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Abstract
Femel, J. 2014. Therapeutic Cancer Vaccines Targeting Molecules Associated with Tumor
Angiogenesis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty
of Medicine 1017. 65 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-8998-4.

Induction of an endogenous antibody response by therapeutic vaccination could provide an
alternative to cost-intensive monoclonal antibody-based treatments for cancer. Since the target
of a cancer vaccine will most likely be a self-antigen, self-tolerance of the immune system
must be circumvented. Using fusion proteins consisting of the self-antigen to be targeted and
a part derived from a foreign antigen, it is possible to break tolerance against the self-antigen.
Furthermore, a potent adjuvant is required to support an immune response against a self-
molecule. Currently no adjuvant suitable for this purpose is approved for use in humans.

This thesis describes the development of a therapeutic vaccine targeting the vasculature of
tumors. As tumor cells have developed strategies to escape immune surveillance, targeting
of molecules associated with the tumor stroma is an interesting alternative. The alternatively
spliced extra domain-A and B (ED-A and ED-B) of fibronectin and the glycan-binding
protein galectin-1 are selectively expressed during events of tumor angiogenesis. We have
designed recombinant proteins to target ED-B, ED-A and galectin-1, containing bacterial
thioredoxin (TRX) as a non-self part, resulting in TRX-EDB, TRX-EDA and TRX-Gal-1.
Vaccination against ED-B induced anti-ED-B antibodies and inhibited growth of subcutaneous
fibrosarcoma. Immunization against ED-A decreased tumor burden and reduced the number of
lung metastases in the MMTV-PyMT model for metastatic mammary carcinoma in a therapeutic
setting. Analysis of the tumor tissue from ED-B and ED-A-immunized mice indicated an attack
of the tumor vasculature by the immune system. Finally, we show that galectin-1 immunization
reduced tumor burden and increased leukocyte numbers in the tumor tissue. Galectin-1
is pro-angiogenic and immunosuppressive, and therefore allows simultaneous targeting of
fundamental characteristics of tumorigenesis. We furthermore show that the biodegradable
squalene-based Montanide ISA 720 combined with CpG oligo 1826 (M720/CpG) is at least as
potent as Freund’s adjuvant with respect to breaking self-tolerance, when comparing several
immunological parameters. Freund’s is a potent but toxic adjuvant used in the majority of
preclinical studies.

The work presented in this thesis shows that therapeutic cancer vaccines targeting the tumor
vasculature are a feasible and promising approach for cancer therapy.
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ED-A Extra domain-A 
ED-B Extra domain-B 
EMT Epithelial-mesenchymal transition 
FGF Fibroblast growth factor 
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Introduction 

The tumor microenvironment 
Solid tumors arise from transformed cells that have acquired the ability to 
proliferate in a deregulated manner. Tumor cells have accumulated muta-
tions, which enable them to grow independently from external growth pro-
moting and suppressing signals, replicate unlimitedly and avoid cell death 
(1). However, in addition to genetic alterations sustaining proliferation, tu-
mors require access to oxygen and nutrients in order to grow. Angiogenesis, 
the formation of new blood vessels from pre-existing ones, was early associ-
ated with tumors (2). It is now known that tumors are not only comprised of 
malignant cells, but also of other cell types as well as extracellular matrix 
(ECM), together composing the tumor stroma. It has become increasingly 
evident that the tumor cells co-opt the components of the stroma and estab-
lish a microenvironment that protects from immune recognition and pro-
motes tumor progression. Eventually, tumors invade the surrounding tissue 
and disseminate to distant sites, where similar mechanisms support growth 
of metastases (1). The following pages present an overview over the compo-
nents of the tumor stroma and processes within the tumor microenvironment. 

The tumor stroma 
Stromal cells include endothelial cells comprising the blood and lymphatic 
vessels, perivascular cells (smooth muscle cells or pericytes), fibroblasts, 
adipocytes and different types of immune cells of the innate and adaptive 
immune system (Figure 1). Together with the stroma the tumor cells form an 
organ-like structure, although it displays abnormalities with respect to func-
tion and structure (3, 4). 

The conditions within the tumor stroma, with respect to cellular and ma-
trix composition and activated pathways, resemble the process of wound 
healing. By exploiting this physiological program, including angiogenesis, 
inflammation and tissue remodeling, tumor cells manage to create an envi-
ronment optimal for their proliferation and dissemination to distant sites in 
the body. However, while the normal purpose of wound healing is a re-
establishment of a functional tissue, the structural organization of the stroma 
becomes more abnormal the further tumor growth progresses, causing tu-
mors to be “wounds that never heal” (5, 6). The impact of the stromal com-
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partment on tumor progression is highlighted by the prognostic potential of 
tumor composition or gene expression profiles of stromal cells (7-10). 
 

 
Figure 1. The tumor stroma. In addition to malignant cells, tumors consist of a va-
riety of other cell types, which together with the extracellular matrix form the tumor 
stroma. Adapted from (2). 

Tumor angiogenesis  
The normal vasculature is organized in a hierarchic system. Capillaries, the 
smallest vessels of the vascular system, consist of endothelial cells forming a 
lumen. The endothelial cells are surrounded by the basement membrane, a 
specialized type of the ECM, into which pericytes are embedded (11). Peri-
cytes, cells of the smooth muscle-lineage, have direct cell contacts with the 
endothelial cells. By ECM deposition and surface receptor/ligand interac-
tions pericytes provide structural stability and maintain a quiescent state of 
the vasculature. (12, 13). Larger vessels, which divide into arteries, arteri-
oles, veins, and venules, show a different architecture. To resist shear stress 
from pulsatile blood flow, the arteries are located in a collagen and fibro-
blast-rich ECM and are densely covered by contractile smooth muscle cells. 
The veins are irregularly enclosed by vascular smooth muscle cells, but con-
tain valves to prevent backflow of the blood due to the low pressure (11, 14).  

The angiogenic switch 
As long as a tumor is dormant and not bigger than 2-4 mm3, tumor cells ac-
quire oxygen by diffusion. To grow beyond that size, the tumor requires 
access to the vascular system to obtain oxygen and nutrients (15). Tumors 
accomplish this by stimulating growth of new blood vessels from pre-
existing ones, a process termed angiogenesis. In a healthy tissue blood ves-
sels are kept quiescent through a tightly regulated balance between pro-
angiogenic factors and angiogenesis inhibitors (1, 16). Angiogenesis occurs 
only under very few conditions in a healthy, adult body, such as wound heal-
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ing or the female menstrual cycle. However, in response to hypoxia within a 
growing tumor, cells increase the expression of molecules able to induce 
blood vessel growth. When the balance of regulators tips in favor of the pro-
angiogenic factors, the angiogenic program will be activated. This event is 
referred to as the “angiogenic switch” (16). Independently from hypoxia, 
pro-angiogenic factors can be expressed and anti-angiogenic factors sup-
pressed by tumor cells in response to oncogene activation or tumor suppres-
sor inactivation (16, 17). The key stimulator of angiogenesis is vascular en-
dothelial growth factor A (VEGF-A). 

Molecular regulation of angiogenesis 
Vascular endothelial growth factor A 
The key stimulator of angiogenesis is vascular endothelial growth factor A 
(VEGF-A). VEGF-A is a member of the VEGF growth factor family, which 
regulate angiogenesis and lymphangiogenesis. The VEGF family members 
include VEGF-A, -B, -C, -D and placental growth factor (PlGF). Homodi-
mers of the growth factors are ligands to three VEGF receptor (VEGFR) 
tyrosine kinases, VEGFR-1, -2 and -3, to which they bind in an overlapping 
pattern. The VEGF receptors are found as homo- or heterodimers on the 
surface of endothelial cells. Binding of VEGF-A to VEGFR-2 leads to the 
activation of different pathways regulating endothelial cell proliferation, 
migration and survival (17, 18). The VEGF-A/VEGFR-2 pathway is essen-
tial for angiogenesis and de-novo formation of blood vessels (vasculogene-
sis). Knockout of either growth factor or receptor causes severe vascular 
defects and is embryonically lethal (19-21). VEGFR-1 has been suggested as 
a negative regulator of angiogenesis during development, as lack of VEGFR-
1 in mice is lethal due to excessive endothelial cell proliferation and obstruc-
tion of the vessel lumen (22). Different isoforms of VEGF-A, which have 
different functional implications, are produced through alternative splicing. 
The larger isoforms VEGF-A165 and VEGF-A189 are both ligands for neuro-
pilin 1, a co-receptor for VEGFR-2 (17). Furthermore they bind to heparan 
sulfate proteoglycans, which are components of the ECM. Upon ECM deg-
radation the VEGF molecules are released and form concentration gradients, 
which guide migrating tip cells of angiogenic sprouts (23, 24). 

VEGF-expression, as well as expression of various other pro-angiogenic 
factors, is regulated by the transcription factor hypoxia-inducible factor 1 
(HIF-1) (25). HIF-1 is a protein heterodimer consisting of two subunits, HIF-
1α and HIF-1β. While the β-subunit is constitutively expressed, the α-
subunit is regulated at the protein level in an oxygen-dependent manner. 
Under normoxia the oxygen-dependent enzymatic hydroxylation of two 
prolyl residues in the HIF-1α molecule enables the interaction with the Von 
Hippel-Lindau E3 ubiquitin ligase complex, which degrades the protein sub-
unit. Hypoxia prevents hydroxylation of the prolyl residues and therefore 
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degradation of HIF-1α, and both subunits dimerize. The HIF-1 molecule 
induces gene expression by binding to a sequence-motif termed hypoxia-
responsive element, which is contained in the promoter region of various 
pro-angiogenic factors (26). 

Besides VEGF-A other growth factor pathways have the ability to induce 
and regulate angiogenesis. Among these are angiopoietins (ANG) and the 
TIE receptors, and the fibroblast growth factors (FGFs) with corresponding 
receptors (15). ANG-1/TIE-2 signaling has been demonstrated to contribute 
to vascular quiescence (27), while FGFs represent alternative growth factors 
that contribute to resistance against anti-VEGF therapy (28).  

Sprouting and maturation of blood vessels 
A vascular sprout usually consists of a leading cell, the “tip cell”, which is 
followed by a number of “stalk cells”. The tip cell follows the gradient of 
pro-angiogenic molecules, such as VEGF-A, released by cells experiencing 
hypoxia, and through matrix metalloproteinase (MMP) cleavage of the ECM 
(14, 15). The stalk cells proliferate to extend the growing sprout. The signal-
ing of Delta-like ligand 4 (DLL-4) and the Notch receptors is one of the cru-
cial pathways determining the stalk cell phenotype. Expression of DLL-4 is 
elevated in the tip cells upon VEGF-A signaling. DLL-4 then binds to Notch 
1 and 4 expressed on the adjacent stalk cells, which suppresses VEGFR-2 
expression. Disruption of DLL-4/Notch signaling leads compromised vessel 
formation (29-31). The selection of a tip cell is not a one-time, but a dynam-
ic process and a previous stalk cell might take over the position as leading 
cell (32, 33). The formation of a vascular lumen occurs in the stalk of the 
angiogenic sprout and enables blood flow, which improves oxygenation and 
results in a decrease in VEGF-A expression (34).  

