s) = sΦ(d1(t, s))− e−r(T−t)LΦ(d2(t, s)), (4.6)

where Φ(x) =
1√
2πσ

∫ x

−∞
e−

z2

2σ2 dz ,

f(z) =
1√
2π
e−

z2

2σ2

d1(t, s) =
1√
T − t

[ln(
s

L
) + (r +

1

2
σ2)(T − t)]

and

d2(t, s) = d1(t, s)− σ
√
T − t .

4.1.3 Optimal stopping problem and American options

In this section we will discuss more or less about the optimal stopping problem and in the end
of the section we will introduce an American options.

First of all, let us consider the following definition

Definition 26. A nonnegative random variable τ is called a stopping time with respect to the

filtration F if it satisfies the condition {τ ≤ t} ∈ Ft for all t ≥ 0.
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Now let us consider the problem of the form max
0≤τ≤T

E[Zτ ] . Taking τ over the set of all stopping

times, this problem is optimal if

Eτ̂ [Zτ̂ ] = sup
0≤τ≤T

E[Zτ ]. (4.7)

Suppose that all stopping times belong to the interval [t, T ] , then we can define the optimal
value function by

Vt = sup
t≤τ≤T

E[Zτ ]. (4.8)

Now consider the diffusion process

dS(t) = µ(t, S(t))S(t)dt+ σ(t, S())S(t)dW (t), S(0) = s

and the contract function G(t, S(t)). Our objective is to study the optimal stopping problem

max
0≤τ≤T

E[G(t, S(t))].

Fix (t, s) ∈ [0, T ]xR+ and for each stopping time define Et,s[G(τ, Sτ )]. Then according to the
previous ideas, the optimal value function V (t, s) is define by

V (t, s) = sup
t≤τ≤T

Et,s[G(τ, Sτ )]. (4.9)

Assume that the function V is at least C1,2 function, all other processes are enough inte-
grable and for each (t, s) there exists an optimal stopping time τ̂ . Then V (t, s) satisfies the
following properties

1) It is optimal to stop iff V (t, s) = G(t, s), where Vt + rSVs +
1

2
σ2(t, S)S2Vss − rV < 0;

2) It is optimal to continue iff V (t, t) > G(t, s), where Vt + rSVs +
1

2
σ2(t, S)S2Vss− rV = 0.

Therefore we can define the continuation region by C = {(t, s)|V (t, s) > G(t, s)} .

Now we are ready to discuss further about American options. So, from the definition of Amer-
ican option, we know that the holder has the right but not the obligation to buy or sell one
share of an underlying asset at price K at any time before (exactly) the expiry date T . Thus,
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the problem in this case, is to determine when is optimal to buy or sell, in order to maximize
the profit. Let us consider the problem with contract function G(T, s) = [ρ(S(T ) − K)]+ =
max(ρ(S(T )−K), 0), where ρ = ±1. So, the problem is reduced to solve the optimal stopping
problem

max
0≤τ≤T

EQ[e−rτ [ρ(S(T )− L)]+] (4.10)

In the case when ρ = 1, we are dealing with the American call option. In this case, the function
Zt = e−rτ [S(T )−L]+ is a Q−submartingale, then the problem is optimal to stop when τ = T ,
which coincides with the European call option (see T.Bjork, [3]).

If ρ = −1, then under risk-neutral measure Q , the optimal value function is given by

V (t, s) = sup
t≤τ≤T

Et,s[e
−r(τ−t)[L− S(T )]+]. (4.11)

To end this subsection we set an proposition from the text book of T. Bjork, [3] given below

Proposition 4.1.1. Assume that a sufficiently regular function V (t, s) and an open set C ⊂
R+ ×R+ , satisfies the following conditions:

1) C has a continuously differentiable boundary b(t);

2) V satisfies the PDE Vt + rSVs +
1

2
σ2(t, S)S2Vss − rV = 0. (t, s) ∈ C ;

3) V satisfies the final boundary condition V (T, s) = max(L− s, 0), s ∈ R+ ;

4) V satisfies the inequality V (t, s) > max(L− s, 0), (t, s) ∈ C ;

5) V satisfies V (t, s) = max(K − s, 0), (t, s) ∈ Cc ;

6) V satisfies the smooth fit condition

lim
s↓b(t)

∂V

∂s
= −1, 0 ≤ t < T .

Then

• V is the optimal value function and it has the form (5.10);

• C is a continuation region;
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• The stopping time is given by τ̂ = inf{t ≥ 0|s(t) = b(t)}

Let G(S(T )) = max{L− S(T ), 0} then the solution to the American put option is given by

V (t, s) = e−r(T−t)Et,s[G(S(T ))] + rL

∫ T

t

e−r(u−t)Qt,s[S(u− t) ≤ b(u− t)]du. (4.12)

The proof of this can be found on G. Peskir and A. Shiryaev [14].
Another type of option and which is of our interest is a so called Asian option. This type of
options, they can be of European style or American style. The single characteristic of these
options is that the payoff function is of the form

G(T ) =

{
[ρ(A(T )−K)]+ fixed strike price case
[ρ(S(T )− A(T ))]+ floating strike price case

. (4.13)

where ρ = ±1, which means that if ρ = 1 then we have a call option else we get a put option
and,

A(t) =


1

t

∫ t

0

S(τ)dτ, in the arithmetic average case

exp{1

t

∫ t

0

lnS(τ)dτ} in the geometric average case

.

In next section we will derive the pricing partial differential equation, when the underlying
asset returns are discontinuous.

4.2 Pricing equations under jump-diffusion processes

Instead of considering an financial market with one random source, here we will take in con-
sideration one more random process. This process will cause jumps in the underlying asset,
making it discontinuous. As in the previous section, let us consider a financial market consisting
on two assets, the bond B(t) which is a risk free asset, and a stock with price process S(t),
defined by the dynamics

dB(t) = rB(t)dt, (4.14)

B(0) = 1, (4.15)

where r is the risk free rate. Then B(t) = ert , and S(t) satisfies following the stochastic
differential equation,
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dS(t) = µS(t)dt+ σS(t)dW (t) + (X − 1)dNt, S(0) = s, (4.16)

as defined in previous section, assuming µ and σ to be constant.
Let V (S(t), t) be the option price at time t . Applying Ito’s lemma we have

dV = (Vt + µSVs +
1

2
σ2S2Vss)dt+ σVsdW + [∆V ]dN.

