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Abstract
Azar, J. 2014. Automated Tissue Image Analysis Using Pattern Recognition. Digital
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and
Technology 1175. 106 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9028-7.

Automated tissue image analysis aims to develop algorithms for a variety of histological
applications. This has important implications in the diagnostic grading of cancer such as in breast
and prostate tissue, as well as in the quantification of prognostic and predictive biomarkers that
may help assess the risk of recurrence and the responsiveness of tumors to endocrine therapy.

In this thesis, we use pattern recognition and image analysis techniques to solve several
problems relating to histopathology and immunohistochemistry applications. In particular, we
present a new method for the detection and localization of tissue microarray cores in an
automated manner and compare it against conventional approaches.

We also present an unsupervised method for color decomposition based on modeling
the image formation process while taking into account acquisition noise. The method is
unsupervised and is able to overcome the limitation of specifying absorption spectra for the
stains that require separation. This is done by estimating reference colors through fitting a
Gaussian mixture model trained using expectation-maximization.

Another important factor in histopathology is the choice of stain, though it often goes
unnoticed. Stain color combinations determine the extent of overlap between chromaticity
clusters in color space, and this intrinsic overlap sets a main limitation on the performance
of classification methods, regardless of their nature or complexity. In this thesis, we present a
framework for optimizing the selection of histological stains in a manner that is aligned with
the final objective of automation, rather than visual analysis.

Immunohistochemistry can facilitate the quantification of biomarkers such as estrogen,
progesterone, and the human epidermal growth factor 2 receptors, in addition to Ki-67 proteins
that are associated with cell growth and proliferation. As an application, we propose a method for
the identification of paired antibodies based on correlating probability maps of immunostaining
patterns across adjacent tissue sections.

Finally, we present a new feature descriptor for characterizing glandular structure and tissue
architecture, which form an important component of Gleason and tubule-based Elston grading.
The method is based on defining shape-preserving, neighborhood annuli around lumen regions
and gathering quantitative and spatial data concerning the various tissue-types.
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Abbreviations 

Unless otherwise specified, the following notation is used:  
 
Vectors are denoted by lower-case boldface letters. Matrices are denoted by 
upper-case boldface letters. Scalars are denoted by lower-case italic letters. 
 
ܠ or ݇ number of classes or clusters [∙]୘ matrix or vector transpose ܭ ݅ ௜ label for cluster ݅ ߱௜ label for class ݅ ݊ number of training objects ݊௜ number of objects in class/clusterܥ number of features ݌      = ,ଵݔൣ … , 	ܠ (∙) natural logarithm	exponential function ݈݊ (∙)݌ݔ݁ ܠ Euclidean norm of vector ‖ܠ‖ ௣൧୘ object; column vectorݔ •  ݅ ෝૄ sample mean ෝૄ௜ sample mean of class or cluster ݅ ઱෡௜ sample covariance matrix of class/cluster ܡ and ܠ vector product between vectors ܡ	ᇒ	ܠ ܡ and ܠ scalar product between vectors ܡ	

(maximum likelihood estimate) ݌(߱௜) prior probability of class ݅ ݌(߱௜|ܠ) class posterior probability ݌(ܠ|߱௜) class conditional probability ܁୛ =෍݊௜݊௄
௜ୀଵ ઱෡௜ within-class covariance matrix 

୆܁ =෍݊௜݊ (ෝૄ௜ − ෝૄ)(ෝૄ௜ − ෝૄ)୘௄
௜ୀଵ between-class covariance matrix ۷ identity matrix 
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1 Introduction 

The aim of this thesis is to develop methods for automating tissue image 
analysis by means of statistical pattern recognition techniques. We begin 
first by briefly describing the fields of computerized image analysis and 
pattern recognition, and emphasize the need for developing algorithms for 
reducing observer variability, increasing the quality of interpretation, and 
improving the workload efficiency.    

 
Computerized image analysis aims at developing algorithms that operate on 
digital images, often for the purpose of automating the detection or 
extraction of objects from images. Algorithms may also be developed for 
enhancing or modifying the content of images to facilitate visual or 
automated analysis. The field of digital image processing is very broad and 
overlaps with many other disciplines such as computer science, optics, signal 
processing, mathematical topology, color science, and cognitive science, to 
name a few. The generic aim of image analysis and its input remain the 
common factors that define the field. Many algorithms and methods from 
other disciplines have been adapted and applied to images for analyzing 
various aspects of these. 
      
Pattern recognition, as a branch of Artificial Intelligence (AI), is a slightly 
younger field. While the classical approach to AI is deductive and model-
based (or rule-based), statistical pattern recognition uses an inductive 
problem-based approach that relies on learning from a (limited) set of 
examples. Its primary aim is to automatically recognize patterns or predict 
labels. The learning algorithms employed are often outcome-driven and 
focus on the ability to generalize to unforeseen cases. The methods 
commonly used in pattern recognition, whether for supervised classification, 
clustering, or regression, often rely on rigorous statistical techniques for 
automatically optimizing and selecting parameters as well as for training and 
validating these methods. The primary purpose being automation and 
prediction, in addition to the statistical approach that can be employed 
throughout, makes pattern recognition extremely useful in digital image 
analysis, especially for fundamental applications such as image segmentation 
and object recognition.  
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Some of the most important applications of image analysis can be found in 
the medical field. Automated image analysis has successfully found its way 
into digital radiology and has become a fundamental aspect of various 
imaging modalities, with its influence ranging from acquisition protocols to 
diagnostic assessment and treatment planning. However, its integration into 
histology, which is the study of biological tissue, has been slower despite the 
importance of histopathology in the grading of cancer and assessment of 
biomarkers. One reason for this lies in the fact that, as opposed to radiology 
where images are acquired digitally from the outset, histology has an 
‘analog’ component embodied in tissue preparation and staining of biopsy 
specimens, and an analog-to-digital conversion is necessary before 
computerized image analysis can be used [1]. Moreover, the reliance on 
optical microscopy for visual analysis is another obstacle. This latter aspect 
however has witnessed some improvements with the use of digital 
microscope-mounted cameras and a major leap with the advent of whole 
slide imaging scanners, which are capable of high-throughput slide 
digitization (see Section 2.3). This form of digitization provides hope for 
eventually having publically available, annotated datasets which can 
significantly help open up the field and set up proper benchmarking. The 
lack of accessibility to large, digitized datasets and the continued reliance on 
local experts and analysts are factors that slow down the exposure of 
histopathological problems and impede efficient integration with image 
analysis. 
 
This thesis addresses five main topics relating to tissue image analysis.  
Paper I presents a method for the detection and localization of tissue 
microarray cores using a novel and computationally efficient method that is 
entirely automated and based on restoring the disc shape of the cores. The 
approach uses a combination of pattern recognition techniques such as 
hierarchical clustering and the Davies-Bouldin index for cluster validation, 
as well as image analysis techniques such as morphological operations and 
granulometry, in addition to basic analytical geometry.  
Paper II presents a method for color decomposition that is based on 
modeling image formation according to the Beer-Lambert law of light 
absorption in bright-field microscopy. Contemporary methods require that 
the absorption spectra for the stains be pre-assigned, and reference colors are 
often specified a priori. The proposed method is novel in that it is 
unsupervised and is able to overcome this limitation [1] by automatically 
estimating the reference colors using a Gaussian mixture model that is fitted 
to the data once this latter is projected onto the Maxwellian plane for 
decoupling color from intensity. The method also proposes a piece-wise 
generalization of linear decomposition that proves more accurate in difficult 
situations where chromaticity clusters are non-linearly separable.  
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Paper III addresses the choice of histological stain which is often overlooked 
by pathologists, while image analysts assume it preset. However, the choice 
of stain color combinations is often the most limiting factor in achieving 
accurate segmentation and successful automation. The paper advocates the 
systematic evaluation and comparison of histological stains based on 
supervised and unsupervised classification criteria as opposed to visual 
inspection. It presents a framework for carrying out this analysis that is 
aligned with the objective of automation, and examples are illustrated 
through the comparison of 13 different stains.  
Paper IV addresses immunohistochemistry (see Section 2.4), and particularly 
the paired antibody problem, in which immunostaining patterns need to be 
compared across adjacent tissue sections extracted from the Human Protein 
Atlas project. The paper proposes using a simple and robust, unsupervised 
image segmentation strategy based on the geometry of the feature space and 
with the aid of rescaling attributes. Then, the probability maps resulting from 
soft classification are correlated in pairwise correspondence and combined 
using the product rule into a single similarity measure. The similarity 
measure is able to test simultaneously for the adjacency of tissue sections 
(thereby not placing any assumptions on the grouping of original images), as 
well as for the similarity in staining patterns across the sections. Lastly, the 
relative proportions of the individual tissue types are quantified in each 
section using the derived probability maps.  
Paper V presents a novel feature descriptor for characterizing tissue and 
glandular architecture based on sampling the neighborhoods of lumen 
regions. Iterative region expansion is used to define shape-preserving, 
neighborhood strips or rings around each lumen, and within each ring, 
quantitative and spatial information is collected. The approach does not 
require the extraction of intricate structural properties, yet it is able to 
represent tissue architecture in a highly descriptive manner. Furthermore, the 
method is combined with multiple instance learning to provide an elaborate 
representation useful for classification.     

          
The publications included in this thesis are compactly summarized in 
Section 4. We note that throughout that section, it will become evident that 
the methods used in these publications are based on pattern recognition and 
image analysis techniques that have been optimized for automation. In 
particular, parameters relating to the methods have been either kept minimal 
or automatically selected based on optimization and cross-validation 
procedures. We also note that the approaches designed often consist of a 
series of sequential i/o interconnected stages, forming an organized 
workflow. However, before discussing the different publications, we present 
a very brief but useful introduction to aspects of histology and tissue 
preparation in Section 2, in order to highlight the types of problems and 



12 
 

datasets that are used throughout this thesis and their origin. This is followed 
by a brief introduction to some of the pattern recognition and image analysis 
methods used throughout the publications, summarized in Section 3.    
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2 Background 

Automated tissue image analysis relies upon several preceding processes 
relating to tissue preparation and staining, image acquisition, and slide 
digitization. We begin by presenting a brief introduction to some of these 
topics, while regularly making note of their relevance with regard to the 
work and publications included in this thesis. 

2.1 Tissue Preparation 
Once a tissue biopsy or mastectomy section is obtained by surgery, the first 
step in tissue preparation for histological analysis is to place the specimens 
in a fixative for preserving the tissue structures and slowing down 
decomposition. Formaldehyde is often used as a fixative in bright-field 
microscopy. The second step in tissue preparation is to embed the sections in 
a paraffin block; the process involves gradually removing the water content 
by exposing the specimen to a series of high concentration alcohol solutions, 
which eventually allows for the infiltration of paraffin wax. The third step is 
to slice the paraffin block into micrometer-thin sections so that they may be 
viewed under an optical microscope by passing light through the samples. 
This is carried out using a high-precision cutting tool called a microtome, 
which is able to provide 3-5 μm thin slices for this purpose. The final step in 
tissue preparation is to dye the sections with stains that provide proper 
contrast for visual or computer-based analysis. Higher levels of 
standardization and quality control for fixation and staining protocols are 
expected with the proliferation of digital histopathology and slide 
digitization; consequently, this last step, concerning tissue staining, becomes 
increasingly important and is discussed in more detail in the following 
section.         

2.2 Histological Staining 
In order to visualize structures in the tissue, the tissue section requires 
staining with a dye combination that provides contrast or highlights specific 
components. The commonly used H&E stain, which has been the standard 
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stain in histopathology for the past century, consists of two compounds, 
namely hematoxylin and eosin. Hematoxylin binds to DNA, thus 
highlighting nuclei in purple-blue, and eosin binds in general to proteins, 
highlighting other tissue structures such as cytoplasm, epithelium, and 
stromal regions in pink (see Figure 1(a)).  
 
Additionally, in immunohistochemistry which is a more advanced staining 
method, an organic compound such as the 3,3’-diaminobenzidine chromogen 
can be used to highlight specific regions where the antigen-antibody 
complex is concentrated. Figure 1(b) shows an example of 
immunohistochemical staining of a tissue section. Histological staining 
provides the necessary contrast that allows pathologists to visually analyze 
tissue structures and perform grading; however, despite dedicated training 
and specialized guidelines, these tasks remain considerably subjective and 
labor-intensive [2, 3, 4, 5]. The latest recommendations by the American 
Society of Clinical Oncology as well as the College of American 
Pathologists advocate the use of quantitative and computer-assisted methods 
in aim of reducing observer variability among pathologists [1, 6, 7]     
 
The topic of tissue staining is addressed in Paper III, in which we present a 
methodical way of selecting an optimal stain for a given type of tissue in a 
manner that focuses on facilitating automation as opposed to visual 
inspection. 

 

 
(a) 

 
(b) 

Figure 1. Sample histological stains. (a) Hematoxylin and eosin (H&E) staining.  
(b) Immunohistochemical staining where the antibody is visualized using DAB 
(3,3’-diaminobenzidine). Regions stained with the brown DAB are considered as 
positive areas.      
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2.3 Tissue Microarrays  
Tissue microarrays [8, 9] consist of usually tens to hundreds of tissue cores 
arranged in an array-like manner within a single slide (see Figure 2). 
Beginning with a tissue specimen embedded in a paraffin block, a tissue 
arrayer device punches disc-like cores about 0.6 mm in diameter using a thin 
needle, and transfers these cores to another recipient paraffin block where 
the cores are placed in regular array patterns. Finally, the recipient paraffin 
block can then be sliced into thin sections and stained in preparation for 
visual analysis under a microscope or, alternatively, for slide digitization. 
With the advent of whole slide scanners, the entire slide of tissue microarray 
cores can be digitized using automatic scanning procedures. This allows for 
high-throughput digitization and histological analysis. Slide scanning is 
often done at high resolution, thus generating a base image from which 
several lower resolution images can be derived. The resulting images are 
stored in a multi-scale pyramidal structure allowing for different 
magnification views and rapid retrieval at multiple resolutions.        

 
In analyzing tissue microarrays, the individual cores should be detected and 
localized so that they can be matched with the corresponding specimen from 
the donor paraffin block [10, 11, 12], and to allow for subsequent 
segmentation and image analysis within each core. The automation of the 
detection and localization of tissue microarray cores is the main topic of 
Paper I of this thesis.   

 
Figure 2. An example of a tissue microarray slide. The disc-shaped tissue cores are 
arranged in an array-like manner. 

2.4 Immunohistochemistry 
We have mentioned in Section 2.2 that the DAB chromogen is used in 
immunohistochemical staining to visualize antibodies which may have been 
raised against specific antigens or proteins in the tissue (see Figure 1(b)). In 
general, immunohistochemistry (IHC) is a staining technique that utilizes 
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antibodies that bind to specific antigens in order to highlight their areas of 
presence and corresponding tissue structures. In order to visualize these 
areas, the antibody is coupled with a visual marker. In other instances, two 
antibodies are used: a primary antibody that binds to the specific antigen, 
followed by a secondary, dye-labeled antibody that binds to the primary 
antibody. IHC may be used in practice to identify certain receptors such as 
estrogen (ER), progesterone (PR), human epidermal growth factor 2 
(HER2), in addition to the Ki-67 protein, which can be an indicator of cell 
growth and proliferation [6, 7, 13]. The detection and quantification of such 
receptors in breast tissue cancer can have significant prognostic value in 
assessing the risk of recurrence or mortality, as well as predictive value, for 
example in identifying whether a tumor would respond to endocrine therapy 
aimed at slowing down the progression of cancer. Several attempts for 
automating the quantification of these biomarkers and the proportion of 
positively stained regions can be found in [14, 15]. Numerous publications 
have indicated that automated image analysis is able to achieve results that 
are similar to those of trained pathologists [16, 17, 18, 19, 20]. 
 
In this context, we address the paired antibody problem in Paper IV, where 
we present a method for quantifying immunostaining patterns in adjacent 
tissue sections labeled with IHC staining, and for identifying antibodies that 
target the same protein, but which may bind to different parts of the protein.     

2.5 Cancer Grading 
Often the final aim of tissue image analysis is to aid pathologists in the 
interpretation and cancer grading of biological tissue specimens. Two of the 
most common types of cancer affecting women and men are, respectively, 
breast and prostate cancer. In the case of breast cancer, the standard scoring 
system used at present by pathologists is the Ellis-Elston system (also known 
as the Nottingham system) [21, 22], which is a modified version of the 
Bloom-Richardson grading system. For prostate cancer, the standard scoring 
system in use is the Gleason grading system [23]. We begin by briefly 
describing these two systems and their focus on glandular structures and 
tissue architecture, which is also the topic of Paper V.  
 
The Elston grade for breast cancer is based on three different parts: tubule 
formation, nuclear atypia, and mitotic count. The part concerning tubule 
formation has similarities with the Gleason pattern description in terms of 
characterizing glandular/tubular differentiation. Depending on the amount of 
glands and tubules present in the examined tissue section, a score of 1, 2, or 
3 is given, ranging respectively from highly glandular, healthy tissue (score 
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1) to scarcely glandular tissue as in the case of solid tumors (score 3). The 
second part of the Elston score is concerned with nuclear size, shape and 
chromatin texture, i.e., how irregular these appear on a scale from 1 (normal) 
to 3 (highly atypical).  The third and final part is mitotic activity and is 
concerned with how much the cells are dividing, which corresponds to 
growth rate. This involves counting dividing cells under high-power 
microscopic fields (x40 objective), and a score from 1 (low cell count) to 3 
(high cell count) is assigned depending on the number of cells counted 
within a specific area. In the end, the individual scores from the three parts 
are added up to obtain the final Elston grade. In particular, if the sum is in 
the range of 3-5 points, it is defined as Elston grade I, 6-7 as grade II, and 8-
9 as grade III.  
 
Gleason grading for prostate cancer is based on five different patterns (1-5), 
and the final score is the sum of the two most occurring patterns, thus 
ranging from 2 to 10. Note that in case of three visible patterns, the final 
score is computed as the sum of the primary, most frequent pattern and the 
higher of the remaining two. The five patterns describe glandular 
differentiation beginning with Pattern 1, which corresponds to well-
differentiated carcinoma that resembles normal tissue, and ending with 
Pattern 5, which corresponds to poorly-differentiated carcinoma, mostly 
lacking recognizable glandular units. In general, whether in the case of 
Elston or Gleason grading, the higher the grade the more potentially 
aggressive the cancer is, and the higher is the risk of it spreading to healthy 
tissue, resulting in poor prognosis.   
 
In Paper V, we present a feature descriptor that is based on tissue 
architecture with the aim of characterizing glandular tissue and tubule 
formation, which are important components of both Elston and Gleason 
grading systems.    
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3 Pattern Recognition & Image Analysis 

This section gives a brief introduction to the pattern recognition and image 
analysis methods that have been used in Papers I-V. It is intended to provide 
a summary of the main concepts and is written with the aim of facilitating 
the understanding of these publications. The advanced reader may choose to 
skip over this section.  