The endothelial cells forming a new vascular lumen secrete platelet-
derived growth factor BB (PDGF-BB). PDGF-BB attracts pericytes, which 
express the PDGF receptor β (PDGFR-β) on their cell surface (12, 13). Peri-
cytes form direct contacts with the endothelial cells, which, together with 
paracrine signaling, permit cell communication between these cell types. 
Pericytes are able to cover several endothelial cells through extending long 
cell processes, which support vascular integrity. While PDGF-BB appears to 
be the most important growth factor facilitating pericyte recruitment, other 
pathways, such as the ANG-1/TIE-2 receptor pathway and transforming 
growth factor-β (TGF-β) signaling have been implied in vessel stabilization 
by pericytes (11-13). 

Besides angiogenesis other mechanisms of blood vessel growth have been 
observed in tumors. Vessels can be assembled de novo from vascular endo-
thelial precursor cells, a process termed vasculogenesis, which occurs most 
commonly during embryogenesis. Furthermore, intussusception can generate 
new vessels by the longitudinal separation of initially one blood vessel (14, 
15, 27). Also incorporation of endothelial progenitor cells recruited from the 
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bone marrow or "vascular mimicry" by tumor cells has been described (1, 
15, 27). 

Characteristics of the tumor vasculature 
The vasculature that results from tumor angiogenesis is very different from 
the blood vessels that are product of physiological angiogenesis during em-
bryogenesis or wound healing. Hierarchic organization of venules, arterioles 
and capillaries is lost in the tumor vasculature, and the vessels appear disor-
ganized and tortuous (Figure 2) (35).  

 
Figure 2. Normal and angiogenic vasculature. Scanning electron microscopy (SEM) 
image of polymer cast of normal (left) and tumor microvasculature (right). Normal 
vessels show a hierarchic organization of arterioles, venules and capillaries. Tumor 
microvasculature is chaotic and vessel hierarchy is lost. Reprinted with permission 
from (35). 

Due to the rapid proliferation of the tumor cells, the growth of the tumor is 
constantly ahead of the growing vasculature and hypoxia is a permanent 
state. The persistent high levels of angiogenesis-promoting growth factors 
prevent appropriate maturation of the vasculature and impair pericyte re-
cruitment, resulting in reduced pericyte coverage or compromised cell con-
tacts to the endothelium (11, 36, 37). This causes tumor vessels to be leaky 
and poorly perfused, which furthermore sustains hypoxia and an acidic pH in 
the tumor microenvironment (38, 39).  

Another effect of VEGF-A signaling is stimulation of increased permea-
bility. As this was the initial function identified for VEGF-A (40), it is also 
known as vascular permeability factor (VPF). In response to VEGF-A sig-
naling separated vacuoles in endothelial cells fuse and intercellular junctions 
between endothelial cells open, which causes plasma and proteins to leak 
from the blood vessels into the surrounding tissue (41). Additionally, the 
lymphatic vasculature, which is normally responsible for returning protein-
rich fluid back into the blood circulation (42), is often poorly functioning in 
tumors. The rapid proliferation of the tumor cells results in a high intra-
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tumoral pressure, which leads to the collapse of the lymphatic vasculature, 
disabling them from draining fluid from the tissue. The high permeability of 
the endothelium, together with poor assembly of the tumor blood vessels and 
the deficiency of fluid drainage by lymphatic vessels results in tissue swell-
ing (edema) and an elevated interstitial fluid pressure (IFP). High IFP within 
tumors impairs delivery of chemotherapeutic agents to the tumor cells and 
thereby reduces therapy efficacy (38). 

Continuous presence of VEGF-A furthermore affects expression of other 
endothelial proteins, such as surface receptors. Endothelial adhesion mole-
cules on the luminal side of endothelial cells are downregulated upon expo-
sure to pro-angiogenic factors such as VEGF-A. This prevents interactions 
of leukocytes with the endothelium and leads to decreased lymphocyte infil-
tration into the tumor tissue. For the tumor this is of advantage, as it supports 
evasion from an anti-tumor immune response (43-47). 

Anti-angiogenic therapy  
Based on the knowledge that neovascularization was indispensible for tumor 
growth, in 1971 Judah Folkman proposed the strategy of “anti-angiogenesis” 
(2). He suggested that by inhibiting angiogenesis, growth of tumors could be 
stopped, which ultimately would help eradicate them. In fact, he suggested 
the development of an antibody targeting the so-called “tumor angiogenesis 
factor”, the growth factor inducing vessel growth in tumors (2). Intense re-
search during the following decades led to the discovery of a number of pro-
angiogenic factors, the first of which were FGF-2 (48) and VEGF-A (40, 49, 
50). Later receptor tyrosine kinases (RTKs) involved in angiogenic signaling 
and endogenous angiogenesis inhibitors were discovered (51). This enabled 
the development of drugs targeting the pro-angiogenic molecules and their 
receptors, such as antibodies and tyrosine kinase inhibitors (TKIs). Due to 
the significance of the VEGF-pathway for tumor vascularization, drugs tar-
geting this pathway remain the major group of angiogenesis inhibitors ap-
proved for clinical use. 

Anti-angiogenic drugs 
In 2004 Bevacizumab (Avastin), a humanized monoclonal antibody that 
neutralizes VEGF-A (52), was the first anti-angiogenic drug approved by the 
American Food and Drug Administration (FDA) for treatment of cancer 
(metastatic colorectal cancer). Today, bevacizumab is used in combination 
with chemotherapy as first-line treatment for non-small-cell lung cancer, and 
as first- and second-line treatment for metastatic colorectal cancer. Further-
more, it is used in combination with cytokine-therapy for metastatic renal 
cell carcinoma. Monotherapy with bevacizumab has failed in a number of 
trials, and is currently only used as second-line treatment for glioblastoma 
multiforme (53, 54). While a number of phase III trials with bevacizumab in 
combination with chemotherapy demonstrated a significant increase in pro-
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gression-free survival, an increase in overall survival was not achieved. In 
general, the survival benefits, progression-free or overall, were modest and 
within the range of a few months (53). End of 2011 the FDA revoked the 
approval for use of bevacizumab in metastatic breast cancer, as no benefit in 
progression-free or overall survival could be demonstrated and quality of 
live of breast cancer patients was not improved (54). 

Another group of angiogenesis inhibitors are the small-molecule TKIs. 
These molecules compete with ATP for the ATP-binding site of RTKs, 
which is highly conserved among all protein kinases. This prevents the ki-
nase from transferring the phosphate group from ATP to their target protein 
and activating it (55). Unlike an antibody, these small molecule inhibitors 
can act intracellularly, as they are hydrophobic and can pass the cell mem-
brane, and show a broadened specificity (55). Examples for TKIs are 
sunitinib (Sutent), sorafenib (Nexavar) and pazopanib (Votrient). Sunitinib 
and sorafenib were initially designed for VEGFR-2 inhibition, but are know 
to inhibit PDGFR-β, FGF receptor 1 (FGFR-1), Raf, fms-related tyrosine 
kinase-3 (FLT-3) and c-Kit. Sunitinib furthermore binds to and inhibits 
PDGFR-α, and colony stimulating factor 1 receptor (CSF-1R) (53, 55, 56). 
Pazopanib has been developed as a multi-targeted TKI and inhibits VEGFR-
1, 2 and 3, PDGFR-α and β, FGFR-1 and 3, and furthermore c-Kit (57). All 
three TKIs are approved as monotherapies for renal cell carcinoma. Fur-
thermore, sorafenib is approved for treatment of hepatocellular carcinoma, 
and sunitinib for gastrointestinal stromal tumors (53, 58). The less restricted 
specificity of the inhibitors might be an explanation why these drugs have 
showed clinical benefit in the monotherapy-setting, unlike bevacizumab. 

Mechanisms of action 
Several mechanisms of action have been described for angiogenesis inhibi-
tors, of which a selection will be described below. Jain proposed the concept 
of vascular “normalization”, suggesting that anti-angiogenic therapy might 
revert the aberrant phenotype of tumor vessels, and by this increase oxy-
genation and improve the delivery of chemotherapy to the tumor (59). This 
hypothesis might explain the clinical benefits of combining bevacizumab 
and chemotherapy. Furthermore, anti-angiogenic treatment has been demon-
strated to restore the expression of adhesion molecules on the endothelium, 
which are required for interaction of leukocytes with the vessels walls. This 
might improve tumor immunity by increasing the influx of leukocytes in-
cluding tumor-targeting cytotoxic T lymphocytes (CTLs) (46, 60, 61). In 
contrast to the expected improvement of drug delivery to the tumor after 
anti-VEGF therapy, Van der Veldt et al. found that delivery of chemotherapy 
was rapidly and persistently decreased in cancer patients treated with 
bevacizumab (62). Therefore, as Jain discussed, optimal scheduling and dos-
age of anti-angiogenic therapy might be crucial for treatment efficacy, as 
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prolonged treatment might increase hypoxia and possibly promote invasive-
ness and metastasis (53, 59). 

Mechanisms of resistance 
It was expected that by targeting the genetically stable cells of the tumor 
stroma instead of the mutation-prone tumor cells, resistance to anti-
angiogenic therapy could be avoided (63, 64). However, after only modest 
gains in patient survival in clinical trials, evidence, both preclinical and clin-
ical, for resistance to VEGF-pathway inhibition emerged. It was first shown 
in mice that inhibition of angiogenesis caused a transient response, but was 
followed by revascularization and regrowth of the tumors (65). Reports from 
clinical trials indicated that interrupting or ending anti-angiogenic treatment 
could cause tumor growth rates to increase (53). Since then a number of 
mechanisms of resistance to anti-angiogenic therapy have been suggested. In 
response to hypoxia resulting from VEGF/VEGFR-inhibition, increased 
expression of other pro-angiogenic factors, such as FGF-2, PlGF and ANG-
1, substitutes for the inhibited signaling pathway (28, 66). Recently, the car-
bohydrate-binding protein galectin-1 has been identified to contribute to 
resistance to VEGF-blockade. Changes in the glycosylation-pattern on the 
endothelial cell surface in anti-VEGF resistant tumors facilitated galectin-1 
binding and activation of VEGFR-2, thereby circumventing the lack of 
VEGF (67). Furthermore, it has been demonstrated that in response to HIF-
1α bone marrow-derived monocytes were recruited to the tumor tissue, 
where they differentiate to macrophages and secrete further pro-angiogenic 
factors and MMPs (28, 68).  