Now let µ = r−E[X−1], (this is to make e−rtS(t) a martingale), where r is a ”risk-free rate”
under measure Q . By using hedging arguments, let δ = Vs and denote by Π = V − δS the
∆− hedged portfolio, such that under risk-free measure dΠ = rΠdt . Therefore,

dΠ = (Vt+(r−E[X−1])SVs+
1

2
σ2S2Vss)dt+σVsdW+[V (S(t−+∆t), t−+∆t)−V (S(t−, t−))]dY

−δS[(r − E[X − 1])dt+ σdW ]− δ∆SdN.

Then we have,

dΠ = (Vt +
1

2
σ2S2Vss)dt+ [V (S(t− + ∆t), t− + ∆t)− V (S(t−, t−))]dY − δ∆SdN.

So we have eliminated the dW term. Now taking the expectation value over the random
variable X to this last, we get the following expected variation on the portfolio:

dΠ = (Vt − λE[X − 1]SVs +
1

2
σ2S2Vss + λE[V (S(t− + ∆t), t− + ∆t)− V (S(t−, t−))])dt.

(4.17)

Since dΠ = r(V − SVs)dt then,

(Vt − λE[X − 1]SVs +
1

2
σ2S2Vss + λE[V (S(t− + ∆t), t− + ∆t)− V (S(t−, t−))] = r(V − VsS).

Finally we have the pricing equation,

Vt +
1

2
σ2S2Vss + (r − λE[X − 1])SVs + λE[∆V ]− rV = 0, (4.18)

where ∆V = V (S(t− + ∆t, t− + ∆t)− V (S(t−, t−)).
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Since the number of random sources is greater than the number of risk assets, then the market
is incomplete so, the ∆ − hedging strategy will not eliminate the random sources at all. We
still have one random source in the pricing integro-partial differential equation.

Now let us consider the standard European call option V (T, S(T )) = [S(T ) − L]+ and K =
E[X − 1], where V (t, S(t)) satisfies the the following integro-partial differential equation:

Vt +
1

2
σ2S2Vss + (r − λK])SVs + λE[∆V ]− rV = 0. (4.19)

This problem was already studied by Merton [12], and its solution is given by

V (t, s) =
∞∑
n=0

(λ(T − t))ne−λ(T−t)

n!
e−r(T−t)Et,s[G(S(T ))|Nt = n]

=
∞∑
n=0

(λ(T − t))ne−λ(T−t)

n!
En[H(sεne

−Kλ(T−t), σ, r, T, t)],

(4.20)

where εn =
∏n

k=1Xk , and where H(s, σ, r, t) is the standard Black-Schole’s formula as in (4.6).
In the same way is obtained the solution for an European put option.

Recall from (3.20) that,

S(T ) = S(t) exp{(r − 1

2
σ2 − λK)(T − t) + σ(W (t)−W (t)) +

Nt∑
k=1

lnXk}. (4.21)

If lnXn, i = 1, 2, . . . , n are normal i.i.d. random variables with mean a and variance b2 then,
the sum

∑n
k=1 lnXk will follow the normal distribution with mean na and variance nb2 . Then,

(r−1

2
σ2−λK)(T−t)+σ(W (T )−W (t))+

n∑
k=1

lnXk ∼ N((r−1

2
σ2−λK)(T−t)+na, σ2(T−t)+nb2).

Thus,

(r − 1

2
σ2 − λK)(T − t) + na+

√
σ2 +

nb2

T − t
(W (T )−W (t)) ∼

27



N((r − 1

2
σ2 − λK)(T − t) + na, σ2(T − t) + nb2).

And therefore,

Et,s[G(S(T ))|Nt = n] = Et,s[S(t) exp{(r−1

2
σ2−λK)(T−t)+na+

√
σ2 +

nb2

T − t
(W (T )−W (t))}]

= Et,s[S(t) exp{(r− 1

2
σ2− nb2

2(T − t)
+

nb2

2(T − t)
−λK +

na

T − t
)(T − t) +

√
σ2 +

nb2

T − t
(W (T )−

W (t))}]

= Et,s[S(t) exp{(rn −
1

2
σ2
n)(T − t) + σn(W (T )−W (t))}].

Here σ2
n = σ2 +

nb2

2(T − t)
, rn = r − λK + nb2

T−t + na
T−t = r − λK + n

T−t(a
2 + b2

2
) = r − λK +

n
T−t ln(1 +K).

And thus, the solution V (t, s) will be defined by

V (s, t) =
∞∑
n=0

(λ′(T − t))ne−λ′(T−t)

n!
H(s, σn, rn, T, t), (4.22)

where λ′ = λ(1 +K).
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In the case of American put options under jump-diffusion processes, the solution V (t, s) satis-
fying the conditions of the Proposition 4.1.1 has the following form

V (s, t) =
∞∑
n=0

(λ(T − t))ne−λ(T−t)

n!
En
[
Hp(sεne

−λK(T−t), σ, r, T, t)
]

+
∞∑
n=0

∫ T

t

(λ(τ − t))ne−(λ+r)(τ−t)

n!
Et[rL · 1{S(τ−t)≤b(τ−t)}]

−λEQ
t

{∫ T

t

E [g(X,S, b)] dτ

}
,

(4.23)

where

g(X,S(τ), b(τ)) = Ṽ (XS(τ), τ)−(L−XS(τ))1{S(τ−)≤b(τ),XS(τ−)>b(τ)} Hp is the correspond-
ing solution of the European put option when there is no jumps and b(t) is the exercise bound-
ary.

If lnXn are i.i.d. normal random variables as above, then the first part of the earlier exercise
premium will be
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e−r(τ−t)Et[rL ·1{S(τ−t)≤b(τ−t)}] = rLe−r(τ−t)Q([s0 exp{(rn−
1

2
σ2
n)(τ−t)+σn

√
τ − tZ} ≤ b(τ−t)]

= rLe−r(τ−t)Φ(
ln b(τ−t)

s0
− (rn − σ2

n

2
)(τ − t)

σn
√
τ − t

).

