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Assessment of variant load in an idiopathic autoinflammatory
index patient

Jessika Nordin

Populdrvetenskaplig sammanfattning

Autoinflammatoriska sjukdomar ar ett relativt nytt begrepp inom medicin som dék upp for
ca 15 ar sedan. Autoinflammatoriska sjukdomar uppstar pa grund av fel i det medfédda
immunfoérsvaret (till skillnad mot autoimmuna sjukdomar som uppstar pa grund av fel i det
specifika immunférsvaret). Det medfédda immunférsvaret ar det som reagerar forst mot
frammande foremal i kroppen. Spannet av autoinflammatoriska sjukdomar ar brett och kan
vara orsakade av en eller flera gener. Flera av sjukdomarna delar orsak och symptom vilket
gor dem svara att diagnosera och behandla.

For att kunna ta reda pa mer om de olika autoinflammatoriska sjukdomarna har man tagit
fram ett riktat sekvensfangande bibliotek som innehaller 1900 gener och deras reglerande
element. Detta bibliotek har anvants pa 115 kontroller och en familj dar den ena sonen har
en oidentifierad autoinflammatorisk sjukdom. Pojken har en blandning av olika symptom
som ar unika i hans fall och ingen medicin hjadlper helt mot symptomen. En bioinformatisk
pipeline sattes upp for att smidigt analysera sekvensbiblioteket. Med hjdlp av den &vriga
familjen och kontrollerna har vi tagit fram en lista med tankbara varianter som kan vara
orsaken till pojkens sjukdom. Denna lista ska utvdarderas och kan férhoppningsvis hjalpa till
att forbattra pojkens vard.

Examensarbete 30 hp
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Glossary

AID
AN
BAM
BWA
CLL
CNV
DNA

EMR1

Eosinophils & neutrophils

FAM

FS

GATK

GB

Hg 19

HS
Idiopathic
IL

IMBIM
MB

MEFV

MNP

autoinflammatory disease
number of alleles with data
binary SAM file
Burrows-Wheeler Aligner
chronic lymphocytic leukaemia
copy-number variations
deoxyribonucleic acid

epidermal growth factor (EGF)-like module containing, mucin-
like, hormone Receptor-like 1

two kinds of white blood cells

individual information file (family ID, individual ID, paternal ID,
maternal ID, sex, phenotype)

Fisher strand which is a phred-scaled p-value to detect strand
bias

Genome Analysis Toolkit

gigabyte

latest build of the human genome

hybrid selection

unknown origin to the disease

Interleukin

Department of Medical Biochemistry and Microbiology
megabyte

Mediterranean fever

multi nucleotide polymorphism



MQ

MQRankSum

NCBI
NGS
NLRP3
NRD
NRS
0GC

Qb

readPosRankSum

SAM

SNP

SpA
Target
TNFRSF1A

Uppmax

UTR
Variant
VCF

VQSR

root mean square of the mapping quality of the reads across
all samples

an approximation of the Mann-Whitney rank sum test for
mapping qualities

National Center for Biotechnology Information
next generation sequencing

NACHT, LRR and PYD domains-containing protein 3
non-reference discrepancy

non-reference sensitivity

overall genotype concordance

quality by depth calculated by the variant confidence divided
by the unfiltered depth of non-reference samples

an approximation of Mann-Whitney rank sum test for the
distance from the end of the read for reads with alternate
alleles

sequence alignment/map file

single nucleotide polymorphism

spondylitis arthritis

the part of the genome that the library is made to capture

tumor necrosis factor receptor superfamily

Uppsala Multidisciplinary Center for Advanced Computational
Science

untranslated region
where the sample differs from the reference
variant calling format file

variant quality score recalibrator






Introduction

Autoinflammatory disease (AID) is a quite new field in medicine and was
discovered only 10-15 years ago!. AIDs are caused by errors in the innate
immune system (the immune system we are born with). The innate immune
system is the first to react to danger signals inside or outside of the cells, before
the acquired immune response takes over. These diseases are widely spread in
how they appear and what causes them, some of them are monogenic and others
are multifactorial. But the thing these rare diseases all have in common is that
they cause episodes of inflammation in patients, without any sign of
autoantibodies or antigen-specific T-cells2. Many of the different diseases also
share symptoms, which makes diagnosis and treatment challenging3.

Not much is known about the genetics of AID. At present, the EUROFEVER
register (http://www.printo.it/eurofever/) contains a list of 18 genes with
known variants associated with AID. The remaining 80% of patients have no
known genetic cause of disease, hindering the potential application of medicines
to target pathways of AIDS3.

In collaboration with the comparative genomics arm of the Department of
Medical Biochemistry and Microbiology (IMBIM) at Uppsala University, we have
studied a number of different heritable immunological disorders, and have for
this purpose developed the custom NimbleGen Targeted Sequence Capture
Library that was used in this thesis. The objective of this array was to cover the
coding and regulatory regions of approximately 1900 genes that are involved in
immune responses. For each disorder, paired-end Illumina Next Generation
Sequencing was used to assay this ~32 MB (or ~1% of the human genome) to a
depth of 10x for many hundreds of individuals within specific case and control
groups. In practise, one sample (500 ng of DNA) from the targeted Sequence
Capture Library gives approximately 2-6 GB data in the form of two fastq files
after sequencing. Since the sample was pooled with seven other samples, each
lane produced 14-20 GB raw data. For instance, in this thesis the analysis was
based on 122 samples that gave 354 GB raw data. A bioinformatics pipeline was
implemented to handle this huge amount of data.

If it is challenging to treat the autoinflammatory diseases that are known, it is
even harder to treat an idiopathic autoinflammatory disease. In this paper we
tried to find the cause of an idiopathic disease using the above methodology to
generate data from an index patient, six members of his immediate family and a
cohort of control genomes. The first part of this process involved the building of
a bioinformatics pipeline that could be used across projects to analyse the result
of the custom library. The second stage was the implementation of this
procedure to generate a list of potential disease causing variants for further
evaluation.



Methods

Sample Resources

The male index patient had been diagnosed with an idiopathic autoinflammatory
disease and the rest of the family were healthy (except the grandfather on the
mother’s side that had chronic lymphocytic leukaemia (CLL)). The combination
of symptoms was unique for the index patient and clinicians had not found a
medicine that worked completely; the medicines only lessen the symptoms. The
index patient had hypersplenism (over activity and enlargement of the spleen),
fever, skin eruption, problems with his joints and had had aseptic meningitis
(meningitis without any sign of bacterial involvement). No one in the family
apart from him showed any signs of autoinflammatory disease (figure 1).

Grandfather
Grandfather
Grandmother (CLL)
Father Mother
Brother 25

(Index patient)

Figure 1 | Family pedigree
Figure 1 shows the relationship between the index patient and the close members of his family.
All were sequenced as part of this project.

The index patient did not respond to an interleukin 1 (IL-1) blockade, but had for
a long time been given Prednisolone (a medical preparation with corticosteroid
that is used for allergies and rheumatic trouble), which had a positive effect.
Prednisolone decreases inflammation and makes the immune response less
active by reducing cytokine gene expression and promoting apoptosis of
eosinophils#>. In July 2013 he was prescribed an IL-6 blockade. Currently, his
dosage of Prednisolone is being reduced. He was also given Colchicine.
Colchicine is a substance from a flower called autumn crocus, meadow saffron or
naked lady. It is an anti-inflammatory medicine that prevents neutrophil motility
and activity®. This medicine is only made on demand.

Blood samples were taken 2013-08-27 from the family (figure 1). DNA from
these samples were extracted and libraries prepared (at IMBIM, Uppsala
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University) and sent to the Sequencing Centre (Science for Life Laboratory). How
the samples were prepared will not be discussed in this thesis. The raw data
from the Sequencing Centre came back 2013-12-16, and the amount of data from
each sample is shown in table 1.

Table 1 | Amount of data per sample
This table shows how much data came back from the Sequencing Centre for each sample.

Sample Amount of data (GB)
Boy (index patient) 6.0
Brother 3.2
Mother 4.4
Father 3.8
Grandmother (father’s side) 3.8
Grandfather (father’s side) 6.6
Grandfather (mother’s side) 2.8
Control group (115 samples)* 4.2

*For the controls the mean value for all 115 samples is used.

