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Differential and co-expression of long non-coding RNAs in 
abdominal aortic aneurysm

Joakim Karlsson

Populärvetenskaplig sammanfattning
Aneurysm (uppsvällning) i bukaortan är en allvarlig sjukdom förenad med hög dödsrisk. Kända riskfaktorer 
är, liksom vid många andra hjärt- och kärlsjukdomar, bland annat rökning, högt blodtryck och ålderdom. 
Tillståndet  är  oftast  svårt  att  upptäcka  i  tid.  Undantaget  riskabla  kirurgiska  ingrepp  finns  få 
behandlingsmöjligheter.  Kartläggningen av  sjukdomens  genetiska  bakgrund har  tagit  formen av  ett  eget 
forskningsfält. Den ökade kunskap som det här fältet bidrar med förväntas underlätta utvecklandet av nya 
diagnostikmetoder och terapeutiska tekniker. 

Som en del i denna strävan har det här arbetet fokuserat på uttrycksmönster hos så kallade långa ickekodande 
RNA (lncRNA). Detta är en typ av RNA-molekyler som inte kan översättas till proteiner. Det var sedan 
tidigare känt att ickekodande RNA kan spela en roll i hjärt- och kärlsjukdomar. 

Studiens upplägg baserades på sekvenserat RNA hämtat från ett antal möss som behandlats på så vis att en 
grupp  utvecklat  aneurysm  i  bukaortan,  medan  en  kontrollgrupp  inte  gjort  det.  Målet  var  därmed  att 
undersöka  förändringar  i  nivåer  av  lncRNA mellan  dessa  två  grupper,  för  att  på  så  vis  finna  lncRNA-
varianter  med  eventuell  betydelse  för  sjukdomen.  Arbetet  identifierade  därigenom  ett  antal  lncRNA-
kandidater, vars beteenden pekade på kopplingar till aneurysmutvecklingen, som rekommenderas för vidare 
forskning.

Examensarbete 30 hp 
Civilingenjörsprogrammet Molekylär bioteknik

Uppsala universitet, september 2014
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1. Introduction

Long non-coding RNAs (lncRNAs) share many similarities with messenger RNAs
(mRNAs): They can be di�erentially spliced and a 5’-cap and poly-A-tail is often
added. However, they lack the ability to be translated into protein (since they ei-
ther have no, or a too short, open reading frame), hence “non-coding”. However,
noncoding does not equal nonsense. Interference with both the transcriptional and
translational machinery in many di�erent ways has been implied [1]. Some lncR-
NAs have antisense binding properties and some are spliced into several small- and
microRNAs that in turn may have various biological functions. However, in the vast
majority of cases, their activity is simply unknown.

Studying the expression patterns of lncRNAs in a particular disease may reveal
novel functional connections and expand the mechanistic knowledge of the illness.
In this project a particular kind of aneurysm development was studied. Abdominal
aortic aneurysm (AAA) is a dilation of a region in the aorta, which may lead to
rupture. The disease is asymptomatic throughout most of its progression, yet does
very often have a fatal outcome. The most important factors influencing AAA
appear to be smoking and hypertension [2], genetics is also known to play a role
[2, 3]. Previous studies have profiled protein coding genes that are thought influence
the condition, and also implied the involvement of microRNAs [3]. lncRNAs, known
to be associated with several other diseases (among them cardiovascular ones [4]),
and a fascinating biological phenomenon in itself, also o�er to be a field worth
exploring in the context of AAA.

At our disposal was a set of RNA-sequenced tissue samples from AAA mouse
models. The task was to explore this dataset with respect to the expression of both
previously known and novel lncRNAs. Any promising candidates may be subject to
further functional evaluation in future RNA interference experiments.
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2. Background

2.1 Long non-coding RNAs

Long non-coding RNAs (lncRNAs) are defined as RNA molecules longer than 200
bases that do not have the ability to code for any protein. A subclass of these are
called ”lincRNAs”, where the “i” stands for “intergenic”. LincRNAs reside in the
regions between protein-coding genes, whereas lncRNAs in general may overlap such
genes. Some protein-coding genes, for instance, have long transcript isoforms that
are non-coding [1].

Intriguingly, lncRNAs have been found to be at least as abundant as the protein-
coding genes expressed by the human genome (as well as the mouse genome) [1].
However, in general their expression levels are lower the those of protein-coding
genes. Patterns of expression are also highly variable between tissues [5].

LncRNAs are spliced and processed much like regular protein-coding transcripts.
Addition of poly-A tails is not uncommon. In several cases, lncRNAs are spliced
into small RNAs, which in turn may have their own biological functions. It also
appears that lncRNA genes generally are less conserved than protein coding ones
[5].