So, the solution of an American put options under jump diffusion processes when the jump size
follows the lognormal distribution, takes the form,

V (s, t) =
∞∑
n=0

(λ′(T − t))ne−λ′(T−t)

n!
[Hp(s, σn, rn, T, t)]

+rL
∞∑
n=0

∫ T

t

(λ(τ − t))ne−(λ+r)(τ−t)

n!
Φ

(
ln b(τ−t)

s
− (rn − σ2

n

2
)(τ − t)

σn
√
τ − t

)
dτ

−λEt
{∫ T

t

E [g(X,S(τ), b(τ))] dτ

}
.
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Chapter 5

General valuation of the

American-style Asian options under

jump-diffusion processes

As in Hansen and Jorgensen (2000) [6], our goal is to give an analytical solution V (t, s) to the
free boundary problem, where the contract function is given below by the formula (5.1). In this
article, is considered an American-style Asian options with floating strike, where the contracts
are initialized at time zero and their pay-off’s functions at time t are of the form defined by
equation (4.13), but concretely of the form

pay − off = [ρ(S(t)− A(t)]+. (5.1)

Robert.C. Merton, in his paper of (1976),([12]) provides a method to solve the option pricing
problems when the underlying stock returns are discontinuous. In paper of Hansen and Jor-
gensen (2000) [6] is given an analytical valuation for American-style Asian options. So, we
will connect these two theories in order to find an analytical valuation of American-style Asian
options when underlying stock returns are discontinuous .

By the result from Karout and Karatzas [9] and H. Pham (2001) [15], we have that the solution
of the free boundary problem is given

V (t) = ess sup
τ∈Γt,T

EQ
t

{
[ρ(S(τ)− A(τ))]+

}
, (5.2)

(5.3)

where Γt,T is a set of all stopping times taking values in [t, T ] .
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Now, let

ξ(t) = e−rt
S(t)

S(0)
= exp{−1

2
σ2t+ σW (t)− λE[X − 1]t}

Nt∏
k=1

Xk. (5.4)

We know from (3.19) that ξ(t) defined by (5.4) is a martingale. Therefore, by Girsanov theorem
(see T. Björk, [3] p. 164), let us introduce a new equivalent measure Q′ such that dQ′ =
ξ(T )dQ , thus, the process WQ′ = WQ − σt [6] and [9], is a standard Brownian motion under
Q′ and the stock price satisfies the stochastic differential equation

dS(t) = (r + σ2 − λK)Sdt+ σdWQ′(t) + (X − 1)dY (t), (5.5)

where K = E[X − 1].

As in [6] let us transform (5.2) changing the measure Q into the equivalent measure Q′ .
Whence,

V (t) = ess sup
τ∈Γt,T

EQ
t

{
e−r(τ−t)[ρ(S(τ)− A(τ))]+

}

= ess sup
τ∈Γt,T

EQ′

t

{
ξ(t)

ξT
e−r(τ−t)[ρ(S(τ)− A(τ))]+

}

= ess sup
τ∈Γt,T

EQ′

t

{
S(t)

ert
e−r(τ−t)[ρ(S(τ)− A(τ))]+EQ′

τ

[
erT

S(T )

]}

= ess sup
τ∈Γt,T

EQ′

t

{
S(t)

ert
e−r(τ−t)[ρ(S(τ)− A(τ))]+EQ′

τ

[
erT

S(T )

]}

= ess sup
τ∈Γt,T

EQ′

t

{
S(t)

ert
eτ

S(τ)
e−r(τ−t)[ρ(S(τ)− A(τ))]+

}

= ess sup
τ∈Γt,T

EQ′

t

{
S(t)[ρ(1− A(τ)

S(τ)
)]+
}

.

Therefore, we have reduced (5.2) into

V (t) = ess sup
τ∈Γt,T

EQ′

t

{
S(t)[ρ(1− x(τ))]+

}
(5.6)
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where x(τ) = A(τ)
S(τ)

. According to Harrisson and Kreps (1979) [7], V (t)
S(t)

is a martingale.

Our next step is to derive the dynamic of x(t) in order to continue with our studies. Thus,
applying the Ito’s formula for a jump diffusion process given by proposition (3.1.2) we have:

dx(t) =
dA(t)

S(t)
− (r + σ2 − λK)A(t)

S2(t)
dt+

σ2A(t)

S2(t)
dt− σA(t)

S(t)
dWQ′ +

[
A(t− + ∆t)

S(t− + ∆t)
− A(t−)

S(t−)

]

dx(t) = x(t)

[(
d lnA(t)

dt
− r − σ2 + λK

)
dt− σdWQ′(t) + σ2dt+

∆[A(t)] + (1−X)A(t)

XS(t)

]
.

Since we know that ∆tdNt = 0 then, ∆[A(t)]
A(t)

dNt = 0. Therefore,

dx(t) = x(t)

[
µ(t, x(t))dt− σdWQ′(t) +

1−X
X

dNt

]
,

where µ(t, x(t)) =

(
d lnA(t)

dt
− r + λK

)
.

Hence,

dx(t) = x(t)

[
µ(t, x(t))dt− σdWQ′(t) +

1−X
X

dNt

]
. (5.7)

Going ahead with our studies, let us denote by Ṽ (t) the expression V (t)
S(t)

, then problem (5.2)

is reduced to the following one state variable problem (lets call it a dual problem) with strike
price 1,

Ṽ (t) = ess sup
τ∈Γt,T

EQ′

t

{
[ρ(1− x(τ))]+

}
, (5.8)

where x(t) has dynamic defined by (5.29). The optimal stopping time for this problem is τ ∗t
such that

τ ∗t = inf{τ ∈ [t, T ] : x(τ) = b(τ)},

where b(τ) is a boundary of the continuation (or the exercise) region. The regions has the
following presentations:
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1) Continuation region: C = {t ∈ [0, T ] : ρx(t) > ρb(t)} ;

2) Stopping region: D = {t ∈ [0, T ] : ρx(t) ≤ ρb(t)} .

