OUTSOURCING AV UAS-DATA
Informationshantering av data insamlad via UAS

Jon Larsson
Johan Jidling
OUTSOURCING AV UAS-DATA
Informationshantering av data insamlad via UAS

Jon Larsson, Johan Jidling

Institutionen för teknikvetenskaper, Tillämpad mekanik, Byggteknik, Uppsala universitet
Examensarbete 2014
Abstract

Outsourcing av UAS-data

Outsourcing of UAS-data

Jon Larsson, Johan Jidling

This report’s purpose is to give a general view on how to handle information collected through photogrammetry and laser scanning with the help of UAS. The report is made in collaboration with WSP Group and will briefly describe how photogrammetry and laser scanning, also known as Lidar, works and how those are used in the construction business today. Then the focus will be on how gathered data is handled today, how outsourcing of data should be approached and if there are any consequences if data is handled in the wrong way. Interviews have been made with all parts in the UAS business. That includes authorities as Transportstyrelsen, Försvarsmakten. Interviews have also been conducted with consultants that operate these systems, distributors of the different systems and solicitor. What can been seen is that, today, outsourcing and cloud services are not used to a great extent and therefore not many have felt the obligation to familiarize themselves with the regulations.

Based on the interviews and studies of relevant laws the conclusion can be made that, even if the purpose is not to publish the material when you outsource, it should still be treated as a publication.

The penalties, when material is handled in the wrong way, are usually up to one year in prison but if there is severe mismanagement it can be a matter of national security and can be classified as espionage. Then the penalties are much harder.
SAMMANFATTNING

Syftet med denna rapport är att få en överblick över vad som gäller vid hantering av datamaterial insamlat genom fotogrammetri och laserskanning med hjälp av Umanned Aircraft System, UAS. Rapporten har utförts i samarbete med WSP Group och tar kortfattat upp hur de olika teknikerna fotogrammetri och laserskanning, så kallad Lidar, fungerar och hur det används inom byggbranschen idag. Fokus ligger sedan på hanteringen av insamlad data, vad som gäller vid outsourcing av datamaterial och eventuella konsekvenser. Intervjuer har gjorts med alla parter inom UAS-hanteringen. Där ingår Tranportstyrelsen, Försvarsmakten, konsulter som flyger dessa system, leverantörer och en jurist. Det som går att se är att i dagsläget används inte outsourcing och molnetjänster i så stor grad och därför är det många som inte heller har satt sig in i hur detta ska hanteras.

Utifrån de intervjuer som utförts samt studier av relevanta lagar går det att se att även om avsikten, vid outsourcing, inte är att publicera material ska det fortfarande hanteras som om det ska publiceras. Det vill säga att nödvändiga granskningar och tillstånd för publicering bör skaffas även om det inte är meningen att offentliggöra materialet. Det går heller inte att se att det skulle vara ett annat regelverk kring molntjänster utan förhållningssättet bör vara lika som vid outsourcing.

Straffen för felhantering ligger normalt runt ett år men missköts det grovt kan kapitel 19 i brottsbalken, om rikets säkerhet, gälla. Då kan straffen också bli mycket allvarligare eftersom det då kommer klassas som spioneri.

Nyckelord: UAS, Outsourcing, Databhantering, Fotogrammetri
FÖRORD

Denna rapport är framställd i samarbete med WSP Group där vi vill tacka Johan Vium Andersson som har varit kontaktperson och handledare under arbetet. Zeev Bohbot har varit ämnesgranskare och vi vill även tacka honom.

Vi vill även tacka alla de som blivit intervjuade och bidragit med material och vägledning till denna rapport:

- Mats Berntsson - Blinken
- Lars Björk – Sweco
- Marianne Eriksson - Jurist
- Anders Huhta & Pär Ljungdahl - Metria
- Kim Hakkarainen – Försvarsmakten - MUST
- Erik Jangren – Transportstyrelsen
- Fredrik Landqvist – Scior
- Johan Lindqvist – Swescan
- Witold Urbas – Trimtec

Uppsala i juni 2014

Jon Larsson och Johan Jidling
INNEHÅLL

1. ALLMÄNT .. 1
 1.1 Inledning .. 1
 1.2 Syfte ... 1
 1.3 Problembeskrivning ... 2
 1.4 Avgränsningar .. 2

2. BAKGRUNDSBESKRIVNING OCH LITTERATURSTUDIE 3
 2.1 Bakgrundsbeskrivning ... 3
 2.2 Användningsområden ... 4
 2.2.1 Stadsplanering .. 4
 2.2.2 Kartläggning ... 4
 2.2.3 DEM ... 5
 2.2.4 Infrastruktur ... 5
 2.2.5 Fortlöpande övervakning av produktionsutveckling 5
 2.2.6 Säkerhetsbedömning ... 6
 2.2.7 Skogs- och jordbruksarbeten .. 6
 2.2.8 Katastrofområden .. 6
 2.2.9 Volymeräkningar ... 7
 2.3 Fotogrammetri .. 7
 2.4 Laserskanning ... 10
 2.5 Outsourcing ... 12
 2.6 Reglerande lagar ... 13
 2.7 Drönarsystem .. 15
 2.7.1 Farkosttyper .. 15
 2.7.2 Klasser ... 16

3. ARBETETS GENOMFÖRANDE OCH RESULTAT 19
 3.1 Litteraturstudie ... 19
 3.2 Intervjuteknik .. 19
 3.3 Intervjuer ... 20
3.3.1 Transportstyrelsen ... 20
3.3.2 Försvarsmakten – Militära underrättelsetjänsten 21
3.3.3 Sweco .. 23
3.3.4 Scior ... 25
3.3.5 Metria .. 26
3.3.6 Swescan ... 29
3.3.7 Trimtec ... 31
3.3.8 Blinken ... 34
3.3.9 Pix4D .. 36

4. SLUTSATS OCH DISKUSSION ... 37
 4.1 Slutsats .. 37
 4.2 Diskussion .. 38

5. REKOMMENDATIONER OCH FORTSATTA STUDIER 41
 5.1 Rekommendationer ... 41
 5.2 Förslag på fortsatta studier .. 41

6. REFERENSER ... 43

BILAGOR

Bilaga 1 ... B1.1
TERMINOLOGI

DEM
Digital Elevation Model är en digital 3D-modell av terräng

UAV
Unmanned Aerial Vehicle benämner ett flygfordon som är obemannat

UAS
Unmanned Aircraft System avser hela systemet vid förarlös flygning

RPAS
Remotely Piloted Aircraft Systems är den europeiska benämningen på drönare

LIDAR
LIght Detection And Ranging är optisk mätning med pulsmätningar av laserstrålar

UCAV
Unmanned Combat Aerial Vehicles är förarlösa flygfordon som används vid krigsföring

Outsourcing
Utläggning av verksamhet på entreprenad

Offshoring
Utläggning av verksamhet på entreprenad i annat land

GNSS
Global Navigation Satellite System är ett samlingsnamn för satellitnavigeringsystem

FLS
Flygburen laserskanning
Pixel

Picture element – den minsta beståndsdel som en digital bild byggs upp av.

Projektionscentrum

Den punkt i objektivet där alla ljustrålar skär varandra innan de träffar sensorn.

VTOL

Svepbredd

Den faktiska bredd som en laserskanner täcker in över det skannade området.

MUST

Militära Underrättelse- och SäkerhetsTjänsten
1. ALLMÄNT

1.1 Inledning

Det som kan vara problem vid outsourcing är att materialet ännu inte är publicerat och därför har det heller inte blivit granskat för att se om det innehåller något slag av känslig information. Denna rapport ska gå in djupare på vad som gäller vid hantering av datamaterial insamlad av UAS och om informationen över huvud taget får skickas utomlands för bearbetning.

1.2 Syfte

Syftet med denna rapport är att undersöka outsourcing av information från UAS för WSP-Group.

Det slutgiltiga målet är att ge en fördjupad kunskap i UAS och dess användningsområden inom byggbranschen, teknikerna som används för insamling av data samt hur outsourcing ska behandlas.