Evidence has shown that lncRNAs can act by epigenetically altering gene ex-
pression. For instance, the lncRNAs Hotair, Kcnq1ot1 and RepA all interact with
chromatin to cause gene silencing [1, 4]. According to one estimate, about a third of
all lincRNAs interact with chromatin-modifying complexes in order to modify the
functionality of various cellular processes [1]. It is also not uncommon that lncRNAs
are transcribed antisense to protein-coding genes [5], so one may assume that the
sequence complementarity could o�er a way to interact with these other genes as
well.

2.2 Abdominal aortic aneurysm

Abdominal aortic aneurysm (AAA) is a severe disease in which a focal region of the
aorta is dilated. The condition is highly fatal upon aneurysm rupture. Generally,
no symptoms are shown leading up to the critical point of the illness. Known risk
factors are smoking, hypertension, high age, male gender and caucasian ethnicity [2].
The complex genetic aspects of the disease is an active research area. Since surgery
is the only currently employed treatment [3], it would be desirable to discover new
and less risk-filled venues of therapy.

The processes behind the formation of aneurysms can briefly be described as a
complex interplay of vascular inflammation, dysregulation of the behaviour and pro-
liferation of vascular smooth muscle cells, fragmentation of elastin and degradation
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Chapter 2: Background

of other components of the arterial wall such as the extracellular matrix [3].
With respect to lncRNAs, a long non-coding RNA known as ANRIL (“antisense

non coding RNA in the INK4 locus”) has been indicated in human atherosclerosis
(as well as other serious conditions such as diabetes and cancer) [4]. Similarly
to lncRNAs such as Hotair, it binds to polycomb proteins and causes epigenetic
modifications. This in turn leads to altered expression of other genes (CDKN2B
in this case). No homolog to ANRIL is currently known to exist in mice, however.
Nevertheless, it demonstrates the potential of lncRNAs to have key roles in the
pathogenesis of diseases related to AAA.

In addition, another class of non-coding RNA, microRNA (which have also been
shown to have gene regulatory function in many cases), have been indicated in AAA
formation. Two prominent examples are miR-21 and miR-29b [3]. This further
supports the idea that the role of the untranslated transcriptome should not be
underestimated.

2.3 ApoE knockout mice

The data used for this work was provided by a group at Stanford University. It had
already been RNA sequenced by a company named Centrillion, using an Illumina
Hiseq 2000, the EpiBio ScriptSeq v2 library preparation kit and the RiboZero rRNA
depletion kit. The sequenced tissue samples were derived from a set of mice modified
to lack the gene for apolipoprotein E (ApoE). These are common as model animals
in the study of atherosclerosis. Treatment with the blood pressure-regulating protein
angiotensin II (AngII) leads to development of abdominal aortic aneurysms[6] (the
cases), whereas saline treatment does not (the control group). 12 samples were used,
all of them 12 weeks old: four mice harvested three and seven weeks after treatment
with AngII infusion (the cases), respectively, and four models treated with saline
and harvested after seven weeks (the controls). The sample groups will henceforth
be referred to as ”A3” and ”A7” for the case mice (respectively) and ”S7” for the
control mice.

2.4 Sequencing and transcript assembly

2.4.1 RNA sequencing

RNA sequencing is a method used as a for quantifying gene expression through
estimation of transcript abundance (unless stated otherwise, the term “expression”
will refer to “transcript abundance” in this work, rather than to protein expression
levels). Transcribed material contained in samples is first fragmented, converted
to complementary DNA (cDNA) by reverse transcription, amplified using the poly-
merase chain reaction (PCR) and tagged with appropriate adapter sequences. The
common term for this procedure is “library preparation”. Subsequently to this
preparation, the fragment library is analysed with any of a number of sequencing
machines available. In this case, an Illumina Hiseq 2000 had been used. These
instruments read a certain number of nucleotides from the ends of each fragment.
The output consists of millions of small nucleotide sequences known as “reads” [7].
In this case, the read length was 100 bases.
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Chapter 2: Background

Reads can be paired on unpaired, depending on the chosen technology. Paired
reads, or ”paired end reads”, result from copies of the same cDNA fragment being
sequenced from each end independently. The use of paired reads is helpful when
dealing with repetitive transcripts. Since the distance between these reads can be
computationally inferred, this information can be used when assigning the reads to
positions on a reference genome.

Library preparation can also be done such that directionality of the fragments is
preserved for downstream analysis. This is known as stranded library preparation.
Preserving strand information makes it possible to tell whether a transcript origi-
nated from the sense of antisense strand of DNA. This information is particularly
useful when dealing with noncoding fragments, since these may have regions that
are partially complimentary to protein coding transcripts. This may, for instance,
be one way in which they could regulate said transcript.

2.4.2 Read mapping

In order to find out which regions of the genome were expressed, it is necessary to
map the RNA sequencing reads to an appropriate reference genome. Such refer-
ence genomes are available from public databases maintained by, for instance, the
National Center for Biotechnology Information (NCBI) [8], University of California
Santa-Cruz (UCSC) [9], and the European Bioinformatics Institute (EMBL-EBI)
[10].

