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Abstract

A critical step in the analysis of images is identifying the area of interest e.g. nuclei. When the nuclei are brighter than the
remainder of the image an intensity can be chosen to identify the nuclei. Intensity thresholding is complicated by variations in
the intensity of individual nuclei and their intensity relative to their surroundings. To compensate thresholds can be based on
local rather than global intensities. By testing local thresholding methods we found that the local mean performed poorly while
the Phansalkar method and a new method based on identifying the local background were superior. A new colocalization
coefficient, the Hcoef, highlights a number of controversial issues. (i) Are molecular interactions measurable (ii) whether to
include voxels without fluorophores in calculations, and (iii) the meaning of negative correlations. Negative correlations can
arise biologically (a) because the two fluorophores are in different places or (b) when high intensities of one fluorophore
coincide with low intensities of a second. The cases are distinct and we argue that it is only relevant to measure correlation using
pixels that contain both fluorophores and, when the fluorophores are in different places, to just report the lack of co-occurrence
and omit these uninformative negative correlation. The Hcoef could report molecular interactions in a homogenous medium. But
biology is not homogenous and distributions also reflect physico-chemical properties, targeted delivery and retention. The Hcoef

actually measures a mix of correlation and co-occurrence, which makes its interpretation problematic and in the absence of a
convincing demonstration we advise caution, favouring separate measurements of correlation and of co-occurrence.
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Introduction

Image analysis usually includes a segmentation step to

differentiate between areas considered to be of interest, referred

to as the foreground, and the background [1]. This is often

achieved by intensity thresholding. The level at which a threshold

is set is important since which pixels are designated as foreground

affects subsequent quantitation. Manually set thresholds are

problematic, as individuals use different or even inconsistent

criteria and there is a risk of operator bias. This creates a strong

case for automated thresholding, but since images vary there are

many methods for setting global thresholds, ImageJ offers16

options. Complications are caused by uneven staining, back-

ground or illumination and globally set thresholds can leave parts

of an image incorrectly segmented. A solution is to generate

thresholds locally. An example is the local mean threshold (LMT),

the arithmetic mean of the intensities of the voxels within a chosen

radius, which roughly divides the pixels into two similarly sized

populations and accommodates intensity gradients. However we

were concerned because the LMT will still inappropriately divide

the pixels into two similarly sized populations even when the local

area is predominantly foreground or background.

Colocalization can be considered to cover two distinct

properties, co-occurrence which reports whether the fluorophores

are found together and correlation which reports on whether the

intensities of the two fluorophores have similar spatial distributions

[2–4]. Pairs of molecules can show complete co-occurrence but

nonetheless be uncorrelated. This has implications for which pixels

should be used in correlation measurements.

Arguably there are already too many colocalization coefficients but

the newly minted Hcoef promises to provide an additional interpre-

tation [5], one reflecting the interaction between molecules. It is

similar to the Manders M1 and M2 coefficients [6] in that all pixels

are used in its calculation and has similarities with the numerator of

the Manders Overlap Coefficient (MOC). We have compared the

Hcoef with the Pearson correlation coefficient (r) and the MOC.

A novel feature of the Hcoef is that empty pixels carry weight, in that

a higher value is returned as the proportion of empty pixels increases

and the fluorophores become concentrated in the remainder.

Hcoef ~
N
P
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P
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P
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R and G are the concentrations of the two fluorophores in the

same pixel, and N is the number of pixels.

A reasonable expectation for any new colocalization coefficient

is a demonstration that it can produce useful information about

changes in distribution and that it is superior to the existing

coefficients. Accordingly we have examined the Hcoef, and related

colocalization issues, considering the following points:

1) What empty pixels signify and whether they and pixels with

only one type of fluorophore should be included in correlation

measurements.

2) How to interpret negative correlations or values of the Hcoef

below 1.

3) How the Hcoef performs with a controlled series of simulations.

4) Whether molecular interactions are measurable in living cells

by colocalization analysis.

Results

A comparison of locally calculated thresholding methods
Thresholding is a basic image analysis step. When the

background is inhomogenous, methods based on local rather than

global intensity are preferable. To assess their performance several

locally derived thresholds were applied to a simple test image, one

designed to be easy to threshold, with a clear separation between

the intensity range of the foreground and background and a

modest amount of noise (Figure 1). A local threshold for every

pixel was calculated using all the adjacent pixels within a diameter

of 21 pixels. The thresholds and the consequences of setting

intensities below the threshold to zero are shown in Figure 1 and

Table 1. In addition the values of individual pixels along a

horizontal line that runs through the midline of the objects

(Figure 1A, B, C) are shown. How the size of the round

foreground objects affects the different methods is shown in

Figure 1E.

The LMT (Figure 1B1) uses a smoothed version of the original

image as the local threshold. The threshold becomes equal to the

mean background or the mean foreground when the calculation

radius contains only background or foreground pixels, with

intermediate values appearing when mixtures of foreground and

background are found within the calculation radius. Thresholding

with the LMT (Figure 1C1) is unsatisfactory both in areas

dominated by background where only 54% of the pixels were

correctly classified and in exclusively foreground areas, at the

centre of larger objects, where only 47% of the pixels were

correctly designated. In areas comprising background and

foreground the segmentation is effective and an outer annulus of

correctly designated background pixels is apparent around each

object, with 86% correctly designated, compared to only 54% in

the background further from the objects. Overall to work as a

threshold the LMT requires that the chosen calculation radius

must exceed the size of all foreground objects and that the

calculation area is not exclusively or predominantly either

foreground or background. Overall this favours large calculation

radii but larger radii are less able to accommodate local variations

in the intensities.