Fokus kommer att ligga på outsourcing och användningen av molnetjänster inom branschen och speciellt då hur det appliceras för UAS-data.

Till sist kommer en utvärdering och rekommendation ges.
1.3 Problembeskrivning

Vid tagning av bilder och publicering av dessa finns det reglerande lagar men det råder oklarhet om hur informationen ska hanteras däremellan. Vad som gäller vid outsourcing av data som går mellan företag eller över rikets gränser är inte heller helt klart.

Dessa frågor behandlas i rapporten:

- Outsourcar dagens konsulter data från UAS?
- Är molnet en form av outsourcing?
- Hur ska känsligt material hanteras innan publicering?
- Vad anses om att outsourca data inhämtad från UAS?
- Får data outsourcas till andra länder?
- Får data skickas emellan samma företag som har olika kontor utrikes?

1.4 Avgränsningar

Detta arbete avgränsas till den information som behövs för att svara på frågeställningen. Arbetet ska behandla inhämtning av data via UAS, hur data ska hanteras och hur det hanteras i praktiken.

Inhämtningen av data avgränsas till data hämtad via fotogrammetri. Laserskaning kommer även att behandlas men ej att fördjupas i då det ej kan tillämpas än på UAS. Metoderna kommer att förklaras men ingen djupare analys över hur beräkningar med dessa metoder går till.

Olika typer av UAS ska redovisas och då endast de typer som används aktivt inom byggbranschen.

Användningsområden avgränsas till de faktiska områden som, de intervjuade konsulterna, producerar material för.
2. BAKGRUNDSBESKRIVNING OCH LITTERATURSTUDIE

2.1 Bakgrundsbeskrivning

Användningen av UAS, även kallat UAV, RPAS och drönare, har blivit mer och mer utbredd i samhället. Den vanligaste bilden människor har när de hör ordet drönare eller UAV är av de militära bestyckade UAS som används vid krigsföring. Dessa är så kallade UCAV, Unmanned Combat Aerial Vehicles, och är endast en del av de UAS som finns även fast det är de som det kanske rapporteras mest om i media.

Materialet som samlas in på detta sätt är i vissa fall väldigt omfattande och komplext. På grund av detta finns alternativet att skicka insamlad data utomlands för bearbetning och sammanställning. Det är helt enkelt konkurrenskraftigt attraktivt att skicka det till länder med lägre produktionskostnader än att bearbeta det i Sverige.

Vid publicering idag ska materialet granskas av försvarsmakten för att säkerställa att det inte finns med känslig information av något slag. Däremot är det oklart vad som gäller vid datahantering innan publicering sker. Får data skickas utomlands för bearbetning och är det i så fall bara vissa delar som får skickas ut? Frågor kring vad som gäller
med molnetlagring är också intressant. Faller det under samma regler som vid vanlig outsourcing eller finns det speciella regler kring detta?

2.2 Användningsområden

2.2.1 Stadsplanering

Ortofoton och punktmoln kan användas för stadsplanering, simuleringar med mera.

2.2.2 Kartläggning

Kartläggning med UAS är ett bra kostnadseffektivt komplement till mer traditionella metoder, t.ex. flygning med vanligt flygplan, för att få fram karter med tillräckligt bra precision. Ner till 2-3 cm noggrannhet är möjligt att få. Det är ett mer praktiskt och kvickt sätt än att kartlägga med RTK-GNSS. Det är även mer kostnadseffektivt vid mätningar av små områden än FLS (Swescan, 2014).

En fördel med UAS är att områden kan kartläggas vid flera tillfällen för att följa upp områdets terrängförändring, eftersom det är kostnadseffektivt då FLS har dyra startkostnader.
2.2.3 DEM

Med fotogrammetri eller med laserskanning kan 3D-modeller tas fram. Det kan ske både med hjälp av flugburen utrustning eller med terrester, d.v.s. markbaserad, mätning. Dessa 3D-modeller finns det flera användningar för såsom volymberäkningar, visualisering via 3D-vyer eller animationer och utsättningar. Detta kan göras på grund av att det blir så pass noggranna inmätningar, se figur 2.1 och figur 2.2.

![Ortofoto av Vaxholms fästning. Foto: Trimtec AB](image1)

![Höjdmodell från DEM av Vaxholms fästning. Foto: Trimtec AB](image2)

2.2.4 Infrastruktur

Ortofoton och DEM kan användas till grova utsättningar av vägar och annan infrastruktur och för volymberäkningar av olika slag. Ortofoton kan även användas som underlag till befintliga byggritningar och kan då ge en snabb överblick av byggverksamheten (Swescan, 2014).

2.2.5 Fortlöpande övervakning av produktionsutveckling

Genom att ta ortofoton över projektet får byggledningen en fortlöpande övervakning av produktionsutvecklingen. Det kan vara bra för att se hur arbetet forskider och att tider hålls då vissa delmoment ska vara klara. Det som gör att UAS är bra att använda inom detta område är att UAS är en billig teknologi att använda, gentemot vanligt flyg eller helikoptrar. Flyg och helikoptrar har en hög startavgift vilket gör att det
inte blir ekonomiskt i längden att genomföra flygningar med korta intervaller över mindre områden. Med UAS blir det inte några problem att få veckovis uppdatering om det skulle behövas då det går så pass snabbt att ta bilder över ett område och det faktum att UAS inte har en startavgift (Urbas, 2014).

2.2.6 Säkerhetsbedömning

Ortofoton kan även användas i säkerhetsaspekt. På byggnadsplatser gås det skyddsronder för att identifiera var det kan finnas risk för arbetarnas säkerhet. Via flygfotona och DEM kan det urskiljas var det finns fallrisken och gropar eller kontrolleras att det finns skyddsstaket där det ska finnas (Urbas, 2014).

2.2.7 Skogs- och jordbruksarbeten

Inom skogsindustrin genomförs det inventeringar av skogarna för att se vilka typer av träd som finns och om de är redo för avverkning. Allt detta kan urskiljas ur UAS-data.

Vissa lantbrukare har börjat använda sig av UAS för effektivisering jordbruk. Foton kan tas för att se vilka områden som är redo för skörd eller där det kan finnas liggsåd och i och med det så kan skördar maximeras (Urbas, 2014).

2.2.8 Katastrofområden

Vid olika katastrofer såsom stormar som fäller elledningar och skogar eller vid kraftiga regn och vårfloder som orsakar översvämningar kan UAS användas. Istället för att gå runt på egen hand så kan en UAS skickas upp och ta flygfoton över områden för att se var elledningar har fallit, vilka områden av skog som lagt sig och behöver tas om hand. Det går också att se vilka områden som löper risk för att översvämmas av för stora vattenmassor (Urbas, 2014).
2.2.9 Volymeräkningar

Volymeräkningar är vad UAS brukar användas mest för i dagsläget, se figur 2.3. Det kan vara olika bergtäkter som ska inventeras och ses hur stora volymer som finns eller hur stora skillnader det har blivit över tiden på täkterna. Via DEM kan volymer identifieras och beräknas (Swescan, 2014).

Figur 2.3 DEM som används för volymeräkningar. Foto: SWESCAN AB

2.3 Fotogrammetri

Fotogrammetri, även känt som bildmätning, är en teknik där det är möjligt att koordinatsätta objekt med hjälp av bilder. Enligt det internationella sällskapet för fotogrammetri och fjärranalys, förkortat ISPRS, definieras fotogrammetri enligt följande:

Fotogrammetri och fjärranalys är konsten, vetenskapen och tekniken att framställa tillförlitlig information ur icke berörande, avbildande och andra, sensorsystem, om jorden och dess miljö, och om andra fysiska objekt och processer, genom anskaffning, mätning, analys och representation av data (Läntmäteriet m.fl., 2013).
Inom fotogrammetrin används flera bilder som överlappar varandra, se figur 2.4. För att bestämma koordinaterna och göra en korrekt ortogonal avbildning behövs det minst två foton av området, tagna från olika positioner. Mätning av dessa bilder utförs idag med hjälp av dator, där bilderna visas stereoskopiskt eller med automatiserade program (Läntmäteriet m.fl., 2013). Det går alltså att skapa en ortogonalprojektion, d.v.s. en bild som är en korrekt avbildning i skala av ett område. Det kan tänkas som om att varje del av det avbildade området har projicerats vinkelrätt - ortogonalt - till ett papper lika stort som området och sedan skalats ner.