From now on, we will study the dual problem (5.8), since V (t) = S(t)Ṽ (t). If there is no jump
in the stock, then the problem is basically that was studied by A.T Hansen and P.L. Jorgensen
[6] (1997), for which the solution of (5.8) is given by

Ṽ (t) = ṽ(t) + ẽ(t), (5.9)

where

ṽ(t) = EQ′

t

{
[ρ(1− x(T ))]+

}
(5.10)

ẽ(t) = EQ′

t


T∫
t

ρµ1(τ, x(τ))x(τ)1Ddτ

 =

∫ T

t

EQ′

t {ρµ1(τ, x(τ))x(τ)1D} dτ. (5.11)

and µ1(x(t), t) = µ(x(t), t)−λK . The first part of (5.9) in right hand side, is the corresponding
solution for European put option and the second is a earlier exercise premium. Let us suppose
that the jump process in the interval [t, T ] has occurred. Then by the results in C. R. Gukhal
[5] (2001) or Huyen Pham [15] (1997), the solution of the dual problem (5.8) will be given as
follow

Ṽ (t) =
∞∑
n=0

∫ [
e−λ(T−t)(λ(T − t))n

n!
ṽ(t, x(t)Zne

λKt) + ẽJ(t, x(t)Zne
λKt)

]
Fn(dz)−

−λEQ′

t

{∫ T

t

E [g(J, x(s), b(s))] ds

}
,

(5.12)

where,

ẽJ(t, x(t)Zne
λKt) =

∫ T

t

e−λ(τ−t)(λ(τ − t))n

n!
EQ′

t,x(t)ZneλKt
{ρµ1(τ, x(τ))x(τ)1D} dτ ,

g(J, x(s), b(s)) = Ṽ (Jx(s), s)− (1− Jx(s))1ρ{x(s)≤ρb(s),ρJx(s)>ρb(s)} ,

and ṽ(t) is defined by (5.10), Fn is a distribution function of

Zn =
n∏
k=1

1

Xk

=
n∏
k=1

Jk.
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Let us adopt the following notation,∫
ṽ(t, x(t)Zne

λKt)Fn(dz) = En[ṽ(t, x(t)Zne
λKt)]

and∫
ẽJ(t, x(t)Zne

−λKt)Fn(dz) = En[ẽJ(t, x(t)Zne
λKt)].

So we have the following result:

Theorem 5.0.1. The solution to the dual problem (5.8) when the underlying stock returns are

discontinuous, is given by

Ṽ (t) =
∞∑
n=0

[
e−λ(T−t)(λ(T − t))n

n!
En[ṽ(t, x(t)Zne

λKt)] + En[ẽJ(t, x(t)Zne
λKt)]

]
−

−λEQ′

t

{∫ T

t

E [g(J, x(s), b(s))] ds

}
.

(5.13)

where the first part in the right hand side, is the value of the corresponding European option
with jumps, the second two terms correspond to the earlier exercise premium (the bonus by
exercising the option before the maturity time T ). The earlier exercise premium is composed
by two terms, the first of the last two terms is a current value of the premium and the last one
is the rebalancing cost due to jumps from the exercise region into continuation region (see C.R.
Gukhal [5] (2001)). The last part of the right hand side, there is no an explicit form of it.

Proof: Since we know that Ṽ is a martingale under the measure Q′ , then in the continuation
region C = {t ∈ [0, T ] : ρx(t) > ρb(t)} the function Ṽ must satisfy the equation

dṼ = Ṽtdt+ Ṽxdx+ Ṽxx(dx)2. (5.14)

Therefore, from H. Pham [15] it is shown that, in a continuation region,

Ṽ =
∞∑
n=0

eλ(T−t)(λ(T − t))n

n!
En[ṽ(t, x(t)Zne

λKt)], (5.15)

and, R. C. Merton [12] (1997), have proved that the expression (5.15) is a solution to the
problem, and by the martingale property in the continuation region

dṼ = dMQ′

1 , (5.16)
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where M1 is a martingale under measure Q′ .
In other hand, if x belongs to the stopping region D = {t ∈ [0, T ] : ρx(t) ≤ ρb(t)} , then

Ṽ (t) = ρ(1− x(t)), hence by H. Pham [15],

dṼ = −ρµ1(x(t), t)x(t)dt+ λE[Ṽ (Jx, t)− (1−Xx)1{Jx>b(t)}]dt. (5.17)

From (5.16) and (5.17) we have

dṼ = {−ρµ1(x(t), t)x(t)dt+ λE[Ṽ (Jx, t)− (1− Jx)1{Jx>b(t)}]dt}{x(t)≤b(t)} + dMQ′ , (5.18)

where MQ′ is a martingale part under measure Q′ , and then the result follows.�

From G. Peskir [14] or T. Björk [3], we know that in the exercise region Ṽ (t) = ρ(1 − x(t)),
then the the exercise boundary must satisfy the following free boundary equation:

ρ(1− b(t)) =
∞∑
n=0

[
e−λT (−t)(λ(T − t))n

n!
En[ṽ(t, b(t)Zne

λKt)] + En[ẽJ(t, b(t)Zne
λKt)]

]
−

−λEQ′

t,b(t)

{∫ T

t

E [g(J, x(s), b(s))] ds

}
.

(5.19)

When the jump intensity λ is small enough or if the jump sizes have a small mean then, it will
cause very small chances in the American option. So, the cost term in the solution of American
option should be very small (see Kou et all (2005), [11]). Therefore, in this circumstances, the
cost term is negligenciable.

5.1 Pricing the American-style Asian options under jump-

diffusion processes, in the case of geometric average

To study this case, we will follow the previous theory taking in consideration that

A(t) = e

1

t

∫ t

0

lnS(τ)dτ
.

In this case,
dA(t)

A(t)
=

(
− 1

t2

∫ t

0

lnS(τ)dτ − lnS(t)

)
= −1

t
lnx(t)dt . Therefore, the dynamics

of the underlying asset x(t) will be defined by
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dx(t) = x(t)
[
µg(t, x(t))dt− σdWQ′(t) + (J − 1)dNt

]
, (5.20)

where [µg(t, x(t)) = −1
t

lnx(t)−r+λK . If the jump process does not occur then the dynamics
os x(t) becomes,

dx(t) = x(t)
[
µg(t, x(t))dt− σdWQ′(t)

]
. (5.21)

Before we proceed with our studies, let us give the following lemmas from the paper of Hansen
ad Jorgensen 1997 [6].

Lemma 5.1.1. (Hansen and Jorgensen (2000) [6]) For u > t

lnx(t) ∼ N(αg(t, u), β2
g(t, u), (5.22)

where

αg(t, u) =
t

u
lnx(t)− u2 − t2

2u
(r +

1

2
σ2) (5.23)

and

β2
g(t, u) =

σ2

3u2
(u3 − t3). (5.24)

Lemma 5.1.2. (Hansen and Jorgensen (2000) [6]) Let lnV ∼ N(α, β2) and define γ =
α+β2−lnL

β
.