The difficulty the LMT has with areas dominated by

background pixels can be ameliorated by increasing the threshold

to exclude almost all the background by adding twice the local

standard deviation, calculated over the same area as the local

mean, to the local mean (Figure 1B1, yellow graph). The LMT+
SDx2 (Figure 1C2) correctly thresholds almost all the background

pixels. However the success with the background is undermined by

the failure to correctly designate the pixels in all but the smallest

objects (Figure 1E) with a dramatic cut off at around one sixth of

the area of the calculation radius.

A variant for thresholding an image with a range of foreground

and background intensities is to use the local median (Figure 1B2)

instead of the local mean (Figure 1B1). The local median

(Figure 1B2), follows the local intensity variations in the image

better than the local mean, but the final result is actually worse

(Figure 1C3), because the edge enhancement seen with the LMT

in the outer and inner annuli is greatly reduced, dropping from

97% to 76% and 86% to 62% respectively (Table 1).

We thought that an image segmentation method based on the

mean of the local background, not just the local mean of all pixels,

would circumvent the shortcomings of the LMT. We therefore

tested the local mean background (LMB) (Figure 1B3), the mean

of the background pixels, which resulted in a perfect designation of

the objects (Figure 1C4), but like the LM the LMB unsurprisingly

incorrectly designated 46% of the background pixels (Figure 1C4).

This was remedied by adding twice the standard deviation of the

pixels from the local background (LB.SDx2) (Figure 1B3, yellow

graph), with 97% of the background pixels correctly classified

(Figure 1C5). This level of failure is inevitable with a normal

distribution of the background intensities. Accordingly, using three

instead of two SDs results in the correct designation of almost the

entire background population of pixels (data not shown).

We also tested all of the methods available in Fiji under Auto

Local Threshold and found that the Phansalkar method [7] using

the default settings to be the best (Figure 1C6), outperforming all

others including the Bernsen, Mid Grey, Sauvola [8] and Niblack

[9] methods (data not shown). The Phansalkar method correctly

identified all the objects and only misclassified around 15% of the

background pixels, mostly single pixels. The false colour scale and

the graphs show that the Phansalkar method produces a threshold

in the background regions that is higher than all other methods

shown except the LMB+LB.SDx2 and the LM+SDx2. The latter

however was set so high that the foreground was largely

misclassified. Over foreground regions the Phansalkar method

by contrast generates a lower threshold (Figure 1B4) than all but

the LMB+LB.SDx2.

The success of the segmentation methods varies in different

areas of the test image (Figure 1C), which is summarized in

Table 1. This considers objects and background separately and for

each also considers an annulus around the edge of the objects and

the remaining background outside the annulus (Figure 2). The

superiority of the Phansalkar and LMB plus twice the standard

deviation of the local background is clear.

When performance is related to the size of objects it is

noteworthy that the LM+SDx2 has a very sharp cut off

(Figure 1E) only selecting objects appreciably smaller than the

calculation radius. The local median and the LM are also less

effective with larger objects, principally due to a failure to correctly

segment their centres. Whereas the other three methods; the

Phansalkar, LMB, LMB+LB.SDx2, are unaffected by the size of

the objects.

The LMT and its effect on colocalization measurements
Classifying pixels into foreground or background is an

important step in measuring colocalization, Misclassification of

pixels clearly influences any quantitation. In addition to being used

to simply differentiate between foreground and background, the

LMT has been used to set pixels below the threshold to zero [5].

This creates combinations of intensities not present in the original

image (Figure 1D). The scattergrams show that the two original

groupings of foreground (a1) and background (b1) then expand to
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seven, mostly at the expense of original background, which loses

three quarters of its area (b2) with a reduction in the number of

pixels present in its residual upper right quadrant. However only

the combinations forming the background population (e) are

correctly designated. The LMT also affects the original foreground

(a1), with populations (c) and (g) breaking off after being

incorrectly designated.

There are consequences for colocalization measurements when

pixels are misclassified. The r of the original foreground (a1) is

0.000 but rises to 0.994 after applying the LMT, because (a2) and

(b2) are now designated as foreground. The Hcoef is also affected,

with the foreground measurement changing from 1.000 to 1.380

and when all pixels are included the change is from 1.813 to 3.297.

Figure 1. Comparison of local thresholding methods. In A, B and C each panel shows an image plus a graph (white) displaying the intensities
along a horizontal line passing through the centre of the objects. The scale is 0–160. (A) Illustrates the creation of the test image from a sequence of
circular objects (their diameters in pixels are superimposed) (A1) plus background with an offset and Poisson noise (A2). (B) Thresholds created from
the test image using different operations over a calculation area with a diameter of 21 pixels. Note that (B1) and (B3) include a second graph (yellow),
showing the primary threshold plus two standard deviations. (C) The consequences of applying six different thresholds to the test image (A2).
Intensities above the threshold were retained while those below the threshold were set to zero. (D) Scattergrams showing the effect of the LMT. The
source images are 62 pixel wide horizontal strips taken from the centre of the test image (A1), with noise added independently. In the scattergram
showing the effects of the LMT dashed ellipses highlight new combination of intensities. (E) The size of objects and the effectiveness of different
thresholding methods. Size of objects is expressed as their area as a fraction of the calculation area (diameter of 21 pixels) and effectiveness by the
fraction of the area of each object that was correctly thresholded. Intensity and noise as in the test image (A2). Data shown are means +SD, N = 8.
Additional analysis is shown in Table 1.
doi:10.1371/journal.pone.0111983.g001
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Empty voxels and their effect when included in
correlation measurements