Figur 2.4 Fotografering med bildöverlappning. Foto: Trimtec AB

En nackdel med fotogrammetri är att tekniken utnyttjar befintligt ljus för insamling av data. Detta medför att det kan vara svårt att få bra höjddata över t.ex. mer tätbevuxen skogsmark då ljuset kommer från lövverket istället för själva marken. Det blir också problem med att få korrekt höjddata eftersom vegetationen lätt rör sig vid vind vilket gör det svårare att få bra höjderäkningar (Björk, 2014).
Moderna kameror för fotogrammetri är av riktigt hög kvalitet. De rektangulära sensorerna i dessa är mycket större än de som sitter i vanliga konsumentinriktade systemkameror vilket ger mycket skarpare bilder. Det finns också kameror som använder sig av sensorrader istället för rektangulära sensorer. De är mycket enklare att producera i större storlekar och kan därför ge mycket mer högupplösta bilder. Till skillnad från kameror med rektangulära sensorer fungerar dessa mer som en skanner som konstant avläser ytan medan den flygs över marken (Läntmäteriet m.fl., 2013). Det finns t.ex. kameror med sensorer som innehåller uppemot 250 Megapixlar på en rektangulär sensor. En kamera från Leica som använder sig av radsensor kan ta bilder på 24000 Megapixel (Leica Geosystems, 2014).

Figur 2.5 Digitalkamera från Sony som används i Trimbles UX5. Foto: Jon Larsson
2.4 Laserskanning

Vid flygburen laserskanning, förkortat FLS, måste det förutom själva laserskannern finnas ett GNSS-system för bestämning av flygfarkostens position. Det behöver också finnas ett träghetssystem som består av gyroskop och accelerometrar för att hålla reda på farkostens riktning under mättiden (Läntmäteriet m.fl., 2013). Även om en mätning är under en väldigt kort tidsperiod så är det viktigt att veta om flygfarkosten ändrar riktning eftersom det kan påverka mätningen.

I dagsläget finns det laserskannrar som kan mäta upp till 300 000 punkter i sekunden (Läntmäteriet m.fl., 2013). Det ska nämnas att dessa siffror gäller för laserskanner generellt och de med de flest antal punkter i sekunden är för stora för att lyftas med UAS i dagsläget. Tack vare denna stora informationsinsamling kan detaljerade punktmoln skapas. Dessa punktmoln används sedan för att skapa en 3D-modell över det skannade området.

Vid FLS spelar flyghöjden en stor roll. Vid högre flyghöjd går det snabbare att mäta in stora områden eftersom en mätkon med samma svepbredd täcker ett större område desto högre höjd som planet flyger på, se figur 2.6.
Figur 2.6 Intäkt område vid olika flyghöjder

Hög flyghöjd för däremot med sig en del nackdelar. Eftersom det blir en större träffyta som skannern träffar blir punkttätheten sämre vid högre flyghöjder. Noggrannheten blir också sämre med högre flyghöjd. Ljus har olika hastighet i luft beroende på temperatur, fuktighet och tryck. Större flyghöjder gör då att laserstrålen hastighet kan variera litegrann i olika luftlager och det ger i sin tur fel i framförallt höjdmätningen. Det blir också svårare för mottagaren att uppfatta reflektionerna om den befinner sig på högre höjd. Vid starkt solljus eller över mark som har stor ljusabsorptionsförmåga kan då mottagaren helt enkelt missa att registrera punkter ibland (Läntmäteriet m.fl., 2013)

Laserskanningsutrustade UAS kan då ge ett mycket bättre och mer detaljerat punktmoln eftersom de kan flyga på lägre höjder än traditionella flygfarkoster.

Laserskanning är, till skillnad från fotogrammetri, en teknik som är aktiv. Det betyder att systemet aktivt sänder ut pulser, laser i detta fall, och de reflektioner som uppstår kan samlas in. Tack vare detta är mätning med laserskanning inte beroende av dagsljus för att kunna användas. Laserstrålarna kan också till viss del tränga igenom till exempel lövverk och vegetation och ge mätdata från marken, även fast flygning sker över skog, vilket, i många fall, är det som är av intresse.
2.5 Outsourcing

I fallet med databearbetning från UAS, som denna rapport undersöker, handlar det om att outsourca själva datahanteringen som samlats in, på grund av att det inte är lika konkurrenskraftigt att sitta i Sverige och göra det. Det blir snabbt mycket jobb vid flygning. Generellt blir det cirka 10 timmars bearbetning för varje timme flygning (Vium Andersson, 2014). I dagsläget är det inte så utbrett med outsourcing inom denna verksamhet men det är av intresse att ta reda på mer kring detta eftersom det är något som med stor sannolikhet kommer att öka allt eftersom datainsamling med UAS er ökar.

Fördelarna med att låta andra sköta materialbearbetningen kan vara många. Exempelvis ekonomiska, att kompetens saknas eller att mer tid kan läggas på att flyga och skaffa fler projekt. Däremot finns det också nackdelar. Det kan vara att de som lejer ut arbetet kanske inte får det material som egenligen behövdes, det är svårare att gå in och ta fram mer information ur materialet om inte bearbetningen skötts själv etc. Säkerhetspolisen pekar också på att säkerhetsaspekten kring material och data kan bli lidande vid outsourcing eller användning av molntjänster. De nämner bland annat att det inte går att innehå samma kontroll över vilka som kommer åt material eller att risken finns att andra länder underrättelsetjänster kan ha tillgång till dataservrarna (Säkerhetspolisen, 2014). Hamnar data på utländska servrar är det inte längre Sveriges lagar som gäller för dem.
2.6 Reglerande lagar

Bestämmelserna kring tillstånd står också i dessa föreskrifter. Det är reglerat hur tillstånd ska sökas, hur länge dessa gäller och vad för märkning systemen ska ha. Dessa tillstånd behövs inte enbart vid användning av själva farkosten utan också vid konstruktion och tillverkning av systemen. Det är också detaljbeskrivet exakt vilka krav som ställs på varje klass.

För UAS över 150 kg ligger ansvaret på EASA, European Aviation Safety Agency, medan varje land har ansvar för system under denna viktgräns (Jangren, 2014).

2 § Med landskapsinformation avses lägesbestämd information om förhållanden på och under markytan samt på och under sjö- och havsbotten (SFS 1993:1742).

I 6 § i SFS 1993:1742 nämns det att spridning av flygbilder och liknande registreringar från luftfartyg inte får spridas utan tillstånd av regeringen eller den myndighet som regeringen utser (Försvarsmakten i detta fall enligt 9 §, punkt 1 i förordningen om skydd av landskapsinformation). Detta är alltså det som gör att allt material som ska publiceras måste granskas av försvaret innan det blir tillgängligt. Att upprätta databaser med landskapsinformation är också

Myndigheten för samhällsskydd och beredskap har en vägledning till hur informationssäkerhet lättare kan säkerställas i upphandlingsprocessen av molntjänster och outsourcing (Myndigheten för samhällsskydd och beredskap, 2013).
Kapitel 2: Bakgrundsbeskrivning och litteraturstudie

2.7 Drönarsystem

2.7.1 Farkosttyper

Idag finns det flera olika slags UAS, alltifrån fullstora flygplan till minimala farkoster som kan rymmas i handen. Det används också flera olika typer av farkoster. En ganska vanlig typ är farkoster de med fasta vingar precis som ett vanligt flygplan, se figur 2.7. De drivs nästan uteslutande med propellrar men vissa större typer har även jetdrift.

Exempel på tillverkare av farkoster med fasta vingar som finns representerade på svenska marknaden är senseFly som har Blinken som distributör, Smartplanes och Trimble genom Trimtec. Dessa modeller är utrustade för datainsamling genom fotogrammetri. Dessa hör till klass 1 där senseFly och Smartplanes farkoster hör till klass 1A och Trimbles är en klass 1B-farkost.