As the index patient was idiopathic, it was likely that a specific combination of
disease causing variants were private to him in comparison to his immediate
family. However, to place potentially interesting variants in context, we also
considered a control group. This group was taken from the control cohort in the
ankylosing spondylitis (SpA) project running at IMBIM, and consisted of 115
samples. These controls were considered to be of Swedish ancestry (both the
sequenced individual and their parents were born in Sweden) and were from the
same geographical area as the index patient (south of Sweden). This control
group was important as a variant that was identified in the index patient, but
that does not exist in the general population (e.g. 1000 genomes), may in fact be
common in the Swedish population, and so this variant’s interest in a disease
context would be down weighed. All samples used for analysis in this work were
obtained following approved ethical protocols (Dnr M177-07).

Sequenced samples in this project were received as raw Illumina HiSeq pair-end
100 bp fastq reads.

Development of the Sequencing Pipeline

The targeted Sequencing Capture Library that was used for the index patient and
his family will also be used to generate samples in complementary
immunological projects. In order to facilitate the exchange of data between these
experiments, it was essential that raw data from each individual project was
processed in the same way, to reduce analyses biases which may skew important
values such as coverage and allele frequency. A bioinformatics pipeline was
implemented to be able to analyse the data. The family was used as a test project
for constructing the pipeline that will be used for similar future projects.

The foundation for the pipeline comes from Genome Analysis Toolkit’s (GATK)

best practices’. This pipeline requires a lot of computational power and a subset
of software modules. For this purpose, Uppsala Multidisciplinary Center for
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Advanced Computational Science (Uppmax, https://www.uppmax.uu.se), was
used. Uppmax is a resource of high-performance computers with a number of
software tools already installed.

Data pre-processing

When the data came back from the Sequencing Centre it needed to be pre-
processed before any kind of analysis, like searching for variants, could take
place. This was done with help of SAMtools (samtools.sourceforge.net), Picard
(picard.sourceforge.net) and GATK (www.broadinstitute.org/gatk), as shown in
figure 2.

® pase recalibration M
e HS metrics
Figure 2 | Flowchart of pre-processing

The first script is called finalbam.sh and does all the data pre-processing. It takes the raw data in
fastq format and uses BWA, Picard, GATK and SAMtools to align, realign, mark duplicates, do a
base recalibration and generates two quality files, flagstat and HS metrics and the cleaned data in
a finalbam.bam.

The Burrows-Wheeler Aligner (BWA) was used to align the fastq files to the
human genome (in this case version hg19 augmented with chr6_cox_haplotype?2
and chr19_random)8 BWA 0.7.4 was used for this, rather than the newer 0.7.5a,
which had a bug that ended the aligning without warning in some cases (it was
not known what activated this bug). BWA 0.7.4 did not show any signs of having
the same bug. This process created a SAM file. SAM files are big plain text files
(for example one sample had a 21 GB SAM file) that are hard to handle because
there is no way to access subsets of data quickly®. Picard was used to convert the
SAM file into a BAM file. A BAM file is a SAM file in binary, which take less space
(the same sample as before has a 5 GB BAM file) and it can be indexed, which
makes it easy to randomly access data quickly®.

Both the physical sequencing and the data handling give minor errors and the
BAM file contained many of these artefacts. In an attempt to reduce the amount
of errors we cleaned the BAM file. Because of the close collaboration between the
IMBIM group and Broad Institute, GATK (that is developed by Broad Institute)
best practices were used as the frame of the pipeline. The GATK developer
provided a data bundle that contained most of the files necessary to be able to do
the best practices, all from reference genomes to Mills indels (a gold-standard set
of indels that were validated separately), which helped much in our downstream
process!0. However, our reference genome was not taken from GATKs data
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bundle. GATK 2.7.2 was used because it was the fastest version of GATK at
Uppmax at the time of project commencement. The first step after creating the
first BAM file was to go through the file and find intervals that had indels, this
interval file was then used to go through the BAM and realign at these intervals.
The next step to mark duplicates was done by Picard. Biological duplicates exist,
e.g. copy-number variations (CNV), but duplicates can also be created during the
experiment. Duplicates can be created by PCR amplification during library
construction, or by reading the same fragment twice during sequencing. Marked
duplicates were removed from downstream analyses, the main reason for this
was to remove the effects of PCR amplification bias. Then, the data was
recalibrated against dbSNP common SNP list (version 137) so the program could
see what a SNP should look like, and give those bases a recalibration score!l. The
last thing before the data was finally ready was to get some quality information
for a number of different statistics. These statistics were then used to decide if a
sample would be going further downstream in the analysis pipeline, or if the data
from a sample was too poor. For example, in this analysis, a mean coverage of at
least 10x was necessary for good results with other tools in the pipeline.

The quality of the final BAM file was judged using a variety of statistics. SAMtools
was used to get for example the amount of duplicates, mapped reads, properly
paired reads and singletons with the command flagstats. Picard was used to get
hybrid selection metrics (HS metrics), which give for example number of reads
on and off target, mean coverage and how many bases that had 10x, 20x and 30x
coverage. These quality tests gave more data that was taken into consideration
further downstream in the analysis. Now the final BAM was ready to be analysed
after cleaning.

Variant discovery

When the final BAM was finished it could proceed to the variant calling that was
done in two steps; call variants (which create a VCF file!?) and filter the called
variants (figure 3). GATK has two different routes for variant calling and for
filtering. Two walkers were available for variant calling (walkers is the different
methods inside of GATK), unifiedGenotyper and haplotypeCaller, and for
filtering, hard filters and variantRecalibrator, that uses Variant Quality Score
Recalibration (VQSR)13.
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e group of ~100 “ e all samples

— >
e group of ~100 “ e all samples

Figure 3 | Flowchart of the variant calling

Variant calling is made on the final BAM with two scripts. haplotypeCaller.sh or
unifiedGenotyper.sh takes a group of sample BAMs (~100) and runs the variant calling per
chromosome in parallel and gives a VCF as an output file. VariantRecalibration.sh and

hardFilter.sh are both used to take all samples and use various metrics to filter variants based on
assigned quality thresholds.

HaplotypeCaller is recommended for diploid organisms. However, it requires
more time and has a sample limit of ~100/run. GATK recommends
haplotypeCaller because it is a more advanced tool. Instead of simply calling
variants, it takes an interval region around each variant and applies a de novo
realignment to verify that the result alignment is the optimal. Consequently, this
process is time consuming because it requires a lot more computational power.

UnifiedGenotyper is better at handling different numbers of chromosome copies,
from one to several. UnifiedGenotyper is not that good at finding indels, and
picks up false variants that are actually alignment errors due to BWA. BWA is
good for fast aligning, if you are ready to let the quality of the alignment slip a
little. With indel realign in the data pre-process step and haplotypeCaller, these
mistakes from BWA are dealt with, but it can be noticeable when running
unifiedGenotyper.

Another problem with the variant calling was if variants should be called
individually or as an individual within a group of samples. It was decided to do
the variant calling in a group after a test with the index patient and his three
closest family members (brother, father and mother). Variants were called with
haplotypeCaller, both individually and as a group for the family. This small test
was made to investigate if the number of alleles that were covered (the AN
number in a VCF files information field) differed depending on how the variants
were called. The theory was that if you called them individually, only positions
with variants would be exported to the VCF, positions equal to the reference
would not. But if the samples were called in a group it would be enough if one
sample had a variant, to export that position for all samples, variant or not. (In
the new patch of GATK, GATK 3.0, haplotypeCaller was able to call variants on
individual samples but haplotypeCaller was not there yet in the version that was
used in this study).
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HaplotypeCaller vs. unifiedGenotyper and hard filter vs. VQSR

To decide what kind of method and which walker to use, an experiment with the
two walkers and the filtering methods was designed. A group a 32 samples was
selected, since GATK suggested that around 30 samples for exome sequencing is
needed for VQSR to work properly (the 32 samples were picked because they
were easily accessible at that point). Variant calling on these 32 samples were
performed in eight different ways as shown in figure 4. The variants were called
individually for each sample, by both unifiedGenotyper and haplotypeCaller, and
all 32 together in a group (but not merged) by unifiedGenotyper and
haplotypeCaller. We then post-processed all these different out-files by both
VQSR and hard filter.

Method evaluation was completed using ten different intersections following
variant annotation on snpEff (version 3.4) that gave a comparison on how
different/similar the different methods were.

variantRecalibrator
~3 hours
hard filter
individual
variantRecalibrator
~3 hours
hard filter
final bam
variantRecalibrator
~1 day 15 hours
hard filter
: variantRecalibrator
~ /dd
by chromosome
~8 hours chr19 hard filter

Figure 4 | HaplotypeCaller vs. unifiedGenotyper and hard filter vs. VQSR

To compare the different walkers to each other a test with 32 samples was made. All 32 samples
started as an analysis ready BAM file (final BAM) and then they were handled individually or in a
group. The eight analyses methods were tested using these 32 samples and then compared.