3.1 Principal Component Analysis 
Principal component analysis (PCA) [24, 25] is a linear, unsupervised 
method for feature extraction which does not assume any underlying 
statistical model. It is also known as the Karhunen-Loève transformation in 
one of its basic forms, and is also equivalent to classical multidimensional 
scaling [26] operating on a Euclidean dissimilarity matrix. Principal 
component analysis attempts to find an orthogonal transformation such that 
the derived variables are uncorrelated. The resulting features are a linear 
combination of the original ones and are termed the principal components or 
principal axes. The first principal component is in the direction of maximum 
variance, followed by the second principal component, etc., while all these 
remain orthogonal to each other. In the two-dimensional case, the second 
principal component is automatically the axis perpendicular to the first 
principal component. However, in three or higher dimensional feature 
spaces, there is an infinite number of directions that are orthogonal to the 
first principal axis, and so the second component is found among these in the 
direction of maximum variance.  
 
Beginning with a ݌-dimensional dataset consisting of ݊ vectors ܠ௜ and 
denoted by ℒ = ,ଵܠ} ,ଶܠ … ,  ௡}, we compute the sample mean and sampleܠ
covariance matrix over all ܠ ∈ ℒ as follows:  
 

 ෝૄ = 1݊෍ܠ௜௡
௜ୀଵ  (3.1) 

 ઱෡ = 1݊ − 1 ෍(ܠ௜ − ෝૄ)(ܠ௜ − ෝૄ)୘௡
௜ୀଵ  (3.2) 
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The principal components are obtained by performing an eigen-
decomposition of the covariance matrix, i.e. by finding the nontrivial 
solutions to the following set of equations:  
 
 ൫઱෡ − ௜܍௜۷൯ߣ = ૙, ݅ = 1,… ,  (3.3) ݌

where ۷ is the ݌ x ݌ identity matrix, ܍ଵ,… ,  ௣ are the eigenvectors of the܍
sample covariance matrix, and ߣଵ,… ,  .௣ are their corresponding eigenvaluesߣ
The variance of the principal component ߦ௜ is then ݎܽݒ(ߦ௜) =  .௜ߣ
Geometrically, principal component analysis represents a rotation of the 
coordinate axes, where the principal components, i.e. the new axes, are 
aligned with the directions of maximum variance. This transformation is 
reversible if all the principal components are retained. However, often the 
purpose of PCA is to reduce the dimensionality of the dataset by retaining 
only the first ݀ <  eigenvectors with highest variance. Note that the total ݌
variance, as summed up along each axis, does not change with PCA or 
rotations, and in general this is true as long as the coordinate system remains 
orthogonal. One common rule for selecting ݀ is to sort the eigenvalues in 
descending order and retain the first ݀ whose sum corresponds to 90 or 95% 
of the total variance; that is, the ratio of retained variance would be:  
 

 ෍ߣ௜ௗ
௜ୀଵ ෍ߣ௜௣

௜ୀଵ൙ ≈ 0.9 (3.4) 

Unlike feature selection techniques, the principal components resulting from 
a feature extraction method such a PCA are a linear combination of the 
original features, and therefore the meaning of these variables is often 
difficult to interpret.  

An equivalent way to derive the principal components is by minimizing the 
least square error to the data. This can be compared to simple regression. In 
regression, the optimal straight line fit, in the least squares sense, is that 
which minimizes the square error between the data points and the line 
model. This error at any given sample point is the vertical distance between 
the point and the straight line. If the units or scales of the variables are 
changed, the model (line slope) would change, yet this does not affect the 
predicted output value. However, unlike regression, the error minimized in 
PCA is based on the perpendicular distance from a given data point to the 
straight line. These distances are affected by the rescaling of axes since right 
angles are generally not preserved by relative changes in scale. Thus, while 
the predicted values in regression are independent of changes in scale, PCA 
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is sensitive to the rescaling of features. Even when the units of the variables 
are similar, if one variable has a much larger range than the other, the 
principal component may favor its direction. It is therefore important to 
standardize the data prior to applying PCA, such as by normalizing to zero 
mean and unit variance. As with many feature extraction methods, the 
criterion used in PCA is not necessarily aligned with the final objective, e.g. 
classification. There is no guarantee that a subspace spanned by the first ݀ 
principal components is optimal for classification. Subspace selection by 
PCA may discard important directions in the data or may include noisy ones; 
however, PCA remains a very useful technique and a popular tool for data 
analysis as well as for pattern recognition tasks. In [27], a comparative study 
was conducted among various feature extraction methods which included 
PCA, in addition to twelve nonlinear feature extraction techniques such as 
local linear embedding, Laplacian eigenmaps, Sammon mapping (nonlinear 
multidimensional scaling), and kernel PCA. Nonlinear techniques for 
dimensionality reduction have the potential for learning nonlinear manifolds 
as can be demonstrated using difficult, pre-selected artificial/toy examples; 
however, despite this advantage, such methods were unable to outperform 
traditional linear techniques such as PCA when using natural, real-world 
datasets [27].      

In Paper IV, we regard PCA as a geometric transformation and use it to 
standardize the representation of the dataset, without performing 
dimensionality reduction.     

3.2 Clustering 
In image analysis and many practical applications, it may be that the 
available dataset is either not labeled or only a small portion of the training 
objects are labeled. Unsupervised learning methods that try to handle 
unlabeled data are often referred to as clustering techniques. Cluster analysis 
aims to find ‘natural’ groups in the data, thus allowing the data to express 
itself without imposing training labels. However, defining what a ‘natural’ 
grouping constitutes is a diverse matter, and clustering techniques do in fact 
implicitly pose structure on the data in one way or another. Perhaps, in some 
contexts, a ‘natural’ grouping is that which agrees with our human 
interpretation. In low-dimensional feature spaces where data objects can be 
visualized, such a validation is to some extent possible, though not always 
practical. However, with high-dimensional feature spaces, judging clusters 
by visualization becomes unfeasible. All clustering algorithms can yield a 
partitioning of the data into clusters or groups, however, the real difficulty 
lies in validating these groupings. For some applications, this may not be 
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important. For example, in large datasets, clustering may also be used for 
data reduction where it is computationally efficient to handle representative 
cluster centers rather than the entire dataset.  
 
A general way to define a cluster is that by a subset of objects such that the 
resemblance among the objects within the same subset is higher than that to 
other objects of another subset. Sensibly, objects that are close to each other 
in feature space should have greater resemblance to each other than to 
objects that are far away. Inevitably one would have to define this 
resemblance using some kind of distance measure. It is with the choice of 
distance measure that the clustering algorithm begins to impose structure on 
the data. The user has to decide on the type of clustering method to be used 
and needs to judge the quality of the clustering in some manner. It is 
therefore very advantageous if the user has some prior knowledge of the type 
of clusters expected in terms of their shapes and/or sizes or can even 
visualize the end result. By setup, this is the case in Paper I, where tissue 
microarray cores can be thought of as spherical, disc-like clusters in 2D. 
Often determining the number of clusters, ܭ, in the data is crucial. It is 
sometimes known a priori, however, the choice of this number can be 
determined by repeating the clustering over a range of values for ܭ and 
selecting the one for which the cluster validation criterion is optimal or 
exhibits the greatest improvement. In practice, such an automatic 
optimization for determining ‘natural’ groupings is most possible in cases 
when the cluster shapes are known, and thus the clustering method and 
validation criterion can be chosen accordingly. Fortunately, this happens to 
be the case in Paper I, where hierarchical clustering with complete linkage 
was used to account for the disc-shaped microarray cores, and the Davies-
Bouldin index was used as a validation criterion well-suited for spherical-
shaped clusters.                     
 
There are different categories for techniques employed in clustering of 
which we may distinguish specifically hierarchical methods that operate on a 
dissimilarity matrix, sum-of-squares methods such as k-means and fuzzy c-
means, and mixture models which represent the probability density function 
as a sum of individual component distributions. An example of the latter is 
the Gaussian mixture model which is used in Papers II and III; a description 
of the method can be found in the appendix of Paper III. Fuzzy c-means is 
used in Paper IV, whereas hierarchical clustering is used in Paper I.     
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3.2.1 Hierarchical Clustering 
Hierarchical clustering [28] is one of the most common methods for 
representing data structure using a tree diagram, called in this case a 
dendrogram (see Figure 3). Cutting the tree at a given horizontal level results 
in a number of disjoint clusters, ܭ, depending on the number of vertical 
stems the horizontal level cuts through. For example, if the dendrogram in 
Figure 3 is sectioned at a threshold level of 4, this would partition the data 
into three clusters as shown by the different colors.  

 
Figure 3. Dendrogram: a nested set of partitions summarized in a tree structure. The 
numbers on the abscissa axis represent data object labels, and the ordinate axis 
represents distance values among clusters. The ordering of the data objects is 
arbitrary but is always selected so that the branches of the tree do not cross. 

In this section, we discuss the agglomerative approach for constructing these 
dendrograms which enable us to partition data into clusters. The idea is to 
begin with single objects and assume each of these is a cluster; then the 
closest clusters are merged sequentially forming larger clusters until all the 
data lies within one cluster. This creates a nested hierarchy of clusters and 
sub-clusters, which is a very useful way to summarize the structure of the 
data based on distances. 

Suppose a dataset consists of ݊ objects. The algorithm operates on the ݊ x ݊ 
dissimilarity matrix obtained by computing the distances between these 
objects. The objects are initially regarded as single clusters, i.e., there are ݊ 
clusters at the outset. The algorithm then proceeds as follows:    
 
1. The closest pair of clusters is merged into one cluster. In cases of ties, 

often any one of the pairs can be selected arbitrarily or based on some 
criterion. This so-called ties in proximity problem is discussed in [29] 
with suggested ways of resolving it in [30]. 

 
2. The dissimilarity matrix is updated by computing the distances between 

the newly formed cluster and all the remaining clusters. The distance 
between two clusters, i.e. sets of objects, can be defined in many ways. 
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3. Steps 1-2 are repeated iteratively until all the ݊ objects are in the same, 
one cluster. Alternatively, a stopping criterion could be a preset number 
of clusters, ܭ.  

 
However, the choice of distance measure between clusters, referred to as the 
linkage type, is very important and affects the clustering result. Some of the 
types of distances used are the single-linkage, complete-linkage, and 
average-linkage. In single-link clustering, the distance between any two 
clusters ܥ௜ and ܥ௝ is defined as the distance between their closest member 
objects, that is:  
 
 ݀௦൫ܥ௜, ௝൯ܥ = ݉݅݊ ,ܠ)݀} :(ܡ ܠ ∈ ,௜ܥ ܡ ∈  ௝} (3.5)ܥ
 
The inter-object distance ݀(ܠ,  ,often refers to the Euclidean norm (ܡ
whereby single-linkage can be rewritten as: 
 

 ݀௦൫ܥ௜, ௝൯ܥ = ܠ‖஼ೕ∋ܡ,஼೔∋ܠ݊݅݉ −  ଶ (3.6)‖ܡ
 
In complete-link clustering, this distance becomes:  
 

 ݀ୡ൫ܥ௜, ௝൯ܥ = ܠ‖஼ೕ∋ܡ,஼೔∋ܠݔܽ݉ −  ଶ (3.7)‖ܡ
 
This represents the distance between the farthest two objects, while one of 
the objects is in the first cluster and the other is in the second cluster. 
 
In average-link clustering, the distance is computed as that between the 
centers of the two clusters, ܥ௜ and ܥ௝, where these may contain ݊௜ and ௝݊ 
objects respectively, that is: 

 

 ݀௔൫ܥ௜, ௝൯ܥ = 1݊௜ ௝݊ ෍ ෍‖ܠ − ஼೔∋ܠ஼ೕ∋ܡ‖ܡ  (3.8) 

 
Single-link clustering tends to find string-like clusters, whereas complete-
link clustering results in more compact, spherical-shaped clusters, and 
finally, average-link clustering falls in between.  
 
In Paper I, we use complete-link clustering to detect microarray cores since 
the method works well with spherical, compact clusters. To automatically 
determine the number of clusters, ܭ, in the image, we repeat the clustering 
over a range of values for ܭ, and for each result, we compute the Davies-
Bouldin index [31] to assess the quality of the clustering and compare 
among the different outcomes. This cluster validation criterion computes the 
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mean and variance measures to assess the location and widths of the clusters, 
and then uses these to compute a conservative pairwise score per cluster 
while considering all possible pairs. Finally, these scores are averaged and 
used as an indicator of how compact and well-separated the clusters are. 
Using the Euclidean distance, the Davies-Bouldin index is a cluster 
validation measure that is ideally suited for spherical clusters. An 
explanation and derivation of this index can be found in Paper I.       

3.2.2 Gaussian Mixture Model 
A finite mixture model is a distribution that is written as a linear 
combination of individual distributions, i.e., it has the form:  

 

;ܠ)݌  ߰) =෍ߙ௝ ;ܠ൫݌ ௝൯௄ߠ
௝ୀଵ  (3.9) 

 
where ܭ is the number of individual distributions, ߰ = ൛ߙ௝, ݆	|௝ߠ = 1,… ,  ൟܭ
is the complete set of parameters for the mixture distribution, and the scalars, ߙ௝, are the mixing coefficients, where ߙ௝ ≥ 0 and ∑ ௝௄௝ୀଵߙ = 1. In the case of 
the Gaussian mixture model [32], the component distributions ݌൫ܠ; ,௝൯ߠ ݆ =1,… ,   :are multivariate normal distributions given by ,ܭ
 

 
;ܠ൫݌ ௝൯ߠ = 1ට(2ߨ)௣ห઱௝ห ݌ݔ݁ ൜−12 ൫ܠ − ૄ௝൯୘઱௝ି ଵ൫ܠ − ૄ௝൯ൠ (3.10) 

 
where ૄ௝ and ઱௝ are the mean vector and covariance matrix of the individual 
components, and ߠ௝ = ൛ૄ௝, ઱௝ൟ is the set of parameters. The model 
parameters may be fitted to the data by maximum likelihood estimation. 
These parameters can be computed efficiently using an expectation-
maximization (E-M) procedure. Details of this iterative procedure can be 
found in Appendix A.2 of Paper III. 
 
While the individual components are Gaussian and can vary in orientation 
and width across different directions as specified by the covariance matrix, 
the mixture distribution is rather flexible and can model a variety of realistic 
distributions. For real-world datasets, the range of shapes Gaussian mixtures 
are able to model is often sufficient to represent the natural variation in the 
data. The prevalence of Gaussian distributions in these datasets can be 
partially explained by the central limit theorem, since real-world 
measurements are often the sum of a large number of unobserved random 
events. 
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The E-M algorithm is a very general procedure and its use in Gaussian 
mixture models is related to the k-means algorithm which is basically an E-
M algorithm. Because the Euclidean norm is often used in k-means to 
compute distances to cluster centers, k-means imposes a spherical structure 
on the clusters. The Gaussian mixture model allows for more flexible 
clusters with Gaussian-like distributions which are described not just by their 
means but also by their covariance matrices that specify orientation and 
amount of spread in different directions. Because the number of parameters 
is higher relative to k-means, more data is usually required to estimate these 
accurately. The number of parameters is exactly ܭ	 ቀ݌ + ଵଶ ݌)݌ + 1) + 1	ቁ 
with ݌ parameters for the mean, ૄ௝, and {݌ + ݌) − 1) + ⋯+ 1} = ݌)݌ +1)/2 parameters for the symmetric ݌ x ݌ covariance matrix, ઱௝, in addition 
to a single parameter for the mixing coefficient, ߙ௝, while these are for each 
of the ܭ Gaussian components. If the Gaussian components are restricted to 
a circularly symmetrical shape, i.e., their covariance matrices are diagonal 
with equal elements along the diagonal, ઱௝ = ߪ ଶ۷, then asߪ → 0, the 
variances of each component vanish in all directions and the ܭ Gaussian 
components reduce to ܭ single centroids. In this context, the E-M algorithm 
used in the Gaussian mixture model reduces to the k-means algorithm, 
whereby every object is assigned to the closest centroid.     
  
The E-M algorithm requires an initial set of parameters for the Gaussian 
components before it can converge to a solution. One way is to initialize the 
parameters randomly and repeat this a few times as in k-means. This also 
helps avoid selecting a local optimum. A remaining issue is how to select the 
number of clusters ܭ in an automated way if it is not known or specified a 
priori. For probabilistic models like the Gaussian mixture model, increasing ܭ results in improvements in the log-likelihood estimate, although this 
improvement is expected to level off gradually. It is possible to select ܭ for 
which the sequential increase in the log-likelihood curve is largest, i.e. 
relative to the value when using ܭ − 1 components. Another approach is to 
use information criteria such as the Akaike or Bayesian information 
criterion. These criteria limit the improvement in the log-likelihood estimate 
by incorporating the complexity of the model, in terms of its parameters or 
number of components, into the goodness-of-fit measure. By penalizing 
models with increasingly large values of ܭ, a tradeoff is introduced between 
maximizing the log-likelihood and minimizing the mixture’s complexity. 
This tradeoff circumvents the problem of overfitting the mixture model to 
the data as a result of simply increasing the number of components. The 
information criteria may be computed over a range of values for ܭ, from 
which an optimal value is selected at the point where the curve attains a 
minimum. These criteria are described in more detail in Paper V where an 
example is also presented.   
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3.3 Supervised Classification 

When class labels are available for sample objects, we may train a classifier 
on this limited set of objects. The aim of the classifier is then to predict the 
class labels of future objects that it has not been trained on. Supervised 
classification, which uses learning in the presence of class labels, is therefore 
very similar to regression in the sense that an output is predicted for a given ݌-dimensional input object. From this perspective, it can actually be 
regarded as a special case of regression, where the output is confined to a 
categorical label (in a multilayer perceptron this distinction is even less strict 
and rather artificially enforced). The set of labeled objects used to construct 
or train the classifier is called the training set. To test the performance of a 
classifier, a separate independent set of objects with known labels is used in 
order to validate whether the predicted labels of these test objects match 
their true labels. This set of objects is called the test set or validation set. The 
labeled dataset is often split between a training set and a test set. However, 
apart for simulation experiments, since labeled data may be scarce or 
difficult to obtain in reality, setting aside labeled objects for testing may 
weaken the training phase and the classifier’s ability to learn and generalize, 
especially if the training set is not large or descriptive enough to represent 
the true underlying class distributions in feature space. This results in a 
pessimistic estimate of the classification rate. However, without validation, 
constructing a classifier could be meaningless. In the vast majority of cases, 
k-fold cross-validation is used or similar rotational methods. The labeled 
dataset is randomly split into k equally-sized, non-overlapping partitions; 
each of these k subsets is used sequentially as a test set while the classifier is 
trained on the remaining data consisting of (k-1) subsets. This results in k 
classification error rates, which are then averaged and reported along with 
the standard deviation. In the case where k is equal to the number of labeled 
objects in the dataset, the procedure is called the leave-one-out method since 
only 1 test object is used at every validation round. An undesirable aspect of 
the k-fold cross-validation procedure is that the training sets used across the 
rotations are much overlapping (except when k=2). However, the method 
remains the most widely used standard for testing classification and does 
work well in practice as long as the size of the dataset and choice of folds 
remains sensible. 