Det finns också UAS som är av VTOL-typ (Vertical Take-Off and Landing). En del är uppbyggda precis som en vanlig helikopter, t.ex. så är vissa typer bara modifierade RC-helikoptrar som har blivit utrustade med avancerad elektronik.

Figur 2.7 Exempel på UAS av flygplanstyp i klass 1A. Modell eBee från senseFly, Foto: Jon Larsson

Multicoptrar är uppbyggda av en centralt placerad kropp med utstickande armar åt flera håll, var och en med en eller två rotorer monterade. De brukar benämnas efter antalet rotorer som de har. Det kan till exempel vara quadrocoptrar med fyra rotorer, hexacoptrar som har sex rotorer eller oktocoptrar med åtta rotorer. Exempel på leverantör av dessa system är DJI och AscTec.

2.7.2 Klasser

För att få flyga med UAS i Sverige krävs det att tillstånd söks hos Transportstyrelsen. Beroende på typ av UAS är kraven mer eller mindre omfattande. I Sverige finns det fyra olika klasser som UAS delas in i. Dessa är fastställda av transportstyrelsen och uppdalade i 1A, 1B, 2 och 3 där den minsta klassen är 1A. I samtliga av dessa klasser, förutom klass 3, krävs det att operatören har visuell kontakt med flygfarkosten under hela dess flygning. Nedan följer en sammanfattning av de största skillnaderna av klassindelningen, (Transportstyrelsen, 2013):

- **Klass 1A:**
 - Farkoster med en maxvikt på 1,5 kg
 - Farkosten får inte utveckla mer än 150 J

- **Klass 1B:**
 - Farkoster med en vikt mellan 1,5 kg till 7 kg
 - Farkosten får inte utveckla mer än 1000 J (kan tillåtas små avsteg i vissa speciella fall)

- **Klass 2**
 - Farkoster som har en vikt som överstiger 7 kg
Klass 3

- Farkoster som ska operera utom synhåll från operatören

Vid klass 1A går det i princip att flyga hur högt som helst eftersom det inte finns någon begränsad flyghöjd i TSFS 2009:88. Det anses att farkosterna är så pass lätt i denna klass att de inte utgör någon stor fara för andra flygplan i luften (Björk, 2014). Däremot gäller fortfarande kravet om att farkosten ska vara inom synhåll så i praktiken går det inte ta sig hur högt som helst. Transportstyrelsens definition av *inom synbart håll* lyder:

> Maximalt avstånd mellan piloten och luftfartyget inom vilket luftfartygets position och färdriktning kan observeras visuellt utan kamera, kikare eller andra hjälpmedel (Jangren, 2014).

För klass 1B och uppåt gäller också att farkosten är utrustad med ett automatiskt felsäkerhetssystem som när som helst kan avbryta flygningen om något oväntat skulle inträffa.

Klass 3 används inte i praktiken idag. Det krävs fortfarande viss teknikutveckling fortfarande för att UAS ska uppfylla de krav som ställs på Klass 3 (Jangren, 2014). Enligt Erik Jangren behövs till exempel system för att UAS ska kunna upptäcka och samverka automatiskt på rätt sätt med andra flygfarkoster. Det pågår dock forskning inom detta område och det är inte alls omöjligt att det inom en ganska snar framtid finns tillräckligt bra teknik för att möjliggöra UAS i klass 3.

För mer djupgående information om de olika klasserna, se kap. 3-5 i Transportstyrelsens föreskrifter om obemannade luftfartyg, TSFS 2009:88 samt ändringar i TSFS 2013:27.
3. ARBETETS GENOMFÖRANDE OCH RESULTAT

3.1 Litteraturstudie

Fakta som examensarbetet bygger på har hämtats från olika sorts litteratur såsom: böcker, rapporter, lagtexter och internetbaserad fakta. Vissa texter har föreslagits av handledare och ämnesgranskare, och andra har hittats på egen hand via universitetets bibliotek eller internetsökning.

Rapporten börjar med en litteraturstudie. I den tas relevanta delar upp som ligger till grunden för att kunna ge en djupare kunskap inom fotogrammetri, laser, lagar och olika UAS-flygfordon. Denna litteraturstudie har lett till att se vilka frågor som behöver ställas för att kunna besvara de problem som beskrivits i frågeställningen.

3.2 Intervjuteknik

Under arbetets gång, kommer intervjuer med olika myndigheter, konsultföretag och leverantörer att genomföras. Alla respondenterna har sin egen koppling till UAS och genom att intervjua dessa kommer svar att fås från olika synvinklar på ämnet i fråga.

Målet med intervjuerna är att få en uppfattning hur olika personer, företag och myndigheter ser på outsourcing, problematiken kring det och hur det hanteras idag. Kontakt kommer att tas med exempelvis Transportstyrelsen, Försvarsmakten, konsulter som använder systemen, företag som erbjuder programvaror för bildbearbetning, jurister och leverantörer.

De intervjuer som genomförts för denna rapport har varit av halvstrukturerad karaktär. Frågorna är halvstrukturerade vilket innebär att de är ska kunna ge både öppna och fastbestämda svar. Öppna frågor
ska kunna leda till följdfrågor och ge respondenten möjlighet till att utveckla och formulera sina egna svar. Vid denna sorts intervju gäller det att intervjuaren är påläst inom ämnet så att följdfrågor kan ställas.

Frågorna skickades ut i förväg några dagar innan intervjun skulle ta plats. Det gav respondenten förståelse på vad intervjun skulle handla om och tid till att fundera ut svar så han är förberedd när frågorna väl ställs. Detta ger mer omfattande och precisa svar än om frågorna inte hade skickats ut i förväg.

Frågorna är väl förberedda inför intervjuerna så att de kommer kunna ge svar på rapportens frågeställning och syfte.

De svar som fås genom intervjuerna kommer att användas för att dra slutsatser och ge upphov till analys och diskussion.

3.3 Intervjuer

3.3.1 Transportstyrelsen

Det går däremot, utifrån de regler som Transportstyrelsen satt upp, att se att en del sorts datainsamling kan bli svår att ens utföra. Det finns nämligen regler, som gäller för alla klasser, som säger att flygning ska kunna ske säkert och att inga personer som inte är en del av flygningen får vistas inom flygområdet. För att människor ska räknas som att de är en del av flygningen måste de vara informerade om att flygning ska ske samt att de ska ge sitt godkännande.

Det är då ganska enkelt att inse att det blir problematiskt och ganska svårt att genomföra flygningar och samla in data över större områden
Kapitel 3: Arbetets genomförande och resultat

med tät bebyggelse. Att informera alla inom området och få deras godkännande blir väldigt svårt att praktiskt genomföra (Jangren, 2014).

Det är dock ett pågående arbete med regelverket samtidigt som tekniken också utvecklas. Det slutgiltiga målet med det hela är att UAS ska kunna blandas med övrig luftfart och operera på samma villkor även om det är några år kvar tills det målet kan nås.

Inom EU arbetas det också på att få fram gemensamma regler kring UAS så att ett tillstånd ska kunna gälla oavsett var någonstans i EU farkosten ska operera. Det har nyligen släppts ett dokument från den Europeiska kommissionen som pekar på problemen med att varje land har olika regelverk och att det istället föreslår att alla ska samverka för att få enhetliga regler inom EU för flygning med RPAS, som de kallar systemen för. I den nämns också Sverige vara ett av de länder där användningen av UAS växer mest. (Jangren, 2014)

3.3.2 Försvarsmakten – Militära underrättelsetjänsten

Denna intervju är besvarad av Kim Hakkarainen som arbetar för MUST. Han är tydlig med att detta är hans åsikter och inte ett officiellt uttalande från Försvarsmakten.

I dag krävs tillstånd för spridning av flygbilder och liknande registrering från luftfartyg. Försvarsmakten är de som i dagsläget granskar materialet som har samlats in från drönarna och de ger besked om materialet får publiceras eller inte. Tillstånden ges från någon av Försvarsmaktens fyra militärregioner som är uppdela i Nord-, Syd-, Mitt- och Västregionen. Bilderna skickas in i digitalt format enligt militärregionernas anvisningar, se figur 3.1. Att inte få tillstånd för spridning är väldigt sällsynt.