Adverse affects 
While VEGF is clearly overexpressed during tumorigenesis, it is known that 
endothelial cell survival is depending on VEGF in an autocrine fashion (69). 
This might explain the side effects observed from treatment of bevacizumab, 
such as hypertension, gastro-intestinal perforation, proteinuria, hemorrhage 
and impaired wound healing (70-72). Increased tumor invasiveness was ob-
served in response to hypoxia caused by anti-angiogenic therapy, causing 
tumor cells to migrate into the surrounding tissue in order to get access to 
blood vessels (28, 53, 73, 74). The most concerning adverse affect of angio-
genesis inhibition is probably an increased incidence of metastasis, which 
has been observed in experimental tumor models (74-76), and occasionally 
in the clinic (53, 77). Singh et al. suggested that the risk for a therapy-
induced increase in metastasis might be higher for TKIs in comparison to 
VEGF-inhibition, as TKIs target more than one pathway (76). 

While anti-angiogenic treatment has made an important contribution to 
improved treatment outcomes for some tumor patients, it has not become the 
universally effective cancer treatment as it was initially hoped to be. Intense 
research focuses on finding predictive biomarkers for treatment efficacy, as 
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patient responses are highly variable (78, 79). Further investigations are re-
quired to optimize therapy design for currently available drugs and identify 
other suitable targets in order to avoid resistance and relapse. The develop-
ment of an alternative treatment approach targeting the tumor vasculature 
has been subject of this thesis. 

The extracellular matrix of tumors 
The ECM is a network of cross-linked proteins, which surrounds the cells of 
the tissues. It consists of fiber forming proteins, such as collagens, laminin 
and fibronectin, as well as of hyaluronic acid and proteoglycans. The ECM 
functions as a supportive network sustaining tissue shape and homeostasis. 
Furthermore it provides guidance for cell migration and proliferation during 
physiological tissue remodeling, such as wound healing. Cells are in contact 
with the ECM via transmembrane receptors, such as integrins. Through pro-
teoglycans the ECM binds a number of growth factors and cytokines, which 
can be released upon degradation (24, 80, 81). 

Remodeling of the extracellular matrix 
In tumors the ECM undergoes constant remodeling and displays alterations, 
which usually favor tumor cell proliferation and migration, and eventually 
assist metastasis (3, 4). To enable growth of the tumor as well as new blood 
vessels, the ECM has to be degraded and resynthesized to provide space for 
the growing tumor and angiogenic blood vessels, as well as signals and 
guidance for migration of tumor and endothelial cells. The degradation of 
the existing matrix is carried out by proteinases, such as MMPs. While tu-
mor cells are frequently able to secrete MMPs, the major contributors to 
MMP expression are stromal cells, such as fibroblasts and inflammatory 
cells (82). During the degradation process ECM-sequestered growth factors 
and cytokines become soluble and activated. Among these are VEGF-A, 
FGF-2, insulin growth factor (IGF), interferon-γ (IFN-γ) and TGF-β, which 
act as survival factors or chemoattractants for stromal as well as tumor cells 
(4, 81, 83). Another consequence of ECM remodeling is the alternative 
splicing of the matrix proteins fibronectin and tenascin-C. These ECM mole-
cules have been shown to contain additional protein domains under condi-
tions of angiogenesis (84-87). 

The extra domain-A and B of fibronectin 
Fibronectin is a glycoprotein of the ECM, which in its functional form exists 
as a dimer. Each fibronectin monomer consists of three types of homologous 
repeating domains. Two of its domains, the extra domain-A and B (ED-A 
and ED-B), and its type III connecting segment (IIICS element or variable 
region) undergo alternative splicing (Figure 3) (86, 87).  
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Figure 3. Schematic illustration of a fibronectin monomer. Each fibronectin mono-
mer consists of three types of homologous repeating domains: type I (hexagons), 
type II (rectangles) and type III (ovals). The alternatively spliced extra domain-A 
and B (ED-A and ED-B) and the type III connecting segment (IIICS) are indicated.  

This gives rise to twenty fibronectin isoforms in humans, and twelve in mice 
and rats. Interactions of cells and fibronectin are mediated via integrins, with 
integrin α5β1 being the key cell surface receptor (86, 87). Fibronectin is 
essential for vascular development and its absence is embryonically lethal 
(88). A soluble form of fibronectin, which lacks ED-A and ED-B, is secreted 
by hepatocytes into the circulation. Fibronectin of the ECM is mainly ex-
pressed by fibroblasts. In tumors fibronectin expression has been attributed 
to fibroblasts of the stroma and tumor cells (87). It has been demonstrated 
that especially tumor cells, which underwent epithelial-mesenchymal transi-
tion (EMT) and acquired a more invasive phenotype, express fibronectin, 
underlining the importance of this molecule for cell adhesion and migration 
(83).  

Both ED-A and ED-B are incorporated into the fibronectin molecule by 
alternative splicing (89-91), which is regulated by TGF-β (92, 93). While 
ED-A (90 aa) shows a sequence identity of 98% between human and mouse, 
ED-B (91 aa) is completely conserved in various species, such as human, 
mouse, rat, rabbit and dog (86, 94). This high degree of conservation sug-
gests a significant function for either of the two domains. A combined 
knockout of both ED-A and ED-B resulted in embryonic lethality, depending 
on the genetic background of the mice, but at least in severe cardiovascular 
defects (95). Physiological expression of these domains occurs during em-
bryogenesis, where ED-A and ED-B are detectable around embryonic blood 
vessels (96, 97). Otherwise their expression in normal tissues is rare: expres-
sion of ED-B was confirmed in the female reproductive tract (98) and in 
cartilage (98, 99). Both domains are transiently expressed during wound 
healing (100) (96), but differences in proportion (96) and time course of 
expression (101) suggest distinct roles for each domain. A number of patho-
logic conditions are associated with re-expression of ED-A and ED-B. Ele-
vated ED-A expression in joints has been shown during rheumatoid arthritis 
(102). Furthermore, expression of ED-A and ED-B is abundant in many 
types of solid tumors, such as glioblastoma multiforme, breast carcinoma 
and colorectal cancer (103-110). 

ED-A contains binding sites for the integrins α4β1 and α9β1, and in vitro 
experiments demonstrated a role of ED-A for cell adhesion and matrix as-
sembly (111, 112). ED-A is a ligand for Toll-like receptor-4 (TLR-4), which 
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suggests an inflammatory role for this domain. In fact, TLR-4 stimulation by 
ED-A induces nuclear factor κB (NF-κB) activation (113). Furthermore, ED-
A activation of TLR-4 has been demonstrated to stimulate cytokine produc-
tion in mast cells (114), neutrophil migration (115) and DC maturation 
(116). Exposure of chondrocytes and synovial cells to ED-A activates MMP 
expression through an IL-1 dependent, autocrine mechanism (Saito, 1999). 
A xenograft study with colorectal cancer cells suggested a role for ED-A 
during tumor lymphangiogenesis through an ED-A-mediated increase in 
VEGF-C expression (117). ED-A was found to sustain the stem cell capacity 
of CD133+/CD44+ cells in a xenograft model of colorectal cancer (118). Ou 
et al. and Sun et al. recently demonstrated that ED-A has the capacity to 
induce EMT of colorectal carcinoma cells and lung cancer cells through 
α9β1 integrin interaction (119, 120). Muro et al. found that absence of ED-A 
expression impaired healing of skin wounds, while Tan et al. found no de-
fects in wound healing in mice lacking ED-A (121, 122). Knockout of ED-A 
in mice revealed alterations in motor-coordination and a reduction in 
lifespan (121, 123). 

The role of ED-B has been less clear. Knockout studies have shown that 
mice lacking the ED-B exon develop normally, are fertile (124) and display 
no alterations of phenotype in different pathological settings (125). Howev-
er, embryonic fibroblasts lacking ED-B grew more slowly in vitro and 
formed shorter and thinner fibrils, although these effects were relatively mild 
(124). A role for ED-B in stabilization of fibronectin-dimer formation has 
been demonstrated (126). ED-B-fibronectin expressed and cell surface-
bound by T cells was shown to provide co-stimulatory signals for T cell 
proliferation (127). No binding sites for other molecules of the ECM or re-
ceptors have been identified in the ED-B sequence or on sites in fibronectin 
unmasked by insertion of the domain. ED-B expression has been assigned to 
wound macrophages, cartilage, endothelial cells and tumor cells (98, 128, 
129). Expression of ED-B by tumor cells has been shown to be downregulat-
ed upon inhibition of VEGF or VEGF-R-2 (130). 

As ED-A and ED-B show a high selectivity for the tumor vasculature, 
they have been described tumor vascular antigens or targets (94). A high 
affinity antibody against ED- B, L19, has been developed using the phage 
display technique (131, 132) and used successfully for tumor detection and 
treatment in mice (133-136). Radiolabelled L19-derivates have shown prom-
ising results in an imaging application (109) and phase I and II clinical trials 
(110, 137, 138). Furthermore, IL-2 and tumor necrosis factor (TNF)-fused 
derivatives of L19 showed therapeutic efficacy in phase I and II clinical 
studies (139-141). Similarly to L19, an ED-A targeting antibody, F8, was 
established. Biodistribution tests and experimental tumor studies have con-
firmed selectivity and therapeutic efficacy of IL-2 fused F8 (142-145). 
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Interactions of tumors and the immune system  
The role of tumor immunosurveillance, a physiological program of the im-
mune system to prevent expansion of mutated cell clones, has been subject 
of intense research since it was first proposed by Burnet in 1970 (146). Nu-
merous reports from preclinical studies and data from immunosuppressed 
transplant patients have confirmed that an impaired immune system leads to 
a higher incidence of non-virus induced cancers (147, 148). Furthermore, 
increased numbers of T cells, specifically CD8+ CTLs, in tumors have been 
linked to increased patient survival (9, 147). However, considering the prev-
alence of cancer, the immune system must frequently fail to prevent tumor 
development. The reason for this is probably multifaceted. Most of the anti-
gens expressed by the tumor are essentially self-antigens, and are protected 
from immune attack by mechanisms of self-tolerance. Additionally, tumors 
are able to employ various strategies to escape recognition by the immune 
system. This involves various types of immune cells found in the tumor mi-
croenvironment, which have been shown to exert immunosuppressive ef-
fects. 

Self-tolerance 
Self-tolerance can be defined as an unresponsiveness to the body's own anti-
gens and is an essential property of the immune system (149). The dramatic 
results of a loss of tolerance against self-antigens can be seen in patients 
suffering from autoimmune diseases, who frequently experience destruction 
of whole tissues by their own immune system. Tolerance of the antigen-
specific cells of the immune system, T and B lymphocytes, is maintained by 
two fundamental mechanisms: central tolerance and peripheral tolerance. 