To illustrate the detrimental effect of the inclusion of

background pixels in correlation measurement a cartoon cell was

created (Figure 3A): two fluorophores with uniform intensity in

different compartments. The contents of the ‘nucleus’, ‘cytoplasm’

and exterior are uncorrelated. The ‘cell’, i.e. the ‘nucleus’ and the

‘cytoplasm’, has a perfect negative correlation (21) with a co-

occurrence of zero. The correlation falls to 0.483 when a third

population, the pixels outside the cell, in which neither

fluorophore is present, are included in the analysis. When the

distribution of intensities within the ‘nucleus’ and ‘cytoplasm’ are

not uniform r for the ‘cell’ falls from 21 to 20.892 (Figure 3B).

Since the nominal fluorophores do not overlap the co-occurrence

always is zero but different correlations can be measured. The

images are supplied as Figure S1 and Figure S2.

To address which pixels should be included in correlation

analysis, a series of images were constructed by progressively

inserting objects with random intensities at random locations in a

pair of images (Figure 4A), distributions that are uncorrelated. The

area covered is referred to as the Fill% which shows the occupancy

in Image2, the Fill% of the associated Image1 was always half that

of Image2. Measurements were made from the (i) AND areas

(where both fluorophores are present), (ii) OR (one or both), (iii)

AND plus background (Figure 4B).

The correlation between the pixels containing one or both

fluorophores (OR) is initially strongly negative, but moves towards

zero as the Fill% increases and the proportion of single

fluorophore pixels falls. The AND pixels, those showing co-

occurrence, remain uncorrelated regardless of the Fill%. The

initially large SD in the AND measurements reflects the small

number of pixels meeting the AND criteria:.001% at Fill% of

5,.005% at Fill% of 10,.011% at Fill% of 15 and finally reaching

45% with a Fill% of 95. The largest Fill% was 95 because

completely filling an image by inserting random objects is

impractical.

Combining the AND with the background only pixels produces

a positive correlation that rises sharply and then slowly drops

towards zero, reflecting the disappearance of background pixels

when the images are filled with objects. The background pixels

Table 1. The performance of locally set thresholds.

Foreground (objects) Background

Threshold All Annulus Centre All Annulus Remainder

LM 87 97 47 61 86 54

LM+SDx2 2 1 2 99 100 98

Median 70 76 47 56 62 54

LMB 100 100 100 54 54 54

LMB+LB.SDx2 100 100 100 97 97 97

Phansalkar 100 100 100 85 93 82

The percentage of the pixels a test image that were correctly designated was measured. The test image (to Figure 1:2) was an extended version of Figure 1A2 with a
wider range of diameters (1–55 pixels). Six areas were examined: the objects (foreground), the annulus inside the objects (Figure 2), their centres (objects excluding the
annulus), total background, the annulus outside the objects (Figure 2) and the remaining background (excluding the outer annulus). The annulus included all pixels,
outside or inside, within 10.5 pixels of the objects‘ edge. Data shown are means, N = 8.
doi:10.1371/journal.pone.0111983.t001

Figure 2. Division of the test image into regions. The analysis of
the performance of locally set thresholds (Table 1) considers different
parts of the image based on proximity to the edge of the objects. The
object edge and the extent of the inner and outer annuli are illustrated.
doi:10.1371/journal.pone.0111983.g002

Figure 3. Correlation and empty voxels. (A). A cartoon cell with
one ‘fluorophore’ (blue) in the ‘cytoplasm’, the second (red) in the
‘nucleus’ and no external fluorophore. The distribution of the intensities
is shown in a scattergram with regression lines showing the linear best
fit for the relationship within the ‘cell’ (‘nucleus’ and the ‘cytoplasm’)
and a second line that also includes the pixels outside the ‘cell’. (B).
Same pattern as in A but with a range of intensities in each region.
Frequency distribution histograms for each fluorophore are aligned
with the scattergram. Thresholds (th1 and th2) that separate the
foreground and background were derived from the frequency
distribution histograms for the two ‘fluorophores’. The background
mean (bkmn1) for ‘fluorophore1’ is the lower intensity peak of the
frequency distribution histogram.
doi:10.1371/journal.pone.0111983.g003
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measured alone remain uncorrelated, as would be expected (data

not shown).

Co-occurrence is reported in Figure 4C. M1, M2 and the Area
all rise progressively as the Fill% increases. The change in the co-

occurrence Area is non linear, as it is the product of the Fill% for

the two images i.e. if the Fill% of each image is 10 then the area of

co-occurrence is 1%.

A comparison of the Hcoef and r
The performance of r and the newly introduced Hcoef was

compared (Figure 5) using a sequence of incrementally changing

distributions (Figure 5A) produced by varying the copy fraction.

When the original intensity distributions have a linear distributions

(Figure 5B and C), the Pearson correlation coefficient r changes

over its full range, 21 to +1, while the Hcoef has a more limited

response, from 0.7 to 1.2, a smaller part of its full range which can

extend from 0, no co-occurrence, towards infinity, when all the

fluorescence co-occurs in a single voxel of a large image. The

response detected by the Hcoef is even more limited when the

distribution of intensities used in the simulated images is Gaussian,

arguably more representative of biological images, rather than

linear (Figure 5D). The reported change over the full correlation

range is then only from 0.965 to 1.035. r with a Gaussian

distribution is not shown since the difference from 5B is marginal.