Outsourcing medför risker för informationshantering och Säkerhetspolisen har varnat för det. Säkerhetspolisen skriver på deras hemsida om de olika risker som finns angående hanteringen, men även om de fördelar som finns med denna typ av tjänst. De tar där även upp att outsourcing och offshoring ger ökade säkerhetsbrister och sämre kontroll (Säkerhetspolisen, 2014).

När det kommer till informationssäkerhet i outsourcing har Myndigheten för samhällsskydd och beredskap (MSB) gett en vägledning.

Med hänsyn till kraven på informationssäkerhet för uppgifter som omfattas av försvarssekreteress är molntjänster, enligt min uppfattning, uteslutet (Hakkarainen, 2014).
Kapitel 3: Arbetets genomförande och resultat

Den information som anses vara hemliga för militären är militära och civila försvarsanläggningars geografiska läge och syfte. Det handla om befästningar och kommunikationsanläggningar. På frågan om Försvarsmakten kontrollerar vad som skickas iväg innan det publiceras så är svaret nej, det gör de inte. Den enda gång de kontrollerar är när material skickas för granskning efter bilderna bearbetats.

Utredningen har i ett betänkande (SOU 2013:51) gett förslag på ändringar. Bl.a. föreslås Lantmäteriet ta över Försvarsmaktens granskning av flygbilder. Lantmäteriet föreslås även få möjligheten att retuschera granskade flygbilder (Hakkarainen, 2014).

3.3.3 Sweco

Sweco är ett internationellt, stort konsultbolag som arbetar inom många olika områden t.ex. arkitektur, byggkonstruktion, infrastruktur m.m. På Sweco Position har de också, sedan ett drygt år tillbaka, använt sig av UAS, av typen Smartplanes, för datainsamling. Där är det Lars Björk, som har 7-8 års erfarenhet av flygning med UAS, är pilot för farkosten. Enligt Lars Björk är anledningen till att en UAS av flygplanstyp används istället för en multikopter den att ett flygplan har mycket större räckvidd och flygtid. Det går tack vare det täcka att in större områden under en och samma flygning jämfört med om en multikopter skulle använts. Multikoptrar blir också ofta tyngre och hamnar då i en annan klass och får därför heller inte flyga lika högt.

Inom Sweco används UAS till bl.a. mycket volymeräkningar men även kontroll av energibolags energilager och att kontrollera hur infrastrukturprojekt, som vägar, fortskrider (Björk, 2014).

Den stora fördelen med UAS jämfört med konventionellt flyg är enligt Lars Björk att det snabbt går att få aktuella bilder över det område som är av intresse. Det kräver inte alls samma planering och det går att flyga när som helst utan att behöva ta beställningstider i beaktande. I princip så går det att flyga på förmiddagen och ha material klart för
användning på eftermiddagen om inte särskilda krav på noggrannhet erfordras, då tar bearbetningen lite längre tid. Den enda nackdelen är egentligen att det inte går att täcka in lika stora områden som med vanligt flyg.

Noggrannheten varierar beroende på vilken flyghöjd som hålls men på 120 meter, som är ganska lagom, går det att få noggrannhet ner till 3 cm. Det gäller dock enbart för barmark och hårdgjorda ytor. Vid t.ex. skog är det svårare att få lika bra värden eftersom träden rör på sig om det inte är helt vindstilla och det ger då i sin tur fel vid beräkningen. Även om det redan idag också finns UAS med laserskanningsutrustning är det inget som Sweco för tillfället har planerat att skaffa. Laserskanning kommer inte kunna ersätta flygfoto och fotogrammetri helt heller eftersom det nästan alltid behövs bilder. Teknikerna kommer förmodligen komplettera varandra mer istället. Laser har bättre genomträngningsförmåga av vegetation vilket gör att det går att skapa markmodeller, DTM, medan det som fås med foto är en ytmodell, DSM (Björk, 2014).

Att outsourca flygbilder och material, både från UAS men också insamlat från vanligt flyg, är inget som de på Sweco arbetar med. De använder sig istället av egen datorkraft med en rysk programvara som heter Agisoft. Enligt Lars Björk försöker de undvika att outsourca data till andra bolag för bearbetning. De vet att det finns projekt där det går att jobba mot Indien och få data bearbetad där men det är inget som de sysslar med på Sweco.

Vi är ju ett konsultbolag så vi gör allt jobb själv egentligen. Vi ska ju skaffa jobb åt alla som jobbar här så vi försöker göra allt det mesta själva (Björk, 2014).

Eftersom de hanterar allt material själva har heller inte frågan om vad för regelverk det finns kring outsourcing uppstått. Det gäller oavsett om det tittas på alternativet att skicka data till en underkonsult eller om det skulle fungera att kunna hantera data inom företaget fast över nationsgränserna. Om detta skulle vara aktuellt bör det, enligt Lars, ändå tänkas på och kontrollera vad som gäller.

För själva flygfotograferingen finns det inte idag något förbud som hindrar någon från att ta bilder. Det är egentligen bara militära
anläggningar och skyddsobjekt, t.ex. kärnkraftverk, vattenverk, dammar m.m., som inte får fotas. Det är vid publicering eller om bilderna ska göras åtkomliga för andra som de måste granskas. På Sweco har de självgranskningsrätt vilket innebär att de har eget ansvar att se till att bilderna inte innehåller något känsligt vid publicering. Är de osäkra på något så får de helt enkelt skicka in materialet till Försvarsmakten och de får avgöra om det går att offentliggöra eller ej. Ofta är det lättare att få publicera endast bilder än om det skulle vara med positioner och koordinater i data också (Björk, 2014).

För en flygning ligger ansvaret, att den utförs rätt, på piloten även om företaget har det övergripande ansvaret. Företaget har också ansvar för att materialet hanteras på ett korrekt sätt. Sedan går det inte att som enskild person bete sig hur som helst utan skulle grova fel begås kan enskild person ändå ställas till svars och straffas.

3.3.4 Scior

Scior är ett konsultföretag med huvudkontor i Timrå. VD är Fredrik Landqvist och de sysslar med byggledning och infrastruktur men även insamling av geodata och produktion. På Scior finns det idag en UAS och är av typen Smartplanes, som de haft i snart ett år. Den används för volymeräkningar, skapa ortofoton, skapa terräng- och markmodeller för projektering, vilket börjar ge en koppling till BIM, sättningskontroll av deponier etc. (Landqvist, 2014)

Enligt Fredrik Landqvist bearbetar de på Scior all data själva i programvaran AGIsoft. De har inte de volymer av data som motiverar att använda sig av underkonsulter utomlands. Ett annat stark anledning till att de inte outsourcer något arbete är att de vill äga hela processen själva, från insamling till färdigt material. Däremot förstår han att större företag med större volymer data väljer att outsourca arbete med mindre kvalificerade uppgifter. Det kan bli effektivt att t.ex. samla in data under dagen i Sverige som sedan andra fortsättar att bearbeta under natten när det då är dag i t.ex. Indien.

När det kommer till regelverk kring materialet nämner Fredrik Landqvist att försvaret har sina regler kring publicering och spridning av flygfoton. Att de idag skickar in för godkännande men att målet är
att få ett självgranskningstillstånd. Han har också funderat lite på datahantering innan publicering. Bland annat nämner han att han funderat lite på vad som kan gälla vid uppladdning på en molntjänst där material kan hamna på servrar utomlands. Han har inte gjort någon närmare kontroll eftersom de använder egna servrar endast med internåtkomst för datalagring.

Ansvar för att material och flygplan hanteras på ett korrekt sätt är på VD men företaget i sig har också ansvar för att det finns rutiner och regler. Däremot ligger ansvaret förmodligen hos en själv om en som enskild person skulle sprida data felaktigt. Han tror att det till viss del beror på situationen.

Fredrik Landqvist tror att UAS-användningen kommer att öka i framtiden. Både fortsatt med flygfoto och fotogrammetri men också att laserskannrar också utvecklas. De idag är lite tunga så skulle dessa användas hamnar de i en annan viktklass. Dessutom finns det utrustning för att använda infraröda kameror och värme kameror på UAS.