Assuming L > 0 and letting Φ(·) and φ(·) denote the cumulative distribution and density

functions, respectively, we have:

1) E[V · 1{V≥L}] = eα+ 1
2
β2

Φ(γ);

2) E[V · 1{V≤L}] = eα+ 1
2
β2

Φ(−γ);

3) E[(V − L)+] = eα+ 1
2
β2

Φ(γ)− LΦ(γ − β);
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4) E[(L− V )+] = LΦ(β − γ)− eα+ 1
2
β2

Φ(−γ);

5) E[V lnV · 1{V≥L}] = eα+ 1
2
β2

(βφ(γ) + (α + β2)Φ(γ));

6) E[V lnV · 1{V≤L}] = eα+ 1
2
β2

((α + β2)Φ(−γ)− βφ(γ)).

Using Lemma 5.1.1 and Lemma 5.1.2 with L = 1 we have

ṽ(t, x) = Et[ρ(1− x(T ))]+

= ρ
{

Φ(−ρ(βg(t, T )− γg(t, T ))− eαg(t,T )+ 1
2
β2
g(t,T )Φ(−ργg(t, T ))

}

= ρ

{
Φ

(
−ραg(t, T )

βg(t, T )

)
− eαg(t,T )+ 1

2
β2
g(t,T )Φ

(
−ραg(t, T ) + βg(t, T )2

βg(t, T )

)}

and,

ẽ(t, x) =

∫ T

t

ρE[(−r − 1

τ
lnx(τ))x(τ) · 1{ρx(τ) ≤ ρb(τ)}]dτ

=

∫ T

t

eαg(t,τ)+ 1
2
β2
g(t,τ)[−ρ(

αg(t, τ) + β2
g(t, τ)

τ
+ r)Φ(−ρ

αg(t, τ) + β2
g(t, τ)− ln b(τ)

βg(t, τ)
)

+
βg(t, τ)

τ
φ(
αg(t, τ) + β2

g(t, τ)− ln b(τ)

βg(t, τ)
)]dτ .

Here L = b(t).

Thus, Theorem 5.0.1, ṽ(t) and ẽ1(t) prove the following Theorem
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Theorem 5.1.3. In the geometric average case, the solution to the problem (5.8), is given by

Ṽ (t) =
∞∑
n=0

En

{
e−λ(T−t)(λ(T − t))n

n!
ṽn(t) + ẽJgn(t, xZne

λK(τ−t))

}
−λEQ′

t,x

{∫ T

t

E [g(J, x(τ), b(τ))] dτ

}
,

where,

ṽn(t) = ṽ(t, xZne
λK(τ−t)) and

ẽJgn(t, xZne
λK(τ−t)) =

=

∫ T

t

e−λ(τ−t)(λ(τ − t))n

n!
ρeαg(t,τ)+ 1

2
β2
g(t,τ)[−(

αg(t, τ) + β2
g(t, τ)

τ
+r)Φ(−ρ

αg(t, τ) + β2
g(t, τ)− ln b(τ)

βg(t, τ)
)

+
βg(t, τ)

τ
φ(
αg(t, τ) + β2

g(t, τ)− ln b(τ)

βg(t, τ)
)]dτ , with x(t) = xZne

λK(τ−t)

The case when jumps sizes are i.i.d. lognormal random variables

Here we will give the solution for the case of geometric average under lognormal jump sizes.
So, recall from Chapter 3.1 that

S(t) = S(0) exp{(r + λK − 1

2
σ2)(T − t) + σ(W (T )−W (t)) +

Nt∑
k=1

lnXk}, (5.25)

where lnXk ∼ N(a, b2), , k = 1, 2, . . . , Nt . So, if in the interval [t, T ] we have exactly n jumps,
then we know that

(r +
1

2
σ2 − λK)(T − t) + na+

√
σ2 +

nb2

T − t
(W (T )−W (t)) ∼

N((r +
1

2
σ2 − λK)(T − t) + na, σ2(T − t) + nb2).

Whence,

S(T ) = S(t) exp{(r +
1

2
σ2 − λK)(T − t) + na+

√
σ2 +

nb2

T − t
(W (T )−W (t))} (5.26)
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and hence

lnS(T ) ∼ N(lnS(t) + (r +
1

2
σ2 − λK)(T − t) + na, (σ2 +

nb2

T − t
)(T − t). (5.27)

Therefore, given A(T ) = e

1

T

∫ T

0

lnS(u)du
. Then,

lnA(T ) =
1

T

∫ T

0

lnS(u)du =
1

T

∫ t

0

lnS(u)du+
1

T

∫ T

t

lnS(u)du

=
t

T
lnA(t) +

1

T

∫ T

t

(
lnS(t) + (r +

1

2
σ2 − λK)(u− t) + na+

√
σ2 +

nb2

u− t

∫ T

t

dW (τ)

)
du

=
t

T
lnA(t) +

T − t
T

lnS(t) + ((r +
1

2
σ2 − λK)

(T − t)2

2T
+
na(T − t)

T

+
1

T

∫ T

t

√
σ2 +

nb2

u− t

∫ u

t

dW (τ)du

=
t

T
lnA(t) +

T − t
T

lnS(t) + ((r +
1

2
σ2 − λK)

(T − t)2

2T
+
na(T − t)

T

+
1

T

∫ T

t

∫ T

τ

√
σ2 +

nb2

u− t
dudW (τ)

=
t

T
lnA(t) +

T − t
T

lnS(t) + ((r +
1

2
σ2 − λK)

(T − t)2

2T
+
na(T − t)

T

+
1

T

∫ T

t

(
θ(T, τ, t) + T

√
σ2 +

nb2

T − t

)
dW (τ),

where,

θ(T, τ, t) =

∫ T

τ

√
σ2 +

nb2

u− t
du− T

√
σ2 +

nb2

T − t
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Hence it leads us to the following result,

Lemma 5.1.4. Let S(t) satisfying the jump diffusion equation

dS(t) = (r + λK + σ2)S(t)dt+ σS(t)dW (t) + S(t)(X − 1)dYt,

with lnX ∼ N(a, b2) and define A(t) = e
1
t

∫ t
0 lnS(τ) . Then for T > t, lnA(T ) conditioned

to Ft and n jumps follows a normal distribution with mean and variance given by

E[lnA(t)] =
t

T
lnA(t) +

T − t
T

lnS(t) + ((r − 1

2
σ2 − λK)

(T − t)2

2T
+
na(T − t)

T

and

V ar[A(t)] =
1

T 2

∫ T

t

(
θ(T, τ, t) + T

√
σ2 +

nb2

T − t

)2

dτ .