Variant calling

More than 100 control samples were available for analysis in the project,
however ~100 samples was the input limit for haplotypeCaller (because of time
issues). For this reason, groups of ~100 controls plus the index patient were
used to ensure all individuals had variant, or reference positions, exported to
complement all his variants. To be able to run the haplotypeCaller in a
reasonable timeframe, the samples were divided into chromosomes and each
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chromosome was run in parallel. This decreased the time required to a
maximum of 3 days (for chromosome 3 and 116 samples) compared to the more
than seven days to process whole genomes for 32 samples (data not shown.
Note, whole genomes for 116 samples were not attempted).

After this step, there were VCF files with the variants in the index patient and the
equivalent information for the other samples. But some variants were called
even if they were not that good. To only get the best candidates for real variants,
the called variants needed to be filtered. Once again there were two ways to do
this. One was the old and well tested hard filtering, which is dependent on your
information on what a good variant is. The other was VQSR that uses machine
learning to decide what a good variant looks like13.

Hard filtering uses a number of variables when doing its filtering. Users can
easily change variables used after what fits the purpose of the experiment. In this
experiment the default values were used. For filtering SNPs, QD, FS, MQ,
MQRankSum and readPosRankSum were used. QD is quality by depth calculated
by the variant confidence divided by the unfiltered depth of non-reference
samples and was set to 2.0. FS is Fisher strand, which is a phred-scaled p-value to
detect strand bias and was set to 60.0. MQ is root mean square of the mapping
quality, of the reads across all samples, and was set to 40.0. MQRankSum is an
approximation of the Mann-Whitney rank sum test for mapping qualities, and
was set to 12.5. ReadPosRankSum is an approximation of the Mann-Whitney
rank sum test for the distance from the end of the read for reads with alternate
alleles and was set to 8.0. While filtering indels, only QD, FS and
ReadPosRankSum were used; where QD =2.0, FS =200.0 and ReadPosRankSum =
-20.013,

The VQSR uses a machine learning algorithm to filter variants. VQSR is given
datasets with real SNPs (1000 genomes project phase 1, SNP database 137,
HapMap 3.3 and Omni 2.5) and indels (Mills indels) that are already validated
and have different priorities related to the confidence that they are true variants.
For example, 1000 genomes is a set of high-confidence SNP sites, which the
machine learning program will consider to have both true variants and false
positives and have a rank of 10. dbSNP have not been validated to a high degree
of confidence and have therefore the lowest rank of only 2. The variant calling
dataset was produced from the family and controls. VQSR scores all variants
depending on where they end up in the model. Then the scores are ordered and
depending on which interval the score is in, it can be filtered or not. There are
different intervals that can be used depending on what the individual project’s
need for variant sensitivity and specificity. For our experiment, a sensitivity of
99.0 was used. It was easy to access the variants from the higher sensitivity
because they got the grade of sensitivity for which they belonged. This was done
for SNPs and indels separately because there are different models for SNPs and
indels. After this process the variants were ready for examination.
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Genotyping
Both the index patient and 11 of the 115 control individuals had been genotyped
to some extent before.

The index patient was genotyped for three different genomic regions at the
Institution for Clinical and Experimental Medicine at Linkdping University. They
used Sanger sequencing to look at rs35829419 in NLRP3, exons 1, 2, 3,5 and 10
in MEFV and exons 2, 3 and 4 in TNFRSF1A. The DNA sequences were then
compared against the hg19 reference sequence to find mutations. We used the
Linkoping sequences as controls when examining if the variant calling
methodology developed here was working properly.

A subset of the controls were genotyped using the Affymetrix Genome-Wide
Human SNP Array 6.0, again at Link6éping University. This affy-array contained
more than 906,600 SNPs. However, not all of these variants were covered by the
Targeted Sequence Capture Library and so not all were available for comparison
to those produced by the variant calling.

Preliminary analysis

Once variants were called it was time to try to find possible disease causing
variants. GATK recommends snpEff 3.4 (snpeff.sourceforge.net), which is a
variant annotation tool, and it was used to annotate which effect a variant can
have. SnpEff looks at the variants to see where they are, in a gene, intron, 3’ or 5’
UTR and so on. It also predicts different kinds of effects the variant can have
(frame shift, start lost, stop gained and so on and so forth) and these effects are
classed into how deleterious they can be (high, moderate, low and modifier,
which often means affecting non-coding regions) 14.

After the annotation of the variants effects, snpSift 3.4 was used for a number of
analyses: caseControl, private, heterozygote and homozygotel>. SnpSift's
caseControl was given the filtered variants with their effects and a FAM file of the
samples. (A FAM file contains family id, sample id, mother, father, sex and
affected/unaffected, but all information does not have to be there for it to work.)
CaseControl looks at each variant and tells how many alleles are homozygote,
heterozygote and variants in total for cases and for controls separately. Since
running caseControl on big files is time consuming, the files were split into
chromosomes, and caseControl ran them separately, and in parallel, to decrease
the time to get to a result.

The caseControl output made it easy to filter out variants that were private for
cases (only the cases that had alleles that had changed for that position),
homozygote for cases (where cases were homozygote and no controls were
homozygote, these variants could be recessive and possibly disease causing) or
heterozygote for cases (where cases were heterozygote and no controls were
heterozygote). There are examples, like the heterozygote 667X mutant in the
murine model for an endocrine disease Familial neurohypophyseal diabetes
insipidus (FNDI), where a heterozygote variant was more deleterious than to be
homozygote alternate allele, so we can not exclude them as candidates. This
analysis was repeated to evaluate i) index patient as case and his mother, father
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and brother as control, ii) index patient as case and the rest of the family as
controls, iii) index patient as case and the control group as controls. These
different analyses produced three files containing private, homozygote and
heterozygote variants. A private variant does not necessarily mean that it is of
interest even though it would fit the pattern of idiopathic disease. A private
variant can be deleterious but it can also have no effect at all. Two different lists
were created, one with all variants from the three files which have high effect
and one with those that have moderate effect (figure 5).

Figure 5 | Flowchart of the preliminary analysis

In this step we have three scripts. SnpEff.sh is used on the VQSR filtered variants and annotates
each variant. caseControl.sh takes the annotated file and does snpSifts caseControl on each
chromosome in parallel. Then snpSift.sh is used to do filtering and get variants that are private,
heterozygote or homozygote in the cases. Variants with predicted effect of high and moderate are
used to make variant lists.

The variants that appeared in all three analyses were the most interesting and
had priority for further information gathering. Also, genes that contained many
variants were interesting. To be able to see if a variant seemed interesting, the
different analyses were compared. Therefore, the information about the family’s
genotype and the control group’s allele frequency was gathered for each variant.
Also, the depth for the variant in the family and the number of reads called for
reference/alternate genotype in the index patient was taken into consideration.
The evaluation of variants started by using the UCSC genome browser
(http://genome-euro.ucsc.edu) to see if the variant was known and its allele
frequency in different populations?®. To find out more about what was known for
the variant, Online Mendelian Inheritance in Man® (http://www.omim.org/) was
used. Either the gene name or the snp number was used as a search keyword?’.
For variants that caused changes in the amino acid sequence, the National Center
for Biotechnology Information (NCBI, www.ncbi.nlm.nih.gov) was used to find
which protein position a variant had. This was to see if the changed amino acid
seemed to interfere in important functions. For genes with several variants it
was interesting to see if there were different haplotypes present. This analysis
was done with PHASE18.
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Results

Data pre-processing

Quality information was gathered from the first step of the pipeline. SAMtools
flagstat gave mapping statistics such as number of reads, number of duplicates,
number of mapped, number of properly paired and singletons. Picard’s HS
metrics gave information about how many target bases that had coverage of 2x,
10x, 20x and 30x. HS metrics also gave information about the mean coverage for
the sample. All this information can be found in table 2 for the close family and
the controls (mean values).

The mean coverage over all samples was higher than 18x, which was more than
the required 10x coverage to continue the analyses. All samples had more than
78% of the target bases with at least 10x coverage. The boy (index patient) had
most raw data while his brother was the sample with least raw data. The number
of duplicates was around 60% in the family while it was half in the controls. The
opposite was true for bases that mapped off bait, 16% of the controls bases were
mapped off bait while it was 8% for the family.

Table 2 | Quality information from flagstat and HS metrics
The most important information from flagstat and HS metrics is compiled in this table.