 
The complexity of the classifier plays an important role in its ability to 
generalize. The complexity of a classifier can often be controlled by its 
parameters, and these may be optimized for example using cross-validation 
so as to avoid overfitting or underfitting the classifier to the data. Classifiers 
with low complexity such as linear classifiers are susceptible to exhibiting 
bias even when the size of the training set is large since the classifier is 
simply not flexible enough to follow the distribution of the data or produce 
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the correct decision boundary, thus resulting in systematic error. This 
underfitting problem is not encountered in practice as often as the overfitting 
problem since there is usually an appeal for classifiers with a high 
complexity range, but when combined with the fact that training sets tend to 
be very limited and feature spaces high-dimensional, it results in a serious 
problem that requires careful handling. In this case, although the bias error is 
reduced, flexible classifiers are prone to exhibit high variance. This can be 
explained by the bias-variance dilemma. The optimal complexity is that at 
which the overall bias-variance error in both its components is minimized. In 
other words, the classifier should be just flexible enough to follow the data 
distribution while simple enough so as not to overadapt to particular 
instances. Sample decision boundaries with varying complexity can be seen 
in Figure 4. Careful testing and cross-validation procedures can be applied to 
select the optimal complexity of a given classifier. Examples of this can be 
seen in Papers III-V. 
 
The dimensionality of the feature space, ݌, in relation to the number of 
training objects, ݊, is a very important factor that contributes to the 
overfitting problem and poor generalization. Particularly, when ݊ is not large 
with respect to ݌, the amount of training objects is insufficient to represent 
the true class conditional distributions in feature space. Classifiers that are 
based on the Bayesian approach and that need to estimate the class 
conditional density function tend to suffer the most from this problem. Thus, 
a classifier trained on these objects may not be able to generalize well over 
new cases. The sheer volume of the data required to represent a class densely 
in a high-dimensional feature space becomes problematic, especially that the 
size of the training set is almost always small or limited. Thus by including 
too many features, the performance of a classifier begins to deteriorate at 
some point after it has been initially improving, and hence the classification 
error curve shows a peak. There is often an optimal subset of features to 
include for which the classification error rate is minimal. In the context of 
pattern recognition is this referred to as the curse of dimensionality or the 
peaking phenomenon. In statistics, this is known as the small n, large p 
problem. For classifiers that rely on estimating and inverting covariance 
matrices, the problem is further amplified since it becomes impossible to 
invert the sample covariance matrix when ݊ <  and the pseudo-inverse or ,݌
regularization techniques are usually employed to solve the problem. It is 
often necessary to reduce the dimensionality of the data before the 
classification task to avoid such problems, and this can be done through 
either feature selection or feature extraction techniques such as PCA.  
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Figure 4. Sample decision boundaries showing varying complexity: the 1-nearest 
neighbor classifier (purple), support vector classifier with cubic polynomial kernel 
(black), and the quadratic classifier (green). 

3.3.1 Bayes Optimal Classifier  
Following the Bayesian approach to classification, if the conditional 
probability density function is known for the various classes as well as their 
prior probabilities, then everything is known about the data in order to make 
decisions. Particularly, Bayes’ theorem is used to compute the posterior 
probabilities upon which decisions are based. These represent the probability 
of belonging to class ߱௜, given the object ܠ. Bayes’ theorem states: 

 

(ܠ|௜߱)݌  = (ܠ)݌(௜߱)݌(௜߱|ܠ)݌ . (3.11) 

 
where ݌(߱௜|ܠ) is the class posterior probability, whereas ݌(ܠ|߱௜), is the 
class conditional probability, and ݌(߱௜) is the class prior probability. The 
term (ܠ)݌ appearing in the denominator can be written using the law of total 
probability as: 
 

(ܠ)݌  =෍݌(ܠ|߱௜)݌(߱௜)௜  (3.12) 

 
This term is often seen as a normalization factor and can be ignored when 
comparing the class posterior probabilities for a given object in order to 
make decisions, since (ܠ)݌ is a common term that will appear across all of 
the class posterior probability computations. An object can then be assigned 
to the class with the highest posterior probability.  
If the true class conditional density functions and priors are known, then the 
optimal Bayes classifier is obtained. The error this classifier achieves is the 
theoretical minimum. However, in practice, the true class conditional density 
functions are never known and need to be estimated. This can be done using 
a non-parametric density estimation method such the k-nearest neighbor or 
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Parzen density estimation, resulting respectively in the k-nearest neighbor 
classifier or the Parzen classifier, or by means of a parametric method such 
as using the normal density model, resulting in the quadratic normal-based 
classifier. Once the class conditional densities are estimated, one can arrive 
at the posterior probabilities using Bayes’ theorem. An exception to this 
approach is the Logistic classifier which directly models the class posterior 
probability density function using a sigmoidal function due to the fact that 
the logarithm of the ratio of class conditional density functions is taken to be 
linear in terms of ܠ for any pair of classes, resulting in a linear decision 
boundary ܟ୘ܠ +   ,.଴, i.eݓ

 

 ݈݊ ቆ݌(ܠ|߱௜)݌൫ܠ| ௝߱൯ቇ = ܠ୘ܟ +  ଴ (3.13)ݓ

 
In summary, since the class conditional densities can only be estimated and 
the training set available for this estimation is finite, a classifier’s error will 
be higher than the Bayes’ error. The larger the number of training data 
representing the true underlying class distributions and the more accurate the 
density estimate is, the closer will be the classifier’s performance to the 
Bayes optimal classifier. 

3.3.2 Quadratic Classifier 

In estimating the class conditional probability density function, one approach 
is to use a parametric density estimation method, i.e., one that assumes a 
certain model. The most common parametric density estimation method uses 
the multivariate normal distribution to estimate each class conditional 
density function, i.e.,  
 

 
(௜߱|ܠ)̂݌ = 1ට(2ߨ)௣ห઱෡௜ห ݌ݔ݁ ൜−12 ܠ) − ෝૄ௜)୘઱෡௜ି ଵ(ܠ − ෝૄ௜)ൠ (3.14) 

 
The parameters of each model are estimated from the training objects in the 
corresponding class. Thus ෝૄ௜ and  ઱෡௜ are respectively the sample mean and 
covariance matrix of class ߱௜ as estimated from the available data. If we 
substitute this expression into the conditional probability density function in 
Bayes’ theorem, we obtain the following expression for the logarithm of the 
posterior probability:  
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݈݊൫̂݌(߱௜|ܠ)൯ = 2݌− (ߨ2)݈݊ − 12 ݈݊൫ห઱෡௜ห൯− 12 ܠ) − ෝૄ௜)୘઱෡௜ି ଵ(ܠ − ෝૄ௜) + ݈݊൫̂݌(߱௜)൯−  (3.15) ((ܠ)̂݌)݈݊

 
When comparing among posterior probabilities for a given object, we may 
ignore the first and the last terms in this equation since the first term is a 
constant and the last term is independent of the classes and represents the 
normalization factor in Bayes’ theorem which appears in all these 
expressions. Equation 3.15 reduces to:  
 

 
݃௜(ܠ) = −12 ݈݊൫ห઱෡௜ห൯ − 12 ܠ) − ෝૄ௜)୘઱෡௜ି ଵ(ܠ − ෝૄ௜)+ ݈݊൫̂݌(߱௜)൯ (3.16) 

 
The discriminant rule becomes: assign object ܠ to the class ߱௜ if ݃௜(ܠ) >݃௝(ܠ) for all ݅ ≠ ݆. This is the same as assigning according to the highest 
posterior probability. Equivalently, we can construct the discriminant 
function between two classes as follows:  
 

(ܠ)݂  = (ܠ|ଵ߱)̂݌ −  (3.17) (ܠ|ଶ߱)̂݌
    
The decision rule becomes: assign object ܠ to ߱ଵ if ݂(ܠ) > 0. If we 
substitute the expressions for ̂݌(߱ଵ|ܠ) and ̂݌(߱ଶ|ܠ) from equation 3.15 and 
simplify, we can write the discriminant function in the following form:  
 
(ܠ)݂  = ܠ܅܂ܠ + ܠ୘ܟ +  ଴ (3.18)ݓ
  
where the weights are given by:  
܅  = ቀ− ଵଶ ઱෡ଵି ଵ + ଵଶ ઱෡ଶି ଵቁ, ܟ = ൫઱෡ଵି ଵෝૄଵ − ઱෡ଶି ଵෝૄଶ൯, and ݓ଴ = ൬−12 ݈݊൫ห઱෡ଵห൯ + 12 ݈݊൫ห઱෡ଶห൯ + ݈݊൫݌(߱ଵ)൯ − ݈݊൫݌(߱ଶ)൯ − 12 ෝૄଵ୘઱෡ଵି ଵෝૄଵ+ 12 ෝૄଶ୘઱෡ଶି ଵෝૄଶ൰ 

 
Thus, equation 3.18 shows that the function is quadratic in ܠ and the 
decision boundary will in general be a conic section (such as an ellipse or a 
parabola). Because this classifier uses the normal distribution to model each 
class conditional density function before applying Bayes’ theorem, it is 
referred to as the normal-based quadratic classifier. 
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Note that the class prior probabilities ̂݌(߱ଵ) and ̂݌(߱ଶ) appear only in the 
scalar offset term, ݓ଴, of equation 3.18. This means that changing the class 
priors will cause the decision boundary to shift as if changing the cost of 
classification among the two classes. 
Equations 3.15, 3.16 and 3.18 show that the class sample covariance 
matrices need to be computed and inverted; however if the number of 
objects is small, the estimate will be poor. Moreover, if this number is less 
than the dimensionality of the feature space, i.e., ݊ <  then the sample ,݌
covariance matrix is rank deficient and therefore cannot be inverted. One 
possibility may be to use the Moore-Penrose pseudo-inverse ઱௜ା =઱෡௜୘൫઱෡௜઱෡௜୘൯ିଵ. Note that this can be used as well in the Fisher classifier, 
where the problem of inverting the sample covariance matrix is also present; 
in this case, the classifier is called the pseudo-Fisher classifier in reference to 
the pseudo-inverse.  
Regularizing the class sample covariance matrix can also prevent this 
problem by setting: ઱෡௜ᇱ = ઱෡௜ +  adds a constant to the ۷ߣ The term .۷ߣ
diagonal of the covariance matrix which may prevent singularities. As ߣ 
increases, the main diagonal of the matrix becomes dominant, and the 
sample covariance matrix simplifies towards a scaled identity matrix. 
Simplifying the estimation of the class covariance matrices may lead to the 
normal-based linear classifier and the nearest mean classifier as discussed 
in the following sections.  

3.3.3 Normal-based Linear Classifier 
To reduce problems with estimating and inverting class sample covariance 
matrices, one can average these to obtain a more stable estimate and assume 
all the individual classes have this same average estimate: ܁୛ = ∑ (݊௜/݊)઱෡௜௄௜ୀଵ . The assumption of equal covariance matrices among 
the classes simplifies the quadratic classifier to a linear classifier since the 
first term and the quadratic term in equation 3.16 become invariable across 
all the classes and can be dropped, simplifying the equation to: 
 

 ݃௜(ܠ) = −12 ෝૄ௜୘܁୛ିଵෝૄ௜ + ෝૄ௜୘܁୛ିଵܠ + ݈݊൫̂݌(߱௜)൯ (3.19) 

 
The resulting discriminant rule is linear, and equation 3.18 reduces to:            
    
(ܠ)݂  = ܠ୘ܟ +  ଴ (3.20)ݓ
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since ܅ vanishes and the remaining weights simplify to: 
ܟ  = ୛ିଵ(ෝૄଵ܁ − ෝૄଶ), and  ݓ଴ = ቀ݈݊(̂݌(߱ଵ)) − ((ଶ߱)̂݌)݈݊ − ଵଶ ෝૄଵ୘܁୛ିଵෝૄଵ + ଵଶ ෝૄଶ୘܁୛ିଵෝૄଶቁ.  

 
For the two-class case, this classifier is more or less equivalent to the Fisher 
classifier, which attempts to maximize the following criterion with respect to ܟ: 

 

 J୊(ܟ) =  (3.21) ܟ୵܁୘ܟܟ୆܁୘ܟ

 
where ܁୛ and ܁୆ are the within- and between- scatter matrices, respectively, 
(see Abbreviations list). The solution can be found analytically by setting డ୎ూ(ܟ)డ(ܟ) = 0 and solving for ܟ, which leads to:  

 
ܟ  ∝ ୛ିଵ(ෝૄଵ܁ − ෝૄଶ) (3.22) 
  
The resulting classifier has the same direction as the normal-based linear 
classifier, i.e., the hyperplanes have the same normal vector.   

3.3.4 Nearest Mean Classifier 
An even greater simplification to the previous analysis is to assume that all 
the features are uncorrelated and of equal variance, i.e., the class sample 
covariance matrices become of the form: ܁෠ =  ଶ۷. Replacing the sampleߪ
covariance matrix of equation 3.19 by this scaled identity matrix simplifies 
the discriminant rule into:  
 

 ݃௜(ܠ) = − ଶߪ12 ൫ෝૄ௜୘ෝૄ௜ − 2ෝૄ௜୘ܠ൯ + ݈݊൫̂݌(߱௜)൯ (3.23) 

 
Also, the decision function in equation 3.20 remains linear but the weights 
simplify to:  

ܟ  = 1/σଶ(ෝૄଵ − ෝૄଶ), and  ݓ଴ = ቀ݈݊(̂݌(߱ଵ)) − ((ଶ߱)̂݌)݈݊ − ଵଶ஢మ ෝૄଵ୘ෝૄଵ + ଵଶ஢మ ෝૄଶ୘ෝૄଶቁ.  

Assuming equal class priors, the offset term reduces further to ݓ଴ =ቀ− ଵଶ஢మ ෝૄଵ୘ෝૄଵ + ଵଶ஢మ ෝૄଶ୘ෝૄଶቁ. This classifier simply assigns an object ܠ to the 

nearest class mean in the Euclidean sense, and hence its name.   
Another generalized estimate of the class sample covariance matrix that is a 
combination of the above cases is given by:  
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 ઱௜ఒ = (1 − ௜઱෡௜݊(ߣ + ୛(1܁݊ߣ − ௜݊(ߣ + ݊ߣ  (3.24) 

 
This provides a parameter, 0 ≤ ߣ ≤ 1, for controlling the complexity of the 
classifier ranging from the quadratic classifier, for which ߣ = 0, to the linear 
normal-based classifier, for which ߣ = 1. At these extremes, equation 3.24 
reduces to:  

 

 ઱௜ఒ = ൜઱෡௜ , ߣ = ,୵܁0 ߣ = 1 (3.25) 

3.3.5 K-Nearest Neighbor Classifier 
Returning to the Bayesian approach, we can instead use a non-parametric 
density estimation method, i.e., one that does not assume a model, for 
approximating the class conditional densities. One such method is the k-
nearest neighbor density estimation; another is Parzen density estimation. In 
the k-nearest neighbor method, an approximation of the density is obtained 
locally by fixing the number of neighbors, ݇, around each object ܠ and 
finding the volume of the cell or ݌-dimensional hypersphere centered at ܠ 
and containing those ݇ neighboring objects out of the total number of 
objects, ݊. The estimated density is then computed as the fraction (݇/݊) per 
volume, i.e.,  

 

(ܠ)̂݌  = ݇/݊௞ܸ,ܠ  (3.26) 

 
When more than one class is available with each having ݊௜ sample objects, 
i.e. ∑ ݊௜௜ = ݊, then for a given object ܠ, the ݇ nearest neighbors are located 
and from among these, there will be in general ݇௜ objects belonging to class ߱௜, where ∑ ݇௜௜ = ݇. The class conditional densities can then be estimated as 
follows:         
  

(௜߱|ܠ)̂݌  = ݇௜/݊௜௞ܸ,ܠ  (3.27) 

  
whereas, the class prior probabilities are given by ̂݌(߱௜) = ݊௜/݊. Now, using 
Bayes’ theorem, we may classify an object ܠ by comparing its class posterior 
estimates. In particular, the object is assigned to class ߱௜ if ̂݌(߱௜|ܠ) )̂݌< ௝߱|ܠ), for all ݆ ≠ ݅; that is, in other terms:   
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(௜߱)̂݌(௜߱|ܠ)̂݌  > หܠ൫̂݌ ௝߱൯̂݌( ௝߱) (3.28) 
Substitution leads to: 
 

 
݇௜݊௜ ௞ܸ,ܠ ݊௜݊ > ௝݇௝݊ ௞ܸ,ܠ ௝݊݊

 (3.29) 

 
Equation 3.29 simplifies to ݇௜ > ௝݇. Therefore, object ܠ is assigned to ߱௜ if ݇௜ > ௝݇ for all ݆ ≠ ݅. The classifier thus reduces to an instance-based rule, 
where an object is labeled by a majority vote among its ݇ nearest neighbors. 
Ties ൫݇௜ = ௝݇൯ can be avoided in the two-class case by selecting an odd 
value for ݇. In general, ties can be resolved in a multiple of ways such as by 
either arbitrary assignment or based on the single closest neighbor, the 
closest ݇ − 1 neighbors, or the closest class mean as measured from among 
the ݇ neighbors. Another method is to weigh the distances of the ݇ neighbors 
to the test object ܠ, resulting in a weighted vote where closer neighbors carry 
a larger weight that is inversely proportional to the distance from the test 
object.      
    
The parameter ݇ of this classifier controls its complexity and its selection is 
very important. Small values result in a very complex and jagged boundary 
that may overadapt to single instances (see Figure 4) whereas large values 
give a smoother boundary. In the limit, as ݇ → ݊, any test object will be 
classified the same way, i.e., always to the same class: the one with highest 
prior probability ̂݌(߱௠) = ݊௠ ݊⁄  from among all the classes. The 
classification error is then: 

 

 ݁௞→௡ = ෍ ௜ஷ௠(௜߱)̂݌ = 1 −  (3.30) (௠߱)̂݌

 
For example, if a dataset consists of 3 classes ߱ଵ,߱ଶ, and ߱ଷ with 5, 10, and 
20 training objects, respectively, then by the 35-nearest neighbor, any test 
object will always be assigned to class ߱ଷ. The classification error fraction 
will be (5+10)/35.     
 
As ݇ varies between 1 and ݊, the classifier’s error will attain a minimum for 
some value of ݇ in this range. One preferred method for selecting ݇ is to use 
cross-validation, such as the leave-one-out procedure, in order to find this 
optimal value in a systematic way.  
      