Now let us find the distribution of lnX(T ). Since X(T ) = A(T )
S(T )

then,

lnX(T ) = lnA(T )− lnS(T ) = t
T

lnA(t) + T−t
T

lnS(t) + ((r − 1
2
σ2 − λK) (T−t)2

2T
+ na(T−t)

T

+
1

T

∫ T

t

(
θ(T, τ, t) + T

√
σ2 +

nb2

T − t

)
dW (τ)− lnS(t)− (r +

1

2
σ2 − λK)(T − t)

−na−
√
σ2 +

nb2

T − t

∫ T

t

dW (τ)

= lnx(t)−
(
r − λK +

σ2

2

)
(T 2 − t2)

2T
− nat

T
+

1

T

∫ T

t

θ(T, τ, t)dW (τ).

And so, we have proved the following lemma,

Lemma 5.1.5. Let T > t then lnx(T )|(Ft∧Nt = n), follows a normal distribution with mean

and variance given by
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αn(T, t) = E[x(T )] = ln x(t)−
(
r − λK +

σ2

2

)
(T 2 − t2)

2T
− nat

T

and

β2
n(T, t) = V ar[x(T )] =

1

T 2

∫ T

t

θ2(T, τ, t)dτ.

Figure 5.1: x(t) with jumps, σ = 0.2, T = 7
12

, r = 0.05.

According to Lemma 5.1.2 and Lemma 5.1.5 the solution to the problem (5.8), in the geometric
average case, under lognormal jump sizes, is given by

Ṽ (t) =
∞∑
n=0

{
e−λ(T−t)(λ(T − t))n

n!
ṽn(t) + ẽJgn(x, t)

}
− λEQ′

t

{∫ T

t

E [g(J, x(τ), b(τ))] dτ

}
,

where,

ṽn(t) = ρ

{
Φ

(
−ραg,n(t, T )

βg,n

)
− eαg,n(t,T )+ 1

2
β2
g,n(t,T )Φ

(
−ρ

αg,n(t, T ) + β2
g,n(t, T )

βg,n(t, T )

)}
,
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and,

ẽJgn(t) =

∫ T

t

e−λ(τ−t)(λ(τ − t))n

n!
exp{αg,n(t, τ) +

1

2
β2
g,n(t, τ)}×

×[−ρ
(
αg,n(t, τ) + β2

g,n(t, τ)

τ
+ r

)
Φ (−ργg,n(t, τ)) +

βg,n
τ
φ (γg,n(t, τ))]dτ .

5.2 Pricing the American-style Asian options under jump-

diffusion processes, in the case of arithmetic average

In this section we will discuss in details the case when the average A(t) is arithmetic. In this

case A(t) is given by A(t) =
1

t

∫ t

0

S(τ)dτ and
dA(t)

A(t)
=

1

t
(

1

x(t)
− 1)dt .

Therefore, the dynamics of x(t) becomes

dx(t) = x(t)

[
µa(t, x(t))dt− σdWQ′(t) +

1−X
X

dNt

]
, (5.28)

where µa(t) =
1

t
(

1

x(t)
− 1)− r + λK .

Let us consider the case when the jump process does not occur, so the dynamics of x(t) will be

dx(t) = x(t)
[
µa1(t, x(t))dt− σdWQ′(t)

]
. (5.29)

In this case, the distribution of x(t) is in unknown. There is considered an approximation of
x(t) by x̂(t) which follows a lognormal distribution. This approximation is well done using the
Wilkinson approximation (see P. Pirinen, [17]). From Hansen and Jorgensen [6], we have that
for T > t ln x̂(T )|Ft follows a normal distribution with mean and variance given by

αa(T, t) = 2EQ′

t {x(T )− 1

2
lnEQ′

t {x2T} (5.30)

β2
a(T, t) = lnEQ′

t {x2(T )} − 2 lnEQ′

t {x(T )}. (5.31)

Here,

EQ′

t {x(T )} =
t

T
x(t)e−r(T−t) +

1

rT
(1− e−r(T−t))
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and,

EQ′

t {x2(T )} = (
t

T
)2x2(t)e−(2r−σ2)(T−t) +

2(r − σ2)− (4r − 2σ2)e−r(T−t) + 2re−(2r−σ2)(T−t)

T 2r(2r − σ2)(r − σ2)

+x(t)
2te−r(T−t)

T 2(r − σ2)
(1− e−(r−σ2)(T−t)).

Now, using Theorem 5.0.1, Lemma 5.1.2, (5.30) and (5.31) we prove the following result:

Theorem 5.2.1. Let A(t) be the arithmetic average. Then the approximated solution of (5.8)

under jump diffusion process is given by

ˆ̃
V (t) =

∞∑
n=0

En{ e
−λ(T−t)(λ(T−t))n

n!
ˆ̃van(t, Znx̂e

K(T−t))+ˆ̃eJan(t, Znx̂e
K(T−t))}−λEQ′

t,x̂

{∫ T

t

E[g(Jx̂(τ))]dτ

}
,

where,

g(Jx̂(τ)) = [Ṽ (Jx̂(τ), τ)− (1− Jx̂(τ))]1{ρx̂(τ−)≤ρb(τ),ρJx̂(τ−)>ρb(τ)} ,

ˆ̃va(t, Znx̂e
λK(T−t)) =

= ρ

{
Φ

(
αa(t, T, x̂Zne

K(T−t))

−ρβa(t, T )

)
− eαa(t,T,x̂ZneλK(T−t))+ 1

2
β2
a(t,T )Φ

(
αa(t, T, x̂Zne

λK(T − t)) + β2
a(t, T )

−ρβa(t, T )

)}

and

ˆ̃eJan(t, x̂Zne
K(T−t)) =

ρ

∫ T

t

e−λ(τ−t)(λ(τ − t))n

n!
{1

τ
Φ(ρ(βa(t, τ)− γa(t, τ, x̂ZneK(τ−t))))− (r +

1

τ
)eαa(t,τ,x̂ZneK(τ−t))+ 1

2
β2
a(t,τ)×

×Φ(−ργa(t, τ, x̂ZneK(τ−t)))}dτ.