Another notable difference is the effect of an offset, r is

unaffected but the Hcoef is increased when the correlation is below

1 and reduced when the correlation is higher than 1 (Figure 5E).

The inclusion of empty voxels increases r most dramatically

when the correlation is highly negative, but this shift progressively

drops as the original correlation becomes more positive. The Hcoef

responds quite differently with an almost identical shift over the

full range of the copy fraction.

Overall the Hcoef responds to an offset, detects empty voxels and

to some extent reports correlation. This multiplicity of responses

means that different distributions can produce an Hcoef of 1.0

(Figure 5B and C), which nominally indicates a random distribu-

tion. Since dissimilar distributions produce the same value for the

Hcoef, it is a poor descriptor of colocalization.

Discussion

Segmentation by thresholding
Setting intensities for thresholding is one of the hardest steps in

image analysis. To test locally derived thresholds we created a

simple image, circular objects with an appreciably higher intensity

than the background, plus a dash of noise. Methods unable to

segment such a simple images are unlikely to work with more

demanding images and the simplicity of the test image allows the

identification of the origin of failure or success.

As we predicted the LMT performed poorly, incorrectly

designating around half the background pixels and many pixels

within objects. The LMT really operates as a thick edge detection

tool, efficiently designating background pixels in an annulus

outside and inside objects but becomes less successful as the size of

objects increases. More surprising was the poor performance of the

LMT+SDx2 [10,11], an increase expected to produce a threshold

above most the background. Almost every background pixel is

indeed correctly designated but the higher threshold then rejects

all but the smallest objects. The edges are lost because when the

calculation area for the local mean includes both background and

foreground intensities the local SD becomes much larger than that

of areas that are just foreground or background. And the object

centres are also lost because raising the threshold by twice the

relatively modest local SD of these fairly homogenous areas raises

the threshold above the intensity of the objects. The result is that

only objects with an area less than one sixth of that used to

calculate the threshold are retained. This is similar to the local

median filtering where a calculation area of at least five times the

Figure 4. Which pixels to use in correlation measurements. (A) A
series of uncorrelated paired images were created by inserting objects
with a random intensity at random locations. The Fill% is the area
occupied by objects in Image2, the corresponding occupancy of
Image1 was half that of Image2. The panels show 128,64 pixel areas
taken from the 512,512 originals. The two upper panels use false colour.
The lowest panel shows objects from Image1 in red, objects from
Image2 in blue and co-occurrence in white. (B) and (C) show correlation
(r) and co-occurrence (M1 and M2) for the image pairs illustrated in A.
Measurements were made from three different areas: AND (co-
occurrence), OR (either or both) and AND+ Background (AND plus
pixels that are only background). The r for the background only pixels
was always near zero and is omitted. Note the AND and OR cannot be
measured with a Fill% of 0 and the Fill% of 100 is omitted - the
expected value is zero. Data shown are means +SD, N = 4.
doi:10.1371/journal.pone.0111983.g004
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object size is recommended [12]. The two LM based and the local

median methods cannot be recommended.

The most successful thresholding method is LMB+LB.SDx2.

However this method appears to be self referential, requiring that

background has been identified in order to segment the

background. But the intensity range of the background pixels

can be obtained from the local distribution of intensities in the

calculation area; if the background forms a distinct low intensity

peak, the peak can be taken as the local mean background and the

local background SD comes from the width of the peak. Problems

obviously arise, as they do for most local operators, when the local

area is predominately foreground or background and there is only

one intensity peak. This can be handled by either expanding the

calculation radius until two peaks can be identified or by

interpolating a threshold value from adjacent areas where the

background peak can be identified. This is not a simple

mechanistic method like the LMT and the algorithm is under

development.

The Phansalkar method is very successful in separating

background and foreground. It employs a complex combination

of the local mean, local standard deviation and normalization [7].

The Phansalkar method is a development of the Sauvola method

[8] which is in turn a variant of Niblack’s method [9]. It cleverly

sets a threshold that is below the local mean, to select the

foreground but rejects the background by boosting the threshold at

lower intensities. There is also scope for fine-tuning two of the

parameters used in the Phansalkar method calculation [7].

In colocalization two thresholds may be needed, one to

differentiate between the fluorophore’s emissions and background,

and a second to remove any intensity offset introduced by the

background and/or detectors. Correlation is the simpler, requiring

only the differentiation of foreground and background (th1 and t
h2 in Figure 3B), since offsets do not affect the calculated value of r
[13] when the calculation is performed correctly, i.e. includes only

pixels in which both fluorophores are found. In Figure 3B there is

some flexibility in exactly where this threshold (th1 and t h2) is set

with the distribution of intensities shown. However measures of co-

occurrence like M1 and M2 require both thresholding to identify

which intensities show the presence of fluorophores and a

correction for any offset, since an uncorrected offset will alter

co-occurrence measurements. Intensities below the threshold (th1
and t h2) should be set to zero then any offset (bkmn1 and bkmn2,

the second is not shown) corresponding to the background means

should be subtracted from all the pixels above the threshold.

Subtracting the background mean from every pixel would merge

populations (b2), (d), (e) and (f) in Figure 1D. If the background is

uniform the background mean (bkmn1 in Figure 3) should simply

be subtracted [14] but biology and images may be unobliging [10],

and require a localized calculation of the background mean.