The k-nearest neighbor is a simple classifier but which often performs 
remarkably well with proper selection of ݇ using cross-validation. Its 
complexity can be controlled easily using this single parameter. However, 
with large datasets, the computational weight becomes heavy since distances 
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to all training objects need to be computed. The classifier is also very 
sensitive to the scaling of features, so normalization to zero mean and unit 
variance is recommended prior to classification.       
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3.3.6 Support Vector Classifier 
The support vector machine in its most basic form is similar to the 
perceptron. Both address binary, i.e. two-class, classification and both 
assume linearly separable classes and result in a linear decision surface. The 
support vector classifier, however, finds a single unique solution for a given 
dataset: one that maximizes the margin between the two classes. This margin 
can be seen in Figure 5 as the distance between the two canonical 
hyperplanes (dashed lines) where no object lies in between. The separating 
hyperplane lies midway between these two, and the direction of these 
hyperplanes as indicated by their normal vector ܟ, is found such that this 
margin is maximized. Mathematically, recall that in 3D space, the distance 
between a point ݔ)ܣ଴, ,଴ݕ :(ܲ) ଴) and a planeݖ ݔݑ + ݕݒ + ݖݓ + ݎ = 0 with 
normal vector ሬ݊Ԧ(ݑ, ,ݒ   :is given by (ݓ
 

 ݀ = ଴ݔݑ| + ଴ݕݒ + ଴ݖݓ + ଶݑ√|ݎ + ଶݒ + ଶݓ  (3.31) 

          
which follows from the fact that this distance is that from ܣ to its orthogonal 

projection ܪ on (ܲ), i.e., ݀ = ܪܣ = ห஺ுሬሬሬሬሬሬԦ•௡ሬԦห‖௡ሬԦ‖ , while noting that ܪܣሬሬሬሬሬሬԦ and ሬ݊Ԧ are 

parallel. The same reasoning applies in higher dimensions, and equation 3.31 
becomes:  

 

 ݀ = หܟ୘ܠ + ‖ܟ‖଴หݓ  (3.32) 

 
Points belonging to the canonical hyperplanes satisfy the equation ܟ୘ܠ ଴ݓ+ = ±1. Thus, the distance between a canonical hyperplane and the 
separating hyperplane is ݀ =  and the distance between the two ,‖ܟ‖/1
canonical hyperplanes is twice as much, i.e., ݀ =  This is the margin .‖ܟ‖/2
to be maximized and is therefore equivalent to minimizing ‖ܟ‖ or more 
conveniently 

ଵଶ ଶ‖ܟ‖ = ଵଶܟ୘ܟ, i.e., in preparation for taking the partial 
derivative as part of the usual analytic method for finding extrema.  
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Figure 5. The support vector classifier in the linearly separable case with two classes 
of labels ݕ௜ = ±1. The separating hyperplane ܟ୘ܠ + ଴ݓ = 0	and the two canonical 
hyperplanes ܟ୘ܠ + ଴ݓ = ±1 (dashed lines) are shown. The support vectors belong 
to the canonical hyperplanes. 

The term, 
ଵଶܟ୘ܟ, needs to be minimized but subject to the constraint that 

the objects fall correctly to the sides of the canonical hyperplanes, i.e., all 
objects are correctly classified with no object lying between the two 
hyperplanes. These conditions translate to the following equations:       
 

 ቊܟ୘ܠ௜ + ଴ݓ ≥ +1, ௜ݕ = ௜ܠ୘ܟ1+ + ଴ݓ ≤ −1, ௜ݕ = −1 (3.33) 

 
These constraints can be rewritten in compact form as follows:  
 
௜ܠ୘ܟ௜൫ݕ  + ଴൯ݓ − 1 ≥ 0 (3.34) 
 
A standard approach to minimize 

ଵଶܟ୘ܟ, subject to the above inequality 
constraints is to use the method of Lagrange multipliers, where the 
constraints can be coupled with the main function to be optimized, i.e., ∇݂ − ௜∇݃௜ߙ = 0, where ݂ is the main function to be optimized and ߙ௜ is the 
Lagrange multiplier associated with each constraint function ݃௜. Note that 
the inequality constraints in equation 3.34 are in the form ݃௜ ≥ 0, and so 
these are multiplied by positive multipliers, ߙ௜ ≥ 0, and subtracted from the 
main function. In this case, the formulation would be as follows:  
 

 ݉݅݊ ൝ܮ௣ ≡ ܟ୘ܟ12 −෍ߙ௜௡
௜ୀଵ ൫ݕ௜൫ܟ୘ܠ୧ + ଴൯ݓ − 1൯ൡ (3.35) 

 
Note that in equation 3.35 there are as many constraint equations as there are 
training objects in the dataset, and each is associated with a single Lagrange 
multiplier, ߙ௜. Taking the partial derivative of the primal form of the 
Lagrangian, ܮ௣, between braces in equation 3.35 with respect to ܟ, setting it 
to zero, and solving for ܟ, gives the result:    
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ܟ௣߲ܮ߲ = ௜௡ܠ௜ݕ௜ߙ෍−ܟ

௜ୀଵ = 0 ⇒ ܟ =෍ߙ௜ݕ௜ܠ௜௡
௜ୀଵ  (3.36) 

 
Performing the same with respect to the remaining offset, ݓ଴, gives:  
  

 
଴ݓ௣߲ܮ߲ = −෍ߙ௜ݕ௜௡

௜ୀଵ = 0 ⇒෍ߙ௜ݕ௜௡
௜ୀଵ = 0 (3.37) 

 
Substituting these results back into ܮ௣ gives the dual form: 
     

஽ܮ  ≡෍ߙ௜௡
௜ୀଵ − 12෍෍ߙ௜௡

௝ୀଵ ௝௡ܠ௜୘ܠ௝ݕ௜ݕ௝ߙ
௜ୀଵ  (3.38) 

 
The inner product term ܠ௜୘ܠ௝ becomes very useful in nonlinear support 
vector machines. Particularly, when the data is transformed through a 
mapping ߶(ܠ௜) into an often higher-dimensional, kernel space where the 
classes are assumed to become linearly separable, the inner product ߶୘(ܠ௜)߶(ܠ௝) can be expressed as a kernel function ܭ൫ܠ௜, ௝൯ܠ =߶୘(ܠ௜)߶(ܠ௝) without having to define the mapping ߶(ܠ) explicitly or 
transform the data in practice. In this case, one can even assign the 
exponential kernel, which is an infinite polynomial. This replacement of the 
inner product by a general kernel function is known as the kernel trick. Apart 
for the polynomial kernel, the radial basis function (RBF) kernel is 
commonly used and is defined as:  
 

,௟ܠ)ܭ  (ܠ = ݌ݔ݁ ቆ−‖ܠ௟ − ଶߪଶ‖ܠ ቇ (3.39) 

 
This is very similar to a circularly symmetric Gaussian with covariance 
matrix ઱ =  controls the complexity, where small ߪ ଶ۷. The parameterߪ
values result in highly complex boundaries and large values in smoother 
boundaries.  
The nonlinear support vector classifier is derived in Appendix A.1 of Paper 
III and is used with a radial basis function kernel in the mentioned paper.        
 
Returning to equation 3.36, note that the normal vector defining the direction 
of the separating hyperplane, ܟ = ∑ ௜௡௜ୀଵܠ௜ݕ௜ߙ , is expressed in terms of the 
objects ܠ௜ and Lagrange multipliers ߙ௜. The Lagrange multipliers are 
obtained by optimizing the dual form ܮ஽ in equation 3.38 which is a 
quadratic function, subject to the constraints ߙ௜ ≥ 0 and ∑ ௜௡௜ୀଵݕ௜ߙ = 0. This 
can be done using quadratic programming with several standard software 
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packages available for this purpose. The convex optimization returns a 
unique global solution, where most of the multipliers are of zero value, 
whereas the objects associated with ߙ௜ ≠ 0 are called the support vectors. 
These are the landmark objects that define the hyperplanes. Therefore, in 
fact the expression for ܟ simplifies to a sparse linear combination of the 
objects, ܟ = ∑ ௜௜∈ௌ௏ܠ௜ݕ௜ߙ , where the summation is only over ܸܵ, the set of 
support vector indices. 
 
The support vector classifier often performs well in high-dimensional feature 
spaces even with a relatively limited training set since it relies on support 
vectors and the geometry of the data rather than on estimating the 
conditional probability density function, which becomes expensive in high-
dimensional spaces and requires a large training set. Comparatively, the 
Bayesian approach appears to acquire much more information than needed 
before assigning labels to specific objects. The complexity of the nonlinear 
support vector classifier can be controlled by the kernel parameter (e.g.: the 
order of the polynomial kernel or the width of the RBF kernel) and the 
regularization cost parameter ܥ, which appears in the formulation of the 
nonlinear classifier and is associated with slack variables. A sensible way for 
selecting these parameters is through k-fold cross-validation or similar 
testing. With the kernel method, the flexibility of the classifier can be very 
high and may range from simple to highly complex and detailed boundaries. 
However, determining these parameters by cross-validation can be 
expensive. Moreover, the use of quadratic programming for solving the 
constrained optimization problem is likely to be in most cases 
computationally expensive, and for large datasets exceeding a few thousand 
sample objects, often a special-purpose optimizer is employed.  
 
The classifier is formulated based on the binary classification problem. 
Extension to the multiclass case often involves a one-against-one or a one-
against-all classification scheme, both of which increase the computational 
load. In the first setting, ܭ)ܭ − 1)/2 binary classifications are performed for 
a given test object and the results are combined into a final classification. In 
the second, ܭ binary classifications are performed and in the simplest case, 
the object ܠ is assigned to the class for which the distance from the 
separating hyperplane is the largest, i.e., the most confident case. Another 
possibility is to couple the ܭ classifications within the constrained 
optimization problem, however, this strains the quadratic programming 
routines significantly.  
 
The support vector classifier’s formulation leading to an optimization 
problem is mathematically elegant and yields a unique global solution for a 
given data, kernel parameter, and regularization parameter. In some contexts, 
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this has been compared against feed-forward artificial neural network 
classifiers where the solution in these latter can vary with each run 
depending on the random initialization, while noting that the neural network 
classifier has the disadvantage that it often converges to a local minimum in 
its error minimization. However, over time it has been acknowledged that it 
is this seeming ‘disadvantage’ which makes the classifier resilient and highly 
adaptive and tunable in relation to the bias-variance tradeoff. The burden 
remains in selecting a suitable network architecture and avoiding overfitting 
in the presence of a large number of network weight parameters. A common 
method is to use cross-validation in the training of the network, whereby 
after every fixed number of iterations the classifier is tested using the 
validation set. Although the apparent error might always decrease, as soon as 
the test error begins to rise, the training is stopped so as to prevent 
overfitting and avoid large network weights.        

3.3.7 Multiple Instance Learning 
Multiple instance learning (MIL) can be seen as a generalization of 
supervised learning in which the labels of single objects are not known, but 
rather only the label of a bag (set of instances) is known. The bag can be 
regarded as a compound, non-simple object. When the bag is reduced to a 
single instance, multiple instance learning simplifies to standard supervised 
learning. The MIL problem is a naturally occurring one, but it mostly came 
into light with the drug activity prediction problem that was addressed by 
Dietterich et al. in [33]. In particular, a molecule has a potential for 
qualifying or developing into a drug if it is able to bind to its target area 
effectively. Dietterich et al. sought to develop a learning algorithm that may 
predict such a potential. The problem was that a molecule may have 
numerous alternative conformations or shapes, most of which will not bind 
to the target site. Only the end result of whether the molecule is effective or 
not could be recognized by the biochemist, but it was not known which of 
the molecule’s many configurations was responsible for locking onto the 
binding site. In other words, the multiple configurations of a molecule, i.e. 
the single instances, are unlabeled whereas the bag, i.e. the type of molecule 
itself, carries a label that can either be positive or negative. The bag has a 
negative label if none of its instances are able to bind to the target site, 
whereas it carries a positive label if at least one of its instances is able to 
bind to the target site. This asymmetry in assigning labels complicates the 
classification task. This type of problem can also be seen in image analysis, 
where one can think of an image as a bag consisting of a complex assortment 
of instances derived from local patches, sub-regions, or clustered areas 
spread over different parts of the image. In medical image classification, this 
approach can be used for example when a subject is known to have a certain 
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illness or not, while it is unclear which part of the image signals the 
pathology or which feature vectors contribute to this labeling. In natural 
scene classification, an image may be transformed or clustered into a matrix 
of blobs, and the feature vectors derived from each of these sub-regions 
become the unlabeled instances, whereas only the image as a whole has a 
known label.  
 
The MIL problem can be summarized using our usual machine learning 
notation as follows. Given a training set of objects, ℒ = ,ଵܠ} … ,  ௡}, theܠ
objects themselves are not labeled but are grouped within bags, ܤଵ,… ,  ,௞ܤ
where ீܤ = ݅	:௜ܠ} ∈ ீܤ is the set of object indices belonging to bag ܩ and ,{ܩ . The number of instances contained in each bag can vary from one bag to 
another. Each bag ீܤ  carries a label ܻீ = +1 or ܻீ = −1. In the case when 
the bag label is negative, ܻீ = −1, then all the included instances can be 
assigned a negative label, ݕ௜ = −1, for all ݅ ∈  Otherwise, if the bag label .ܩ
is positive, ܻீ = +1, then we are certain that there exists at least one object ܠ௜ in that bag which can be assigned a positive label, ݕ௜ = +1. Such an 
object is an example of an instance that would belong to the so-called 
concept, i.e., it is a key object that contributes to the positive bag label. The 
MIL problem reduces to standard supervised learning when each instance in 
the data is its own bag, i.e., ܤ௜ ≡   .௜ܠ
Several classifiers have been formulated for the multiple instance learning 
problem (e.g. [34, 35]), however a recent approach in [36] is particularly 
attractive as it uses the dissimilarity representation by computing the 
distances among the bags in order to transform the MIL problem back into a 
standard supervised learning setting, where any typical classifier can be 
utilized. This approach has been adopted in Paper V and was used for the 
classification of glandular tissue.   
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In the following sections, we turn our attention to some of the digital image 
analysis methods used in Papers I and V, namely, morphological operations 
and granulometry.  

3.4 Digital Image Processing 
Most commonly, an image can be defined as a matrix of numbers, ۻ[݅, ݆]. 
This matrix can be viewed on a screen using grayscale shades in the form of 
an image display (note that a color image is a stack of 3 such matrices, one 
for each of the red, blue, and green components superimposed). Every 
element in this matrix is called a pixel. For a 1-bit image, the only value a 
pixel can take is either 0 or 1, resulting in what is called a binary or black-
and-white image. For an 8-bit image, the possible range of values are: [0, … ,255], and this is the most standard representation. In general, for a ܾ-
bit image, the number of possible grayscale values is 2௕, ranging from 0 to 2௕ − 1. 

3.4.1 Neighborhood Connectivity 
Many distance measures can be defined between pixel locations. A distance 
measure between two pixel locations ݌)ܘ௫, ,௫ݍ)ܙ ௬) and݌  ௬) is a metric if itݍ
satisfies the following 4 conditions:  
 
,ܘ)ܦ (1 (ܙ ≥ 0. 
,ܘ)ܦ (2 (ܙ = 0, if	and	only	if	ܘ =  .ܙ
,ܘ)ܦ (3 (ܙ = ,ܙ)ܦ  .(ܘ
,ܘ)ܦ (4 (ܢ ≤ ,ܘ)ܦ (ܙ + ,ܙ)ܦ  .(ܢ
 
The last condition is known as the triangle inequality. The most common 
distance metric is the Euclidean distance defined as: 

 

,ܘ)௘ܦ  (ܙ = ට(݌௫ − ௫)ଶݍ + ൫݌௬ −  ௬൯ଶ (3.40)ݍ

   
Another distance function is the city-block distance, ܦସ, defined as follows: 

 
ସܦ  = ௫݌| − |௫ݍ + ห݌௬ −  ௬ห (3.41)ݍ
 
The city-block distances around a central pixel are shown in Figure 6. The 
set of pixels at which the ܦସ distance from the central pixel ܘ equals 1 form 
the 4-connected neighbors or simply the 4-neighbors of ܘ, denoted by ସܰ(ܘ). These are basically the immediate horizontal and vertical neighbors.  
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Figure 6. City-block distances around a central pixel. 

 
Another distance metric is the chessboard distance or ଼ܦ distance, defined as 
follows:  

 
଼ܦ  = ௫݌|൫ݔܽ݉ − ,|௫ݍ ห݌௬ −  ௬ห൯ (3.42)ݍ
 
The chessboard distances around a central pixel are shown in Figure 7. The 
set of pixels at which the ଼ܦ distance from the central pixel ܘ equals 1 form 
the 8-connected neighbors of ܘ, denoted by ଼ܰ(ܘ). These are the immediate 
horizontal and vertical neighbors, in addition to the diagonal neighbors.  

 
Figure 7. The chessboard distances around a central pixel. 

Distance transforms can transform a binary image into a distance map by 
labeling each pixel with the distance to its closest foreground or object pixel. 
For computational considerations, these transforms are often computed by 
propagating local distances using small neighborhoods. Such local distance 
functions can for example be defined based on the city-block or chessboard 
distances. Optimal local distance functions that minimize the maximum 
difference of the distance transform to the Euclidean distance were proposed 
in [37].   

3.4.2 Morphological Operations 
A pixel location in an image coordinate system can be regarded as a vector ܉ 
in ℤଶ. An object or region of interest in an image can then be defined by a 
set of vectors, ܣ. The translation of ܣ by some vector ܢ is denoted by: (ܣ)ܢ = ܋|܋} = ܉ + ,ܢ for	܉ ∈ መܣ :is defined as ܣ A reflection of a set .{ܣ = ܟ|ܟ} = ,܉− for	܉ ∈  Following this, we may define a dilation of a .{ܣ
set ܣ by a set ܤ as follows: ܣ⊕ ܤ = ܢ෠൯ܤ൫|ܢ} ∩ ܣ ≠ ∅}. The set ܤ is then 
called a structuring element. One can think of a dilation as an operation that 
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tries to expand the object ܣ by means of the structuring element ܤ. This 
latter is first flipped around its origin, and is imagined to be sliding over ܣ, 
trying to escape from it from all directions but without ever being allowed to 
completely detach from ܣ. The extent the origin of ܤ෠  can reach outside of ܣ 
in any direction then becomes part of the dilated version of ܣ.  
 
An erosion of a set ܣ by a structuring element ܤ is given by: ܣ⊖ ܤ ܢ(ܤ)|ܢ}= ⊆  by ܣ Erosion can be thought of as shrinking the size of object .{ܣ
means of the structuring element. More precisely, it is the possible positions 
that the origin of the structuring element ܤ can assume in the image while ܤ 
remains completely entrapped within ܣ.  
 
An opening of a set ܣ by a structuring element ܤ is defined as: ܣ ∘ ܤ ⊖ܣ)= ⊕(ܤ  one ,ܤ By first eroding, then dilating by a structuring element .ܤ
can for example eliminate narrow bridges or protrusions between connected 
subregions of the object ܣ since these areas may not survive the erosion 
operation and may become completely disconnected before dilation is 
applied. Any small isolated regions can also be removed permanently by this 
operation if they happen to be smaller in size than the structuring element. 
This latter property is specifically of interest since it is used in 
morphological granulometry.               
 
A closing of a set ܣ by a structuring element ܤ is defined as: ܣ • ܤ ⊕ܣ)= ⊖(ܤ  By first dilating, one can close small holes or gaps within the .ܤ
object ܣ, which once filled are not affected by the subsequent erosion 
operation, and thus the closure of these regions would be irreversible.  
 