Central tolerance of T cells is controlled in the thymus during embryonic 
development and post-natal life (149, 150). The specificity of the T cell re-
ceptor (TCR) is generated through V(D)J recombination of variable (V), 
diversity (D) and joining (J) gene segments of the TCR α and β chain. In the 
thymus self-antigens are presented by thymic epithelial cells to maturing T 
cells through ubiquitous expression of peripheral antigens. This process is to 
a large extent controlled by the transcription factor AIRE. How AIRE con-
trols the expression of antigens from virtually all tissues in the thymus has 
not been completely elucidated. However, mutation of AIRE is connected to 
severe autoimmune disorder, which demonstrates its absolute necessity for 
the immune tolerance (149-151). Self-antigens are presented to T cells on 
major histocompatibility complex (MHC) class I and II molecules. High-
avidity recognition of self-antigen/MHC ligands by the TCR leads to apop-
tosis of the respective T cell, a process termed negative selection. Some of 
the self-reactive CD4+ T cells differentiate into regulatory T cells (Tregs) 
through a complex process, for which the expression of the transcription 
factor forkhead box P3 (FoxP3) is essential (149). Peripheral T cell tolerance 
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prevents activation of T cells recognizing self-antigens and results in func-
tional unresponsiveness, termed anergy. This is usually the result of a lack of 
co-stimulatory signals, such as interaction of CD28 on the surface of T cells 
and B7 on antigen-presenting cells (APCs), and a specific cytokine-milieu. 
Furthermore, Tregs are part of the peripheral T cell tolerance (149, 150). 

Central B cell tolerance occurs in the bone marrow, where the B cells de-
velop. New B cells with different specificity are continuously formed due to 
VDJ recombination of the immunoglobulin (Ig) heavy chain genes, and VJ 
recombination of the light chain genes. When the IgM molecule of the B cell 
receptor (BCR) of an immature B cell binds with high avidity to a mem-
brane/cell surface-bound self-antigen, the Ig undergoes a process called re-
ceptor editing. This allows the change of the light chain specificity of the Ig 
through new gene rearrangement (152-154). Failed receptor editing induces 
apoptosis upon persistent auto-reactivity. However, relatively high numbers 
of mature B cells with weak avidity for self-antigens not present in the bone 
marrow are found in the circulation (153, 155). Outside the bone marrow, 
inside the peripheral lymphoid tissues, self-reactive B cells are controlled by 
peripheral tolerance mechanisms. B cells recognizing peripheral self-
antigens with high avidity will be deleted by apoptosis. B cells showing low 
avidity for a self-antigen fail to be activated by helper T cells, as no T cell 
with the same specificity is available due to negative selection of self-
reactive T cells in the thymus. These B cells will become anergic. During 
affinity maturation against T cell-dependent antigens, which occurs in the 
germinal centers of secondary lymphoid organs, B cells might acquire speci-
ficity for a self-antigen through somatic hypermutation. These B cells will 
not receive further T cell help and become anergic (149, 151, 153). 

Tumor antigens 
Tumors present antigens on their cell surface that theoretically can be recog-
nized by the immune system. These can be divided into two groups: Tumor-
specific antigens, which are derived from proteins that are exclusively ex-
pressed by tumor cells, and tumor-associated, which are antigens derived 
from proteins that can also be found on normal cells, but that are abnormally 
expressed in tumors (148, 149, 156, 157).  

Tumors caused by oncogenic viruses present foreign antigens derived 
from the virus, which can induce specific CTL responses and antibody re-
sponses mediated by B cells. Non-virus induced tumors, as most types of 
tumors are, can be identified as “abnormal” via presentation of products of 
mutated genes. A change in the amino acid sequence of a protein, caused e.g. 
by a point mutation, can induce a T cell response, if the change affects a 
peptide that is presented on MHC (157). Furthermore, oncogenic fusion pro-
teins formed by chromosomal translocations, such as Bcr-Abl, can generate 
new antigenic peptides (156, 157), which are foreign to the immune system. 
Interestingly, tumors commonly display changes in glycosylation of surface 
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proteins (158, 159). Aberrant activity or expression of glycosyltransferases 
leads to incomplete glycan synthesis or leaves glycosylation sites unoccu-
pied (158). This creates immunogenic epitopes, despite an unchanged amino 
acid sequence (158). A number of genes, which are normally restricted to 
male germ cells, are expressed in a range of tumors, which give rise to the so 
called cancer/testis antigens. As germ cells do not express MHC class I, the-
se antigens are normally not presented to T cells (156, 157). Antibody and T 
cell responses against cancer/testis antigens have been detected in patients 
with certain tumors (160, 161). However, these antigens are not universally 
expressed in all tumors, or are only weakly immunogenic. Additionally, 
possible immune responses might be repressed by the tumor.  

Tumors can evade immunosurveillance 
Tumor cells have developed effective strategies to avoid recognition by the 
immune system and resist killing mechanisms (147, 148). Therefore immune 
evasion has been added as one of the “tumor enabling” hallmarks of cancer 
(1). The most effective endogenously occurring anti-tumor response is be-
lieved to be mediated by CD8+ CTLs and natural killer (NK) cells. High 
numbers of these cell types in tumors have been correlated with favorable 
prognosis (9, 162). CTLs are able to detect altered proteins via MHC class I-
presentation and directly kill tumor cells by release of IFN-γ, granzyme and 
perforin (163, 164). To avoid recognition, tumor cells are able to downregu-
late the expression of proteins that are not essential for maintaining their 
transformed state, but might attract CTLs, by promoter regulation. Further-
more, tumor cells can decrease synthesis of MHC class I molecules or ex-
pression of other proteins involved in antigen processing, which prevents 
activation of CTLs (147, 156). Tumor cells, which have downregulated 
MHC class I molecules are vulnerable to NK cell-toxicity, mediated by 
granzyme and perforin, as these specifically recognize cells with missing 
MHC class I expression. Additionally, NK cell express receptors that sense 
stress-induced self-ligands. A receptor with major importance for tumor 
immunosurveillance is NKG2D. This receptor recognizes the NKG2D ligand 
(NKG2DL), which is expressed by cells in response to DNA damage or vi-
rus infection. A major mechanism of escape from NK cells is the secretion 
of soluble NKG2DL and ligands of other NK cell activating receptors by 
tumor cells (162, 165). 

Another mechanism employed by tumors to prevent destruction by CTLs 
is attraction of CD4+ CD25+ FoxP3+ Tregs by secreting the chemoattractant 
CCL22, which binds to the CCR4 receptor on Tregs. Tregs are mediators of 
immunological tolerance and exert their inhibitory function via receptor-
ligand-based mechanisms and various effector molecules. Among these IL-
10 and TGF-β were found to play an important role in immunosuppression 
during tumorigenesis (166, 167). In addition to suppressing CTLs, Tregs also 
inhibit the function of helper T cells (Ths), and APCs (166). Helper T cells 
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are important activators of antibody production by B cells (adaptive immuni-
ty) and macrophages (innate immune system). High numbers of Tregs have 
been found in various types of tumors and were correlated with poor progno-
sis (168). Tumor cells also acquire certain traits that enable them to prevent 
an immune attack without relying on help from the Tregs. One example is 
the release of TGF-β and IL-10 by tumor cells. Expression of the enzyme 
indoleamine-2,3-dioxygenase (IDO) by tumor cells leads to inhibition of T 
cell activation via degradation of tryptophan to catabolites that have immu-
nosuppressive functions on T cells. Normally, interaction of Tregs via their 
surface molecule CTLA-4 and B7 on APCs leads to expression of IDO by 
the APCs and is important for maternal tolerance during pregnancy (148, 
169, 170). Again, exploitation of physiological mechanisms is a successful 
tactic for tumors to perpetuate their progression. 

Paradoxical immune cells 
Growth factors and chemokines released during degradation of the ECM 
during angiogenesis or secreted by the tumor attract cell types of the innate 
immune system and adaptive immune system. Abundantly found in the tu-
mor stroma are macrophages, which are an example of the paradoxical inter-
action of immune cells and tumors. They are recruited as monocytes from 
the circulation and differentiate into macrophages when they enter the tissue. 
Chemokines important for macrophage attraction are CCL2, CSF-1 and the 
cytokine CXCL12, which are released by tumor cells and stromal cells (171-
173). While macrophages, as part of the innate immune system, can be effec-
tive protagonists in anti-tumor immunity, high numbers of macrophages in 
tumors have been related to poor prognosis (172-174) and several mecha-
nisms of tumor promotion by tumor-associated macrophages (TAMs) have 
been identified. TAMs are often polarized towards an M2-phenotype, which 
is characterized by expression of various growth factors and enzymes that 
aid tumor progression. Through release of VEGF-A, PlGF and MMPs, espe-
cially MMP-9, M2-TAMs are important contributors to tumor angiogenesis 
(171, 172). Macrophages with the M2-phenotype are also termed "alterna-
tively activated" (through TGF-β and IL-10) and display an immunosuppres-
sive phenotype. The "classically activated" M1-macrophages (through TLR 
stimulation by LPS and IFN-γ) have a pro-inflammatory phenotype and are 
able to exert anti-tumor activity (173, 175). A similar polarization towards a 
tumor-inhibiting and tumor-promoting phenotype has also been reported for 
neutrophils, thus termed N1 and N2 neutrophils (176, 177). 

Galectin-1 and its role in tumors 
Galectin-1 is one of fifteen members of the family of β-galactoside-binding 
proteins. These proteins share an affinity for β-galactosides of glycoproteins 
or glycolipids and contain at least one conserved carbohydrate recognition 
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domain (CRD) (178). The CRD, which consists of approximately 130 amino 
acids, represents the major functional domain of the galectins and enables 
binding to N- and O-linked glycans. Furthermore, in galectins containing 
one CRD, this domains allows dimerization (179, 180).  

The galectin-1 monomer has a molecular weight of 14 kDa and contains a 
CRD of 135 amino acids. Galectin-1 forms homodimers, which prevents loss 
of activity by cysteine oxidation in the monomer (180). Galectin-1 can be 
found intracellularly (181) and in the extracellular space (182), despite the 
lack of a classical signal peptide (183). The slightly higher molecular weight 
of secreted galectin-1 (15 kDa) indicates that the protein undergoes post-
translational modification, possibly facilitating secretion (184). Furthermore, 
it has been shown that the presence of β-galactoside containing cell surface 
receptors is required for secretion of galectin-1 (185). However, the exact 
mechanism of galectin-1 secretion remains to be elucidated. Galectin-1 
shows a variety of physiological functions and is implicated in neural stem 
cell growth, hematopoietic differentiation and muscle differentiation (180). 
Furthermore, it plays an important role in endothelial cell function and angi-
ogenesis (179).  

Galectin-1 is highly expressed in a number of tumors, such as glioma, 
breast, ovarian, lung, colon and prostate carcinomas (180, 186-191). Intra-
cellular galectin-1 of tumor cells is involved in oncogenic signaling through 
enhancing H-Ras binding to the membrane. Interactions of galectin-1 with 
intracellular proteins are carbohydrate-independent (180). Elevated serum 
levels of galectin-1 in colorectal or head and neck squamous cell carcinoma 
patients have been associated with poor prognosis (192, 193), and the degree 
of invasiveness correlates with levels of galectin-1 expression in several 
solid tumor types (180).   