If the jump sizes are lognormal i.i.d random variables, then we know that lnS(T ) has normal
distribution given by will be given by (5.27). Here our aim is to determine the mean and

variance of the approximated process x̂(t) in this particular case. Since x(T ) =
1
T

∫ T
0
S(τ)dτ

S(T )
,

then
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EQ′

t [x(T )] =
1

T

∫ T

0

S(τ)

S(t)
dτEQ′

t [
S(t)

S(T )
] +

1

T

∫ T

t

EQ′

t,x[
S(τ)

S(T )
]dτ.

So, EQ′

t,x[
S(t)

S(T )
] = exp{(r − λK)(t − T ) − σ2T − nb2 +

√
(σ2 +

nb2

t
)(σ2 +

nb2

T
)t} = ν(t, T ).

Therefore,

EQ′

t [x(T )] =
t

T
x(t)ν(t, T ) +

1

T
e−(r−λK+σ2)T−nb2

∫ T

t

ν(τ, T )dτ. (5.32)

And,

EQ′

t

[
x2(T )

]
= EQ′

t

( 1
T

∫ T
0
S(τ)dτ

S(T )

)2


= EQ′

t [

(
1

T

∫ T

0

S(τ)

S(t)
dτEQ′

t [
S(t)

S(T )
] +

1

T

∫ T

t

EQ′

t,x[
S(τ)

S(T )
]dτ

)
×

×
(

1

T

∫ T

0

S(u)

S(t)
duEQ′

t

[
S(t)

S(T )

]
+

1

T

∫ T

t

EQ′

t

[
S(u)

S(T )

]
du

)
]

=
1

T 2

∫ T

0

S(τ)

S(t)
dτEQ′

t

[
S(t)

S(T )

] ∫ T

0

S(u)

S(t)
duEQ′

t

[
S(t)

S(T )

]
+

2

T 2

∫ T

0

S(τ)

S(t)
dτEQ′

t

[
S(t)

S(T )

] ∫ T

t

EQ′

t

[
S(u)

S(T )

]
du+

1

T 2

∫ T

t

∫ T

t

EQ′

t

[
S(τ)S(u)

S(T )S(T )

]
dudτ.

Let a(t) =
√
σ2 + nb2

t
then,

S(τ)S(u)
S(T )S(T )

= e(r−λK+σ2/2)(τ+u−2T )+a(τ)WQ′ (τ)+a(u)WQ′ (u)−2a(T )WQ′ (T ).

If we suppose that u ≤ τ ≤ T then, let

σ̃2 = σ2(τ + u+ 4T ) + 3nb2 + a(τ)a(u)u− 4a(τ)a(T )τ − 4a(u)a(T )u.

Hence,

S(τ)S(u)

S(T )S(T )
= e(r−λK+σ2

2
)(τ+u−2T )+σ̃Y , where Y ∼ N(0, 1).
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Wherefore,

EQ′

t

[
S(τ)S(u)

S(T )S(T )

]
= e(r−λK+σ2

2
)(τ+u−2T )− 1

2
σ̃2

= ν̃(u, τ, T ). Thus,

EQ′

t

[
x2(T )

]
=

(
t

T

)2

x2(t)ν̃(t, t, T ) +
2t

T 2
x(t)ν(t, T )

∫ T

t

ν(τ, T )dτ +
1

T 2

∫ T

t

∫ T

t

ν̃(u, τ, T )dτdu.

(5.33)

The approximated process x̂(T ) will have the mean and variance defined by (5.30) and

(5.31), with EQ′

t [x(T )] and EQ′

t [x2(T )] defined by (5.32) and (5.33), respectively.

Thus, the approximated solution to the dual problem (5.8) will be
ˆ̃
V (t) =

∞∑
n=0

e−λ(T−t)(λ(T−t))n
n!

ˆ̃van(t, x̂) +
∞∑
n=0

ˆ̃eJan(x̂, t, τ)− λEQ′

t,x̂

{∫ T
t
E[g(Jx̂(τ))]dτ

}
,

where,

ˆ̃van(x̂, t) =

= ρ

{
Φ

(
αan(t, T )

−ρβan(t, T )

)
− eαan(t,T )+ 1

2
β2
an(t,T )Φ

(
αan(t, T ) + β2

an(t, T )

−ρβan(t, T )

)}

and

ˆ̃eJan(x̂, t) =

ρ

∫ T

t

e−λ(τ−t)(λ(τ − t))n

n!

{
1

τ
Φ(ρ(βan(t, τ)− γan(t, τ)))− (r +

1

τ
)eαan(t,τ)+ 1

2
β2
an(t,τ)Φ(−ργan(t, τ))

}
dτ.

Here,

αan(t, T ) = 2EQ′

t {x(T )} − 1

2
lnEQ′

t {x2(T )} (5.34)

β2(t, T ) = lnEQ′

t {x2(T )} − 2 lnEQ′

t {x(T )} (5.35)

γan(t, T ) =
αan(t, T ) + β2(t, T )− ln b(t)

βan(t, T )
, (5.36)

with EQ′

t [x(T )] and EQ′

t [x2(T )] defined respectively, by (5.32) and (5.33).

5.3 Free boundary and stopping region

The free boundary b(t) is a smooth function (see Pham [15]) satisfying the following properties,
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1)
ṽ(t, b(t)) + ẽ(t, b(t)) = ρ(1− b(t)), ∀t ∈ (0, T ];

2) If ρx(t) ≤ ρb(t) (stopping region) then ṽ(t, x(t))) + ẽ(t, x(t)) = ρ(1− x(t));

3) If ρx(t) > ρb(t) then solution Ṽ (t, x(t)) satisfies the equation (2) in Proposition 4.1.1

and Ṽ (t, x(t)) > ρ(1− x(t));

4) For a fixed time t , for all λ1, λ2 ≥ 0 such that, λ1 < λ2 then ρbλ1(t) ≥ ρbλ2(t) (see for
example, Figure 5.2);

5) For a fixed time t , for all a1, a2 such that, a1 < a2 then ρba1(t) ≥ ρba2(t) (see for example,
Figure 5.3);

6) Contrary to the standard American options, in the American-style Asian options, b(t)
can be greater than the strike price (see Hansen and Jorgensen 2000, [6]).