Quality information Boy Brother Father Mother Controls*
Raw size (Gb) 6.0 3.2 3.8 4.4 4.2
Reads in total 59,152,084 | 32,888,602 | 37,608,408 | 43,423,036 | 42,176,334.12
Duplicates 35,810,667 | 19,931,422 | 22,405,347 | 26,968,033 | 13,088,902.66
Duplicates % 60.54% 60.60% 59.58% 62.11% 31.18%
Mapped 58,202,195 | 32,405,662 | 37,060,522 | 42,777,628 | 41,218,898.48
Mapped % 98.39% 98.53% 98.54% 98.51% 97.72%
Properly paired 57,770,664 | 32,174,438 | 36,794,298 | 42,462,818 | 40,909,455.23
Properly paired % 97.66% 97.83% 97.84% 97.79% 96.98%
Singletons 324,829 167,346 190,310 227,426 202,705.38
Singletons % 0.55% 0.51% 0.51% 0.52% 0.48%
Target bases with at least 2X 96.46% 95.43% 95.87% 96.14% 96.69%
Target bases with at least 10X 90.18% 78.18% 82.49% 85.74% 90.61%
Target bases with at least 20X 75.13% 42.51% 52.21% 60.06% 77.15%
Target bases with at least 30X 54.13% 16.04% 24.57% 32.21% 59.23%
Target bases with < 2X 1.88% 2.27% 2.08% 2.04% 1.70%
Mean coverage 33.21 18.66 21.64 24.31 37.55
Bases that mapped off bait 8.07% 7.98% 8.09% 8.06% 16.72%
Bases on bait/bases passed 91.93% 92.02% 91.91% 91.94% 83.28%
the vendor filter

* The control value is given as the mean of the 115 samples.
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Variant discovery

Variant calling, individual or in group

After running the closest family members in haplotypeCaller the number of
different AN values were counted. AN numbers are always even because it
counts alleles and alleles are in a chromosome pair. AN=2 means that the
position was covered on each chromosome in one sample. AN=4 means in two
samples and so on. This was done to see if information could be lost about
positions when variants were called individually. The working hypothesis was
that if a position was like the reference it would not be recorded in the VCF file.
Then, for a variant that would be private for the index patient it would be
impossible to say if the others were covered as they would have a reference
allele at that position, or not be covered at all. That would create a problem
because it was important for the analysis to know if the others were reference or
if there was just no data. Table 3 shows a clear difference between how many
positions were recorded in each sample, for example a decrease from 18% to 5%
of AN=2 calls.

Table 3 | HaplotypeCaller test with family samples
The closest family members were used to find out the difference of AN (number of alleles
covered in a position) if the samples were going through the haplotypeCaller individually or as a

group.

haplotypeCaller Individually (%) Group (%)

Total variants 136,012 160,495

AN=2 24,001 18 8,100

AN=4 36,185 27 7,467

AN=6 31,291 23 10,606

AN=8 44,535 33 134,322 84

HaplotypeCaller vs. unifiedGenotyper and hard filter vs. VQSR

In a comparison of the two walkers, haplotypeCaller gave more variants when
samples were called individually than unifiedGenotyper, and the opposite was
true when the samples were called in a group, for this test with 32 randomly
chosen samples. One thing to keep in mind is that haplotypeCaller found indels
in the data set while unifiedGenotyper did not call any indels. When the different
walker outputs were intersected for individual and group calling the result
showed that around one and two thirds, respectively, of the variants overlap
(shown in table 4). Of the variants that overlap, around 400,000 variants were
only found in one sample (AN=2) for the individuall calling, whilst this dropped
1,000-fold in the group calling, to 409.
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Table 4 | HaplotypeCaller vs. unifiedGenotyper

This table shows the number of variants found when using different variant calling methods.
UnifiedGenotyper and haplotypeCaller were run on 32 samples both individually and as a group.
Intersect is how many variants that overlap of the variants above in the table, and AN=2 intersect
tells how many variants that were covered in only one sample.

# variants Individual Group
UnifiedGenotyper (UG) 6,233,106 6,839,297
HaplotypeCaller (HC) 6,392,655 6,632,747
Intersect of UG and HC 2,369,163 4,642,346
AN=2 intersect 375,667 409

The four different variant calling files were filtered with both hard filtering and
VQSR. UnifiedGenotyper gave 2-4 million variants that passed the filtering, while
haplotypeCaller gave 5-6 million and the filtering methods differed by 100,000-
300,000 variants, where hard filtering gave more. Hard filtering gave more
variants with max AN for all combinations. VQSR however kept more AN=2 than
hard filtering when the variant calling was done in group mode, while hard
filtering gave more AN=2 when the calling was done individually (data shown in
appendix, table S1). When intersecting the filtered group variant calling files, it
showed that almost every variant with AN=2 from hard filtering also was kept by
VQSR. Overall, it was the other way around, both number of passed variants,
AN=32 and AN=64 from VQSR were almost completely covered by hard filtering.
SnpEff was used to get more information about the filtered variants files. It
showed that haplotypeCaller found multi-nucleotide polymorphism (MNP),
indels and deletions when unifiedGenotyper didnot find any of those. It was a
clear increase (between two to seven times as much) in the number of MNP,
indels and deletions found, when the variants were called in a group. Also more
variants over all were called.

Genotyping

Both our genotyping efforts and Linkdping University’s results showed that the
index patient was wildtype for all regions except the rs35829419 in NLRP3
where he was homozygote for an alternative allele.

For the 906,600 SNPs from the affy-array, only 84,500 SNPs were covered by the
Targeted Sequence Capture Library, theoretically. Even if the targeted Sequence
Capture Library was supposed to cover all those positions, in practise this might
not be true due to poor coverage. In contrast, other parts of the genome could be
covered which were not planned because off-target capture. It could also be the
case that the SNPs were all homozygote to the reference and therefore not
exported to the VCF during variant calling and VQSR. When changing the affy-
data to VCF format we lost some SNPs on the way, both when lifting the affy-data
from hg18 to hg19 and when removing SNPs that were not covered in the affy
data. This left us with 867,350 SNPs from the affy-array.

When comparing the variants found in the 11 controls with the SNPs from the

affy-array it was possible to do that in several ways. In this thesis three different
methods were tested. Method 1 compared the affy-array VCF directly without
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transforming the reference build or SNP call. Method 2 used the SNP data
generated by using haplotypeCaller to export variants only for the list found in
the affy array (here the affy-data was transformed so that the same reference
positions corresponded between both files). Method 3 was a standard haplotype-
Caller on the controls and the affy-data, which overlapped with ours. These
approaches gave very different results, especially in regards to how many
variants were available for the concordance test (table 5). Method 2 had 413
variants available while method 3 had 6,002. Both showed that for the alleles
available for comparison, there was a greater than 98.7% concordance.

As well as site level concordance, the above tests also provided levels of
genotype concordance, i.e: Non-reference sensitivity (NRS) tells us the
proportion of polymorphic SNPs from the affy-data that were also polymorphic
in our data. Non-reference discrepancy (NRD) tells us the proportion of sites that
were not concordant when excluding the concordant reference sites. Overall
genotype concordance (OGC), is the proportion of concordant genotypes we
have, in comparison to all genotypes. Table 6 shows that the overall genotype
concordance was high with method 3 (OGC = 0.80), although, on the individual
level, OGC ranged from 0.690-0.968 (see appendix, table S2).

Table 7 clearly shows the effect of variants being unavailable and where
concordance is lost. For example, with method 3, when variants were called
heterozygous in the affy-data, our data recorded a majority of homozygous
variant alleles (22.1%) as opposed to the expected heterozygotes (11.2%).

Table 5 | Site concordance: site-level summary statistics
A summary of the three methods for genotype concordance between our data and the affy-array.
This shows that all analyses gave different results.

Method 1 Method 2 Method 3
Variants available 764,648 / 413/ 6,022/
(our data/affy data) 2,235,583 2,235,586 2,235,586
Alleles match 99,568 408 6,009
Alleles do not match* 142,001 2 0
Our data only 523,071 3 13
Affy data only 1,994,006 2,235,176 2,229,577

* Alleles do not match: counts of calls at the same location with different alleles, such as the array-
data set calling a 'G' alternate allele, and our data set calling a 'T" alternate allele.

Table 6 | Genotype concordance: summary statistics
A summary of the three methods for genotype concordance between our data and the affy-array.