Galectin-1 expression is markedly increased in tumor vessels compared to 
normal vasculature (194, 195). High expression of galectin-1 has been de-
tected in the endothelium of experimental tumors and human cancers (191, 
196-201). While in endothelial cells of healthy tissues galectin-1 is generally 
located inside the cell, with only minimal extracellular secretion, galectin-1 
is translocated to the endothelial cell surface in the tumor vasculature (195). 
On the cell surface galectin-1 binds to glycoproteins and glycolipids, and is 
able to interact with ECM proteins, such as fibronectin, laminin, vitronectin 
and thrombospondin, and integrins (180), suggesting a role in cell adhesion 
and migration. Indeed, galectin-1 has been shown to modulate migration of 
endothelial cells (200, 202), and also tumor cells (203-205). Galectin-1 has 
been described as an early marker of endothelial activation (195, 198), which 
describes the phenotype of endothelial cells stimulated by pro-angiogenic 
factors (15). These findings imply an important role for galectin-1 in tumor 
progression and tumor angiogenesis.  

Evidence for a crucial role of galectin-1 in tumor angiogenesis comes 
from a number of studies showing that lack or inhibition of galectin-1 im-
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pairs tumor growth. Mice lacking galectin-1 showed a reduced tumor vol-
ume due to impaired angiogenesis in F9 teratocarcinoma (198) and silencing 
of galectin-1 impaired tumor growth and decreased the microvascular densi-
ty in Kaposi’s sarcoma xenografts (206). Similar results were observed upon 
galectin-1 blockade with a monoclonal antibody, reducing microvessel den-
sity in a prostate cancer model (191). Croci et al. observed vessel normaliza-
tion in tumors upon treatment with a galectin-1 specific monoclonal anti-
body (67). Galectin-1 has been demonstrated to act as a pro-angiogenic 
growth factor by Thijssen et al., who showed that tumor-secreted galectin-1 
was taken up by endothelial cells lacking galectin-1 expression and stimulat-
ed endothelial cell proliferation and migration in vitro (202). Furthermore, 
Croci et al. demonstrated that galectin-1 has the capacity to mediate evasion 
from anti-VEGF therapy by interacting with N-glycans on VEGFR-2, and 
thereby activating VEGF-like signaling (67). Galectin-1 has also been shown 
to promote VEGFR-2 signaling via its interaction with neuropilin-1, a co-
receptor of VEGFR-2 (200).   

In addition to its pro-angiogenic role, galectin-1 is a mediator of tumor 
immune evasion. Galectin-1 expressed on the tumor cell surface induces 
apoptosis of T cells in a contact-dependent manner in vitro (207). Banh et al. 
demonstrated that presence of galectin-1 in tumors promotes apoptosis of 
intratumoral T cells, and furthermore suggest that its immunosuppressive 
role might surpass a pro-angiogenic role in certain types of tumors (208). 
Moreover, galectin-1-expressing endothelial cells are able to induce apopto-
sis of adhering T cells (209) and inhibit T cell transmigration (199). Galec-
tin-1 regulates effector T cell polarization and survival (210). Furthermore, it 
has been shown that galectin-1 induces IL-10-producing immunosuppressive 
T cells through stimulation of a tolerogenic phenotype of dendritic cells 
(DCs) (211) and direct interaction with CD45 on T cells (212). Similarly, 
neuroblastoma-derived galectin-1 was shown to suppress DC maturation and 
induce T cell apoptosis (213). Recently, it was demonstrated that glioma 
overexpression of galectin-1 suppressed NK cell activity (214). 

As silencing of galectin-1 in mammary tumor cells reduced the number of 
Tregs in the tumor, lymph nodes and at the metastatic site, and decreased 
metastasis, galectin-1 was suggested to promote metastasis by inhibiting 
immunosurveillance (187). In addition, galectin-1 was demonstrated to ac-
cumulate on the tumor cell surface at the site of endothelial cell interaction 
(215) and augment tumor cell adhesion to the endothelium (194), which 
might promote tumor cell dissemination. Enhanced invasiveness of galectin-
1 expressing oral squamous cell carcinoma has been attributed to an increase 
in MMP-9 and -2 expression, and invasive capacity of tumor cells was re-
duced upon galectin-1 silencing (205). 

In summary, galectin-1 displays a specific increase in expression and se-
cretion under conditions of tumor angiogenesis and is involved in several 
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fundamental processes of tumor progression. These characteristics suggest 
galectin-1 as a highly attractive target for tumor therapy. 

Development of a therapeutic cancer vaccine 
Immunotherapies and monoclonal antibody-based therapies 
The concept of immunosurveillance has encouraged researchers to investi-
gate treatment strategies, which are able to re-establish an immune attack 
against the tumor by the patient's own immune system, and approaches of 
passive immunization against molecules associated with tumors. Dendritic 
cell vaccines are based on isolation of DCs from a patient and subsequent ex 
vivo loading with tumor-associated antigens, to enhance activation of tumor 
targeting T cells upon reintroduction of the DCs into the body. The cell vac-
cine Sipuleucel-T (Provenge) is approved for treatment of prostate cancer 
(216-218). Other approaches of active immunization are DNA or protein 
vaccines. Examples of passive immunization-approaches against tumor anti-
gens are adoptive T cell transfer (217, 219) or administration of monoclonal 
antibodies.  

Monoclonal antibodies have become an important group of cancer thera-
peutics for a number of solid tumors over the last decade (217, 220, 221). 
Evidence accumulates that not only functional inhibition of the target, but 
also stimulation of an immune response via antibody-depended cell-
mediated cytotoxicity contributes to the tumor-targeting activity (ADCC) 
(217, 221, 222). However, there are some concerns connected to monoclonal 
antibody-based therapies. 

When an antibody of the desired specificity has been raised in a non-
human system, such as mouse, a humoral response against this foreign pro-
tein will be formed upon administration into humans and the non-human 
antibody will be removed by the immune system. To minimize an immune 
reaction, most available monoclonal antibodies are humanized. This is 
achieved by fusing the antigen-binding complementary determining regions 
(CDR) of the variable region of the non-human-derived antibody to the con-
stant regions and residues of the variable regions of a human antibody, usu-
ally by genetic engineering (223, 224). While this decreases the risk of an 
immune response to the antibody in human, immunogenic epitopes are left 
or generated by this method. For example, novel epitopes might be created at 
the fusion sites (223). Additionally, differences in post-translational modifi-
cations, which depend on present amino acids and the expression system, 
might elicit an immune response (223). The constant regions of endogenous 
antibodies show a high degree of polymorphisms (allotypy) between indi-
viduals. Monoclonal humanized antibodies might therefore cause an anti-
allotype response in the treated individual (225). As monoclonal antibodies 
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have a limited half-life, ranging between days and one month (224), they 
require frequent administration. For example, the half-life of bevacizumab is 
17-21 days and it has to be given every 14 days (52). 

Induction of an endogenous immune response by vaccination can circum-
vent the problems described for monoclonal antibodies. Endogenous anti-
bodies are induced in each vaccinated individual and are not immunogenic. 
Furthermore, the duration of an immune response exceeds the half-life of 
monoclonal antibodies by several months (226). As production of monoclo-
nal antibodies is cost-intensive, which is reflected in the high costs of mono-
clonal antibody-based drugs, therapeutic vaccination can offer a cost-
efficient alternative. 

Overcoming self-tolerance by vaccination 
Vaccination technique 
Since the target of a cancer vaccine will most likely be a self-antigen, self-
tolerance of the immune system must be circumvented. To successfully 
break tolerance, a potent vaccination technique and a suitable adjuvant, an 
immunostimulatory compound, are required. The vaccination technique de-
veloped in our lab is based on a fusion protein, comprised of a foreign and a 
self-part. The foreign part can for example be a bacterial protein. It is of 
advantage if it facilitates soluble expression of the fusion protein in bacteria. 
The self-part represents the target antigen and might either contain the com-
plete or parts of the amino acid sequence, depending on the size of the self-
antigen. It should be sufficiently long to give several possibilities for presen-
tation on MHC class II. 

The fusion protein (non-self + self) will be injected subcutaneously to-
gether with the adjuvant and is taken up by APCs, such as macrophages or 
DCs, in the tissue (Figure 4). These internalize and process the fusion pro-
tein and present peptides derived from the non-self and self-part via MHC 
class II on their surface. The non-self peptides are recognized by the TCR on 
Type 2 helper T cells (Th2), which become activated. Self-peptides are not 
recognized by T cells, due to the central T cell tolerance mechanisms. How-
ever, self-reactive B cells are present in the circulation and are able to recog-
nize the self-part of the fusion protein with their BCR. These auto-reactive B 
cells will take up the fusion protein and present peptides derived from both 
the self- and the non-self part on MHC class II. Because Th2-cells are acti-
vated by peptides from the foreign part of the fusion protein, the auto-
reactive B cells will receive a stimulatory signal from these helper T cells. 
This occurs through the interaction of the TCR and peptides of the foreign 
part of the fusion protein presented on MHC class II on the auto-reactive B 
cells, which are the same peptides that activated the helper T cells (previous-
ly presented by the APCs). The activated B cells will undergo clonal expan-
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sion and differentiate into plasma cells, which produce self-antibodies spe-
cific for the target antigen (227).  

 
Figure 4. The vaccination technique. Antigen-presenting cell (APC), major histo-
compatibility complex (MHC), T cell receptor (TCR), B cell receptor (BCR).  

A suitable adjuvant for application in humans 
An adjuvant (from Latin, adiuvare: to aid) is added to a vaccine to stimulate 
and potentiate the immune response against an antigen. It thereby acts in a 
non-specific manner, meaning that its contents have an "irritating" effect and 
cause local inflammation, which attracts APCs (228). Adjuvants often con-
tain an oil phase, which is mixed with the antigen-containing water-phase, 
forming a water-in-oil emulsion. This results in formation of water-globules 
in the oil phase, which contain the antigen and allows for a slow release and 
prolonged antigen-presentation in the tissue (229). At the moment Freund's 
adjuvant is the "golden standard" that is applied in most preclinical studies. 
It consists of mineral oil and heat-killed Mycobacterium tuberculosis, and is 
then called "Freund's complete adjuvant". "Freund's incomplete" contains the 
mineral oil-base only. However, due to its toxicity it is not approved for the 
use in humans. Nowadays milder adjuvants have been developed, some of 
them containing squalene, a biodegradable hydrocarbon, in the oil-phase 
(228, 230).  

As demonstrated by Johansson et al. and Ringvall et al. (231, 232), vac-
cination with a self/non-self fusion protein in presence of a weak adjuvant is 
not enough to induce a detectable antibody response against the self-antigen. 
To obtain B cell activation, both the fusion protein and a stimulation of the 
immune response by a potent adjuvant are required. While adjuvants used 
for immunization against foreign antigens, such as bacteria or viruses, do not 
require strong additional stimulators, this seems essential for self-antigens. 
Additional stimulation of the immune response can for example be achieved 
by compounds that are recognized by the pattern recognition receptors 
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(PRRs) of immune cells, such as Toll-like receptors (TLRs) or nucleotide-
binding oligomerization domain receptors (NOD receptors). 