5.4 Numerical results

First of all, let us consider the case when the jump process does not occur. So, by Kallast and
Kivinukk 2003, [8], dividing the interval [0, T ] into n subintervals of length ∆t = tk − tk−1 ,
k = 1, 2, . . . , n . At the maturity time T , the value of the boundary b(T ) is given by 1. Since
tn = T then b(tn) = 1 (see [8] or [18]). So, given b(tn), we can calculate b(tn−1) by

ρ(1− b(tn−1)) = ṽ(b(tn−1), tk) +

∫ tn

tn−1

f(b(tn−1, b(τ), τ))dτ, (5.37)

where, ṽ(x(t), t) is a solution to the corresponding European option, f(x(t), b(t), t, τ) is an
integrand in the earlier exercise premium.
In order to get the solution b(tn−1) we use the trapezoidal rule to compute the integral in
(5.37). Then we get,

ρ(1−b(tn−1)) = ṽ(b(tn−1), tn−1, T )+
∆t

2
[f(b(tn−1), b(tn), tn−1, T )+f(b(tn−1), b(tn−1), tn−1, tn−1)],

and solving this equation, we get the value of b(tn−1). For k = n − 2, n − 3, . . . , 1, 0 we can
compute the values of b(tk) by the trapezoidal rule as follows,
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ρ(1− b(tk)) = ṽ(b(tk), tk, T )+

+
∆t

2

[
f(b(tk), b(tn), tk, T ) + 2

n−1∑
j=k+1

f(b(tk), b(tj), tk, tj) + f(b(tk), b(tk), tk, tk)

]
.

Here f(y, y, t, t) = lim
τ−→t+

f(y, y, t, τ) = −ρyΦ

(
−ρ

ln y
t

+ r − 1
2
σ2

σ2

)(
ln y

t
+ r

)
.

Now let us consider the case of jump-diffusion process. For simplicity, we will consider the case
when the jump intensity λ is small enough, so the cost term will be negligenciable. In this
case, in the exercise boundary b(t) will satisfy the following equation,

ρ(1− b(t)) =
∞∑
n=0

e−λt(λt)n

n!
En[ṽ(t, b(t)Zne

λKt)] +
∞∑
n=0

e−λt(λt)n

n!
En[ẽ(t, b(t)Zne

λKt)]. (5.38)

So, numerically we have, b(tn) = 1 and to obtain b(tn−1) we have to solve the following equation,

ρ(1− b(tn−1)) =
∞∑
i=0

[λ(T − tn−1)]i

i!
e−λ(T−tn−1)ṽ(b(tn−1), tn−1, T )

+
∞∑
i=0

∫ T

tn−1

h(b(tn−1), b(tn−1), tn−1, tn−1, i),

and we obtain b(k), k = n− 2, n− 3, . . . , 0 from the following equations:

ρ(1− b(tk)) =
∞∑
i=0

[λ(T − tn−1)]i

i!
e−λ(T−tn−1)ṽ(b(tk), tk, T, i)+

+
∞∑
i=0

∆t

2

[
h(b(tk), b(tn), tk, T, i) + 2

n−1∑
j=k+1

h(b(tk), b(tj), tk, tj, i) + h(b(tk), b(tk), tk, tk, i)

]
.

Here, k = n − 2, n − 1, . . . , 0, ṽ(x(t), t, i) plays the rule of a Black-Scholes formula for the
corresponding European option and h(x(t), b(t), t, τ, i) is an integrand in the earlier exercise
premium without the cost term. The values of h(x, x, t, t, i) are determined by the following
limit:

h(x, x, t, t, i) = lim
τ−→t+

h(x, x, t, τ, i) =

{
0 if i > 0

−ρxΦ
(
−ρ

ln x
t

+r− 1
2
σ2

σ2

) (
lnx
t

+ r
)

if i = 0
.

In general for American-style Asian put options (call options) with floating strike, the exercise
boundary in a jump diffusion process is greater or equal (less or equal) to the exercise boundary
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in a diffusion process case. This property gives the investor to have no much hope to get good
profit at the start of time, but the hope increases when the time increase and from certain time,
the investor starts again to lose a hope of getting a good profit. This occur because at time
0 (zero) the earlier exercise boundary is near to the strike and when time run, it increases in
a put options (decreases in a call options) and it reaches its maximum (minimum) and then
starts to decrease (increase) approaching again to the strike price.

The following figure is the result from the simulation of b(tk), by setting ρ to be equal to
−1. In this case we have a call option for the dual problem (5.8) which corresponds to the
American-style Asian put options with floating strike, under diffusion processes. It shows us
the behaviour of the earlier exercise boundary when the values of the parameter λ change.

Figure 5.2: Exercise boundary for diffusion and jump diffusion cases, for an American-style

Asian put option with σ = 0.2, T = 7/12, r = 0.05.

So it is possible to see that, the exercise boundary as a function of jump intensity λ , is a non-
decreasing function in the case of American-style Asian put option and nonincreasing function
for an American-style Asian call option, with floating strike price.

The picture bellow, shows how does the exercise boundary changes as the average of the jump
sizes change.
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Figure 5.3: Exercise boundary for jump diffusion case, for an American-style Asian put option

with σ = 0.2, T = 7/12, r = 0.05.

From this picture we can see that, the exercise boundary as a function of the jump-size is
nondecreasing (nonincreasing) function for the American-style Asian put ( call) option with
floating strike price.
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Chapter 6

Conclusions

In this thesis we extend the Analytical valuation of American-style Asian option under diffusion
processes studied by Hansen and Jorgensen 2000 [6], to the case of jump-diffusion processes.
This extension have never been considered anywhere before.
In our studies we derive the general solution for the American-style Asian options under jump-
diffusion processes by solving the dual problem. For the case of geometric and arithmetic
averages, respectively, we find analytical solutions. In the geometric average case we find
that the one-state variable is a geometric Brownian motion and directly using the results of
Merton 1976, Hansen and Jorgensen 2000, and Pham 1997, we derive its analytical solution.
In the case of lognormal jumps, we derive a simplified solution to the problem. For the case
of arithmetic average we find that the one-state variable is not a geometric Brownian motion
and we approximate to a geometric Brownian motion using a Wilkinson approximation (see
P. Pirinen, [17]). From this approximation, we derive its approximative analytical solution.
Furthermore, we derive the approximative analytical solution for the case when the jump sizes
are lognormally distributed. At the end of Chapter 5 we solve numerically the free boundary
problem for the early exercise boundary, both for diffusion and jump-diffusion processes. We
find that the continuation region C increases in jump-intensity λ and jump-size.
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