In the above discussions, we have assumed that the image is binary, that is 
with only two possible pixel values: zero (black) or one (white). However, 
these operations also extend to grayscale images, where they affect dark and 
bright details in the image. In the context of this thesis, we limit the 
discussion to the binary case in accordance with Papers I and V. Moreover, 
morphological opening is of particular interest in this setting since it is 
applied in granulometry, which has been used in Paper I.  

3.4.3 Morphological Granulometry 
In image analysis, granulometry is a method for determining the size 
distribution of particles in an image without having to segment the image or 
separate the particles. It is a robust method that uses a series of 
morphological opening operations applied over the image. The process is 
analogous to applying a sequence of sieves with different hole sizes for 
separating the different types of grains based on their sizes. For our purpose, 



45 
 

we deal with binary images consisting of disc-like microarray cores in Paper 
I. By applying a series of openings with a disc structuring element of 
increasing size (controlled by its radius), the cores that are smaller in size 
than the structuring element will disappear sequentially from the image. The 
total surface area of the foreground is computed after each opening, and this 
area will be monotonically decreasing as a function of the structuring 
element’s radius since the particles will vanish from the image gradually 
from the smallest to the largest if there is more than one group size. The 
finite difference of this monotonically decreasing curve can reveal the size 
distribution of the particles. This is simply indicated by the peaks in the 
finite difference curve, which signal large drops in the surface area, at which 
an entire group of similarly-sized particles disappear from an image.    
 
Morphological granulometry as employed in Paper I can be summarized 
using the following pseudo-code:  

 
for ݎ = 0 to ݎ௠௔௫ 
      ݎ disc structuring element with radius ← (ݎ)܍ܛ      
            ۷௢ ← opening of image ۷ by (ݎ)܍ܛ 
 compute foreground surface area in ۷௢ ← (ݎ)ܵ        
end 
 
The curve of ܵ(ݎ) is monotonically decreasing, and the finite difference 
curve, |ܵ(ݎ) − ݎ)ܵ − 1)|, over the proper domain reveals the particle size 
distribution. 
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4 Summary of Publications 

Through Papers I to V of this thesis, we move gradually from first trying to 
detect tissue cores arranged in large microarrays, then to segmentation and 
color decomposition methods for analyzing these tissue cores once detected, 
and ending with two subsequent applications relating to the identification of 
immunostaining patterns and classification of glandular tissue. Particularly, 
in Paper I, we discuss how to automate the localization of single tissue cores 
in large microarrays. The remaining papers focus on methods relating to 
these single tissue cores and biopsies. In Paper II, we propose a new method 
for segmenting stained tissue sections based on a blind color decomposition 
scheme. In Paper III, we discuss how to optimize the use of staining and 
color combinations in tissue sections for automation purposes and present a 
framework for doing so. Finally, Papers IV and V present two applications 
that are based on the preceding papers. In Paper IV, we use color 
segmentation as a primary step and propose a combined, correlation-based 
analysis to identify paired antibodies across adjacent tissue core sections. In 
Paper V, we start with color decomposition and present a new and practical 
feature descriptor for classifying glandular tissue as a basis for Gleason 
grading and tubule-based Elston grading in prostate and breast tissue 
respectively. 
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4.1 Paper I: Microarray Core Detection by Geometric 
Restoration    

4.1.1 Problem Description 
The aim of Paper I is to accurately detect and localize tissue microarray 
cores in an automated manner that allows for high-throughput processing of 
images from whole slide scanners. Tissue microarrays often consist of tens 
to hundreds of tissue cores or discs that are arranged in arrays [8]. Each core 
represents a tissue cross-section that has been cut out from a gland and 
stained for histology. Whole slide imaging scanners are able to scan the 
entire arrangement from one slide in a timely manner and provide images of 
these tissue cores collectively as in Figure 8. Automating the analysis of 
these images would thus allow for high-throughput processing of tissue 
cores, which is needed for a variety of purposes such as paired antibody 
identification (see Paper IV) or glandular tissue classification and cancer 
grading (see Paper V). The task however is not made easy due to the 
following problems which are often present in images of tissue microarrays.  
 
1. The preparation procedure of microarrays often results in many 

irregularities in core alignment and grid geometry due to mechanical 
strain, human error, and acquisition factors. Examples of these 
irregularities include geometric distortions, misalignments, irregular 
distributions, and variable inter-core spacing (see Figure 8). 

 
2. Often many cores in the microarray will be either missing entirely or 

missing parts of their disc, and this fact along with variable array-
spacing can affect several methods found in the literature. 
Inhomogeneity in the image can also affect methods that rely upon 
profiling gray-level intensities and which are sensitive to such variations 
as in [38].  

 
Common existing methods for detecting microarray cores often rely on 
template matching and the Hough transform for circle detection. However, 
these methods bear several drawbacks. Template matching often attempts to 
fit a rectangular grid over the microarrays. Fitting a grid over the tissue cores 
is not always justifiable due to the possibility of having an irregular grid 
geometry. In addition, the method requires prior knowledge of grid 
parameters such as the size of the cells or distance between grid points, 
which may vary from case to case and thus hinder high-throughput analysis. 
The result is similar to a hit or miss scenario: if the grid geometry is regular, 
the assumptions are fulfilled, and hence high detection rates may be 
achieved; however, if the grid assumptions are violated, very low detection 
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rates would incur. Template matching is often computationally expensive 
due to the range of rotations and translations it must account for. Another 
common approach for core detection is the Hough transform [39, 40]. In this 
context, the method operates in a three-dimensional parameter space and is 
also computationally expensive, requiring careful optimization for managing 
the 3D accumulator. Reliance on maxima detection in parameter space is a 
difficult task and makes the method very sensitive to noise and variations, 
especially with the fact that there is less evidence in parameter space for 
defective cores with missing parts than for cores that are complete. While, 
generally, the Hough transform for circle detection is a valuable technique 
for exclusively detecting circles from among several different geometric 
shapes in an image, it is unnecessary in this particular application, since 
otherwise we would be tackling a different and more general problem. In 
principle, tissue microarrays contain only disc shapes, and any deviations 
from these (including irregular shapes arising from missing core portions) 
should not be discarded as being non-circles, but should be detected as if the 
cores were complete.  
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Figure 8. (a-b-c). The application of the proposed method to tissue microarray 
images. (a) Original TMA image. (b) Objects following morphology overlaid 
against reconstructed circles. (c) Original image overlaid against reconstructed 
circles.    
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4.1.2 Proposed Method 
In this section, we explain the proposed method and summarize the results of 
Paper I for solving the microarray core localization problem; however, we 
have chosen to present the different stages of the method in reverse order as 
compared to the published version of the paper for the purpose of explaining 
the motivation behind the approach.  
 
The main idea of the method proposed in Paper I for detecting microarray 
cores is to apply very basic, rapid morphological operations to detect bits 
and pieces of the cores (see Figure 9), followed by a randomized three-point 
method for reconstructing ideal discs around the detected core portions such 
that each disc covers the entire core beneath (see Figure 10). Morphological 
operations alone are often unreliable in detecting cores in a way that 
preserves their shape and contours because one would have to change the 
parameters of the structuring element from case to case, sometimes even 
within the same image. Therefore, by placing minimal expectations on these 
operations, we have in designing our method, shifted the burden unto circle 
reconstruction, starting from core portions as detected by morphology. A 
circle can be reconstructed using any three non-collinear points of the 
boundary. Thus, the method first computes the convex hull of the detected 
core region to discard concave sections of the boundary, and three points are 
randomly selected from the set of points of the convex hull such that the 
points are maximally distant from each other, i.e., apart by about one third 
the cardinality of the set. We repeat this randomization ten times, hence 
generating ten candidate circles around each core portion, and then select the 
largest of these circles as the winner, in order to ensure that the entire core 
portion (and its idealization) is covered as shown in Figure 10. In summary, 
the strategy of the method is to detect less-than-ideally, and thereafter 
idealize. The detection phase using morphology is less than ideal but rapid 
and efficient, and the idealization phase using circle reconstruction is 
analytic and thus highly efficient and computationally inexpensive.  
 
However, in order to completely automate the process described above, we 
require some further provisions, which necessitated adding Stages 1-3 to the 
overall algorithm (see Figure 11). Circle reconstruction is the last stage of 
the method (Stage 5) and operates on the convex hull boundary resulting 
from the previous stage consisting of morphological operations (Stage 4); 
the reconstruction requires no active parameters of its own. However the 
basic morphological operations require as input: (1) the type of structuring 
element to be used for these operations and (2) its corresponding size. 
Because the tissue cores are disc-like, the type of structuring element used 
was also a disc. The disc has only a radius parameter which is to be set in 
direct proportion to the radius of the microarray cores present in the image. 
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To determine the radius of these cores in an automated manner, we convert 
original images into binary form (Stage 1) and use two levels of estimation 
for this radius, namely, a first rough estimate using cluster validation (Stage 
2), which we then use to obtain a second refined estimate of the radius using 
morphological granulometry (Stage 3). In Stage 2, we use hierarchical 
clustering [41] with complete linkage since it is ideal for spherical clusters, 
while setting the number of clusters to vary over a large range of values. At 
each of these values, we assess the clustering result using the Davies-
Bouldin index [31] for cluster validation since it is suitable for validating 
spherical clusters. We hence obtain a curve as in Figure 12(c); the minimum 
of the curve indicates the optimal number of clusters to select for the image. 
Once this number is determined, the overall foreground area of the tissue 
cores is divided by this number to obtain a coarse estimate of the area of a 
single core or disc, from which we directly deduce the radius of the disc. 
This first estimate of the radius is then used to define a suitable range of radii 
for the morphological granulometry of Stage 4 for re-determining a better 
estimate of the radius itself. Morphological granulometery is a very 
systematic, robust, and well-tested method for determining the size 
distribution of particles in an image. Using a disc structuring element, 
morphological granulometry requires as input only a range of radii to be 
tested. It proceeds by applying morphological opening while sequentially 
increasing the disc radius; all tissue cores smaller than the size of the disc 
structuring element disappear by the opening operations. Once a distribution 
profile is obtained as in Figure 12(d), we compute its first-order finite 
difference since we are interested in areas of the profile with large jumps at 
which entire groups of cores disappear from the image (see Figure 12(e)). In 
summary, this allows us to detect a refined estimate of the radius of tissue 
cores so that the entire process becomes automated from beginning to end.   
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Figure 9. An example showing the morphological operations (Stage 4) in sequential 
order and the result of circle reconstruction (Stage 5). (a) Original TMA image.  (b) 
Global thresholding by Otsu’s method.  (c) Morphological closing.  (d) Median 
filtering to remove speckles.  (e) Region filling of holes. (f) Object labeling by 8-
connectivity.  (g) Filtering out any small objects by their respective areas using the 
size condition mentioned in Stage 4 of the paper. (h) Reconstruction of circles from 
the objects in (g).  (i)  Superimposing the objects with their reconstructions, that is 
(i)=(g)+(h). (j) An overlay of the original TMA image with the reconstructed circles, 
that is (j) = (a) + (h).  
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Figure 10. The circle restoration algorithm (Stage 5) applied over two defective 
cores. (a)/(d) Object to be reconstructed into a perfect circle. (b)/(e) A single circle 
reconstructed from three vertices (marked by green squares) chosen randomly from 
the convex hull which consists of pixels marked in red. (c)/(f) Multiple circles are 
generated (shown in different colors) by randomly varying the initial three vertices; 
only the largest of the circles is retained. 

 

 
Figure 11. Flowchart of the proposed method. ‘ܴ’ represents the approximate radius 
of the cores. Stages 1-3 are designed for obtaining a radius estimate to use for the 
disc structuring element in Stage 4. The randomized 3-point circle reconstruction 
method is applied in Stage 5.  
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Figure 12. An illustration of morphological granulometry. (a) Original TMA image.  
(b) Global thresholding by Otsu’s method.  (c) Davies-Bouldin index versus number 
of clusters.  (d) Granulometry function.  (e) Object size distribution. The value at 
which the Davies-Bouldin index attains a minimum in (c) is considered to be the 
optimal number of clusters to use. The curve in (e) is the finite difference of that in 
(d).  
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4.1.3 Contributions 
In Paper I, we have addressed the automation of tissue microarray core 
detection and localization as a precursor for high-throughput image 
processing in histopathology.  The novelties of the proposed approach can be 
summarized by the following points. 
 
1. The problem was transformed into that of shape restoration by 

decoupling detection from localization and by de-emphasizing reliance 
on the detection phase, while shifting the weight unto the restoration 
phase. The locations of tissue cores are restorable from remnants of the 
original cores, and the reconstructed discs cover the entire core regions. 

 
2. An unsupervised method with cluster validation was used in order to 

provide morphological granulometry with the required input, thereby 
making the entire process completely automated.  

 
3. The randomized, three-point reconstruction method used in the paper is 

made possible through augmenting the image coordinate system to 
perform cross product calculations. The reconstruction is analytic and 
simple; thereby it reduces computational time significantly, especially in 
comparison to template matching and Hough transform methods. 

 
4. The proposed method does not place assumptions on core arrangement 

or grid geometry, and thus the usual problems that other methods 
experience such as with misalignments and partial cores become 
irrelevant in this context. 

 
5. The method is capable of detecting defective cores despite their irregular 

shapes, just as simply as complete cores, while the pathologist retains the 
choice of accepting or rejecting these cores for subsequent analysis. 

 
In summary, the methods we have found in the literature regarding 
microarray detection and localization, proceed by determining linear or 
curvilinear boundaries or attempt to separate the cores through various ways. 
While the approaches are diverse, they do not alter these premises but rather 
attempt to improve the detection performance in one way or another. In the 
proposed approach we have succeeded in altering these premises altogether 
by decoupling detection from localization. We have used instead simple 
morphology for a rough detection of core portions in the image, followed by 
an analytic restoration of the disc shapes around these regions. This in turn 
allowed us to circumvent common obstacles that other approaches tend to 
face. The accuracy, simplicity, and computational aspect of the method make 
it specifically designed for high-throughput analysis of microarray images.   
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4.2 Paper II: Blind Color Decomposition of 
Histological Images  

4.2.1 Problem Description  
An important aspect in automating tissue image analysis is the segmentation 
of an image into its various tissue types. A decisive feature for performing 
this segmentation is often color, which is a raw representation of a 3-channel 
image from which various other feature measures may be derived through 
different transformations. Paper II addresses the topic of color 
decomposition of stained tissue images and introduces a novel approach that 
is unsupervised and outperforms existing methods in the literature. Obstacles 
that may hinder color decomposition arise from factors relating to tissue 
preparation, natural variation in spectral signatures of identically stained 
tissue (biochemical noise [42]), overlap between spectral signatures of 
different tissue components, and acquisition noise. The automation of the 
process for high-throughput analysis is often hampered by the need for user 
input in the form of pre-assigning or interactively pinpointing reference 
colors in color space. In the proposed approach, we formulate the color 
decomposition problem using a light-absorption model, while also modeling 
sensor noise to improve the accuracy of the method. We adopt an 
unsupervised strategy for determining reference colors that does not require 
training or feedback from the pathologist.    

4.2.2 Proposed Method  
The proposed method, referred to as Blind Color Decomposition (BCD), 
consists of a series of sequential steps. Figure 13 shows the different stages 
of the method in a flowchart. In summary, the algorithm proceeds as 
follows: 
 
1. Any light-scattering stains [43, 44], such as the dark brown dye 3,3’-

diaminobenzidine (DAB), which might be present in the image are 
detected a priori and the regions are masked out from subsequent 
analysis since these stains do not obey the Beer-Lambert law of 
absorption, and the corresponding density cannot be modeled properly.   
 

2. Charge-coupled device (CCD) sensor noise is modeled to improve the 
accuracy of locating reference colors at a subsequent stage. This type of 
photon noise is Poisson-distributed [45, 46], and is most visible in areas 
of the image where the optical density is low. To model this noise, we 
use either a blank image or ‘white’ areas of the image, and the 
corresponding variances are estimated from the histograms obtained for 
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each color channel. These values are used to smooth the image data by 
generating a 3D cloud of ܰ points around each data point and then 
reweighing the data points to give emphasis to those with high optical 
density as in [47]. However, in the end only 1/ܰ of the overall data 
points with highest scores are retained so that the number of points is 
reduced back to its original value.     
 

3. The data is linearized using the Beer-Lambert law of absorption [44, 48] 
and projected onto the Maxwellian chromaticity plane [49, 50] using a 
perspective transformation [51] with the center lying at the origin of the 
3D color space and the projection plane lying at a distance of 1/√3 from 
the origin. This transformation decouples color from intensity, whereby 
distances between points in the Maxwellian plane represent chromaticity 
differences between the corresponding colors. Geometrically, the plane 
is defined by an equilateral triangle within the 3D color cube, where pure 
RGB colors project onto the vertices of this triangle and the achromatic 
axis (one of the cube’s diagonals) projects onto the circumcenter of the 
triangle [49, 50].     
 

4. We use a Gaussian mixture model [52, 53] trained using expectation-
maximization (E-M) as an unsupervised method for locating 
chromaticity clusters in the Maxwellian plane. We then extract the 
cluster centers of the Gaussian distributions resulting from the E-M fit in 
order to obtain the reference colors (see Figures 14-15).  
 

5. The reference colors form the columns of the mixing matrix. Linear 
decomposition (or piece-wise linear decomposition, PW-LD) is then 
carried out by inverting the mixing matrix (or submatrices in case of 
PW-LD) to determine the density maps, one for each tissue type. To 
account for the cases where chromaticity clusters are not completely 
separable from each other, we have extended the commonly used linear 
decomposition method to piece-wise linear decomposition as a useful 
generalization. Piece-wise linear decomposition was implemented by 
considering pairs of chromaticity clusters, and thus only selecting the 
corresponding submatrices of the mixing matrix before computing the 
pseudo-inverse. Figures 16-17 show that PW-LD is able to outperform 
linear decomposition in difficult cases. 
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Figure 13. Flowchart of the BCD method (© 2013 IEEE). 
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Figure 14. The initial transformation of input RGB data is based on the 
Beer−Lambert law, followed by a perspective projection to the Maxwellian 
chromaticity plane. The three vertices are associated with the transformed pure 
colors, which we refer to as Beer−Lambert red, green, and blue, respectively; (these 
colors correspond to cyan, magenta, and yellow in the original red−green−blue 
space). The coordinates (α1,β1), (α2,β2), and (α3,β3) in the plane determine the three 
reference colors (© 2013 IEEE). 

 
Figure 15. Position of the three reference colors (αj,βj) in the Maxwellian 
chromaticity plane  (© 2013 IEEE). 
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Figure 16. Pseudo colored result of decomposition of Gomori trichrome stain (A) to 
density maps using: in B, C, and D linear decomposition, and in E, F, and G piece-
wise linear decomposition rules. In B and E erythrocytes appear red, and in C and F 
cell nuclei of fibroblasts, lymphocytes and smooth muscle are purple, and in D and 
G collagen is turquoise (© 2013 IEEE). 