Vi står inför en ny teknik, ungefär som när GPS kom på nittiotalet så var man nästan tvungen att vara doktor för att använda den men nu använder nästan alla den vare sig man vet det eller inte. Så det kommer definitivt bli en utökad användning av UAV-tekniken (Landqvist, 2014).

3.3.5 Metria

Allt arbete bearbetas lokalt på kontoret och görs varken av externa bolag eller på något av de andra kontor som Metria har. På frågan om de kan tänka sig att outsourca deras arbete svarar de:

På frågan om hur data ska hanteras internt på internationellt stora företag och om det går skicka data inom företaget även över nationsgränser säger de:

Då har man teoretiskt exporterat bilder som kanske inte blivit granskade och det är egentligen samma problematik som man kommer in på när man använder molntjänsterna och det där är väldigt luddigt område (Huhta & Ljungdahl, 2014).

De tror inte att det skulle funka att arbeta på ett sådant sätt att data skickas mellan kontor som ligger över nationsgränser. Är det sekretessbelagt som ska sekretessgranskas så får det inte skickas iväg. Det får inte skickas innan det först är sekretessgranskat.

Metria har själgranskningsrätt på flera områden men de tror att de inte kan få en allmän självgranskningsrätt som gäller över hela Sverige. Enligt Huhta så kommer det inte vara möjligt att få, utan det kommer vara nödvändigt att skicka in vissa delar för granskning oavsett om självgranskning innehas.

Bilderna som tas skickas in till militären för granskning. Så det vet var det tagits bilder och i vilket syfte de är menade för användning. Sedan är det upp till försvarsmakten att godkänna det. Enligt Huhta så går det
alltid att flyga och fota men inte om bilderna ska visas upp eller spridas. Det är då det måste blivit godkänt innan.

Hantering av data som innehåller känslig information eller skyddsobjekt kan göra att det blir tvunget att maskera vissa delar av bilderna eller till och med att vissa bilder inte kan tillåtas att publiceras utan får endast användas internt. Det behöver inte nödvändigast vara militära mål utan kan lika väl vara civila mål såsom master, transformatorstationer, kärnkraftverk, vattenkraftverk m.m. (Huhta & Ljungdahl, 2014).

Framtiden beror det på hur framtida HMK och trafikverket tillåter för typ av användning av UAS i mätningsprojekt och liknande.

3.3.6 Swescan

UAS har många olika användningsområden. Swescan har t.ex. kommuner som kunder där de vill ta fram grundkartor och inventera stadsdelar m.m. Johan Lindqvist gör själv mycket volymberäkningar och han menar att det bara börjat skrapas på ytan av vad systemen kan användas till. T.ex. nämner han ett test de gjorde med SLU i Umeå där de fotografera stormfälld skog som de sedan geotaggade träden i. Då kunde maskinerna se direkt var någonstans de behövdes och enligt
första beräkningar så sparades runt 50% av maskinkostnaderna på det sättet. För byggen pratar han om att använda värmeabnamor för kontroll av fjärrvärmesystem och på så sätt se om det finns läckor på stora tak, i och med att blöt isolering inte har samma isoleringsförmåga. Det blir stor skillnad på att gå på taket och leta manuellt mot att flyga under några minuter och täcka in hela huset.

Systemet som de använder lagrar all bilddata lokalt på kamerans minneskort. Telemetridata med positioner skickas via datalänk till fältdataen sedan slås dessa data ihop när drönaren har landat. Johan Lindqvist säger att han använder molnettjänster för lagring av loggfiler och flygplanerings så att de lätt är tillgängliga oberoende var bilderna ska tas. Däremot lagras inte bilderna där eftersom det snabbt blir väldigt stora filer. Det förs över till en NAS eller server vid hemkomst till kontoret.

Jag skulle kunna få ett flygtillstånd relativt enkelt i Norge men sen kommer vi till det att Norge är ett Natoland och det är inte vi, så att då hålla på med flygfoto är inte det lättaste (Lindqvist, 2014).
Vid utskickning av material utomlands tror Johan Lindqvist att det till stor del handlar om, om självgranskningsrätt innehas eller inte. Då är det möjligt att säga och bedöma själv, inom vissa regler, om bilderna innehåller någon känslig information eller ej. Han säger att vid publicering så ska allt material granskas av Försvarsmakten eller att det kontrolleras på egen hand om självgranskningsrätt innehas. Vid outsourcing vet han dock inte riktigt vad som gäller eftersom han inte sysslat med det. Det är en intressant fråga och något som borde kollas upp om material skicka iväg t.ex. Pix4D. Pärföljder vid felhantering är inte något som Johan Lindqvist har någon uppfattning av vad som kan ske.

Ansvarsfrågan menar han att konsulter har ansvar gentemot kund att allting blir rätt och stämmer. Piloten har ansvar för att flygningen genomförs rätt men är också anställd av ett bolag och de borde ha koll på det. Det viktiga är att de är försäkrad så att tredje person blir omhändertagen ifall det skulle hända något. I flygtillståndet är det också krav på att ha försäkring.

I framtiden tror Johan Lindqvist att tillämpningarna för UAS kommer bli fler och fler. Saker som nu är dyra och komplicerade att utföra kan bli mycket enklare med denna typ av teknologi. Han ser dock en del risker i och med att hobbyverksamheten också ökar. Om det skulle bli mycket misskötsel av hobby-UAS så kanske det leder till restriktioner för all slags UAS, även för den professionella delen.

3.3.7 Trimtec

Fördelarna med att använda UAS, enligt Urbas, är många. Vissa områden är svåråtkomliga eller ohälsosamma att komma åt där det kan finnas fallrisk, rasrisk. Det kan t.o.m. finnas områden där en inte får gå in på över huvud taget. Dessa områden är sådana områden som passar bra att använda UAS. Att gå runt och mäta in ett område tar längre tid än att flyga området med en drönare.

Nackdelen med att använda UAS är att dessa inte har tillstånd att flyga överallt. Som exempel har Stockholm relativt stor begränsning genom Arlanda och Bromma flygplats. Deras CRT-område, d.v.s. deras skyddszon, ger totalt flygförbud i dessa områden om inte specialtillstånd innehas. Det resulterar i att stora delar av Stockholm ej är flygbara för UAS.

3.3.8 Blinken

Systemet som Blinken säljer är, som sagt, eBee från senseFly. Där ingår ett helt paket med både den mjuk- och hårdvara som krävs för att flyga och att bearbeta materialet. I Sverige har de säljt systemet sedan juli 2013. Fördelen med UAS enligt Mats Berntsson är att det är ett väldigt effektivt, och snabbt sätt att göra stora datainsamlingar för skapande av både punktmoln, 3D-modeller och ortofoton. För just eBee ser han fördelar med att den hör till den enklaste tillståndsklassen, 1A, vilket medför bl.a. högre flyghöjder, enklare tillståndssökning m.m. eBeen har också en funktion där den stänger av motorn vid bildtagning för att eliminerar vibrationer. En nackdel, eller kunde ska åtminstone veta om att det egentligen inte är en nackdel, är vilken nivå av noggrannhet som får med dessa system, säger Mats Berntsson. I totalstationer är de nere på millimeternivå och med GPS tillsammans med RTK-teknik ligger de på centimeternivå. UAS ger en noggrannhet som ligger emellan 1 till 3 gånger upplösningen på bilderna. Om flygningen sker på en höjd som ger 3 cm upplösning på mark, med standardkameran som sitter i planet, går det att räkna med en noggrannhet på cirka 5-6 cm i punktmolnet. Internt i själva punktmolnet fås det direkt relativt bra noggrannhet men punktmolnet i sig är inte helt exakt fören det beräknas med stödpunkter.