Method 1 Method 2 Method 3
Non-reference sensitivity 0,059 0,314 0,262
Non-reference discrepancy 0,714 0,000 0,002
Overall genotype concordance 0,441 0,770 0,800
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Table 7 | Genotype concordance: proportions of genotypes called in relation to the affy
data

This table summarise what call our data had when compared to the affy-array for method 2 and
3. This shows for which calls the concordance was low or high. Many genotypes could not be
compared because the data did not exist (i.e “No_call” and “Unavailable” in “Our genotype”).

Method 2 Method 3
Affy genotype | Our genotype Count Proportion Count Proportion
Het* Het 138 0.133 776 0.112
Hom ref 67 0.065 539 0.078
Hom var 143 0.138 1523 0.221
Mixed 0 0 0 0
No call 684 0.66 4036 0.584
Unavailable 5 0.005 33 0.005
Hom ref* Het 16 0.012 156 0.007
Hom ref 285 0.216 2944 0.128
Hom var 5 0.004 88 0.004
Mixed 0 0 0 0
No call 1004 0.762 19681 0.858
Unavailable 8 0.006 80 0.003
Hom var* Het 8 0.004 149 0.004
Hom ref 8 0.004 36 0.001
Hom var 402 0.183 6257 0.173
Mixed 0 0 0 0
No call 1761 0.801 29751 0.821
Unavailable 20 0.009 30 0.001

* Het: heterozygote; Hom ref: homozygote for reference allele; Het var: Heterozygote for variant
allele.

Preliminary analysis

Variant list

From the caseControl analyses, made using the idiopathic boy’s alleles, a list of
231 variants was composed. 122 variants were found in the comparison with his
closest family, 86 variants were found with his whole family and 77 variants
were found with the controls. 138 variants were found by more than one
analysis method (where seven variants were found by all three) and three were
classed both as having high and moderate effect. 19 of these variants were
predicted to have high effect and 212 were predicted to have moderate effect
(the high effect list can be found in the appendix, table S3). Of these 231 variants,
89 were called as private in at least one of the three analyses. 137 variants were
called as homozygote and 94 as heterozygote. Seven of the variants with
moderate effect were found by all three analyses.

One gene that stood out in the analysis was epidermal growth factor (EGF)-like
module containing, mucin-like, hormone Receptor-like 1 (EMRI1). Most genes
(172/191) had only one variant and a few (19/191) had between two and five.
EMR1 however, had ten variants, one had both high and moderate effects
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predicted (chr19: 6897464). All of these ten variants were known SNPs. The
index patient was homozygote for all these variants while his close family was
heterozygote for all positions. However, the grandfather on his mother’s side
who developed CLL, was also homozygote for all these variants. When looking at
the controls (all 115 controls were covered for each variant), no individual was
homozygote for all these variants. The allele frequency for the alternate allele is
shown in table 8. Five of the variants were in, or in close proximity to, a calcium
binding motif. Variant rs330877 was seldom (~3.3% of the time) homozygote
and it is located in between two amino acids that are used for making disulfide
bonds in the protein. When running this set of variants with PHASE, we found
that the index patient’s affected haplotype was not uncommon (10.4%). But
having that haplotype as a pair was only seen in the index patient and the
grandfather (1.6%).

Table 8 | EMR1 variants

For the gene EMR]1, ten variants were found. This table presents where the variants are, their
SNP reference number, the reference allele and the alternate allele. The index patient and
grandfather on the mother’s side have the same alleles and the index patient’s father, mother and
brother have the same allele and are included in the table in the column close family. The allele
frequency is for the alternative allele in the control group. All 115 controls were covered for all
variants.

Boy and Close Allele
Chr Position SNP Ref | Alt grandfather family freq. alt

(mother’s side) from controls

chr19 6896483 | 15330877 G A A/A G/A 0.252
6897464 | s330880 C G G/G C/G 0.317
6901891 | 15897738 G A A/A G/A 0.265
6903920 | 5443658 A G G/G A/G 0.265
6904137 | rs370094 C T T/T c/T 0.265
6913707 | rs466876 C T T/T c/T 0.196
6913811 | rs457857 A G G/G A/G 0.713
6919624 | (5373533 A C c/C A/C 0.735
6919753 | rs461645 A G G/G A/G 0.730
6926378 | 152228539 T C c/C T/C 0.257

24




Discussion

Data pre-processing

A great deal of effort was spent on stream-lining the amount of time and
processing power required to perform the data pre-processing. From the initial
pipeline build, which required ~17 hours for a sample of 6 GB, with the usage of
updated, debugged software, we were able to shorten this to ~5 hours. The
initial pipeline used GATK 2.3.6, Picard 1.69 and BWA 0.7.5a. As mentioned
earlier, BWA 0.7.5a was exchanged with 0.7.4 because of a bug. GATK 2.3.6 was
exchanged with 2.7.2 and Picard 1.69 was exchanged with 1.92, because 2.7.2
and 1.92 are newer and would reduce the required time. Time estimation graphs
for both versions can be found in the appendix, figure S1. The pipeline works
well in its current form and no private scripting is needed. However, this pipeline
was made to be as user friendly as possible through implementation of variables
and lists. One example where variables were used was for the reference, which
could be altered by changing one row of code instead of every row that uses the
reference. The variables were listed in the beginning of the scripts and were
therefore easy for users to change. For the scripts where it was possible, lists
were used to save time for the user. These scripts were adapted to run for each
sample in a list instead of having to be changed by hand for every sample. For
example, a list was used as an input set of fastqs for finalbam.sh to generate final
BAMs.

Even though the scripts were tested and error searches were done, the input of
new data can result in yet unseen bugs. These do not always terminate the run; it
continues until the end and there is no captured sign that something negative
has happened. It would be beneficial to put in some security points along the way
in the script so that it crashes as soon as an error occurs. This would be
especially good in finalbam.sh, which always runs all steps and gives a long error
output file that makes it hard to find the causative error. To have a security
point after each step would decrease the computational time and it would be
possible to find the error without reading the whole output file. There is also
room for improvements when it comes to simplifying the script so that any
person easily can make changes and use it.

The pre-processing script was within this thesis successfully applied to 122
samples. The quality files generated at this point in the process, as part of the
finalbam.sh, showed that each sample had at least 18x coverage, far exceeding
the 10x required to proceed to variant discovery.

Variant discovery

Variant calling, individual or in group

The results (table 3) clearly showed that performing the variant calling in a
group is preferable. The main reason for this was that data for reference
positions were still saved if another sample had a variant in that position. If the
variant calling was performed individually only, positions where that individual
was variant would be exported. There would be no way of knowing if missing
data was due to that the sample was a homozygote reference or if it was not
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covered. Then, when trying to see if a variant was important or not you would be
missing data crucial for that decision. This information is especially important
when trying to find a variant that can be disease causing, like in this thesis. It also
makes it easier to calculate the allele frequency since the number of samples that
are covered for a position is available from the beginning. The frequency will be
calculated for all samples and not only for the samples that have a variant, which
it would be if the samples were called individually. To perform the variant calling
in group also gives additional support to call variants, which give more variants
when samples are called in group than if they are called individually. 136,012
variants were called when the family was called individually, while calling
variants for the family as a group gave 160,495 variants.

Because it was the index patient’s variants that were of most interest to this
thesis, the index patient was used to call for variants in the controls. That
ensured that the data for all the index patient’s variants were saved in the
controls too. The allele frequency for a variant in the control group was good to
have when evaluating the variants in the variant list. If a variant had a high
frequency in the control group it was probably not disease causing, however a
variant can have a high frequency in a population because of many heterozygotes
and still be deleterious when homozygote. All factors have to play in for the
decision and the allele frequency is one of the important elements.

HaplotypeCaller vs. unifiedGenotyper and hard filter vs. VQSR

HaplotypeCaller proved to be the best walker to use in the current context. One
reason for this was the de-novo assembly used by haplotypeCaller in regions
where it found variation. This reduced the number of variants called because of
bad aligning. Another reason was that haplotypeCaller found more variants that
passed the filtering. UnifiedGenotyper found 6,839,297 variants, whereof
5,164,458 passed the filtering, compared to haplotypeCaller that found
6,632,747 variants, whereof 5,389,646 passed. HaplotypeCaller was also much
better at getting variants other than just SNPs, such as indels and MNP.