TLRs are a class of PRRs that recognizes various molecules of microbial 
origin. TLR-9 is activated by endocytosed DNA that is rich in unmethylated 
CG-nucleotides, which are a characteristic of bacterial DNA (233). The re-
ceptor is expressed intracellularly in the endosomal compartment of mainly 
plasmacytoid DCs and B cells (234, 235). Activation of TLR-9 stimulates a 
response of the innate immune system and type I IFN production, which in 
turn favors a type 1 helper T cell response (236). Simultaneous activation of 
B cells by helper T cells together with stimulation of TLR-9 and the BCR 
results in enhanced B cells proliferation and differentiation into antibody-
secreting plasma cells (237, 238). It has been shown that auto-reactive B 
cells become anergic if TLR-9 activation through CpG DNA occurs in ab-
sence of helper T cell stimulation (239). 

Over the last years synthetic oligodeoxynucleotides (ODNs) containing 
unmethylated CpG-motifs (CpG ODNs) were shown to be agents able to 
induce strong immune responses and were used in various applications, 
among them vaccines (234, 236). CpG ODNs, which are approximately 18-
25 bases in length, act through TLR-9 (233) and are divided into three clas-
ses: A, B and C. Class-A CpG ODNs strongly stimulate IFN-α production by 
plasmacytoid DCs, activate NK cells, but have only weak effects on B cell 
proliferation. IFN-α is a cytokine that stimulates B cells to differentiate into 
antibody-producing plasma cells, and myeloid DCs to release B cell activat-
ing factor (BAFF), which is crucial for survival of B cells (240). Class-B 
CpG ODNs are strong stimulators of B cell proliferation, but only weakly 
induce IFN-α secretion (235, 236). Furthermore, class-B CpG ODN possess 
a phosphorothioate backbone, which increases their half-life due to re-
sistance to nuclease degradation (241). Responses towards C-class CpG 
ODNs are a combination of the responses towards classes A and B. It has not 
yet been completely elucidated, how the different CpG ODN classes are able 
to induce such diverse effects via the same receptor (235, 236). Importantly, 
the optimal CpG motifs for TLR-9 activation differ between species (235). 

The immune response elicited by the vaccine  
The polyclonal antibodies induced through vaccination with the fusion pro-
tein will recognize and bind to their target antigen. This will lead to activa-
tion of the classical pathway of the complement system. The complement 
system is an effector mechanism of the immune system and exerts its func-
tion via three different pathways: the classical, the alternative and the lectin-
pathway. The classical pathway is the antibody-dependent pathway and is 
relevant for the immune response induced by the vaccination. The comple-
ment system comprises more than 20 plasma proteins, produced and secreted 
by the hepatocytes of the liver into the circulation. The cascades of protein 
cleavage and protein interaction of the three major pathways of complement 
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activation lead to formation of the membrane attack complex (MAC), which 
creates pores in the cell wall of microbes and disrupts pathogenic cells. Dur-
ing the proteolytic cleavage of complement proteins, chemoattractants (pro-
teolytic complement fragments 3a and 5a) are released. These attract phago-
cytosing immune cells, such as neutrophils and macrophages. The comple-
ment fragment 3b becomes covalently bound to the surface of cells, and 
promotes uptake by phagocytes through interaction with the C3b receptor on 
their surface. Formed immune complexes are taken up by phagocytes 
through interaction of the Fc regions of the antibodies and Fc receptors on 
the phagocyte surface. Soluble antigens, such as infected cells, bacteria or 
soluble proteins, are phagocytosed in this way (242). However, if antigens 
are not soluble but tissue-bound, phagocytes are not able to engulf these. 
This leads to induction of a process called "frustrated phagocytosis", which 
is associated with the release of lysosome contents by the phagocytes into 
the environment (243). The lysosome contents include different enzymes, 
such as lysozyme, collagenase and elastase, as well as reactive oxygen spe-
cies, which will cause tissue degradation. 

Experimental tumor models for studying a cancer vaccine 
Mouse models of cancer have been essential for studying the role of the tu-
mor microenvironment and different stages of tumor progression, including 
metastasis to distant organs. Xenograft models in immunocompromised mice 
are based on transplantation of tissue from one species to another, and are 
used to grow tumors derived from human tumor tissue. Tumor cells can be 
transplanted subcutaneously, which simplifies monitoring of tumor growth, 
or orthotopically, into the tumor-specific tissue of origin. Examples of im-
munodeficient mouse strains are nude mice, which lack mature T cells and 
show deficiencies in T cell-mediated responses, and SCID (severe combined 
immunodeficiency) mice, which display an absence of functional B and T 
cells. While these models allow studying the response of actual human tu-
mor cells to treatment, it is not possible to study therapeutic approaches re-
quiring a functional host immune system, such as vaccination, in these mice.  

Immunocompetent models include syngeneic and genetically engineered 
mouse models (GEMM). Syngeneic tumor models, where the donor of the 
tumor cells is genetically identical or immunologically compatible to the 
host, mimic the interactions of tumor cells and the microenvironment includ-
ing immune cells to a certain degree. Also in syngeneic models tumor cells 
are injected either subcutaneously or at the respective orthotopic site. Certain 
variants of a number of tumor cell lines are known to form spontaneous me-
tastases upon subcutaneous injection, such as Lewis Lung Carcinoma (LLC) 
and the B16 melanoma, both derived from wild-type C57BL/6 mice (244). 
The major disadvantage of subcutaneous syngeneic tumor models is their 
fast growth, with tumors reaching the maximum allowed size according to 
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animal welfare guidelines within four weeks or less. As induction of a strong 
antibody response requires up to three weeks or more, mice have to be im-
munized in advance. This allows studying preventive effects of a cancer 
vaccine, but it is not possible to address vaccination in a therapeutic setting 
in these models.  

GEMMs resemble the multistage progression of tumors, including metas-
tasis, and are considered to represent the composition of tumors most accu-
rately (245). These models of spontaneous tumorigenesis have been indis-
pensible for understanding the complexity of tumorigenesis and are a useful 
tool for predicting the effectiveness of therapeutic agents in the clinic (246). 
The predictive value of mouse tumor models might vary for different treat-
ment approaches (245, 247, 248), and is depending on drug dosing and defi-
nition of clinically relevant endpoints for preclinical models (245).  

Due to the presence of a functioning immune system and their relatively 
slow growth, GEMMs are better models for testing the therapeutic effect of a 
cancer vaccine on established tumors and metastasis. The MMTV-PyMT 
model is a well-characterized model of multistage mammary tumorigenesis, 
which shows a high incidence of spontaneous pulmonary metastasis (249). 
In this model the polyomavirus middle T-antigen is expressed under the 
control of the mouse mammary tumor virus promoter (250). The long termi-
nal repeat (LTR) of the MMTV promoter contains a hormone response ele-
ment and thereby ensures selective expression of the PyMT oncogene in the 
mammary epithelium (251, 252). The PyMT oncogene modulates several 
signaling pathways (e.g. Src family, Ras and PI3 kinase), which are also 
affected in human breast cancers (253). Therefore expression of the MMTV-
PyMT transgene will lead to formation of mammary adenocarcinomas (250). 
Tumor development in this model can be divided into four stages: hyperplas-
ia, adenoma, and early and late carcinoma (254). Hyperplasia is detectable in 
mammary tissue from between 4 to 6 weeks of age, which will progress to 
advanced pre-malignant lesions between 8 and 9 weeks of age. Malignant 
transition to early carcinomas occurs from week 8 up to week 12 of age, with 
tumor morphology similar to human ductal carcinoma in situ. From 10 
weeks of age tumors that have progressed to the advanced carcinoma stage 
(late carcinoma) can be found. While initially tumors form as a single focus 
on the main milk-collecting ducts connected to the nipples, secondary tumor 
foci develop in the distant ducts with increasing age of the mice. The expres-
sion of a number of markers in MMTV-PyMT tumors recapitulate the ex-
pression statuses observed in human tumors: While expression of steroid 
hormone receptors and β1-integrin is lost with advancing malignancy, ErbB2 
and cyclin D1 are overexpressed (254). 
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Present investigations 

Aims 
The aim of this thesis was to study the potential of vaccines directed against 
molecules associated with tumor angiogenesis to inhibit tumor growth, with 
the long-term objective to develop a therapeutic vaccine for treatment of 
cancer. In paper I we set out to examine whether a vaccine directed against 
the tumor vascular antigen ED-B of fibronectin was able to break tolerance 
and induce anti-ED-B antibodies. Furthermore, we wanted to study the ef-
fects of an immune response against ED-B on growth of subcutaneous tu-
mors. The objective of paper II was to compare and characterize the im-
mune response against ED-B in the presence of the squalene-based Monta-
nide ISA 720 combined with the CpG ODN 1826 (M720/CpG) or Freund’s 
adjuvant. The aim of paper III was to investigate the potential of a vaccine 
targeting ED-A of fibronectin to inhibit tumor growth and development of 
metastases in a therapeutic setting. In paper IV we aimed to study the effect 
of a vaccine directed against the pro-angiogenic and immunosuppressive 
protein galectin-1 on tumor growth.  

Paper I  

Vaccination against the extra domain-B of fibronectin as a novel tumor 
therapy 
To examine whether vaccination based on the fusion protein technique was 
able to break self-tolerance against ED-B, we designed and purified the re-
combinant protein TRX-EDB, consisting of the E.coli-derived protein thi-
oredoxin (TRX) fused to the amino acid sequence of ED-B. C57BL/6 mice 
were immunized with either TRX-EDB or vehicle control (PBS) together 
with Freund’s adjuvant, and boosted twice. Subsequently, T241 fibrosar-
coma cells were injected subcutaneously. The study was terminated three 
weeks after tumor cell inoculation and the tumors were dissected. Analysis 
of mouse sera with ELISA showed that nineteen out of 20 mice immunized 
with TRX-EDB developed antibodies against ED-B. We found that the tu-
mor volume was reduced by about 70% in mice carrying anti-EDB-
antibodies. To test the ability of the anti-ED-B antibodies to recognize native 
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ED-B in tissue, we incubated sections of grade III glioma tissue and normal 
brain with anti-ED-B serum. We obtained a strong staining with a vascular 
pattern in the glioma tissue, while no staining was visible in the sections of 
normal brain. T241 tumor sections were immunostained for CD31 and he-
matoxylin/eosin, and analyzed for necrosis and vascularization. Tumors 
from the ED-B vaccinated group showed larger areas of necrosis than the 
control group, but no difference in the extent of tumor vascularization was 
detected. However, ED-B immunized mice displayed an impaired function-
ality of the tumor vessels, as judged by increased amounts of extravasated 
fibrinogen, a measurement for vascular permeability. Electron microscopy 
revealed morphological changes of the tumor vasculature in mice carrying 
anti-ED-B antibodies and showed macrophages engulfing the endothelium. 
Furthermore, an increased number of Gr-1-positive neutrophils were detect-
ed in tumors from the ED-B-immunized group. As ED-B is transiently ex-
pressed during wound healing, we addressed possible side effects of the ED-
B immunization in a wound-healing assay. However, in mice immunized 
against ED-B no impairment of wound closure was observed. ED-B expres-
sion has also been reported in hyaline cartilage, but since cartilage is not 
vascularized the anti-ED-B antibodies are not able to reach this site. Still, 
ED-B immunized mice were examined for arthritis on a macroscopic and 
cellular level and showed no symptoms of arthritis.  