Correlation and co-occurrence
The case that colocalization should be split into co-occurrence

and correlation is strengthened by the demonstration that, with

objects inserted at random locations in the individual images, the

correlation, measured from the pixels that show co-occurrence,

correctly remains constant at around zero while the co-occurrence

Figure 5. The effect of void pixels on the Hcoef and r. (A) The copy
fraction was used to vary the correlation, shown using scattergrams.
The range shown by the false colour scale is 0–124. The two lower
panels show individual pixels from a small part of the corresponding
images. Note that the lowest panel does not change. For more details
see the Methods section. (B), (C) and (D) illustrate the effect of changing
the copy fraction and in addition setting differing fractions of the pixels
in both images to zero intensity. (A), (B) and (C) have linear distributions

of intensities, with mean of 128 and a width of 200 while D has a mean
of 128 with a Gaussian distribution with a SD of 24. (E) The effect of
applying an offset of 32 to one image. Both images originally had a
mean of 128, a linear distribution of intensities with a width of 200 and
no empty pixels. r is unaffected by offset and the corresponding graph
is the 0% in panel B.
doi:10.1371/journal.pone.0111983.g005
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progressively increases. This supports our assertion made in the

introduction that zero correlation is compatible with substantial

co-occurrence.

It is also important to note that with these simulated images the

correct correlation, which is known a priori from the mechanism

used to create the images, was only reported correctly when r was

derived from the AND pixels, i.e. those containing both

fluorophores.

Empty voxels and correlation measurements
A common view is that empty voxels, those without either

fluorophore, should be included in measurements [15], expressed

for instance as ’’And a negative PCC value indicates that the

distributions of the two probes are inversely related, … for

example, if one protein is restricted to the cell nucleus, and a

second is localized in the cell cytosol’’ [16]. This is illustrated in

Figure 3 by a cartoon cell with one fluorophore in the nucleus and

a second in the cytoplasm and a scattergram showing the

distribution of paired intensities across the whole cell.

The opposing view is that considering correlation under these

circumstances conveys no useful information, given that the

nominal fluorophores are in different cellular compartments and

cannot interact [17,18]. The scattergrams on the right of

Figure 5A and Figure 3 both have strong negative correlations,

the first has a continuous distribution but in the second the two

nominal fluorophores never co-occur.

Reasons for dismissing negative correlations in the
absence of co-occurrence

Early work with correlation found a positive relationship

between the length of arms and legs [19]. Choosing subjects with

arms but no legs and legs but no arms would produce a completely

different result, a negative correlation. A result that clearly has no

relevance to normal subjects. Further, if the intensity distribution

of two fluorophores each isolated within separate compartments

changes then we show that the measured correlation also changes.

So if the first measurement describes some interaction of the

fluorophores it follows that the second measurement must indicate

a change in this interaction. But there cannot actually be a change

in any type of interaction since the fluorophores are not in the

same place. Reporting a negative correlation in the absence of co-

occurrence is misleading because it suggests the magnitude is

meaningful, but there are no degrees of not being in the same

place in pixel-based calculations. Interactions at a distance would

require different measurements. However, real negative correla-

tions do exist and should not be confused with meaningless

negative correlations. Accordingly we strongly suggest that

correlations should only be reported when there is co-occurrence.

When there is no co-occurrence, reporting the absence of co-

occurrence is a full and sufficient description.

What happens when there is not a continuous
distribution of intensities?

Mathematically r considers how the intensities vary around their

respective mean. The expectation is that each fluorophore has a

continuous distribution of intensities, ideally a bivariate normal

distribution. r is not robust in the sense that outliers, values distant

from the mean, have a strong influence on the overall measurement

[18,20]. These outliers explain why the correlation measured from

the distribution shown in Figure 3A and B is meaningless, relative to

the mean the scattergram shows only outliers.

r only considers a linear relationship, shown the by the

regression line ‘cell’ in Figure 3. But the line of best fit joins two

disconnected distributions which when examined individually are

uncorrelated. While the second regression line ‘all’ (r 20.483)

does not even approach any of the data points. This is an example

of Simpson’s paradox in which a trend present in individual

populations disappears or reverses when the populations are

merged [21]. The use of r is problematic when more than one

relationship is present [13]. For instance two strongly positive

correlations when measured concurrently can have a much lower

correlation and two uncorrelated populations, when treated as a

single population, can have a strongly positive correlation. This

provides another argument for disregarding the measurement

derived from the distributions shown in Figure 3 - there are

actually several relationships, or non-relationships, in play.

In summary, the magnitude of a correlation measured between

two fluorophores that never appear in the same place conveys no

more information than simply saying that they are not found

together which can more accurately be described by their (lack of)

co-occurrence. The Manders M1 and M2 coefficients, both

unsurprisingly report zero co-occurrences for the distributions

shown in Figure 3.

Negative correlations are rarely the result of repulsion
Negative correlations are often ascribed to molecular repulsion or

avoidance as are values of the Hcoef below 1 [5]. True repulsion

requires that molecules in a homogenous volume avoid each other,

a more dramatic separation than indifference. But molecules may

appear in different biological compartments simply because access is

restricted or they are delivered elsewhere, i.e. molecular repulsion

need not be invoked. Biologically values of the Hcoef below 1 or

negative correlations can originate from opposing concentration

gradients of morphogens but these are not attributable to repulsion

[22]. An enzyme transforming a substrate could also produce a

negative correlation or an Hcoef below 1, independently of repulsion.