Determining which method between hard filtering and VQSR that was the best to
use was not easy. Both methods had good qualities. The decision about the most
convenient walker depends on the user and on the project. If the user has a good
idea of how different quality values should be regulated, then hard filtering is
good. With hard filtering it is clear how and why a variant is retained. It is a strict
method and there are no grey areas. VQSR is a machine learning method and it
makes its own decisions, which can be good if the project design allows for using
it. VQSR builds a Gaussian mixture model, unique for the datasets, that are used
to create the model and your dataset is fitted to it. This makes it easy to use
because you do not have to choose parameters, only give the program good
datasets to build the model on. However, the model can only be used on the
dataset that were used to create it, which means that all samples have to be
filtered at the same time to be sure that they are treated the same way. There
was no big time difference between these two methods so that factor was not
part of the decision making. At the end we decided that the best thing to do was
to run both methods if possible and then start with analysing the variants that
passed both. For example, when looking at the experiment with the 32 samples
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there were 6,629,925 variants found with haplotypeCaller. Hard filter and VQSR
gave 5,609,072 and 5,389,646 variants, respectively, that passed the filtering.
When looking at variants that both had in common, there were still 5,292,374
variants left to be analysed. In this thesis, only VQSR variants were analysed in
depth, even though hard filtering was also performed. Future analyses will use
the intersect of these two methodologies.

Genotyping

In order to give confidence, genotyping calls generated through our pipeline
were examined by the concordance between two data sets, the index patient and
Sanger data, and 11 controls and affy-data. These two comparisons between
both technologies were done to strengthen the credibility of our results and
show that Illumina NGS data at our depth of coverage was good enough as to
emit true genotype calls. We observed the same result for the three regions in
the index patient. For the 11 controls it was harder to evaluate the concordance.

The difficulties in generating genotype concordance for the 11 controls will be
discussed here. The affy array data was called on hg18 while our data was called
on hg19. This can be easily fixed, but some data will be lost when changing it
from hg18 to hgl19. When the affy array data was analysed, both the positive
strand and the negative strand were used when deciding reference, while for our
reference alleles, data was only from the positive strand. If a negative strand
called variant from the affy array was compared with our data it would not be in
concordance, even if they actually were, because they were each other’s reverse
(for example A in affy array and T in our data). This “strandness” can be fixed,
but some data can be lost in this step too. The affy array data came as MAP and
PED files, while the program used for check concordance only uses VCFs. When
converting MAP and PED to VCF there were some problems too. The scripts that
were easily accessible used the major allele as the reference which was not
always true (www.pypedia.com/index.php/bioinformatics_format_convert). So
here, a script needs to be created to be used to change all SNPs which were given
the wrong reference. One more problem was that our data only saved positions
where there was a variant. So all positions that were homozygote references
were not available for the genotype concordance, and 61.59% of the affy array
data were homozygote references which caused us to lose much data that could
have been used.

As shown in table 7, there were many homozygote genotypes called in our data
where the affy data called a heterozygote genotype. This can have different
explanations; it could be that our data had too low coverage at that position and
so the heterozygotes were not observed, or it could be a reflection of how the
affy array data was filtered. At this moment it is not known how the affy array
data was filtered, and clearly this was important when looking closer at the
genotype concordance. This also indicated that maybe more filtering should be
done on our data to get a credible result. For example, a depth filter and a
genotype quality filter would help with identifying the best variants, and
hopefully help with receiving a good genotype concordance.
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GATK has evolved to work with larger population data sets (1000 and more
samples) and that advance is going to simplify this process in the future (not
shown in this thesis). The newest GATK haplotypeCaller, 3.2.2, makes calls for all
positions, so the positions that are not variant will now be saved and used in the
genotype concordance. It should then be easier to get the positions that overlap
between the both data sets and it should give a better indication on the genotype
concordance.

Preliminary analysis

Variant list

HaplotypeCaller and VQSR were used to make the variant list. There were
several interesting variants in the list, which all had to be evaluated. The variants
investigated first were the ones found by all three caseControl analyses, followed
by those densely distributed within genes. It was good to have a three step study
design, where we zoom out from the index patient. It started with the closest
family, this analysis gave some variants which the next two steps would not have
caught. The gene EMR1 would not have been found if it was not for this. Because
the index patient and the grandfather on the mother’s side looked the same, no
variants for EMR1 would have made it to the variant list when looking on the
whole family. When it came to the controls, there were always some controls
that were homozygote for the same variant and would have hidden this very
interesting gene. However, when looking at the different phased haplotypes for
these ten variants, there were only 10% of the population (122 samples) that
had that haplotype and only the index patient and his grandfather were
homozygote for the haplotypic pair. This could indicate that this combination
might be deleterious.

In this thesis we have more closely examined a particularly interesting set of
variants found in the index patient. Firstly, he is homozygous for a mutation in
NLRP3 (pQ705K), a gain of function mutation that has been shown to lead to an
increased release of the pro-inflammatory cytokines IL-1b and IL-181°. Secondly,
he is homozygous for ten mutations within the gene, EMRI (Table 8). Unlike its
mouse homologue, F4/80, the human seven-transmembrane EMR1 is absent on
mononuclear myloid cells and it is instead predominantly produced by
eosinophils??. Knockout mice show that absence of EMR leads to a lack of
efficient regulatory T-cell development?l. But the role of EMRI in human is
unknown, although it could be highly specific given its limited cellular
distribution.

EMR1 was of particular interest because it had variants with both high and
moderate effect according to snpEff and a heavier variant load than other genes.
EMR1 had ten variants that made the variant list, compared with the other genes
that had one to five variants. We know that the grandfather on the mother’s side
shares the index patient’s variants, however, this gene could still be important
because the grandfather has chronic lymphocytic leukaemia (CLL) and he is
heterozygote for the mutation pQ705K in NLRP3. CLL has two subgroups and can
affect B-cells or T-cells. As we know, EMRI is located on the eosinophils, which
play a role in Th2-inducing agents, and an error in EMR1 could initiate Th2
immunity?2.
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Of the ten variants in EMRI, three (rs897738, rs466876, rs2228539) were
considered more likely to be deleterious. The first, an Asp to Asn amino acid
charge change, likely results in the loss of the second EGF domain to bind a
required calcium molecule. Given previous 3D crystallographic studies on a
closely related family member, EMR2?23, we suspect that this would weaken the
stabilisation of the extracellular domain of the receptor and affect its ability to
bind ligands. The next mutation causes a hydrophilic (Thr) to hydrophobic (Met)
amino acid change in the extracellular G-protein-coupled receptors (GPCR)
autoproteolysis-inducing (GAIN) domain. The GAIN domain is essential for
adhesion-GPCR function and disruption of this may affect efficient ligand
binding?4. The third homozygote variant is a reverse of the second; this time a
hydrophobic (Met) amino acid is altered to be hydrophilic (Thr) and may disrupt
an N-linked glycosylation site, although a Thr at this position is observed in
mouse?>,

Whilst the potential action each of the mutations may have on the function of this
eosinophil receptor is unknown, we do know that these cells are essential for
inducing Th2 immunity through both the promotion of Th2 differentiation and
the recruitment of effector Th2 cells to required sites within tissues2®. In fact,
eosinophils are a key source of the cytokines (e.g. IL-4, IL-13 and IL-6) required
for Th2 induction. These cytokines are stored in intracellular granules, allowing
for rapid release without the need for de novo synthesis?2. Eosinophils
themselves respond to cytokine stimulus, and a constitutively active NLRP3
inflammasome driven by the mutation (pQ705K) may actually provide the
trigger for this downstream inflammatory event.

A clinical examination of blood counts and inflammatory markers was conducted
on the index patient following the partial withdrawal of corticosteroid treatment,
Prednisolone (unpublished results). There it was shown that he was on, or
below, the lower limit of eosinophil and lymphocyte reference values
(0.02x10°/L and 1.5 x10°/L, respectively). In addition, his circulating IL-18
concentration was more than five times (2700 pg/mL) above the maximum
reference value during treatment. Each of these measurements are in keeping
with the working hypothesis of overactive inflammasome and attenuated
eosinophil action. It would be of interest to also measure the cytokines released
from the eosinophil granules to see if the EMR1 mutations prevent cyokine
release or eosinophil development.

While we have two particularly interesting genes, there is still more to find out
about the index patient. The index patient has a complex disease and it seems
likely that there are both autoinflammatory and autoimmune components at
work. There is still more work that could be done with EMR1 (experiments to
see if the variants actually cause problems), also more controls could be added
and the rest of the variant list could be evaluated more carefully.
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Future work
There are a number of things that can be done before the pipeline is finished and
before the index patient’s variants have been thoroughly analysed.

Pipeline

As 1 mentioned before, there are still changes that can be made to make the
scripts more user friendly. The first thing is to make all the scripts as good as
possible and make some kind of documentation on how to use them. It might be
possible to create an actual pipeline that calls all the scripts so that the user only
has to handle one script. That would be the best solution.