 
Figure 17. Box plot with the results of the comparisons of the linear decomposition 
(LD) and piece-wise linear decomposition (PW-LD) to ground truth for 16 fields of 
view of stomach tissue sections stained with Gomori trichrome (© 2013 IEEE). 
 
To assess the BCD method, ground truth was collected by a pathologist 
through marking regions under many fields of view (FOV) in images of 
stained tissue types. The total ground truth was computed as the median of 
the FOV ground truths. For comparison, the same linear decomposition 
method and conditions were applied to BCD as to several other methods for 
color decomposition such as non-negative matrix factorization (NMF) [54, 
55], independent component analysis (ICA) [54], principal component 
analysis (PCA) [56, 57], resulting in density maps for each method. By 
means of the Pearson correlation measure, the resulting density maps were 
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compared against those obtained using total ground truth, and the results are 
shown in Figure 18.  

 
Figure 18. Box plots with the results of comparisons of the BCD method and other 
blind methods implemented with identical preprocessing and linear decomposition. 
The density maps are derived by manual selection by a pathologist (pathologist), 
ICA, NMF, and color decomposition based on reference colors extracted from the 
Maxwellian chromaticity plane. The figure shows correlations for bladder neck 
tissue stained with H&E, stomach tissue stained with H&E (hematoxylin-and-eosin), 
and prostate tissue stained with H&H (hematoxylin-and-Herovici), and G&E 
(Giemsa-and-eosin), respectively (© 2013 IEEE). 
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4.2.3 Contributions 
In Paper II, we presented a novel, unsupervised method for color 
decomposition and have demonstrated its application in histological images 
in comparison with contemporary methods.  
 
The contributions of the proposed method may be summarized as follows:  
 
1. Color decomposition was formulated and dealt with not exclusively 

through data analysis but also using a physical model that takes into 
account light absorption characteristics and the presence of acquisition 
noise.    

 
2. The method reduces sensitivity to stain intensity variations by projecting 

the data onto the Maxwellian chromaticity plane, thereby decoupling 
intensity from color information.  

 
3. The method used to determine reference colors in the Maxwellian plane 

is unsupervised and uses expectation-maximization to fit a Gaussian 
mixture model. Thus, the pathologist does not need to provide training 
samples or pre-assign reference colors manually in color space.  

 
4. Through modeling sensor noise, the method is able to improve the 

accuracy of locating reference colors by re-weighing the contribution of 
data points using the noise model.  
 

5. Linear decomposition, which is common to most methods in this 
context, was extended and generalized into piece-wise linear 
decomposition in order to solve difficult cases where a spectral signature 
of a stained tissue component is not linearly separable from the spectral 
signatures of the remaining tissue components.  

 
6. The method performs soft, rather than binary, classification and provides 

density maps, one for every stained tissue type. Due to piece-wise linear 
decomposition, it is also able to account for both separable and partially 
separable chromaticity clusters in the Maxwellian plane.  
 
In summary, the proposed approach uses an accurate model for light 
absorption and sensor noise, determines reference colors in an 
unsupervised manner, and performs piece-wise linear decomposition for 
obtaining density maps. Results have shown that it outperforms 
contemporary methods for color decomposition, including non-negative 
matrix factorization.    



63 
 

4.3 Paper III: Histological Stain Evaluation for 
Machine Learning Applications 

4.3.1 Problem Description 
Paper III presents a framework for selecting histological stains through 
objective testing and comparison such that the stain is optimal with regard to 
automation. When designing an automated process for a certain application 
in tissue image analysis, it is not uncommon that the dataset is taken for 
granted, without questioning possible alternatives. Yet it is usually the 
dataset that places a severe limit on the performance of the entire system, 
regardless of how advanced the algorithms employed might be. For example, 
when it comes to the color combinations of a stain, the intrinsic overlap 
between the classes corresponding to the different tissue types in color space 
sets a strict limitation on the classification rate, irrespective of what method 
is used for classification. For almost a century, the hematoxylin & eosin 
stain has been the standard choice for use in histopathology. With the 
advancement of digital histopathology and experimentation with staining 
protocols, it becomes necessary to question the optimality of a given stain 
for diagnosis and automation. When visually inspecting images, pathologists 
do not perceive color information out of context. Their processing is 
contextual and simultaneously takes into account factors such as texture, 
morphology, prior expectations, and high-level image understanding of 
anatomy and cell structure. In automating image segmentation based on 
color, one could evaluate different stains among possible candidates in order 
to choose an optimal stain for a given type of tissue. This is what Paper III 
advocates in principle through presenting a systematic way of carrying out 
this evaluation in a manner that is aligned with the final objective of 
automating the analysis, rather than relying on visual examination under a 
microscope. We present standard testing procedures for either case where the 
required automation is supervised or unsupervised, and we explain the 
motivation behind this evaluation and the ideas relating to chromaticity 
cluster overlap in feature space, which we believe is how the problem should 
be addressed if automation is desired.     
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4.3.2 Proposed Method 
An ideal stain-tissue combination can be seen as one that results in 
chromaticity clusters that are compact and distant from each other in color 
space. The proposed method for selecting an optimal stain for a given 
application proceeds by performing comparative analysis among candidate 
stains using objective classification criteria. Since these criteria depend on 
the kind of automation desired, i.e., whether the automation is supervised or 
unsupervised, we present three different sets of evaluations: one for 
supervised methods, another for unsupervised methods, and a third 
concerning general class separability. In what follows, we summarize these 
three evaluation procedures and give examples for each using prostate tissue 
samples. However, we begin first by briefly describing the dataset used and 
the ground truth acquired for assessing these criteria.   

Ground Truth 
Thirteen different stains, listed in Table 1, were used for comparison based 
on classification performance. Some of these stains are shown in Figure 19. 
For acquiring ground truth, a pathologist labeled pixels by delineating 
sample regions of nuclei, stroma, and cytoplasm for each of the thirteen 
stains. The labeling was carried out in a conservative manner, and the dataset 
was balanced with regard to the number of pixels per class. Pixels selected 
for each of the three classes were assigned the label of the corresponding 
class. These labels were used to validate the classification performance of 
supervised and unsupervised methods against that of ground truth. All types 
of classifications were carried out in the Maxwellian plane [49, 50], that is, 
after transforming the 3D color data using the Beer-Lambert law of 
absorption [44, 48], and then projecting the data onto the mentioned plane 
(refer to Paper II). This effectively decouples intensity from color and allows 
us to assess the separability among the chromaticity clusters that are formed 
within the Maxwell triangle. Figure 20 shows an example of this data 
transformation for two different stains.  
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Figure 19. (a) Hematoxylin-eosin stain. (b) Mallory's trichrome stain. (c) Sirius-
hematoxylin stain. 

 
Figure 20. (a-b) Scatter plots in RGB space (left), Beer-Lambert space (center), and 
Maxwellian plane (right).  (a) MILLERS-E stain. (b) CYTK stain. The amount of 
class overlap and separability based on color differs for each stain.   

Supervised Classification 
To evaluate a stain in terms of color decomposition in the supervised case, 
we used a support vector classifier with a radial basis kernel. The classifier 
has a wide range of complexity and two parameters that control it: the width 
of the RBF kernel,	ߛ, and the regularization parameter ܥ. These were 
optimized using a grid search method over a range of values for each 
parameter [58]. A random 25% portion of the dataset was used to perform 
this optimization in order to determine the best possible classifier 
parameters. At each point of the grid, i.e., for every possible pair of 
parameter values (ܥ,  fold cross-validation was carried out to yield a-10 ,(ߛ
classification error. Figure 21 shows the resulting plot of classification errors 
at every grid point. The point corresponding to the lowest value in this plot 
corresponds to the optimal parameter values to be selected. Once the 
parameters of the classifier have been determined, we consider the remaining 
75% portion of the dataset that has not been used for parameter optimization, 
as an independent validation set. That is, using this set, the classifier with the 
chosen parameters is trained and tested using 10-fold cross-validation. The 
1:3 split between a dataset for parameter optimization and that for validation 
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is random, and so we repeat the entire process 10 times and report the final 
average error rate and standard deviation as shown in Figure 22. 

 
Other types of classifiers can be used, however the evaluation procedure 
would be similar nonetheless. The testing we have adopted is intensive, but 
it is possible to use less stringent validation which is not as computationally 
expensive, for example by reducing the number of folds used for cross-
validation or the number of repetitions for splitting the dataset between 
parameter optimization and testing.  

 
Figure 21. Optimization of SVM radial basis function kernel parameter ߛ and 
regularization parameter C by grid search. Plotted values represent 10-fold cross-
validation error. Note that lg(.) is the base 2 logarithm. The optimal values for ܥ and ߛ are those at which the error is minimum.  

 
Figure 22. Ten-fold cross-validation error using an optimized SVM classifier for 
each stain. 
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Unsupervised Classification  
In many situations, providing a labeled training set is seen as a laborious 
manual task, and therefore unsupervised learning may be desired instead. In 
this paper, we have used the Gaussian mixture model [52, 53] for 
determining the chromaticity clusters in the Maxwellian plane using the 
expectation-maximization algorithm, which tries to fit the mixture model 
over the data points while maximizing the likelihood of this fit. The model 
parameters are initialized randomly over several repetitions and the model 
with the highest log-likelihood fit is selected. The mixture of Gaussians is a 
flexible model regarding the final distributions it can adapt to. Figure 23 
shows the final result of this fit in the Maxwellian plane for a number of 
stains. The contour plots in the figure are at 25% below the peak of each 
Gaussian distribution.  
 
Other evaluation criteria were also used to assess clustering performance 
quantitatively since data labels are available. These criteria were the Rand 
index [59] in addition to the F1-measure [60], which makes use of precision 
and recall. Computing these two criteria is not straightforward in the case of 
clustering since the cluster labels do not have to match the available ground 
truth labels but may permute and still be correct; thus the process is done in a 
pairwise manner over all the data points. Given any pair of points, if they 
happen to belong to the same cluster (ܥଵ) while also having similar ground 
truth labels (߱ଵ;߱ଵ), the pair counts towards a true positive whereas if their 
ground truth labels are different (߱ଵ; ߱ଶ), the pair counts towards a false 
positive, etc. Results of this analysis are shown in Figure 24, and the optimal 
stains in this case were Mallory’s trichrome and sirius-hematoxylin.         
 



68 
 

 
Figure 23. Gaussian mixture model clustering for different stains: Mallory (upper 
left), Giemsa (upper right), SIR+ (lower left), CYTK (lower right). 

 
Figure 24. Cluster evaluation using the F1-measure and Rand index.  

Class Separability Measures 
Regardless of whether a supervised or unsupervised approach is used for 
classification and automation, class separability may be assessed 
independently using scatter-based criteria. We used two types of measures 
for assessing separability in the Maxwellian plane, namely a Fisher-based 
criterion [61, p. 311] and the sum-of-squared Mahalanobis distance [61, p. 
314], which is computed by summing up the squared Mahalanobis distances 
as measured between every pair of classes in the Maxwellian plane. These 
criteria can indicate how compact and distant class distributions appear in 
color space. The more compact and well-separated the classes are, the higher 
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these measures should be and the better is the prospect for obtaining 
successful classification in principle. Table 1 summarizes the results as 
computed for all thirteen stains. Although scatter-based criteria provide 
useful insight into class overlap, one must keep in mind that they are only 
predictive of the performance of classification and may not be as accurate an 
indicator as the actual classification error rates. For example, it might happen 
as in the case of Miller’s elastic, that two of the classes are almost 
completely overlapping which would preclude accurate classification; 
however, the third class happens to lie very far from the other two, hence 
influencing the Mahalanobis and Fisher criteria positively, yet without much 
consequence regarding the classification rate. In conclusion, the evaluations 
conducted above for supervised and unsupervised classification over prostate 
tissue indicate that some stains such as cytokeratin, Mallory’s trichrome, and 
sirius-hematoxylin consistently outperform other stains.   

 

Table 1. Values for the Fisher criterion and sum-of-squared Mahalanobis distance 
for the different stains. 
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4.3.3 Contributions  
In Paper III, we presented a method for quantitatively comparing histological 
stains based on their classification rates and clustering performance, which is 
well-aligned with the purpose of automation.     
 
In conclusion, we summarize the contributions and key points of the paper as 
follows:  
 
1. Prior to the designing of an automated system for tissue image analysis, 

the choice of stain should not go unquestioned, but may rather be treated 
as a variable when alternative stains are available.  

 
2. For the purpose of automation, the choice of stain should be motivated 

by objective criteria, such as classification error and clustering 
performance, which are aligned with the final aim of the design process, 
rather than be based on visual inspection or habitude.  

 
3. Some histological stains tend to consistently rank better than others for a 

given application, and the optimal stain is expected to vary with different 
applications and types of tissue. For every intended application, rigorous 
validation should be performed. 

 
4. In the case of supervised classification, one may choose a classifier with 

a wide range of complexity. The complexity can then be determined 
through an optimization of the classifier parameters by means of cross-
validation, and the classifier’s performance is re-evaluated on an 
independent test set.  

 
5. For unsupervised automation, there is a large number of measures that 

can be used for assessing clustering performance. Two effective criteria 
are the Rand index and the F-measure, computed from a pairwise 
comparison among the data point labels with ground truth.  

 
6. Scatter-based criteria may also be used to gain insight concerning class 

separability and predict the performance of classification. These criteria 
are generally simple and fast to compute; however, they can be 
misleading in certain situations and should be treated with caution.   
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4.4 Paper IV: Image Segmentation and Identification 
of Paired Antibodies in Breast Tissue 

4.4.1 Problem Description 
In Paper IV, we address the problem of identifying paired primary antibodies 
in adjacently cut tissue sections, which therefore contain similar cell 
structures and anatomy. These types of antibodies may bind to the same 
target protein, yet to different locations of the protein. If the protein is 
present in particular cell structures of the tissue, then a stain such as the dark 
brown 3,3’-diaminobenzidine can be used, through a certain process, to stain 
those regions where the antibody (and thus protein) is present. Paired 
antibodies designed to recognize all isoforms of a protein are expected to 
produce similar staining patterns across adjacent tissue sections. However, in 
general, since paired antibodies may bind to different parts of the target 
protein, it is possible that a second protein contains a similar critical 
component as the target protein, thus resulting in unspecific binding and a 
different staining pattern. Therefore, comparing the staining patterns that 
paired antibodies produce across images of adjacent tissue sections for a 
specific protein provides quality control over the binding and the ability of 
the antibodies to identify correctly and exclusively the target antigen [62]. 
This may also help identify outlier antibodies that result in unspecific 
binding or that may have weak affinity. The study of paired antibodies in 
pathology can lead to the development of biomarkers for diseases and can 
improve prognostics. In Paper IV, we present a method for accurately 
segmenting and quantifying antibody immunostaining patterns in images of 
the Human Protein Atlas [63], as well as for automatically identifying paired 
antibodies through a combined, normalized cross-correlation analysis 
involving posterior probability maps resulting from soft segmentation of the 
images. The automation of this process also facilitates high-throughput 
protein expression analysis, which is becoming an increasingly important 
application. The paired-antibody problem can be studied generally for any 
type of protein or tissue. Some of the problems obstructing the identification 
of paired antibodies include variations in antigen affinity and weak 
absorption of stain, imperfect alignment among adjacent sections, the need 
for a simple and robust method for segmenting tissue types reliably, and a 
difficulty in how to generally assess similar/dissimilar patterns.             
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4.4.2 Proposed Method 
The dataset used in Paper IV consisted of adjacent tissue sections obtained 
from the Human Protein Atlas project. These are microarray cores that have 
been cut out from a gland consecutively, one thin slice after the other. 
Adjacent sections therefore contain almost the same tissue and cell structures 
and are suitable for assessing the paired-antibody problem through 
identifying similar or dissimilar staining patterns. Each antibody is exposed 
to a different tissue section, and the brown DAB chromogen is used to 
visualize the antibody, whereas the blue hematoxylin dye is used as a (non-
specific) counterstain that basically stains the tissue regardless of where the 
antibody is concentrated. The total number of images was 49, and these are 
listed in Table 2 according to their antigen groups. For a depiction of how 
these tissue sections appear, please refer to Figure 25.   

Table 2. HPA-based image dataset. 

All cell types negative 

Gene AASS (6 cases) 
Gene ACOT7 (6 cases) 
Gene ANKRD2 (4 cases) 
Gene APEH (4 cases) 

Glandular cells positive;  
Adipocytes negative 

Gene ALDH6A1 (8 cases) 
Gene CTNNB1 (2 cases) 
Gene ZWINT (3 cases) 

Adipocytes positive; 
other cell types negative 

Gene PLIN1 (3 cases) 

Group R 
(miscellaneous cases  
C1-C13) 

C1,C2: Paired antibodies for collagen protein from gene 
COL15A1. 
C3,C5,C4,C6: Paired antibodies for protein product from 
gene FAM54B 
C7,C8,C9: Paired antibodies for the cingulin protein 
from gene CGN 
C10,C11: Paired antibodies for the protein product of the 
gene AC008073.5 
C12,C13: Paired antibodies for the protein from gene 
C16orf70 

 
We began by investigating chromaticity clusters in RGB color space through 
sampling regions and plotting the resulting pixels in a scatter plot as shown 
in Figure 26(A). With the aim of performing unsupervised classification, the 
proximity and relative position of clusters is important, and the scaling of 
features plays a considerable role in modifying these factors as illustrated in 
Figure 27. In order to control this scaling, we use principal component 
analysis (PCA) as in Figure 26(B) to rotate the feature space so that the first 
feature is always aligned with the principal component or direction of 
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maximum variance in the data. This standard alignment allows us to scale 
the features in a consistent way from case to case. Figure 26 shows two main 
branches, one for the brown DAB and another corresponding to the blue 
hematoxylin stain. Initial experimentation with clustering revealed that it is 
difficult to cluster the two branches while simultaneously detect clusters 
along each branch extension. The relative scaling of features 1 and 3 in 
Figure 26(B) proved critically sensitive and would need to be adapted from 
case to case. Therefore, we decided to separate the two branches using 
supervised classification, while the remaining extensions which spread 
naturally along the hematoxylin branch would be clustered following a 
rescaling of features. Thus, in summary, by removing the DAB branch from 
the analysis and emphasizing feature 1 over feature 3, the detection of the 3 
clusters along the hematoxylin branch could be done in a consistent and 
reliable manner, whereas a direct attempt at clustering the space into four 
groups proved overly sensitive to the scaling of features. 
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Figure 25. Sample dataset of images of breast tissue microarray sections 
corresponding to different antigen groups. The numeric values in each case represent 

the fractional ratio of the four classes in the following order ቂ݊݁݉ݑܮ ݈݅݁ܿݑܰܽ݉݋ݎݐܵ ܤܣܦ ቃ as 

quantified by segmentation. 
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Figure 26. (A) RGB feature space for a balanced dataset; the principal direction of 
variance extends diagonally. (B) Feature space after PCA; the principal component 
is aligned to Feature 1, which may now be scaled directly prior to clustering.     