Indeed if repulsion, as distinct from simply not interacting, does

occur its operating scale would be such that images of cells with

voxels with sides of tens of hundreds of nm would be unlikely to

detect it. Even with single molecule localisation imaging it would be

difficult to establish the existence of repulsion.

The Hcoef and r
The inclusion of empty voxels increases r most dramatically when

the correlation is highly negative, which is a strong argument for

restricting r to voxels that show co-occurrence. The Hcoef responds to

a combination of offset, empty voxels and correlation. This makes it

unsuitable for comparing populations since the same Hcoef value can

arise from appreciably different distributions. A random distribution

is only one of many possibilities producing the value 1, so the Hcoef

describes the underlying relationship of intensities poorly.

The Hcoef, unlike r, requires the inclusion of empty voxels.

However, there are two categories of empty voxels; voxels that are

empty because the molecules of interest are unable to reach them

and voxels to which both molecules have access but still remain

empty. For reasons outlined above, the second category is likely to

be extremely rare in biology. This means that there is no practical

case for using the Hcoef.

The Hcoef and the Manders overlap coefficient

MOC~

P
RG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
R2
P

G2
p ð2Þ

The Hcoef (eq. 1) and the MOC have obvious mathematical
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similarities. The numerator of both includes the sum of the

product of the intensities of the two fluorophores in every voxel. In

both cases voxels lacking one or both fluorophores do not affect

the numerator since their product is zero, and the numerator is

maximized when high intensities coincide. For a fixed number of

voxels and a constant amount of fluorophore the denominator will

be constant and the measurements of the Hcoef or the MOC will

follow the same trend and report on the combinations of intensities

found across the population of voxels.

Important differences between the two coefficients is the

presence of N in the numerator of the Hcoef, and changes to the

denominator which means that the Hcoef increases if empty voxels

are present while the MOC is unaffected.

An important similarity between the MOC and the Hcoef is that

both require that the intensities held in each voxel are related to the

number of photons emitted by the fluorophores. Therefore empty

pixels should have an intensity of zero, so any offset produced by

background must be removed before colocalization is calculated. An

offset increases the Hcoef when the correlation is low but the Hcoef is

decreased as the correlation becomes more positive (Figure 5). In

contrast, an offset always makes the MOC more positive [13].

A criticism of the MOC recognized by Herce et al. and others is

that it is hard to interpret [5,13,23]. This arises because it is

responsive to both co-occurrence and correlation. The same

applies to the Hcoef.

What does the Hcoef measure?
The Hcoef was derived and discussed in terms of molecular

interaction, either attraction or repulsion. In a homogenous

medium, perhaps a solution in a test tube, the relative distribution

of the two fluorophores might reflect molecular interaction. But

biology is the antithesis of homogeneity and the composition of the

small volume of a specimen that corresponds to a voxel is likely to

be highly variable. Biology defeats the case for the Hcoef.

Let us first consider homogenous media: two different molecules

with a very high mutual affinity will pair off and the number of

pairs per voxel would be expected to show a Poisson distribution.

This will produce a high but not the highest value for the Hcoef.

Lower densities of molecules will produce a higher Hcoef, since not

all pixels will be occupied, although the molecular interaction is

unaltered. The highest Hcoef will occur when all the paired

molecules are concentrated in a single voxel. However such a

concentration is unlikely to arise from the interaction between the

two molecules, which is the focus of colocalization measurements,

unless the paired molecules themselves interact to form clusters or

polymers. So, identical molecular interactions could generate a

range of Hcoef values in a homogenous medium.

The exclusion of both molecules from part of the volume

analysed will clearly increase the Hcoef, but exclusion has nothing

to do with molecular interactions in the remaining area.

An equal number of molecules with high mutual affinities will

form pairs, which would be recognized by the Hcoef and might,

correctly, be considered a molecular interaction. But if the

numbers of each species are not equal then there will be spare

molecules drifting around, presumably with their own Poisson

distribution, and the Hcoef would fall, potentially misinterpretable

as a change in molecular interaction.

Now let us consider a cell. The distribution of molecules in cells

is not random. Every protein that is destined for an organelle other

than the cytoplasm has in its sequence a targeting motif to ensure

delivery to the appropriate cellular compartment [24–26]. Once

delivered molecules are generally retained. Small punctate

cytoplasmic objects observed in a confocal image might well show

the presence of both fluorophores but to conclude that the

distribution is due to molecular interactions between the

fluorophores is naive – they may simply co-occur. Not because

they interact but because they are delivered to and reside there or

simply have similar physico-chemical properties. They may or

may not interact but concluding that they interact because the

Hcoef measured from the whole cell or the cytoplasmic compart-

ment containing organelles shows a non-random distribution is a

mistake. Even if the measurement is restricted to one type of

organelle a positive r or a high Hcoef suggests, but does not

definitively prove a molecular interaction.

Even when a biologically relevant ROI is used a false high Hcoef

or r is likely, or at least needs to be excluded. The reason is

prosaic; different amounts of an organelle may be present in each

voxel. For instance, the plasma membrane has a thickness of

around 5 nm and folding, protrusions and invaginations cause a

substantial variation in the plasma membrane content of voxels,

producing a positive correlation or a better than random Hcoef

between two molecules randomly distributed in the plasma

membrane [27].