Preliminary analysis

To get the best result possible it would be good to use another, but similar, tool
for the effect prediction. ANNOVAR (www.openbioinformatics.org/annovar)
could be used to be able to compare between tools and work towards the best
result. ANNOVAR have more information to use when annotating. It does not
predict effect but gives a lot of different scores.

It would also have been nice to be able to perform a gene ontology analysis on
the variants observed, to check if any overrepresented category could be found.
The idea is to compare both the control group and the family of the affected
individual. The control group would function as a reference on what would be
normal. This could reveal an affected pathway, with several variants causing
disturbance.

30



Acknowledgements

First of all [ want to express my deepest gratitude to my fantastic supervisor
Jennifer Meadows that did everything (and more) to help and guide me through
my thesis.

[ also want to thank my scientific reviewer Alvaro Martinez Barrio who took time
to look at my reports, and who gave good critic and asked good questions.

[ want to thank everybody involved in making this project possible.

To Kerstin Lindblad-Toh and Cecilia Johansson for support and meetings to
discuss my progress.

To Gerli Pielberg that designed the Targeted Sequence Capture Library used.
To Peter Soderkvist at Linkoping University who supplied the control samples
and the genotyping data mentioned in the report.

To Stefan Berg at University of Gothenburg that supplied the family’s samples
and phenotyping.

To A. Iris Mathioudaki, Fabiana Farias and Johanna Dahlqvist for asking
questions on how to use the pipeline which was a help to me during the
development.

And to A. Iris Mathioudaki, again, for all the labwork and support during this
thesis.

[ would also like to thank Uppmax and Science for Life Laboratory’s Sequencing
Centre at Uppsala University for their services. And also the Uppmax support,
which is quick on answering questions and requests.

[ am particularly grateful for the assistance given by Marten Larsson on the
subject of understanding what the different variants in EMR1 could result in.

I want to give many thanks to Matilda Aslin that agreed to be my opponent. She

has been a great support during the whole project (from how to write “~”on a
Mac, to how to write the acknowledgements).

And the last thanks go to everybody that [ have been in contact with during this
thesis, especially my family and friends.

31



References

1 McDermott M.F, Aksentijevich I, Galon. ], McDermott E.M, Ogunkolade B.W,
Centola M, Mansfield E, Gadina M, Karenko L, Pettersson T, McCarthy ], Frucht
D.M, Aringer M, Torosyan Y, Teppo A.M, Wilson M, Karaarslan H.M, Wan Y, Todd
[, Wood G, Schlimgen R, Kumarajeewa T.R, Cooper S.M, Vella ].P, Amos C.I, Mulley
J, Quane K.A, Molloy M.G, Ranki A, Powell R], Hitman G.A, O’Shea ].J, Kastner D.L.
1999. Germline mutations in the extracellular domains of the 55kDa TNF
receptor (TNF-R1) define a family of dominantly inherited autoinflammatory
syndromes. Cell. 97:133-44.

2 McDermott M.F, Aksentijevich I. 2002. The autoinflammatory syndromes. Curr
Opin Allergy Clin Immunol. 2:511-6.

3 Toplak N, Frenkel ], Ozen S, Lachmann H.J, Woo P, Koné-Paut I, De Benedetti F,
Neven B, Hofer M, Doiezalova P, Kiimmerle-Deschner ], Touitou I, Hentgen V,
Simon A, Girschick H, Rose C, Wouters C, Vesely R, Arostegui ], Stojanov S,
Ozgodan H, Martini A, Ruperto N, Gattomo M, Paediatric Rheumatology
International Trails Organisation, Eurotraps and Eurofever Projects. 2012. An
international registry on autoinflammatory diseases: the Eurofever experience.
Ann Rheum Dis. 71:1177-82.

4 Fernandes S, McKay G. 2013. Prednisolone. Practical diabetes. 30:251-252.

5 Robinson D, Hamid Q, Ying S, Bentley A, Assoufi B, Durham S, Kay B. 1993.
Prednisolone treatment in asthma is associated with modulation of
bronchoalveolar lavage cell interleukin-4, interleukin-5, and interferon-y
cytokine gene expression. Am Rev Respir Dis. 148:401-406.

6 Stack ], Ryan ], McCarthy G. 2013. Colchicine: New insights to an old drug. AmJ
Ther. E-pub.

7 McKenna A, 2010. The Genome Analysis Toolkit: A MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res. 20:1297-1303.

8 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics. 25:1754-1760.

9 Li H, Handsaker B, Wysoker A, Fennell T, Ruan ], Homer N, Marth G, Abecasis G,
Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence
Alignment/Map format and SAMtools. Bioinformatics. 25:2078-2079.

10 Van der Auwera G.A, Carneiro M.O, Hartl C, Poplin R, del Angel G, Levy-
Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella K.V,
Altshuler D, Gabriel S, DePristo M.A. 2013. From FastQ Data to High-Confidence
Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Protoc
Bioinform. 43:11.10.1-11.10.33.

32



11 Sherry S, Ward M-H, Kholodov M, Baker |, Phan L, Smigielski E, Sirotkin K.
2001. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 29:308-
311.

12 Danecek P, Auton A, Abecasis G, Albers C.A, Banks W, DePristo M.A,
Handsaker R.E, Lunter G, Marth G.T, Sherry S.T, McVean G, Durbin R, 1000
Genomes Project Analysis Group. 2011. The variant call format and VCFtools.
Bioinformatics. 27:2156-2158.

13 DePristo M.A, Banks E, Poplin. R.E, Garimella K.V, Maguire ].R, Hartl C,
Philippakis A.A, del Angel G, Rivas M.A, Hanna M, McKenna A, Fennell T.J,
Kernytsky A.M, Sivachenko A.Y, Cibulshis K, Gabriel S.B, Altshuler D, Daly M.].
2011. A framework for variation discovery and genotyping using next-
generation DNA sequencing data. Nat Genet. 43:491-498.

14 Cingolani P. 2012. A program for annotating and predicting the effects of
single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila
melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 6:80-92.

15 Cingolani P. 2012. Using Drosophila melanogaster as a model for genotoxic
chemical mutational studies with a new program, SnpSift. Frontiers in Genetics. 3.

16 Kent W.], Sugnet C.W, Furey T.S, Roskin K.M, Pringle T.H, Zahler A.M, Haussler
D. 2002. The human genome browser at UCSC. Genome Res.12:996-1006.

17 Online Mendelian Inheritance in Man, OMIM®, McKusick-Nathans Institute of
Genetic Medicine, Johns Hopkins University (Baltimore, MD), 2014-03-21. World
Wide Web URL: http://omim.org/.

18 Stephens M, Smith N, Donnelly P. 2001. A new statistical method for
haplotype reconstruction from population data. American Journal of Human
Genetics. 68:978-989.

19 Verma D, Sarndahl E, Andersson H, Eriksson P, Fredrikson M, Jénsson ].I,
Lerm M, Soderkvist P. 2012. The Q705K polymorphism in NLRP3 is a gain-of-
function alteration leading to excessive interleukin-1f and IL-18 production.
PLoS One. 7:e34977.

20 Hamann ], Koning N, Pouwels W, Ulfman LH, van Eijk M, Stacey M, Lin H.H,
Gordon S, Kwakkenbos M.]. 2007. EMR1, the human homolog of F4/80, is an
eosinophil-specific receptor. Eur | Immunol. 37:2797-2802.

21 Mouse genome informatics. Jackson Laboratory. 2014-05-07. World Wide
Web URL: http://www.informatics.jax.org/marker/MGI:106912.

22 Spencer L.A, Weller P.F. 2010. Eosinophils and Th2 immunity: contemporary
insights. Immunol Cell Biol. 88:250-256.

33



23 Abbott RJ, Spendlove I, Roversi P, Fitzgibbon H, Knott. V, Teriete P, McDonnell
J.M, Handford P.A, Lea S.M. 2007. Structural and functional characterization of a
novel T cell receptor co-regulatory protein complex, CD97-CD55. ] Biol Chem.
282:22023-22032.

24 Promel S, Langenhan T, Arag D. 2013. Matching structure with function: the
GAIN domain of Adhesion-GPCR and PKD1-like proteins. Trends Pharmacol Sci.
34:470-478.