Med senseFly följer det med två mjukvaror, dels en för att planera och övervaka flygningen samt ett bearbetningsprogram, postfly terra3D, som är anpassat för eBee av Pix4D. Det finns också en tjänst hos senseFly där kunder kan skicka upp sitt material till molnet och få det bearbetat av dem (Berntsson, 2014). Mats Berntsson säger dock att denna tjänst inte är så flitigt använd och han kan säga med nästan 100% säkerhet att alla deras kunder i dagsläget har valt att göra bearbetningen själva. Han tror bl.a. att det beror på att det kan vara
ganska svårt att definiera exakt vad det är som vill fås ut och om de då får tillbaka något som de inte beställt får de ändå sitta och göra om det. Det blir också mer problematiskt om de senare kommer på att de vill ha ut mer information ur materialet eller om de vill slå ihop det med annat material. Ibland kan det också behövas ändra format på filerna och då blir det också mer krångligare om processeringen inte gjorts själv.

På grund av detta, att ingen av deras kunder använder tjänsten, är Mats Berntsson heller inte riktigt insatt i vilka regler som gäller vid outsourcing av material. Han säger dock att om dessa utländska tjänster ska användas så bör den rätta vägen att gå, som han ser det, vara att skicka in det material som ska bearbetas till Försvarsmakten först för godkännande. Därefter, om det blivit godkänt, kan materialet skickas iväg det till den tjänst eller konsult som ska bearbeta materialet.

Han nämner också att han har märkt att flera företag har funderingar på att när användningen av UAS växer så borde det finnas mer renodlade piloter runt om i landet, med eget flygplan, som utför själva flygningen och sedan skickar in materialet mer centralt i ett företag där det sitter specialister på efterbearbetning som också har tillgång till kraftig datorkapacitet.

3.3.9 Pix4D

Denna Schweiziska mjukvaruutvecklare är ett av de stora förtagen på marknaden som gör datorprogram som används för bearbetning av bildmaterial. Deras program är kapabelt till att ta fram ortofoton, DSM och punktmoln från bilder tagna av en UAS. De erbjuder även möjligheten att bearbeta det material som införskaffats via UAS och sammanställa det till den produkt som kunden vill erhålla.

På frågan om vilka regler som hanterar outsourcing av data till dem så svarar de med att de följer dataskyddsdirektivet (Ortega, 2014). Resterande frågor lämnades obesvarade.
4. SLUTSATS OCH DISKUSSION

4.1 Slutsats

Som svar på rapportens frågeställning så arbetar företagen, som använder UAS, inte med outsourcing av data de får från bildtagningen. Konsulterna idag jobbar endast lokalt med data och det resulterar i att de inte har brytt sig om att införskaffa vetskapen om det är lagligt eller ej i att outsourca informationen till andra företag.

På frågan om vad som anses om outsourcing av UAS-data idag kan det se att, även om ingen av de intervjuade använder outsourcing, förstår flera vitsen med att använda dessa tjänster. De flesta nämner dock att de inte har koll på regelverk kring detta i dagsläget och att, om outsourcing blir aktuellt i framtiden, är det något som bör kollas upp.

Med hänvisning till 6§ i SFS 1993:1742, som säger att bilder inte får spridas utan granskning, går det att konstatera att även om bilder inte ska publiceras så måste de bli granskade om outsourcing eller molnetjänster ska användas. Vid sådana tjänster är det inte möjligt att innehå samma kontroll över vilka som kommer åt materialet och även om det inte har skett en publicering så har det fortfarande spridits till andra, vilket är det som står i lagen. Molnet bör, med hänseende till detta, också betraktas som en sorts outsourcing.

Kraven på informationssäkerhet för uppgifter som omfattas av försvarsekretess gör att molntjänster inte är tillförlitliga. Därför bör molntjänster inte användas innan godkänd granskning.

Materialet, som ska publiceras, ska skickas in för granskning av Försvarsmakten. I vissa fall kan självgranskningsrätt utfärdas om de som vill få bilder granskade, under en längre tid visat Försvarsmakten, genom inskickning av bilder, att de är seriösa aktörer på marknaden.

När det kommer till hantering av data över nationsgränser så bör det inte vara någon skillnad mellan att skicka det inom ett företag eller att skicka det mellan två olika. Data sprids oavsett till en annan nation och hamnar också under dess regelverk.
4.2 Diskussion

UAS är en teknik på frammarsch. Denna teknik är väldigt ny i kommersiellt syfte och har ännu inte hunnit etablerats helt på marknaden. Användningsområdena ökar hela tiden tack vara bättre och mindre sensorer samt lättare och starkare flygfarkoster som kommer leda utvecklingen. Det har gjort att bättre teknik kan användas i och med det så fås bättre resultat. Det går att konstatera att företagen är väldigt intresserade och letar efter nya möjligheter att använda dessa system.

Med tanke på att det är en ny teknik som ökar väldigt fort så har inte regelverket hunnit med och utvärderas, fortfarande så att det ska kunna anpassas efter tekniken. I dag har EU:s alla länder olika regelverk för flygreger kring UAS. Det har lämnats förslag på att det ska tas fram ett regelverk som gäller för alla EU:s länder. Detta kommer leda till att företag som vill verka internationellt har större möjlighet att göra så, i alla fall i flygregelmässigt avseende. Även om det blir enkelt att flyga ses fortfarande problem kring att ha verksamhet över hela EU. Olika länder kommer fortfarande ha olika regelverk rörande själva materialet som samlas in. Som exempel kan nämnas det Johan Lindqvist, Swescan, säger kring regelverket för flygfoto emellan Sverige och Norge. Det kommer också naturligtvis bero på vad systemet ska användas till. Det kan mycket väl vara så att en svensk i ett svenskt bolag inte kommer kunna få ta flygbilder i ett annat land på grund av dess regelverk medan det är helt legitimt att dokumentera en enskild byggnad med värme kamera för att leta efter läckage.

Vi kan fastslå att i dagsläget använder sig de företag, som har intervjuats, inte av outsourcing. Det finns flera anledningar till detta. De kanske inte tycker att de har de datamängder så att det är ekonomiskt befogat att låta någon annan sköta bearbetningen. Andra anledningar som vi kan se är att de vill kvalitetssäkra och äga hela processen själva, om de i efterhand kommer på att det behövs fler uppgifter så blir det genast krångligt om de inte sköt bearbetningen själva och det kan ta lång tid att ladda över filer som kan bli uppemot 10 GB. Det sista, om uppladdningstider, bör inte vara något stort problem så länge alla parter i kedjan sitter på en relativt bra internetuppkoppling. När det

Den slutsats som vi drar av detta arbete är att om företag ska ägna sig åt outsourcing och molntjänster av olika slag, ska de få materialet granskat och godkänt innan det skickas iväg. Detta bör ske även om syftet inte är att publicera data direkt. Vid dessa tjänster sprids materialet av en, även om det inte blir tillgängligt för den stora massan. Syftet med granskning före publicering är att se till att det inte innehåller uppgifter som är belagda med sekretess och att detta inte hamnar i fel händer. Lagen säger inte att granskningen måste ske vid just publicering utan använder ordet spridning, vilket också kan appliceras innan själva publiceringen sker.

Försvarsmakten. Vi kan däremot inte se någon förändring gällande spridning av data och utifrån det bör samma förhållningssätt till outsourcing och molntjänster, som är idag, gälla.
5. REKOMMENDATIONER OCH FORTSATTA STUDIER

5.1 Rekommendationer

Om företag vill outsourca sitt arbete så bör de granska bilderna innan de skickas iväg för att inte riskera att sprida sekretessbelagt material. Dessutom bör företagen, som ska upphandlas och sköta bearbetningen åt en, granskas innan upphandling. Myndigheten för samhällsskydd och beredskap har skrivit en vägledning till hur informationssäkerheten blir en del i upphandlingsprocessen.

5.2 Förslag på fortsatta studier

Ett förslag att kunna göra en vidarestudie på är att utforska fler områden inom byggbranschen som UAS-tekniken kan användas till. Att arbeta med drönare kommersiellt är en väldigt ny teknik och alla användningsområden har inte kartlagts. Speciellt inom byggbranschen.

En annan vidarestudie kan vara att undersöka hur värmekameror kan implementeras på UAS. Värmekameror kan sättas på för att dokumentera värmeläckage och värmeförluster på hus och byggnationer.