In conclusion, we show that it is possible to break self-tolerance against 
ED-B using vaccination with the fusion protein TRX-EDB. We demonstrat-
ed a preventive effect of the ED-B-immunization against tumor growth. Our 
data suggest that this is caused by an immune response against the tumor 
vasculature in mice carrying anti-ED-B antibodies.  

Paper II  

The non-toxic and biodegradable adjuvant Montanide ISA 720/CpG can 
replace Freund’s in a cancer vaccine targeting ED-B – a prerequisite for 
clinical development 
A requirement for a successful transfer of therapeutic vaccines targeting self-
antigens to the clinic is a sufficiently potent, but non-toxic adjuvant. Freund's 
adjuvant is a strong but toxic adjuvant able to stimulate immune responses 
against self-antigens. The squalene-based Montanide ISA 720 combined 
with the CpG ODN 1826 (M720/CpG) has previously been identified as 
potent enough to break tolerance against a self-molecule (232) and is safe for 
use in humans. In this study, mice were immunized with the fusion protein 
TRX-EDB and either M720/CpG or Freund's adjuvant to compare the im-
mune responses elicited by the two different adjuvants. Blood samples were 
drawn regularly. Analysis of mouse sera with ELISA revealed that 
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M720/CpG induced anti-ED-B antibody titers with less variation between 
individuals than Freund’s. Determination of the IgG subclass using mono-
clonal antibodies specific for the different IgG heavy chains showed that 
both adjuvants mainly induced the subclass IgG1, indicating a TH2-
response. The immune responses against ED-B elicited by Freund’s or 
M720/CpG are reversible, with antibody levels decreasing over time. How-
ever, anti-ED-B antibodies in mice treated with M720/CpG persisted for a 
longer time than antibodies generated with Freund’s, resulting in an approx-
imately 6-fold difference in antibody levels at 7 months after the second 
boost. Re-immunization of mice whose antibody-levels had decreased to 
baseline-levels showed that both adjuvants induce a similar memory re-
sponse. Using a Biacore Biosensor system for affinity measurements, we 
show that M720/CpG-induced antibodies had an approximately 10-fold 
higher avidity for ED-B than antibodies stimulated with Freund’s. When 
immunizing naïve mice with TRX-EDB and either of the two adjuvants, we 
found that anti-ED-B antibodies were detectable earlier when M720/CpG 
was used. In the M720/CpG group antibodies were present already nine days 
after immunization, while a booster injection was required for the mice im-
munized with Freund’s to obtain similar antibody levels. 

With M720/CpG we have identified a non-toxic alternative to Freund's 
adjuvant, which is at least as potent with respect to inducing an immune 
response against a self-antigen.  

Paper III  

Therapeutic vaccination against fibronectin ED-A attenuates progression of 
metastatic breast cancer 
The MMTV-PyMT model of mammary carcinoma is a well-established 
model for multi-step mammary tumorigenesis and spontaneous metastasis, 
and is thought to closely resemble human breast cancer with respect to mor-
phology and molecular signature. We purified the fusion protein TRX-EDA, 
containing the mouse-specific sequence for ED-A. To evaluate the expres-
sion of tumor vascular antigens in this model by immunostainings, we gen-
erated species-specific antibodies against ED-A and ED-B, since no antibod-
ies against these domains were commercially available at the time. Rabbits 
were immunized with the respective fusion proteins, and antibodies specific 
for ED-A and ED-B were affinity-purified from collected sera. When using 
the affinity-purified rabbit antibodies to stain MMTV-PyMT tissue, we de-
tected expression of both ED-A and ED-B around blood vessels of primary 
tumors. Consistent with reports from ED-A expression in human ductal car-
cinoma, we found that ED-A was more prominently expressed than ED-B. 
Vascularized lung metastases showed staining for ED-A, but not for ED-B. 
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We furthermore showed that ED-A expression is detectable in hyperplastic 
lesions of 5-week-old mice. With an affinity-purified rabbit antibody specif-
ic for human ED-A we detected expression of this antigen in human ductal 
mammary carcinoma. These results confirmed ED-A as a suitable target for 
therapeutic vaccination in this model. 

MMTV-PyMT mice were immunized with TRX-EDA or TRX (control) 
and M720/CpG at five weeks and boosted at week 7. ELISA revealed that 
anti-ED-A antibodies are undetectable at week 6.5, but evident at week 8, 
with levels increasing further until week 11 in all individuals vaccinated with 
TRX-EDA. At week 13 mice were perfused with a FITC-lectin solution to 
enable analysis of vascular function. Mice were dissected and the total tumor 
weight was determined. In ED-A immunized mice tumor burden was signifi-
cantly decreased. In addition, three mice from the control group had to be 
euthanized before completion of the study due to high tumor burden. Tumor 
sections were immunostained for the vascular marker CD31 and different 
leukocyte markers. No difference was found in the amount of CD31-positive 
vessels. However, a decreased number of FITC-lectin perfused vessels and 
increased amounts of extravasated fibrinogen indicated a compromised func-
tion of the tumor vasculature in mice with anti-ED-A antibodies. Additional-
ly, increased amounts of infiltrating CD45-positive leukocytes and CD68-
positive macrophages were detected in tumors of ED-A immunized mice. 
Lastly, mice immunized with TRX-EDA displayed fewer lung metastases 
than control-immunized mice. 

Taken together, we show that vaccination targeting a tumor vascular anti-
gen can decrease tumor burden and suppress development of metastases in a 
therapeutic setting.  

Paper IV  

Targeting galectin-1 by vaccination suppresses tumor growth and promotes 
leukocyte recruitment to the tumor tissue 
Galectin-1 is an interesting candidate for vaccination, as it is found in in-
creased amounts on the surface of tumor endothelial cells and in the circula-
tion of tumor patients, and promotes several key characteristics of tumors 
such as angiogenesis and immunosuppression. For immunization against 
galectin-1 we generated the fusion protein TRX-Gal-1. We could show that 
vaccination with TRX-Gal-1 and M720/CpG induced anti-galectin-1-
antibodies. Analysis of conditioned media from B16 melanoma, T241 fibro-
sarcoma and Lewis Lung Carcinoma (LLC) culture by Western blot revealed 
expression of galectin-1 by all three cell-lines. This was confirmed by im-
munostaining for galectin-1 in the corresponding tumor tissue. A vascular 
pattern of galectin-1 staining was occasionally visible in B16 tumors. Based 
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on the expression pattern of galectin-1 and previous reports in the literature, 
we selected the B16 cell-line to study the effects of the galectin-1 vaccine on 
tumor growth in vivo. Mice were immunized with TRX-Gal-1 and 
M720/CpG and received two booster injections. Presence of anti-galectin-1 
antibodies in sera of immunized mice was confirmed with ELISA and mice 
were subsequently inoculated subcutaneously with B16 melanoma cells. 
Tumors were allowed to grow for fourteen days. Volume measurements on 
day 12 and 14 showed that tumor growth was significantly decreased in ga-
lectin-1 immunized mice. We analyzed galectin-1 serum levels in galectin-1 
and control-immunized mice with B16 tumors, and in mice without tumors 
using a sandwich ELISA. While galectin-1 was low in serum from healthy 
mice, mice with B16 tumors generally displayed elevated galectin-1 serum 
levels. However, serum levels were significantly reduced in mice carrying 
anti-galectin-1 antibodies. Tumors from galectin-1 immunized mice showed 
an increased amount of infiltrating CD45-positive leukocytes and a tenden-
cy, although not significant, towards decreased vascularization. 

This study shows that it is possible to induce antibodies against the gly-
can-binding protein galectin-1 using our vaccination technique, and that 
tumor growth is reduced in mice immunized against galectin-1. 

Discussion 
Paper I constitutes an important proof-of-concept that vaccination with a 
fusion protein consisting of a non-self part and a self-part, in combination 
with a sufficiently potent adjuvant, can break tolerance and induce an anti-
body response against a self-molecule. We showed that an antibody response 
against a molecule expressed by and around tumor blood vessels, ED-B of 
fibronectin, suppresses tumor growth in a preventive approach. We extended 
these findings in paper III, where we showed that an antibody response 
against another tumor vascular antigen, ED-A of fibronectin, can be induced 
using the same vaccination technique. Vaccination against ED-A significant-
ly decreased tumor burden and attenuated metastasis in a therapeutic setting. 
This is an important finding, as the vaccine is intended as a treatment option 
for patients diagnosed with cancer and possibly metastatic disease. To be 
able to address the therapeutic effect in the MMTV-PyMT model, mice were 
immunized at week 5 and received a booster at week 7, to allow for the de-
velopment of a sufficiently strong immune response and an exposure of tu-
mors to the antibodies before the tumors reached the maximum allowed size. 
No anti-ED-A antibodies were detectable 1.5 weeks after the first immuniza-
tion in sera from vaccinated mice. At week 8, when early malignant transi-
tion occurs (254) and tumors begin to be palpable, anti-ED-A antibodies 
were present in the circulation. Antibody levels further increased until week 
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11, a time point when most of the primary tumors will have progressed to a 
late carcinoma stage in the majority of mice. 

A highly interesting candidate molecule for targeted cancer therapy is ga-
lectin-1, as it has pro-angiogenic, immunosuppressive and pro-metastatic 
activities, and therefore allows simultaneous targeting of several mecha-
nisms promoting tumor progression. In paper IV we demonstrated that vac-
cination with the fusion protein TRX-Gal-1 induced antibodies against ga-
lectin-1. In galectin-1 immunized mice tumor growth was significantly re-
duced. The high galectin-1 serum levels detected in tumor-bearing mice 
were significantly decreased in mice with anti-galectin-1 antibodies. The 
potential of the anti-galectin-1 vaccine to suppress galectin-1 serum levels is 
highly relevant from a clinical perspective, as high galectin-1 serum levels 
have been linked to poor prognosis in cancer patients (192, 193). Despite 
many reports on anti-angiogenic effects of galectin-1 inhibition (179, 180), 
we did not see a significant reduction in tumor vascularization. However, 
anti-galectin-1 treatment has also been shown to normalize the tumor vascu-
lature (67), thereby facilitating leukocyte infiltration into the tumor (46, 60, 
61), and improve tumor immunity by reducing immunosuppression mediated 
through galectin-1 (179, 180). We found increased amounts of infiltrating 
CD45-positive leukocytes in tumors of galectin-1 immunized mice, which 
might be responsible for the anti-tumor effect of the galectin-1 vaccination.  