25 McKnight A.], Gordon S. 1998. The EGF-TM7 family: unusual structures at the
leukocyte surface. J Leukoc Biol. 63:271-280. Review

34



Appendix

Table S1 | Hard filter vs. VQSR
The table shows the number of variants that were found with unifiedGenotyper (UG) and
haplotypeCaller (HC) when 32 samples were processed a) individually or b) in group. It shows
how many variants that past with the different filtering methods, hard filter and VQSR. Different
AN were compared for how many variants there were from the beginning and how many were

left after filtering, to be able to see how the different filtration methods worked.

a) Individual UG Individual UG Individual HC Individual HC
hard filter VQSR hard filter VQSR
# variants 6,233,106 6,233,106 6,392,323 6,392,323
# of passed 3,708,444 3,215,165 2,761,016 2,417,792
AN=2 3,068,823 3,068,823 3,180,058 3,180,084
AN=2 passed 898,932 768,855 594,037 475,346
AN=32 10,497 10,497 9,500 9,507
AN=32 passed 10,497 7,106 9,484 7,155
AN=64 15,507 15,507 12,306 12,306
AN=64 passed 15,507 9,235 10,998 10,051
b) Group UG Group UG Group HC Group HC
hard filter VQSR hard filter VQSR

# variants 6,839,297 6,839,297 6,629,925 6,629,925
# of passed 5,286,851 5,164,458 5,609,072 5,389,646
AN=2 20,168 20,168 3,670 3,670
AN=2 passed 440 772 2,153 2,819
AN=32 420,217 420,217 454,391 454,391
AN=32 passed 362,060 358,457 384,807 375,675
AN=64 283,004 283,004 271,974 271,974
AN=64 passed 206,936 127,677 235,967 187,117
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Table S2 | Genotype concordance: summary statistics per sample of NRS, NRD, and OGC

Three tables with per sample summary from each method for genotype concordance. A) Method 1, b) Method
2 and c) Method 3. In this table it is possible to see if each sample behaves the same with the different

methods.

ALL SpA- SpA- SpA_ SpA_ SpA_ SpA_ SpA_ SpA_ SpA_ SpA_ SpA_
a) CO51_ CO051_ CO56_ C062_ CO65_ CO65_ CO65_ CO66_ C06S_ CO6S_ CO71_
tag72 tag74 tagd tag83 tag73 tag85s tagS0 tagbb tagb8 tagss tagl3
Non-Reference 0,059 0,062 0,058 0,053 0,059 0,058 0,063 0,064 0,064 0,059 0,059 0,059
Non-Reference 0,714 0,550 0,658 0,623 0,568 0,613 0,518 0,510 0,536 0,754 0,756 0,773
Discrepancy
Overall_Genotype 0,441 0,603 0,531 0,579 0,627 0,561 0,667 0,679 0,656 0,347 0,352 0,344
_Concordance
ALL SpA- SpA- SpA_ SpA_ SpA_ SpA_ SpA_ SpA_ SpA_ SpA_ SpA_
b) CO51_ CO51_ CO56_ C0o62_ CO65_ CO65_ CO65_ CO66_ CO6S_ CO65_ Co71_
tag72 tag74 tagd tag83 tag73 tag85s tags0 tagbb tagb8 tagss tagl3
Non-Reference 0,314 0,222 0,300 0,148 0,111 0,560 0,250 0,167 0,217 0,325 0,220 0,430
Non-Reference 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Discrepancy
Overall_Genotype 0,770 0,872 0,793 0,917 0,953 0,600 0,825 0,875 0,848 0,751 0,841 0,637
_Concordance
ALL SpA- SpA- SpA_ SpA_ SpA_ SpA_ SpA_ SpA_ SpA_ SpA_ SpA_
c) COS51_ CO51_ CO56_ C062_ CO65_ CO65_ CO65_ CO66_ CO06S_ CO65_ Co71_
tag72 tag74 tagd tag83 tag73 tag85 tagS0 tagbb tagb8 tags5s tagl3
Non-Reference 0,262 0,102 0,253 0,062 0,086 0,509 0,299 0,093 0,087 0,361 0,056 0,356
Sensitivi
Non-Reference 0,002 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,003 0,002 0,003
Discrepancy
Overall_Genotype 0,800 0,545 0,845 0,968 0,957 0,709 0,819 0,952 0,951 0,650 0,959 0,650
Concordance
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Table S3 | Variant list

To be able to show the variant list it is split in two with the 8 first columns being the same. The first
part is with the index patient and his close family and the other part is with the index patient and the
rest of the family. This variant list contains the 19 variants that were predicted to have high effect.

Chr | Pos From | Type SNP Ref Alt | Boy | Brother | Mother Father | Allele Gene
freq. alt

chrl 17085995 | close/ | priv/het

family G GC | G/GC G/G G/G G/G 0,079 | MST1P9
chrl | 109650648 | family | priv/het A T A/T - - - 0,04 | Clorf194
chrl | 207758220 | close priv/het TG T | TG/T | TG/TG TG/TG TG/TG | - CR1
chr2 69659126 | close/ | hom rs4453725

family A T T/T A/T A/T A/T 0,422 | NFU1
chr2 | 135675908 | close hom rs1348793 T C c/C T/T T/C T/T 0,239 | CCNT2
chr3 46414696 | control | priv/het T A | T/A T/T T/A 17/33 T/T 0 | CCR5
chr5 | 149563573 | close/ | priv/hom | rs73796347

family A G G/G - - - 0,17 | ACO05895.4
chrl0 | 99376152 | close hom rs3814556 A G | G/G A/G A/G A/G 0,252 | MORN4
chrl4 | 21458320 | close/ | Hom rs147038155

family CCCCG | C | C/C | CcCcccG/C CCCCG/C CCCCG/C 0,326 | METTL17
chrl4 | 64855040 | control | priv/het CcT c | cT/C CT/CT CT/CT CT/C 0 | MTHFD1
chrl5 | 49867232 | control | priv/het C T c/T c/C c/C c/T 0 | C150rf33
chrl7 | 41063408 | control | priv/het C T /T c/T c/c c/T 0| G6PC
chrl7 | 45567593 | close/ | hom

family ATC A A/A ATC/A ATC/A ATC/A 0,5 | AC040934.1
chrl9 6897464 | close hom rs330880 C G | g/G Cc/G Cc/G C/G 0,317 | EMR1
chrl9 | 10577801 | control | priv/het C A | c/A c/c c/c C/A 0 | PDE4A
chrl9 | 36234610 | close priv/het G A | G/A G/G G/G G/G - U2AF1L4
chrl9 | 55107829 | control | priv/het C A | C/A C/A C/A c/C 0 | LILRA1
chr20 | 35234357 | close/ | priv/het

family G T G/T G/G G/G G/G - C200rf24
chr22 | 30742434 | control | priv/het T C T/C T/C T/T T/C 0 | SF3A1

37



Chr | Pos From | Type SNP Ref Alt | Boy | Grandfather | Grandmother | Grandfather
mother’s side | father’s side | father’s side

chrl 17085995 | close/ | priv/het

family G GC | G/GC - G/G G/G
chrl | 109650648 | family | priv/het A T | AT - - A/A
chrl | 207758220 | close | priv/het TG T | TG/T
chr2 69659126 | close/ | hom rs4453725

family A T T/T A/A A/T A/A
chr2 | 135675908 | close hom rs1348793 T c | c/C c/C /T T/T
chr3 46414696 | control | priv/het T A | T/A T/T T/T T/T
chr5 | 149563573 | close/ | priv/hom | rs73796347

family A G | G/G - A/A -
chrl0 | 99376152 | close hom rs3814556 A G | G/G A/G A/A G/G
chrl4 | 21458320 | close/ | Hom rs147038155

family CCCCG| C | c/C CCCCG/C CCCCG/C CCCCG/C
chrl4 | 64855040 | control | priv/het CcT c | CT/C CT/CT CT/C CT/CT
chrl5 | 49867232 | control | priv/het C T Cc/T c/c Cc/T c/c
chrl7 | 41063408 | control | priv/het C T | /T c/c c/C c/T
chrl7 | 45567593 | close/ | hom

family ATC A | A/A ATC/ATC ATC/A ATC/A
chrl9 6897464 | close hom rs330880 C G | G/G G/G Cc/G Cc/G
chrl9 | 10577801 | control | priv/het C A | Cc/A c/C C/A c/C
chrl9 | 36234610 | close priv/het G A | G/A G/G G/A G/A
chrl9 | 55107829 | control | priv/het C A C/A c/C c/c c/c
chr20 | 35234357 | close/ | priv/het

family G T G/T G/G G/G G/G
chr22 | 30742434 | control | priv/het T c | T/C /T T/C T/T
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Figure S1 | Time estimate
The two graphs show the time estimation for running a sample with finalbam.sh, from fastq to
final BAM. a) shows the time estimate for the first try with finalbam.sh while b) shows the time
estimation after changing the versions of the programs.
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