 
Figure 27. A schematic showing that the effect of scaling a feature with respect to 
another may influence the clustering result. 

Thus, concerning image segmentation based on color, the proposed method 
consists of the following steps:  
  
1. Perform PCA without feature reduction, and rescale the features. 
2. Detect DAB regions (supervised) 
3. Detect clusters along the hematoxylin branch (unsupervised).  

 
In what follows, we summarize the aspects of the classifications done in 
steps 2 and 3 above, before moving on to the analysis concerning paired-
antibody identification and matching, which requires the above segmentation 
as prerequisite.  

Detection of DAB (by supervised classification) 
As mentioned in Papers II and III, DAB is a light-scattering stain which does 
not obey the Beer-Lambert law of absorption [44, 48]. Moreover in Paper II, 
it was recommended that DAB-stained regions be removed a priori and 
excluded from color decomposition. We have seen in Figure 26 that DAB 
also impedes the use of clustering in a direct manner for this application due 
to the curved elongation of its branch towering over the hematoxylin branch. 
Therefore in order to exclude DAB-stained regions from the analysis, we 
identified those regions against blue hematoxylin regions and white lumen 
regions using a trained classifier. Our dataset consisted of sample regions 
from Group R, which contains 13 images from the overall 49 images of the 
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dataset. In the end, this training is performed only once using the mentioned 
subset, but we also evaluate the classification using cross-validation as 
shown in Figure 28. The number of pixels for each of these three classes was 
27000, and the classifier used was the quadratic (normal-Bayes) classifier 
which was trained in a dissimilarity feature space [64] derived from the RGB 
space by randomly selecting a representation set consisting of 50 prototypes 
per class. The 10-fold cross-validation error rate for this classifier, labeled 
‘FeatDisSpace’, is shown in Figure 28(B), along with other classifiers 
(Naïve Bayes, linear discriminant, and Fisher) shown for basic comparison. 
Figure 28(A) shows the learning curves for these classifiers, from which one 
can observe that the error rate for the chosen classifier drops rapidly as the 
training set size is increased, and it levels off below that of the other 
classifiers. The quadratic classifier is also computationally efficient as 
compared to classifiers that have a higher complexity range and which may 
require serious optimization. Figure 29 shows the result for the detection of 
DAB-stained regions using the proposed classification; note that the cases 
are images from Group ALDH6A1, which were not part of the 
training/validation procedure. 

 
Figure 28. (A) Classifier learning curves. (B) Overall classification error using 10-
fold cross-validation. 
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Figure 29. Detection of DAB-stained regions. Pseudo-colors were assigned as 
follows: DAB appears as black, lumen/background as white, and the remaining 
structures as orange. 

Unsupervised Classification  
With the removal of DAB-stained areas, the remaining regions can be 
clustered in a consistent and accurate manner. We have used soft 
classification using fuzzy c-means. The regions were clustered into three 
groups yielding lumen (white), nuclei (dark blue), and stroma (light blue), 
and the membership function exponent used in fuzzy c-means was m = 2. 
Recall that in Paper II, we used the Gaussian mixture model to cluster data 
using the expectation-maximization (E-M) algorithm, which makes use of 
Bayes’ theorem in its E-step to compute posterior probabilities. To remain 
consistent with regard to Paper II and for convenience, we refer to the 
resulting three membership images in this context as (posterior) probability 
maps, assimilating the probability of belonging to the different classes given 
a particular pixel (note also that the quadratic, normal-Bayes classifier 
discussed earlier under supervised classification returns as raw output, 
posterior probability maps). These maps which are in the range [0,1], are 
sorted using average grayscale intensity so as to standardize the order of the 
corresponding tissue types. This becomes useful later when we try to 
correlate probability maps across adjacent tissue sections to identify 
similar/dissimilar staining patterns.  

 



78 
 

In displaying the final segmentation result, we have used pseudo-coloring by 
multiplying each probability map with a 3-channel, uniform color image 
element-wise, and summing up across the maps. Finally, the image parts 
corresponding to DAB which were detected separately using supervised 
classification are re-introduced into the final display. Figure 30 shows some 
examples of the final segmentation. 
 

 
Figure 30. Segmentation of sample cases into four classes: DAB, lumen, stroma, 
and nuclei. Pseudo-colors were assigned as follows: DAB appears as dark-brown, 
lumen/background as orange, stroma as green, and nuclei as blue.      

Following the segmentation of tissue sections into probability maps, we now 
address how this can be used to identify paired antibodies across tissue 
sections. Comparing immunostaining patterns across two adjacent sections 
can be problematic since the sections may not be perfectly aligned due to the 
cutting and physical handling of microarrays. Figure 31(A) shows a case 
where two adjacent sections are not completely aligned. While rotational 
differences are not discernible, the sections typically have a translational 
offset with respect to each other. We correct for the translational shift among 
images using the normalized cross-correlation [65, 66]. The cross-correlation 
is not carried out over the original RGB images such as those shown in 
Figure 31, but rather over the corresponding pairs of probability maps which 
have already been ordered according to average grayscale intensity as 
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mentioned previously. Thus, each probability map of the first image is cross-
correlated with its corresponding probability map from the second image, 
resulting in a matrix of correlation coefficients. We consider the absolute 
value of the coefficients in the matrix and select the maximum. To obtain a 
combined measure for the overall match between staining patterns, we 
multiply the selected coefficients, thus arriving at a single overall measure. 
Using this product rule gives individual coefficients influence over the final 
combined measure especially if a single coefficient is near zero. Therefore, a 
mismatch among any pair of probability maps can significantly reduce the 
value of the final similarity measure. The number of map pairs used was 
four, corresponding to nuclei, stroma, lumen, and DAB-stained regions. 
Although only DAB regions are indicative of positive areas, the inclusion of 
all four components in the analysis ensures that the tissue sections are also 
simultaneously tested for adjacency and for having similar structures. In 
other words, the procedure accounts for the hypothetical, though unlikely, 
case where two non-adjacent, unrelated tissue sections happen to have 
similar DAB patterns, coincidentally. By performing pairwise comparisons 
among corresponding probability maps, we avoid relying on the assumption 
of adjacency of tissue sections or image prearrangement. Tables 3-4 show 
results of the cross-correlation analysis over sample groups from the dataset. 
The highlighted cases can be compared with corresponding tissue sections in 
Figure 25.  

 
Finally, we also quantify the amount of each of the four classes by using the 
maximum posterior probability rule across the probability maps to obtain 
crisp labels and then weigh the presence of each class with respect to the 
image. This gives a rough indication of the relative area covered by the 
tissue types.     
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Figure 31. (A) Images of two adjacent sections (cases C1 and C2 of Group R) 
superimposed to show that they are not entirely overlapping but require registration 
or the use of a cross-correlation measure. (B) The images are registered using 
normalized cross-correlation. 

 

Table 3. Similarity measure between segmented images for sample groups: 
CTNNB1, PLIN1, and ZWINT. The number of probability maps is 4. The largest 
significant values are highlighted. 

 

 

Table 4. Similarity measure between segmented images for Group R. The number of 
probability maps is 4. The largest significant values are highlighted. 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

C1 1.0000 0.0132 0.0082 0.0037 0.0064 0.0034 0.0049 0.0051 0.0050 0.0038 0.0062 0.0021 0.0068 
C2  1.0000 0.0058 0.0035 0.0056 0.0033 0.0048 0.0051 0.0054 0.0048 0.0039 0.0017 0.0045 
C3   1.0000 0.0063 0.0167 0.0072 0.0058 0.0084 0.0083 0.0062 0.0107 0.0087 0.0114 
C4    1.0000 0.0071 0.0181 0.0050 0.0068 0.0066 0.0025 0.0044 0.0056 0.0052 
C5     1.0000 0.0059 0.0070 0.0074 0.0083 0.0048 0.0071 0.0042 0.0061 
C6      1.0000 0.0053 0.0062 0.0071 0.0036 0.0045 0.0055 0.0060 
C7       1.0000 0.0250 0.0530 0.0040 0.0064 0.0036 0.0054 
C8        1.0000 0.0338 0.0039 0.0056 0.0038 0.0055 
C9         1.0000 0.0035 0.0084 0.0046 0.0057 

C10          1.0000 0.0361 0.0024 0.0073 
C11           1.0000 0.0039 0.0075 
C12            1.0000 0.0215 
C13             1.0000 
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C1 1.0000 0.0094 0.0107 
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4.4.3 Contributions 
We summarize the contributions of Paper IV as follows: 

 
1. Variations in the affinity of an antibody, in addition to factors regarding 

tissue preparation, absorption, and staining give rise to intensity 
variations in images of tissue sections. This makes automation sensitive 
to such variations. However, in Paper IV we have overcome this 
problem by introducing a rescaling of features based on a study of the 
feature space for this application.    

 
2. The results of the proposed method are comparable to those of 

commercial software such as Genie [67, 68, 69] or ilastik [70], which are 
supervised methods that we have experimented with during our work. 
The supervised aspect of the proposed method concerns only the 
detection of DAB-stained regions, and the training phase is arranged a 
priori. The remaining bulk of the algorithm performs clustering, and no 
region delineation or feedback is required from the user.     

 
3. Clustering is carried out in a low-dimensional feature space using fuzzy 

c-means and converges rapidly, which is suitable for high-throughput 
processing of immunostaining patterns across tissue microarrays.   

 
4. We used a similarity measure to compare staining patterns and test for 

adjacency of tissue sections, simultaneously. In doing so, we have 
applied the normalized cross-correlation over the probability maps 
generated from image segmentation in a pairwise manner, and combined 
the correlation coefficients using the product rule. By considering the 
various probability maps, we have taken into account both the antibody-
specific patterns visualized by DAB as well as the remaining tissue 
structures in the image. The method is consistent and capable of 
generalizing well over cases.    

 
5. The approach is based on general concepts which are applicable to 

various types of tissues and proteins, and are not limited to the Human 
Protein Atlas database.    
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4.5 Paper V: Automated Classification of Glandular 
Tissue by Statistical Proximity Sampling 

4.5.1 Problem Description 
An important component of Elston [21] and Gleason [23] grading of cancer 
in breast and prostate tissue, respectively, is based on glandular structure and 
tissue architecture. One of the three subcomponents of Elston grading for 
example is concerned with tubule formation, where the presence of glandular 
tissue is given a 1-3 score, ranging from healthy tissue (prevalently 
glandular) to solid tumors (scarcely glandular). Gleason grading is based on 
five patterns that closely describe changes in tissue and glandular 
architecture throughout the different malignancy grades. In assisting 
pathologists with the grading process, it is therefore very important if one is 
able to automatically derive a set of features that can accurately describe and 
quantify tissue characteristics in the image. In Paper V, we present a new 
feature descriptor for describing tissue architecture based on collecting 
statistics concerning the quantity and the spatial order of different tissue 
types around tubule regions. The method requires only a basic 
decomposition of the image into various tissue types such as by methods 
presented in Papers II-IV.  
The transformation of glandular structures across various cancer grades is a 
complex process. Some of the problems that hinder the automation of tissue 
characterization and grading include variations in staining and tissue 
absorption; however, a main difficulty lies in explicitly extracting properties 
of glandular structures in a reliable manner, given the complexity and 
diversity of tissue architecture. Pathologists often rely on a combination of 
observations relating to color, texture, morphology, density, and prior 
knowledge of anatomy, in order to characterize tissue. The grading process 
remains subjective, especially across intermediate grades, and often requires 
consensus among at least two pathologists before a final grade can be 
assigned. Thus, there is in general a serious need for reducing the workload 
in carrying out these tasks by means of automation and computer-aided 
methods. Translating the knowledge of the human expert into clearly defined 
features that can be extracted from images is fraught with problems, partly 
because experts rely on a large combination of features perceived 
simultaneously, and partly because extracting high-level image features 
often runs into generalization issues. There is typically a sensitive tradeoff 
between designing a method that over-adapts to the complexity of the 
problem and thereby loses its ability to generalize, and between one that 
weakly accounts for the complexity and is thereby unable to provide useful 
discrimination, such as when considering global texture features solely 
without regard to tissue architecture. The method proposed in Paper V relies 
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on the decomposition of images into tissue types based on Papers II-IV, but 
avoids computing structural complexities such as by explicitly extracting 
properties of individual tissue components, which can widely vary. 
However, the method focuses on describing the architecture of glandular 
tissue starting from lumen areas by applying sequential dilation-subtraction 
operations to form concentric rings or neighborhood strips from which the 
relative proportions of various tissue types are recorded. The procedure 
preserves the shape of the tubule regions (as long as the number of rings is 
not too large), and due to the sequential rings, it accounts for the spatial 
order of the measured quantities. In the following section, we discuss the 
method in greater detail, and explain how it may be used with multiple 
instance learning as a general feature descriptor for representing images with 
complex objects, such as biological tissue structures.         

4.5.2 Proposed Method 
In Paper V, we present a method for deriving a new type of feature that is 
based on statistically collecting information from the neighborhood of lumen 
regions as starting points for describing glands and tissue architecture. The 
proposed method, denoted as statistical proximity sampling, can be 
summarized by the following steps: 

 
1. The tissue image is segmented by soft classification into a set of ܭ 

probability maps, one for each tissue type. As an example, refer to 
Figure 32, which was chosen such that the number of lumen regions is 
small in order to keep track of the resulting profile curves and be able to 
analyze them visually for illustrating the method.  

 
2. Lumen regions in the image are expanded using dilation operations. This 

is done in sequential steps by dilating the lumen region and then 
removing the preceding area from the dilated version, resulting in an 
annulus or ring at each step. The rings gradually progress away from the 
central lumen region, while the shape of that region is mostly preserved 
in the process (see Figure 33). The resulting set of concentric rings are 
then regarded as neighborhood strips from which we gather statistics 
concerning the relative quantities of the different tissue types as 
computed from the probability maps. This feature description also 
naturally contains spatial information due to the progressing position 
(order) of the rings.  

 
3. For every ring, we compute the fraction of each tissue type using their 

corresponding probability maps, which were derived in Step-1. The 
result is a vector consisting of ܭ scalar elements, as for example [0.1 0.5 
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0.3 0.1], indicating that the relative proportions of the 4 tissue types in 
this case are 10%, 50%, 30%, and 10%. Each of these ratios is computed 
from the respective probability map by summing up the values which 
happen to lie within the ring and dividing by the total number of pixels 
in the ring.       

 
4. The ܭ-element vectors are concatenated one behind the other starting 

with the one corresponding to the first ring (closest to the central lumen). 
Thus with ܴ rings, the resulting feature vector will be of length ܴ x ܭ. 
Each lumen region is hence described by one such feature vector.  Figure 
35 shows an example where there are 4 feature vectors plotted using 
different colors corresponding to the 4 extracted regions shown in Figure 
34 (note that the colors of the curves were set to match those of the 
lumen regions). The number of rings used in this example was ܴ = 30.  

 
5. Under the framework of multiple instance learning (MIL), we treat the 

tissue image as a bag or compound object consisting of a collection of 
instances; the instances consist of the derived feature vectors 
representing different regions of the image. Thus, each image can then 
be classified based on its contents and assigned a grade. For constructing 
a classifier, we have used the bag dissimilarity approach proposed in 
[36], which allows us to decouple the classification task from the 
multiple instance formulation, thus permitting the use of various types of 
classifiers in a standard manner.   

 
The feature plots in Figure 35 describe how class quantities vary as one 
progresses spatially away from lumen regions. This is an important attribute, 
since for instance in Gleason grading, as the cancer grade advances, the 
tissue architecture around glandular units begins to change markedly as cells 
invade surrounding tissue, and as glands take on cribriform shape or split 
into multiple lumen areas. For such changes, the profile curves would exhibit 
different patterns. In interpreting these profiles for the case in Figure 35, one 
may notice that the cyan curve for instance shows a gradually increasing 
fraction of lumen (first part of the curve) due to the presence of an adjoining 
lumen region marked in red in Figure 34; it also reveals an absence of 
nearby stromal components since the fourth part of the curve is flat, and this 
may be validated from Figure 34.  
 
Figure 36 shows an alternative way of showing the feature curves for 
illustration purposes. In this case, the four sequential parts of each feature 
vector shown in Figure 35 are plotted using a relative frequency pie chart as 
shown by the subplots of Figure 36. Each subplot represents a luminal region 
and describes how the four tissue types vary around it across the rings. 
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Therefore, Figure 36 reveals how the different luminal regions compare to 
one another in terms of how each one’s neighborhood is characterized and 
tends to vary.      

 
Figure 32. An image of prostate tissue (upper left) is decomposed into four classes: 
lumen, epithelium, nuclei, and stromal regions. The probability maps in this 
example were thresholded at a level of 10% for enhancing visibility. 

 
Figure 33. The sampling rings growing away from each lumen region for the 
example in Figure 32. Each ring is obtained by first dilating the lumen region and 
then subtracting it from the dilated version. This is done sequentially and the number 
of rings in this example is 30. 

 
Figure 34. The lumen class from the original image shown in Figure 32 is extracted. 
The different regions are labeled according to their 4-connectivity. These regions 
form the basis and starting point of our algorithm for deriving features. 
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Figure 35. Feature vectors are shown, one for each of the four lumen regions 
illustrated in Figure 34. The vectors are divided into 4 parts delineated by black 
vertical lines: the first part depicts the first 30 elements representing the fraction of 
lumen within the 30 sampling rings, the second part depicts that for the epithelium 
component, the third for the nuclei component, and the fourth for the stromal 
component. 

 
Figure 36. The four parts of each feature vector illustrated in Figure 35 are depicted 
in a relative frequency graph for each luminal region in this example. The color of 
the central rectangle in each subplot indicates the corresponding lumen region 
shown in Figure 34. 

With the aim of predicting the label of a given image, we derive a set of 
feature vectors from lumen regions using the statistical proximity method, 
and we regard the image as a bag or collection of these features vectors or 
instances. Only the bag carries a label (which is the grade of the image as 
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determined by the pathologist), whereas instances remain unlabeled. This 
type of formulation falls under the framework of multiple instance learning 
(MIL) [33], through which we are able to represent an image using a 
multitude of features vectors, instead of a single feature vector. Tissue 
images often contain many critical subregions with varying characteristics, 
and may be too complex to represent using a single feature vector. Using this 
multiple instance representation, we adopt a dissimilarity-based approach 
[36] for constructing a classifier. Images or bags are viewed as a set of points 
in an (ܴ x ܭ)-dimensional feature space, and the distances between all bags 
are then computed using the linear assignment distance as defined between 
sets [36, 71]. Thus, the original feature space is transformed by this manner 
to a dissimilarity space where the new features represent the distances 
among the bags. The dissimilarity space is then treated as a standard 
representation, where typically any classifier can be constructed, hence 
decoupling the classification task from the complex MIL representation. In 
general, this type of transformation also allows for a natural extension to the 
case of multi-class situations, thereby relaxing the original MIL formulation 
which is based on binary classification, where a bag is assigned either a 
positive or negative class label.   
                