Ytterligare ett arbete som skulle vara intressant att titta närmare på är det skulle vara en god idé att upprätta en checklista på de aktiviteter som bör göras, vilka som behövs kontaktas, vilka tillstånd som behövs etc.
6. REFERENSER

Läntmäteriet m.fl., 2013. *Geodetisk och fotogrammetrisk mätningsteknik*, u.o.: u.n.

Lagar och förordningar

Luftfartslagen 2010:500

Luftfartsförordningen 2010:770

TSFS 2009:88 – Transportstyrelsens föreskrifter om obemannade luftfartyg

SFS 1993:1742 – Lag om skydd för landskapsinformation

SFS 1993:1745 – Förordning om skydd för landskapsinformation

SFS 1962:700 – Brottsbalken

SOU 2013:51 – Utredning och betänkande
Bilaga 1
INTERVJUFRÅGOR

Transportstyrelsen

- Kan ni berätta lite allmänt om Transportstyrelsen och vad ni gör?
- Vad finns det för UAS-system på marknaden idag?
- Vad krävs för att få tillstånd att operera med dessa fordon?
 o Hur många delas ut varje år?
 o Vilken klass är vanligast att söka tillstånd för?
- Vilka lagar gäller kring UASer?
- Vad vet ni om outsourcing?
 o Vad finns det för regler idag gällande hantering av datamaterial insamlad genom fotogrammetri och liknande?
 ▪ Före publicering
 ▪ Efter publicering
- Vad finns det för regler idag gällande hantering av datamaterial insamlad genom fotogrammetri, laserskanning och liknande?
- Vem bär det juridiska ansvaret för att hantera data rätt?
 o Företaget
 o Konsulter
 o Pilot
- Har ni rutiner kring hur man avgör vad som är känsligt innan det granskas av försvaret?
- Vilka påföljder finns p.g.a. felhantering av data innan publicering?
- Vilka lagar reglerar hur man ska handskas med information som är insamlad, genom fotogrammetri och lidar, med hjälp utav drönare?
- Vad är vanligast i dag?
 o Fotogrammetri
 o Laser
- Hur ser framtiden ut?
Vad kommer bli vanligast för användning?
 ▪ Går det mer mot laser eller fotogrammetri?

Försvarsmakten

- Vad finns det för system på marknaden idag?
 - Storlek
 - Prisklasser
 - Fotogrammetri/Laser
 ▪ Skillnader mellan dessa?
 - Regelverk
 - Användningsområde

- Vad krävs det för att få publicera material?
 - Hur är arbetsgången för att få en godkänd publikation?

- Kontrollerar ni vad som skickas iväg utomlands innan publicering?
 - I så fall, hur?

- Är det försvarsmakten som granskar all information?
 - Andra instanser?
 ▪ Polisen?
 ▪ Säpo?
 ▪ FRA (försvarets radioanstalt)?

- Vem bär juridiskt ansvaret för att hantera material rätt?
 - Företaget?
 - Konsulten?
 - Piloten?

- Vad vet ni om outsourcing?
 - Vad finns det för regler idag gällande hantering av datamaterial insamlad genom fotogrammetri och liknande?
 ▪ Före publicering
 ▪ Efter publicering

- Vad är känslig information för er?
 - Skyddsobjekt
 ▪ Regementen
 ▪ Bunkrar
 ▪ Vapenförråd
 - Civila objekt

- Vad tycker ni om information som lagras i molnet?
 - Vad får man lagra där?
B1.3

- Räknas molnetlagring som outsourcing?
- Skillnad på vilken tjänst man använder sig av?
- Säkerheten för molnet?
- Är det speciella regler kring detta?

- Vad finns det för regler idag gällande hantering av datamaterial insamlad genom:
 - Fotogrammetri
 - LiDAR
 - Övriga

- Vilka eventuella påföljder kan uppstå vid outsourcing av känslig information?
- Inom internationella företag som har kontor i andra länder förutom Sverige, får man skicka data inom företaget till de andra kontoren utomlands? Då vid hantering av känslig information.
- Skillnad på att hantera information inom företaget internationellt sett mot att skicka till ett annat företag?
- Hur ser framtiden ut för UAS? Kommer det mer och mer och finns det kanske områden som de idag inte används till som senare kan bli stora?
- Förslag på andra kontaktpersoner?

Konsulter

- Kan ni berätta lite om ert företag?
- Vad finns det för system på marknaden idag?
- Vad för slags system använder ni?
 - Genomgång av hur de opererar.
 - Hur lång tid kan de flyga?
 - Hur stora områden kan de täcka
 - Vilken noggrannhet kan fås med UAS
- Hur hanterar systemet den insamlade informationen?
 - Lagring på molnet
 - Vid lagring på moln. Krypteras data på något sätt eller på vilket sätt säkerhetshåls information?
 - Lagring på lokal enhet?
- Hur jobbar företag generellt med outsourcing?
 - Öppen teknologi eller stängd?
• Outсорcar ni er information utomlands? (Behöver inte gälla information från UASer)
 o I så fall varför?
 ▪ Ekonomiska skäl?
 ▪ Tidsbrist?
 ▪ Expertis som saknas inom företaget?
 o Hur går processen till vid outsourcing?
• Vilka användningsområden finns det för UAS inom företaget?
 o Vad används UAS främst till?
• Hur ser ni på hur på hur man ska hantera insamlad information? Innan data är publicerad.
• Skillnad på att hantera information inom företaget internationellt sett mot att skicka till ett annat företag?
• Vad finns det för regler idag gällande hantering av datamaterial insamlad genom:
 o Fotogrammetri
 o Laserskanning
 o Övriga
• Vad krävs det för att få publicera material?
 o Hur är arbetsgången för att få en godkänd publikation?
• Om det finns med i datamaterialet hur hanteras då mer känslig information?
 o Civilt
 o Militär
• Har ni rutiner kring hur man avgör vad som är känsligt innan det granskas av försvaret?
• Vilka lagar är det ni arbetar med så att ni vet att ni arbetar rätt?
• Vem bär juridiskt ansvaret för att hantera material rätt?
 o Företaget?
 o Konsulten?
 o Piloten?
• Har ni koll på om det kan finnas några påföljder p.g.a. felhantering av data innan publicering?
• Vilka lagar reglerar hur man ska handskas med information som är insamlad, genom fotogrammetri och laserskanning, med hjälp utav drönare?
• Vad är vanligast i dag?
 o Fotogrammetri
 o Laser
• Hur ser framtiden ut?
 o Vad kommer bli vanligast för användning?
 • Går det mer mot laser eller fotogrammetri?
• Tips på andra personer att kontakta?

Leverantörer

• Kan ni berätta lite om ert företag och vad ni gör?
• Vad är det som är fördelen med att använda sig av en UAV?
• Vad kan nackdelen vara med att använda UAV?
• Vad finns det för system på marknaden idag?
 o Storlek
 o Prisklasser
 o Fotogrammetri/Laser
 ▪ Skillnader mellan dessa?
 • Regelverk
 • Användningsområde
• Vad för slags system använder/säljer ni?
 o Genomgång av dem hur de opererar.
• Hur hanterar systemet den insamlade informationen?
 o Vad för regelverk finns det kring datahantering?
 o Lagring på molnet
 ▪ Finns det några speciella regler vid molnetlagring?
 • Räknas det möjligtvis som en sort av outsourcing?
 ▪ Vid lagring på moln. Krypteras data på något sätt eller på vilket sätt säkerhetshåls information?
 ▪ Erbjuder ni lagring via molntjänster för era produkter?
 o Lagring på lokal enhet?
• Hur ser ni på hur på hur man ska hantera insamlad information? Innan data är publicerad.
• Hur hanteras mer känslig information?
 o Civilt och militär?
• Har ni koll på om det kan finnas några påföljder p.g.a. felhantering av data innan publicering?
• Vad är vanligast i dag?
 o Fotogrammetri
Laser

• Hur ser framtiden ut?
 o Vad kommer bli vanligast för användning?
 ▪ Går det mer mot laser eller fotogrammetri?
• Förslag på personer eller företag att kontakta?