The Hcoef and images of biological origin
The Hcoef, has only been tested on one sequence of biological

images, a single nucleus followed over part of the cell cycle, with

one fluorophore marking sites of active replication and a second

showing heterochromatin–rich regions [5]. The changes in

distribution are clear, with the brief appearance of small punctate

patches containing both fluorophores in late S phase. Two local

thresholds were applied by Herce et al, the LMT and LMT61.2,

with the declared intention of reducing background noise by

setting pixels below the threshold to zero, presumably because

their intensity was considered to be due to background. Note that

voxels with zero intensity affect the Hcoef. But setting pixels below

the threshold to zero creates an anomaly: voxels with a slightly

higher intensity retain their original intensity including any offset/

background. As we have shown the LMT is a very poor method of

thresholding, increasing it by 20% will improve the rejection of

background but lacks a clear rationale and may compromise parts

of the foreground. The LMT identifies small punctate objects, but

one of the fluorophores had a diffuse distribution, which leads to

many foreground voxels being misclassified as background voxels,

with unknown effects on colocalization measurements.

Using the LMTx1.2 the Hcoef reported an appreciable change in

colocalization in late S phase, with r reporting a qualitatively similar

change. However when using the unenhanced LMT the change

previously recorded by the Hcoef disappeared, although it was still

shown by r, though the pattern of correlation during the cell cycle

was altered. Nonetheless Herce et al. concluded that the Hcoef

performed better than r. The results with r are also questionable

since they use the same two variants of the LMT and then included

all the voxels in the measurements. Taking into account the

inappropriate use of the LMT, problems with the LMT, failure to

correct for offset and problems with the application of r, we suggest

that the quantification reported by Herce et al. with the Hcoef and r
are questionable. Given the very obvious changes in co-occurrence,

the Manders M1 and M2 pair might have provided a clearer

description of the changes during the cell cycle.

Conclusions

Thresholding to differentiate between foreground and back-

ground is a critical step in quantifying colocalization. The LMT

can misclassify about half the background pixels and a similar

fraction at the centre of larger objects. The background is correctly

classified when the threshold is increased by adding twice the local
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standard deviation to the LMT, but at the expense of excluding all

but the smallest foreground objects. The best local thresholding

methods were the Phansalkar and the local mean background plus

twice the local background standard deviation.

The newly launched Hcoef like the MOC, M1 and M2 is

sensitive to offsets and therefore requires both thresholding and the

removal of the mean background intensity to correct for any offset.

The offset can be obtained from the lowest intensity peak of a

frequency distribution histogram.

Correlation measurements only correctly report the relationship

between the fluorophores from the pixels in which the two

fluorophores co-occur. Including empty pixels and pixels with only

one fluorophore misrepresents the underlying relationship be-

tween the fluorophores.

Molecular interaction is only one of the possible explanations

for positive correlations and Hcoef values above 1. Inhomogeneity

and molecular targeting strongly influence cellular distributions

but molecular repulsion is likely to be insignificant.

The case for using the Hcoef for colocalization partly depends on

finding deficiencies in existing coefficients. However no superiority

of the Hcoef over the r or M1 and M2 coefficients has been

demonstrated and its value in the analysis of images of biological

origin is unproven.

Methods

Intensity Thresholding
A simple test image (629,256 pixels, byte) (Figure 1A2) was

created by combining circular foreground objects of incrementally

increasing diameters (3 to 39 pixels) and a uniform intensity of 128

(Figure 1A1) with background noise (mean 32, Poisson noise based

on 32 quanta, SD 5.67) and used to evaluate different local

thresholding methods. Local thresholds (Figure 1B), calculated over

a circle with a diameter of 21 pixels, were produced using Fiji [28]

and applied by setting intensities below the threshold to zero, while

leaving those above threshold unaltered (Figure 1C). The thresh-

olding was quantitated using Semper6p (Synoptics, Cambridge,

UK) with six different regions of interest (ROIs) created from the

original test image: the objects and background, with each divided

into an annulus (inside or outside extending 10.5 pixels) around the

edge of the objects (Figure 2) and the residual area (the centres of

objects or the background minus the outer annulus).

Two copies of the test image with the noise component created

separately for each copy were used for colocalization measure-

ments. The images are supplied as Figure S3 and Figure S4.

Random Objects
Uncorrelated distributions were generated by inserting circular

objects (radius 5 pixels) at random locations within 512,512 byte

images. The intensities of each object were taken from a sequence

of random numbers with a uniform distribution of intensities

between 64 and 254.

Images had a background with a mean of 16 and a variability

based on 16 quanta. The Pearson correlation coefficients (r) was

used to follow the change in correlation in different ROIs as

objects were progressively added to the images. The images are

supplied as Figure S5, Figure S6, Figure S7, Figure S8, Figure S9,

Figure S10, Figure S11 and Figure S12. Panel A in Figure 4 shows

a small area from the sequence of images used in B and C.

The supplementary figures contain the whole images of the full

sequence of images.

Test images with varying correlation
A range of paired images with correlations that incrementally

vary from 21 to 1 (Figure 5) were produced from two

independently generated distributions by replacing differing

fractions (the copy fraction, cf) of the difference from the mean

in each pixel of one image with the same fraction of the difference

from the mean of the corresponding pixel of the other image:

In1~m1z Io1ð Þcf z I2{m2ð Þ 1{ mod cfð Þð Þsgn ð3Þ

m1 and m2 are the mean intensity of image1 and image2,

cf is the copy fraction with a range of 21 to +1,

In1 and Io1 are the new and original intensities in individual

pixels in the first image and I2 the intensity in the second image.

mod is the modulus.

sgn is either +1 or 21, creating positive or negative correlations.