To validate the proposed method, we used a dataset consisting of breast 
tissue images obtained from the Human Protein Atlas [63], where some 
sample tissue sections are shown Figure 37. The images were graded by a 
pathologist for the presence (class 1ܥ) or absence (class 0ܥ) of tubules, 
which is associated with tubule-based Elston scoring. The microscopy 
images were acquired at a magnification level of 40X. The characteristics of 
the dataset are summarized in Table 5. A total of 104 images were graded 
(49 for 0ܥ and 55 for 1ܥ). Ten sampling rings were used in all cases 
resulting in a 40-element feature vector to account for the following classes: 
nuclei, stroma, lumen, and DAB. Note that 4 additional features were later 
appended to the main proximity feature vector in order to assess any changes 
in classification following this addition. These additional features were 4 
classical attributes relating to the area and shape of the central lumen region, 
namely: its size, bending energy [72], area-to-perimeter ratio, and convexity 
ratio as computed from the convex hull. The features were normalized to the 
same range (i.e., [0,1]) as the elements of the proximity feature vector, and 
classification was carried out using the MIL toolbox [73, 74]. 
     
Figure 38 shows the 10-fold cross-validation error rates for a number of 
classifiers using the features derived from the proximity sampling method, 
whereas Figure 39 shows the same error rates, yet after appending the 4 
classical lumen-based features. Note that a 25% random fraction of the 
dataset was used to optimize the parameters of the support vector classifier 
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and k-nearest neighbor classifier using leave-one-out cross-validation, 
whereas the remaining 75% fraction of the dataset was used to obtain the 10-
fold cross-validation error. To reduce sensitivity to the random split of the 
dataset, the entire procedure was repeated five times, and the average results 
are reported in the figures. We note that the inclusion of the 4 classical 
lumen-based features did not have a significant effect on the classification 
rates (see Table 6). 
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Figure 37. A few sample cases of the breast dataset consisting of images of breast 
tissue sections labeled as 1ܥ and 0ܥ based on the presence or absence of milk ducts, 
respectively.   

Table 5. Summary statistics concerning the dataset used in this paper.  

Dataset Number of 
instances 

Dimensionality Number 
of bags 

Number of instances per bag 

Minimum Median Maximum 

Breast 1309  40/44 104 1 10 37 

(a) (b)
Figure 38. Classification results for the breast dataset using only the features derived 
by statistical proximity sampling. Classifiers used are the linear support vector 
classifier (SVC), k-nearest neighbor classifier (KNN), the logistic classifier 
(Logistic), and normal-based linear discriminant classifier (LDC). (a) 10-fold cross-
validation error. (b) Classifier learning curves. Error bars represent one standard 
deviation. 
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(a) (b)

Figure 39. Classification results for the breast dataset using the proximity feature in 
addition to classical lumen shape features. Classifiers used are the linear support 
vector classifier (SVC), k-nearest neighbor classifier (KNN), the logistic classifier 
(Logistic), and normal-based linear discriminant classifier (LDC). (a) 10-fold cross-
validation error. (b) Classifier learning curves. Error bars represent one standard 
deviation. 

 
Table 6. Classification rates for the breast dataset using different classifiers. 
Classification was done using 10-fold cross-validation and results are reported as: 
percentage of correct classification ± standard deviation.  

 

 

Unsupervised Approach 
We end the analysis by noting the possibility of using clustering, coupled 
with an information criterion, instead of supervised classification in order to 
classify the images. Clustering can be applied over the proximity feature 
vectors, i.e., unlabeled instances, without regard to bag or image labels. In 
doing so, we used the Gaussian mixture model (GMM) along with the 
Bayesian or Akaike information criteria. In particular the Bayesian 
information criterion is defined as: ܥܫܤ = −2 (ܮ)݈݊ + ݇ ݈݊(݊) where ܮ 
represents the likelihood measure of the mixture fit, ݇ represents the number 
of clusters, and ݊ represents the number of instances in the dataset. We 
varied the number of clusters from 1 to 10, and at each value we allowed the 
mixture model to converge to a solution using the expectation-maximization 
algorithm over 10 different runs with random initializations. In each of these 
runs, we computed the Bayesian information criterion and reported the 
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Classifier Classification rate 
Proximity features 

(Figure 38) 
Proximity + classical features 

(Figure 39) 
SVC 94.2 ± 2.0 95.9 ± 2.7 
KNN 93.4 ± 0.8 91.9 ± 1.4 
Logistic 80.5 ± 1.3 78.2 ± 0.4 
LDC 61.7 ± 1.2 59.0 ± 4.7 
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average value and standard deviation in Figure 40. Increasing the number of 
clusters would normally increase the log-likelihood value, however by 
factoring in model parameters such as ݇ and ݊ into the tradeoff, the BIC 
curve can attain a minimum value at which the log-likelihood is highest, yet 
at the lowest possible model complexity, ݇. Figure 40 shows that the BIC 
curve attains its minimum at ݇ = 2 clusters. This may give an idea about the 
possible range or number of groups that data instances naturally fall into. 
The choice of information criterion however does affect the outcome of this 
selection as the same figure shows. Once cluster labels are determined, the 
bag (image) can be labeled according to a voting scheme based on the cluster 
labels of the instances belonging to the bag.  

 
Figure 40. Optimal number of clusters using the Bayesian information criterion 
(BIC) and Akaike information criterion (AIC) over the breast dataset. The error bars 
represent the standard deviation at each value of ‘݇’. 
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4.5.3 Contributions 
Paper V presented a novel feature descriptor called statistical proximity 
sampling for encoding quantitative and spatial characteristics of tissue 
architecture. The contributions and attributes of the method can be 
summarized as follows: 
 
1. The new approach is able to represent complex patterns in biological 

tissue such as breast or prostate, while avoiding the extraction of explicit 
properties regarding tissue structures. It relies on region expansion 
starting from lumen areas to define neighborhoods as concentric annuli, 
while preserving the shape of the lumen boundary.  

 
2. The method is able to quantify the relative proportions of various tissue 

types within the neighborhood sampling rings. The positions of the rings 
as they progress away from the central lumen region encode spatial 
information as well, since they indicate how these relative proportions 
vary with distance.  

 
3. The proximity sampling method is an independent descriptor. It requires 

as input only a set of probability or binary maps resulting from soft or 
crisp classification, regardless of what supervised or unsupervised 
method is employed to generate these maps. The method’s reliance on 
the quality of the resulting maps is minimal compared to approaches that 
require accurate derivations of glandular or cellular properties based on 
these maps.  

 
4. The neighborhood-based approach can be combined with multiple 

instance learning to provide a highly descriptive representation for 
complex images. Therefore, we circumvent the use of a single feature 
vector representation, which may not be suitable due to the natural 
complexity of tissue and the grading process. 

 
5. In principle, it is possible to use the method as a general feature 

descriptor in favor of images that are composed of a combination of 
complex structures, as well as for a variety of purposes, not necessarily 
limited to biological tissue. Such use could be a basis for future 
exploration.      
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5 Conclusions 

We have addressed several topics related to tissue image analysis in this 
thesis. We end our discussion with a review of the most important 
conclusions summarized as key messages, one per publication, and 
numbered according to the included papers. 
 
I In detecting microarray cores, it is unnecessary to use conventional 

methods such as template matching or the Hough transform. The 
specificity of the problem allows the use of fast morphology for a 
basic detection of cores, followed by an analytical, randomized 3-
point circle method for restoring the disc-shapes around each core. It 
is possible to design the entire workflow from input to output in an 
automated manner, such as with the aid of cluster validation and 
morphological granulometry.  
 
When possible, one should avoid solving a more general problem 
(such as circle detection from among different geometric shapes) 
before arriving at a solution for a more specific problem. This broad 
viewpoint falls under Vapnik’s approach to statistical learning, 
which is highly outcome-driven and is most apparent in his 
description of transductive inference [75].  

 
II A common approach for decomposing histological images is by 

performing supervised classification or clustering to arrive at either 
probability or binary maps. However, another approach is to first 
model optical densities using the Beer-Lambert law of light 
absorption, while accounting for sensor noise and decoupling 
intensity, and then use linear decomposition to determine the stain 
concentrations at each pixel. We have shown that this latter approach 
can be made unsupervised through the estimation of reference colors 
using a Gaussian mixture model trained by expectation-
maximization, thus overcoming previous limitations on having to 
explicitly specify absorption spectra for the individual stain 
components.         
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III Machine learning techniques for automated tissue image analysis 
often employ blind or supervised classification, or a combination of 
these. However, regardless of the method used, the intrinsic class 
overlap in feature space sets a main limitation on performance. In 
reference to tissue image analysis, the overlap between chromaticity 
clusters in color space becomes the defining factor for color 
decomposition. These clusters are defined by the color combinations 
used in a given stain. Thus it is essential that the choice of stain is not 
overlooked, but rather selected in a way that optimizes classification 
performance based on error criteria to ensure the compactness and 
separability of clusters in feature space. For automation purposes, 
selecting an optimal stain should be incorporated into the image 
analysis task rather than be preset based on visual inspection.  

 
IV Immunohistochemistry is an advanced form of staining that allows 

using antibodies for localizing antigens in tissue. Detecting paired 
antibodies based on the immunostaining patterns across different 
adjacent tissue sections is not an easy task due to the variability in 
antigen affinity and tissue structures across the sections. However, 
by adopting a simple and robust, soft classification method for 
decomposing the sections into probability maps, it is possible to use 
correlation analysis reliably based on these maps and to obtain a 
combined similarity measure for comparing the staining patterns and 
testing the adjacency assumption.     

 
V Histological image analysis often relies on the extraction of 

properties from cellular structures and on the measurement of 
attributes such as nuclear shape and inter-glandular distances. Such 
tasks can be difficult due to the complexity and diversity of tissue 
architecture and variations in staining. These methods also often 
place strong assumptions on image understanding, thus limiting 
generalizability. Applications requiring high-level image 
understanding are not easily solvable using ‘standard’ techniques. In 
working around this problem, a possible approach is to use an 
implicit representation that is expressive enough to describe tissue 
architecture. In sampling shape-preserving, neighborhood rings 
around lumen regions throughout the image, quantitative information 
can be obtained by computing the relative tissue-type proportions 
within each ring. Spatial information is encoded by the location of 
the neighborhood rings as they expand away from the lumen region. 
Representing complex tissue images in this manner can be naturally 
combined with multiple instance learning techniques. The feature 
descriptor places very little dependence on the quality of the 
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probability maps that result from image segmentation as compared to 
standard methods where this quality affects the accuracy of the 
derived measurements. 

 
A final note concerning developing methods for automated tissue image 
analysis: the aim of the analysis should be aligned with its methods, and 
should support the validation of the final design, its outcome, and its ability 
to generalize. When using statistical learning methods such as pattern 
recognition, there is a basic tradeoff between over-adapting to complexity 
and over-simplification, both of which can lead to poor generalization, as 
described by the bias-variance dilemma. To succeed under this paradigm, a 
good understanding of the problem is necessary before moving on to 
investigate solutions. This helps prevent one from drifting too far from 
Occam’s razor in relation to simplicity and efficiency. The optimal solution 
in the end is one that results in the best performance, while taking into 
account complexity and generalizability. The number and type of parameters 
in a design can be a useful indicator of its complexity. The effect of non-idle 
parameters and their sensitivities, which can influence the outcome should 
be kept minimal or adjoined into a more stable stage of the algorithm. The 
selection of such parameters if present can be optimized using standard 
statistical methods such as cross-validation and grid search techniques. The 
final aim is a knowledgeable design that could work in practice – one whose 
components are often simple enough to be able to generalize and have 
predictive value.  
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Sammanfattning på svenska 

Den här avhandlingen beskriver metoder för automatisk bildanalys av 
mänskliga vävnader. Målet har varit att utveckla algoritmer som kan minska 
de skillnader i bedömningar som uppstår mellan mänskliga granskare, öka 
kvaliteten i tolkningen av proverna och minska arbetsbelastningen inom 
patologin. Detta är framför allt viktigt för diagnostisk gradering av bröst- 
och prostatacancer, såväl som kvantifiering av biomarkörer för prognos och 
tidig upptäckt av cancer. Sådana markörer kan bidra till att bedöma risken 
för återfall av tumörer och hur väl exempelvis endokrin terapi fungerar. 
 
Några av de viktigaste användningsområdena för datoriserad bildanalys 
finns inom medicinen.  Datoriserad bildanalys har med framgång kommit till 
användning inom radiologin och har blivit en grundläggande komponent av 
flera olika diagnostiska metoder där det påverkar såväl själva bildfångsten 
som den diagnostiska bedömningen och behandlingsplaneringen. 
Introduktionen av datoriserad bildanalys inom histologin och histopatologin, 
d.v.s. studien av frisk respektive sjuk mänsklig vävnad, har dock gått 
betydligt långsammare trots att histopatologin har en central roll vid 
diagnostik och gradering av cancer liksom vid bedömningen av olika 
biomarkörer. En orsak till detta är att i motsats till den moderna radiologin, 
som är alltigenom digital, så har histologin en optisk analog komponent när 
proverna bereds och avbildas i ett mikroskop. Det är därför nödvändigt med 
en särskild analog-till-digital konvertering av bilderna innan det går att 
använda datoriserad bildanalys på dessa. Patologer använder också mycket 
olika optiska upplösningar när de granskar de histologiska proverna, alltifrån 
översikter över ett helt vävnadsutsnitt till detaljerad granskning av enskilda 
celler och cellulära beståndsdelar. Att digitalisera ett histologiskt prov leder 
därför till väldigt mycket data, ett flertal gigabyte, om det skall ske så att 
högupplöst analys är möjlig överallt. Introduktionen av högupplösande 
digitala kameror som kan monteras på mikroskop har gjort det möjligt att 
digitalisera bilder från histologiska prover. Det är dock främst genom de 
senaste årens utveckling av mikroskopskanners som snabbt kan digitalisera 
ett helt prov som datoriserade bildanalysmetoder nu på allvar börjar 
introduceras inom histologin. Tillgängligheten av dataset över histologiska 
prover med känd, expertverifierad diagnos kan förväntas komma att få stor 
betydelse för områdets utveckling eftersom det möjliggör jämförelser mellan 



105 
 

olika analysmetoder med statistiskt hållbara metoder. Bristen på sådana 
digitala dataset har hittills medfört beroenden av lokala experter och 
väsentligt försvårat jämförelser mellan olika nyutecklade analysmetoder 
vilket begränsat områdets utveckling. 
 
 
Datoriserad bildanalys vinner alltså idag insteg inom histopatologin 
efterhand som mikroskopskanners som möjliggör snabb digitalisering av 
hela preparat införs. Tidigare användning av vanliga mikroskop med en 
digital kamera monterad gjorde det alltför tidsödande och besvärligt att 
rutinmässigt använda digitala analysmetoder. Många av metoderna för 
datoriserad bildanalys av vävnad, bygger på mönsterigenkänning. Medan 
den klassiska ansatsen till artificiell intelligens är deduktiv och modell- eller 
regelbaserad, så använder sig statistisk mönsterigenkänning av en induktiv, 
problembaserad ansats, som bygger på att lära av ett begränsat antal 
exempel. Dess förnämsta mål är att automatiskt känna igen mönster eller 
förutspå etiketter. De algoritmer för lärande som används är ofta drivna av 
resultatet och fokuserar på förmågan att kunna generaliseras också för 
oförutsägbara fall. De metoder som är vanliga inom mönsterigenkänning, 
vare sig det är fråga om övervakad klassificering, klustring eller regression, 
bygger ofta på rigorösa statistiska tekniker för automatisk optimering och 
urval av parametrar, såväl som för att träna och validera dessa metoder. Det 
primära målet är automatisering av bedömning och förutsägelse av diagnos 
eller gradering. Den statistiska ansatsen gör mönsterigenkänning mycket 
användbart, speciellt för grundläggande tillämpningar som bild-
segmentering och igenkänning av objekt. 
 
I den här avhandlingen använder vi mönsterigenkänning och bildanalys för 
att lösa flera olika tillämpade problem inom histopatologi och 
immunohistokemi.  
 
Vi presenterar en ny metod för att detektera och lokalisera vävnadskärnor i 
prover med många sådana kärnor utspridda som en matris på ett 
mikroskopglas, så kallade “tissue microarrays”. Vår metod är helt 
automatisk och robust och vi jämför den med tidigare beskrivna sätt att göra 
detta. 
 
Vi presenterar också en automatisk metod för att dela upp en färgbild i olika 
vävnadskomponenter som bygger på en fysisk modell över hur bilden skapas 
och som tar hänsyn till det brus som då uppstår. Det nya med metoden är att 
den inte kräver någon styrning, den är “unsupervised”. Därmed kräver den 
inte att man i förväg specificerar spektra för de infärgningar som man önskar 
skilja från varandra. Detta åstadkoms genom att referensfärger uppskattas 
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genom att en modell bestående av blandade normalfördelningar, “Gaussian 
mixture models” tränas med hjälp av maximering av förväntningsvärdet. 
 
En annan ofta förbisedd faktor i histopatologi är valet av infärgning. De 
olika färgerna som åstadkoms genom de valda kombinationerna av 
infärgningar avgör i vilken utsträckning de resulterande färgmolnen kommer 
att överlappa varandra i färgrymden. Denna fundamentala överlappning 
sätter gränser för hur väl det går att separera de olika vävnadstyperna och 
därmed för hur bra olika klassificeringsmetoder kan fungera, oavsett hur de 
är utformade eller hur komplexa de är.  I den här avhandlingen presenterar vi 
ett ramverk för hur man kan optimera valet av histologiska 
infärgningstekniker genom en systematisk utvärdering som genomförs 
utifrån att det slutliga målet är automatisk analys och inte den konventionella 
visuella analysen. 
 
Immunohistokemi är en relativt avancerad infärgningsteknik som använder 
antikroppar för att detektera antigener och som sedan markerar dessas 
närvaro genom kromogener som exempelvis 3,3’-diaminobenzidine. Dessa 
metoder kan underlätta kvantifieringen av biomarkörer som östrogen, 
progesteron och mänsklig epidermisk tillväxtfaktor 2. Dessutom kan också 
mängden specifika proteiner exempelvis Ki-67 proteiner som är kopplade till 
celltillväxt och spridning kvantifieras. Som en tillämpning har vi utvecklat 
en metod som identifierar par av relaterade antikroppar, så kallade syskon-
antikroppar, genom att korrelera sannolikhetskartor över 
immunohistokemiskt infärgade intilliggande vävnadssnitt.  
 
Till sist så presenterar vi ett nytt sätt att beskriva körtelstrukturer och den 
vävnadsarkitektur som omger körtlarna. Detta är en viktig komponent i 
Gleason gradering av prostatacancer och även en komponent i tub-baserad 
Elston gradering av bröstcancer. Metoden är grundad på att vi definierar 
formbevarande ringar runt körtelgångarna och sedan ur dessa ringar samlar 
in kvantitativ information om den rumsliga fördelningen av de olika 
vävnadstyperna runt körtlarna. 
 
Sammantaget så bidrar avhandlingen med ett antal viktiga komponenter till 
framtidens system för datorstödd och automatiserad histopatologisk 
diagnostik och vävnadsgradering.  
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