The ability of anti-galectin-1 antibodies to neutralize soluble galectin-1 in 
serum indicates that antibodies induced by vaccination with the fusion pro-
tein technique are able to bind their target in vivo (paper IV). Immunostain-
ing of tumor tissue using serum from anti-ED-B immunized mice (paper I) 
and affinity-purified rabbit anti-ED-A and ED-B antibodies (paper III) 
showed specific staining patterns for the respective molecules. These results 
demonstrate that the polyclonal antibodies induced by vaccination with a 
fusion protein are functional and able to recognize their native target. This 
further supports the ability of the antibodies to form immune complexes and 
mediate an immune response against the target molecule in the tumor tissue. 
Indeed, we found increased amounts of different types of leukocytes infil-
trating the tumors of mice immunized against ED-B, ED-A or galectin-1, 
indicating an ongoing immune response. An attack on the blood vessels by 
immune cells is a likely explanation for the impaired vascular functionality 
observed in tumors from ED-B and ED-A immunized mice. Electron mi-
croscopy analysis showing macrophages attempting to phagocytose the en-
dothelium supports this conclusion (paper I). We detected fewer metastases 
in mice immunized against ED-A (paper III). Anti-ED-A antibodies proba-
bly mediate a protective effect against metastasis by attracting an immune 
response to angiogenic blood vessels expressing ED-A in growing metasta-
ses.  

To strengthen the clinical feasibility of a therapeutic vaccination strategy 
targeting tumor blood vessels, we aimed to find a suitable adjuvant. The 
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adjuvant used in the majority of preclinical studies remains Freund's, which 
is able to support an immune response against a self-molecule. However, due 
to its toxicity, it is not approved for use in humans. In a systematic screen, 
the biodegradable squalene-based Montanide ISA 720 combined with the 
class B CpG ODN 1826 (M720/CpG) was identified as an adjuvant able to 
break self-tolerance against IgE in rats when injected together with a chimer-
ic protein consisting of IgE sequences derived from rat and opossum (232). 
Comparison of immunostimulatory properties of Freund’s and M720/CpG in 
paper II demonstrated that M720/CpG is at least as potent as Freund’s with 
respect to inducing an immune response against the self-antigen ED-B. In-
terestingly, M720/CpG was superior to Freund’s in several aspects. Antibod-
ies induced by M720/CpG had a higher avidity for ED-B than antibodies 
generated in the presence of Freund’s. Two studies investigating responses 
to foreign antigens, a hepatitis B and an anthrax antigen, have shown that the 
class B CpG 7909, containing a human-specific recognition sequence, is able 
to increase antibody-avidity (255, 256). Siegrist et al. proposed that CpG 
ODNs might affect affinity maturation in the germinal centers, resulting in 
enhanced antibody-avidity (256). Furthermore, presence of M720/CpG in-
duced an anti-ED-B response with a longer duration than the response stimu-
lated by Freund’s. The reason behind this difference is not known, but pres-
ence of high-avidity anti-ED-B antibodies in M720/CpG-treated mice might 
contribute to this effect. A longer duration of an immune response might be 
of advantage in a clinical situation, as fewer immunizations would be re-
quired. M720/CpG has been used in the studies investigating anti-ED-A and 
galectin-1 vaccination (paper III and IV). High levels of anti-ED-A and anti-
galectin-1 antibodies were measured in the respective studies, confirming 
that M720/CpG has the ability to induce an antibody response against other 
self-antigens if combined with the according self/non-self fusion protein. 

Anti-ED-B antibody levels decreased over time, demonstrating reversibil-
ity of the immune response (paper II), in agreement with a previous report 
(226). A reversible immune response minimizes the risk of long-term side 
effects. Still, possible adverse effects of an antibody response against ED-A 
and ED-B have to be considered. Transient expression of ED-A and ED-B 
during wound healing has been shown (96, 98-100). Furthermore, a role for 
ED-A during wound healing has been suggested, as absence of ED-A ex-
pression slightly impaired healing of skin wounds (121). However, Tan et al. 
found no defects in wound healing in mice lacking ED-A (122). Wound 
healing in mice carrying anti-ED-B antibodies was not affected (paper I). An 
explanation for this might be the limited duration of ED-B expression during 
wound healing and possibly a less leaky vasculature in this situation of phys-
iological angiogenesis, as opposed to deregulated tumor angiogenesis. In 
comparison to the overly leaky tumor vasculature, vessels in wounds might 
therefore limit the efficiency of the antibodies to pass the endothelium and 
reach ED-B. 
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Expression of ED-B has also been described in hyaline cartilage, and an 
immune response in this tissue might therefore damage the cartilage tissue. 
We found no signs of arthritis in ED-B immunized mice. The lack of vascu-
larization in hyaline cartilage prevents contact of anti-ED-B antibodies with 
this tissue. Mice immunized with TRX-EDB were kept for more than twelve 
months to follow the duration of the immune response, and anti-ED-B anti-
bodies remained detectable during that time (paper II). No adverse effects on 
lifespan and appearance were observed in these mice. Furthermore, mice 
showed no adverse reaction to vaccination with Montanide ISA 720 in com-
bination with CpG 1826 (paper II-IV). In several clinical trials Montanide 
ISA 720 and CpG 7909 have been tested alone or in combination. No severe 
toxicity was observed in two phase I studies investigating a CTL-stimulating 
melanoma vaccine containing Montanide ISA 720 and CpG 7909 (257, 258). 
Similarly, only mild to moderate adverse effects, ranging from skin toxicity 
(redness, pain) to fatigue and flu-like symptoms have been seen in phase I 
and II trials involving single applications of either Montanide ISA 720 or 
CpG 7909 (256, 259-262).  

Reports of increased tumor invasiveness and metastasis after anti-
angiogenic treatment targeting the VEGF-pathway with monoclonal antibod-
ies or the TKI sunitinib (53, 74, 75) raise concerns about similar effects 
when targeting tumor blood vessels by vaccination. However, we observed a 
reduction in metastatic burden in mice immunized against the tumor vascular 
antigen ED-A (paper III). In contrast to strategies targeting VEGF or its re-
ceptor, which are based on inhibition of a signaling pathway, vaccination 
against tumor vascular antigens attracts an immune response towards the 
tumor vasculature. Targeting of galectin-1 will, in addition to attracting im-
mune cells towards the tumor, inhibit galectin1-1 signaling. Several preclini-
cal tumor studies have described a therapeutic benefit of treatment with a 
monoclonal anti-galectin-1 antibody in absence of apparent-side effects or 
resistance (67, 191, 206, 263). Whether long-term targeting of galectin-1 
might cause resistance remains to be elucidated.  

Reports from phase I and II clinical trials investigating safety and thera-
peutic efficacy of radiolabelled or cytokine-fused monoclonal ED-B antibod-
ies (L19) confirm a high selectivity of ED-B targeting for tumors (110, 137-
141). This suggests that targeting ED-B and possibly other tumor vascular 
antigens by therapeutic vaccination is feasible.  
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Concluding remarks and future perspectives 

The work presented in this thesis shows that eliciting an antibody response 
against molecules associated with the tumor vasculature is a promising strat-
egy for treatment of primary tumors and metastatic disease.  

We demonstrate that using a fusion protein consisting of the antigen to be 
targeted and a part derived from a foreign antigen, such as a bacterial pro-
tein, in combination with a potent adjuvant, an antibody response can be 
elicited. Using the fusion protein technique we were able to induce antibody 
responses against three different antigens, suggesting that the method can be 
used to elicit an immune response also against other self-proteins. We show 
that vaccination against antigens expressed around the tumor vasculature can 
inhibit tumor growth in a preventive setting, targeting ED-B and galectin-1 
in subcutaneous tumor models, and in a therapeutic setting, when targeting 
ED-A in a transgenic model of tumorigenesis. Furthermore, our results show 
that targeting tumor vascular antigens might have a protective effect against 
metastasis. We have characterized the immunostimulatory properties of an 
adjuvant, M720/CpG, and confirmed its ability to aid an immune response 
against self-antigens when using it for vaccination against ED-A and galec-
tin-1. As it is safe for use in humans, it should increase the feasibility of 
therapeutic vaccination in the clinic. 

The expression of ED-A, ED-B and galectin-1 is associated with the tu-
mor vasculature. By targeting the tumor stroma, several mechanisms em-
ployed by the tumor cells to avoid immune recognition can be circumvented. 
Targeting of ED-A and ED-B is mainly based on attraction of an immune 
response towards the tumor vasculature, which will lead to tissue destruc-
tion. The risk for development of resistance mechanisms, as seen when in-
hibiting the function of a growth factor, is less likely. The targeting effect for 
galectin-1 is more multifaceted, as it is found on the surface of endothelial 
cells as well as soluble in the circulation. We have demonstrated that anti-
galectin-1 antibodies are able to neutralize soluble galectin-1 in the circula-
tion. Furthermore, it has been demonstrated to act as a pro-angiogenic 
growth factor. Therefore targeting galectin-1 by vaccination combines func-
tional inhibition and the targeting effect.  

We have shown that immunization against galectin-1 increased the 
amount of infiltrating leukocytes into the tumors. Since galectin-1 has been 
shown to directly suppress the function of a number of immune cells, we 
will further study the mechanisms behind the reduction in tumor volume 
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caused by the immunization. Galectin-1 has been demonstrated to mediate 
resistance of tumors to anti-VEGF treatment by directly interacting with 
VEGFR-2 and stimulating signaling via this receptor. It would therefore be 
interesting to test a combination of anti-VEGF treatment and an immuniza-
tion against galectin-1 in anti-VEGF resistant tumors. 

We have generated species-specific antibodies against ED-A, ED-B and 
TNCC by immunization of rabbits and subsequent affinity purification. Us-
ing these antibodies we plan to analyze expression patterns of these mole-
cules in human tumors, such as breast, prostate, colon and brain tumors. This 
will establish whether these antigens are expressed simultaneously. To in-
crease the efficacy of the immunization approach it could be an advantage to 
target several molecules associated with the tumor vasculature at the same 
time. Besides the molecules presented in this thesis there are further antigens 
that have been reported to be highly expressed during tumor angiogenesis. 
One example is the C-domain of tenascin-C (TNCC).  

As dogs are affected by tumors in a similar fashion as humans, they rep-
resent an interesting patient group for a proof-of-concept study with a thera-
peutic vaccine. Expression of ED-A, ED-B and TNCC in dogs has not been 
analyzed previously. We have generated dog-specific antibodies for ED-A 
and TNCC. In collaboration with veterinarians we are collecting tumor tissue 
from dogs to map the expression of these vascular antigens in dog tumors. 
The approach of targeting tumor vascular antigens might be applicable for 
treatment of dogs with cancer, for which additional treatment alternatives are 
needed. 
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