Provision was also made for setting the intensities of a fraction of

the pixels in both images to zero and for offsetting the intensities of

one image by a constant.

Images with a linear distribution had a uniform distribution of

intensities from 0–247. Images with a Gaussian distribution had a

distribution of 23–233 with a SD of 24.

The images for the Gaussian and linear distributions are

supplied as Figure S13, Figure S14, Figure S15 and Figure S16.

Image analysis
Colocalization measurements were made using the Hcoef, r, M1

and M2 with software based on a Semper6p kernel (Synoptics,

Cambridge, UK) and the ImageJ plugin Auto Local Threshold

(Gabriel Landini et al.). Image processing and analysis was

implemented using Semper6p kernel or ImageJ [29]. File S1 holds

a program that runs within the Semper6p image analysis software

and creates the Images used in Figure 4 and File S2 a program

that creates the images used for Figure 5. The Semper protocols

for the image analysis can be found as File S3 and File S4.

Supporting Information

Figure S1 Image of the nucleus. The nucleus image from

Figure 3B. In greyscale, rather than false colour.

(TIF)

Figure S2 Image of the cytoplasm. The cytoplasm image

from Figure 3B. In greyscale, not false colour.

(TIF)

Figure S3 Small image of objects and background.
Objects and background from Figure 1A.

(TIF)

Figure S4 Large image of objects and background. The

wider range of sizes and eight sets of each size used to make the

graph shown in Figure 1E.

(TIF)

Figure S5 Image one of the sequence of the incremental
increase in Fill% set a. The whole image of the full sequence of
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images covering the incremental increase in the Fill% shown in

Figure 4A. The image is a greyscale tif stack with the lowest Fill% in

the first image, each subsequent image increases the Fill% by 5.

Image 1, set a.

(TIF)

Figure S6 Image one of the sequence of the incremental
increase in Fill% set b. The whole image of the full sequence

of images covering the incremental increase in the Fill% shown in

Figure 4A. The image is a greyscale tif stack with the lowest Fill%

in the first image, each subsequent image increases the Fill% by 5.

Image 1, set b.

(TIF)

Figure S7 Image one of the sequence of the incremental
increase in Fill% set c. The whole image of the full sequence of

images covering the incremental increase in the Fill% shown in

Figure 4A. The image is a greyscale tif stack with the lowest Fill%

in the first image, each subsequent image increases the Fill% by 5.

Image 1, set c.

(TIF)

Figure S8 Image one of the sequence of the incremental
increase in Fill% set d. The whole image of the full sequence

of images covering the incremental increase in the Fill% shown in

Figure 4A. The image is a greyscale tif stack with the lowest Fill%

in the first image, each subsequent image increases the Fill% by 5.

Image 1, set d.

(TIF)

Figure S9 Image two of the sequence of the incremental
increase in Fill% set a. The whole image of the full sequence

of images covering the incremental increase in the Fill% shown in

Figure 4A. The image is a greyscale tif stack with the lowest Fill%

in the first image, each subsequent image increases the Fill% by 5.

Image 2, set a.

(TIF)

Figure S10 Image two of the sequence of the incremen-
tal increase in Fill% set b. The whole image of the full

sequence of images covering the incremental increase in the Fill%

shown in Figure 4A. The image is a greyscale tif stack with the

lowest Fill% in the first image, each subsequent image increases

the Fill% by 5. Image 2, set b.

(TIF)

Figure S11 Image two of the sequence of the incremen-
tal increase in Fill% set c. The whole image of the full

sequence of images covering the incremental increase in the Fill%

shown in Figure 4A. The image is a greyscale tif stack with the

lowest Fill% in the first image, each subsequent image increases

the Fill% by 5. Image 2, set c.

(TIF)

Figure S12 Image two of the sequence of the incremen-
tal increase in Fill% set d. The whole image of the full

sequence of images covering the incremental increase in the Fill%

shown in Figure 4A. The image is a greyscale tif stack with the

lowest Fill% in the first image, each subsequent image increases

the Fill% by 5. Image 2, set d.

(TIF)

Figure S13 Red image Gaussian distribution. The single

single red image of the Gaussian distribution in Figure 5.

(TIF)

Figure S14 Stack of green images Gaussian distribu-
tion. The stack of 21 green images with incremental steps of 0.1,

the first with a copy fraction of 1.0 and the last with a copy fraction

of 21.0 of the Gaussian distribution in Figure 5.

(TIF)

Figure S15 Red image linear distribution. The single

single red image of the linear distribution in Figure 5.

(TIF)

Figure S16 Stack of green images linear distribution.
The stack of 21 green images with incremental steps of 0.1, the

first with a copy fraction of 1.0 and the last with a copy fraction of

21.0 of the linear distribution in Figure 5.

(TIF)

File S1 Coloclization analysis program. The file holds the

text for a program that calculates the colocalization coefficients

within Sepmper6p.

(TXT)

File S2 Memory location program. The file holds a very

short program that is called by File S1 that finds a free memory

location for an image or data file.

(TXT)

File S3 Random blob image generating program. The

file holds a program that runs within the Semper6p image analysis

software and creates the images used in Figure 4.

(TXT)

File S4 Copy fraction image generating program. The

file holds a program that runs within the Semper6p image analysis

software and creates the images used in Figure 5.

(TXT)
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