Several algorithms have been developed to perform mapping of RNA-seq reads.
One of the most cited to date is TopHat, developed by Trapnell et al. [11]. The
latest version of this software, TopHat2 [12], was used in this project. In short,
this aligner works by performing a preliminary local alignment of reads (using the
Bowtie2 short read aligner), whereafter consensus regions are assembled and possible
splice junctions are generated. After this, reads are mapped anew, taking the splice
junctions into account. It is also possible to provide a reference database of known
transcripts in order to first map reads to the transcriptome (the set of all known
transcripts), thereby improving accuracy of alignment.

2.4.3 Transcript assembly

After reads have been mapped to a genome, they will need to be assembled into
fragments in order to discover the original structure of the expressed RNA tran-
scripts. In order to do this, the Cu�inks program, by Trapnell et al. [13], was used.
Briefly, the algorithm works by first grouping short reads into consecutive coherent
units according to the positions to which they were mapped in the genome. This
results in the reconstruction of a preliminary set of transcript fragments. Then,
overlaps between these preliminary fragments are found in order to determine what
the structure of the original transcripts may have been. Often, this results in a
number of conflicting or spurious reconstructed transcripts.

Therefore, a second step is undertaken to find out which of these were most
likely to be the correct transcripts. Mutually incompatible fragments are isolated
and with the help of a graph theoretic approach, the minimal set of transcripts that
can explain the particular fragment groups obtained is sought. This yields a final set
of candidate transcript variants (isoforms), whose abundance levels are subsequently
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Chapter 2: Background

estimated with the use of a likelihood-based statistical model.
A reference transcriptome (set of transcripts) can be used to aid in the esti-

mation of expression levels and to improve accuracy of transcript reconstruction.
In particular, a useful method when searching for novel isoforms is an algorithm
known as Reference Annotation Based Transcriptome assembly (RABT) [14]. This
approach mixes the true sequencing reads with so called “faux reads” generated
from the transcriptome reference. The faux reads are supposed to compensate for
coverage gaps and provide structural information for use in the reconstruction of
transcript variants.

In general, expression levels may be expressed simply in terms of the number
of reads mapped to each fragment. But another common way is to normalise the
read count with the length of the fragment, resulting in a measure known as “frag-
ments per kilobase per million mapped” (FPKM). The argument for doing so is
that RNA-seq is prone to a fragment length bias: since longer fragments generate
more reads than shorter fragments, more reads will map to them and they are more
easily quantified. It has been found that longer transcripts are more often called
di�erentially expressed than short ones, for this reason. Dividing by the length of
the fragment is supposed to help dealing with this problem [13].

2.5 Prediction of novel long noncoding RNAs

Finding novel lncRNAs involves computationally inferring the coding potential of
putative transcripts. This can be done in many ways, but the focus here was on
the following filtering pipeline: First, transcripts from the novel assembly that were
not found in the Ensembl gene annotation reference database [10] were extracted.
Then, all transcripts shorter than 200 nucleotides were removed. After that, only
candidates without very long open reading frames (ORFs) were kept. The next
filtering step was based on an evolutionary inference of protein coding potential
from phylogenetic codon substitution frequencies. The transcripts remaining after
that were compared against the Pfam protein family database, in order to make
sure that none of them resemble known protein domains (functional regions). This
strategy was adopted from Sun et al. [15], and follows their ”lncRscan” pipeline.

2.6 Functional characterisation

2.6.1 Di�erential expression testing

Detecting di�erential expression (significant di�erences in the number of RNA tran-
scripts generated from genes in the comparison of two or more sample groups) re-
quires sophisticated statistical methods. Several problems need to be dealt with:
accounting for various types of bias (such as the fragment length bias discussed ear-
lier), modelling and accounting for the biological divergence of the samples (natural
di�erences, not due to the treatment being studied, among samples of the same con-
dition), finding the significance level of any observed di�erences, etc. Multiple tools
exist for this purpose. The most popular ones at the time of writing, specifically
made for RNA sequencing, include DESeq [16], EdgeR [17] and Cu�di� [18].

The Cu�di� tool was chosen for this project, since it was specifically designed
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Chapter 2: Background

to provide accurate estimates of di�erential expression on an isoform (transcript
variant, as opposed to entire gene) level. This is important, since lncRNA transcripts
are commonly found to be non-coding isoforms of protein-coding genes. Another
benefit of using Cu�di� over competing tools was the tight integration with the
other tools of the so called Tuxedo pipeline, TopHat and Cu�inks [19].

2.6.2 Co-expression network inference

In a transcript level co-expression network, the nodes are transcripts and the edges
distances between them. The distance measure used is based on the similarity of
the expression profile of each transcript to that of every other transcript (the profile
is the set of expression levels of a given transcript across all samples). The problem
can thus be seen as that of determining the distance between a number of vectors,
and finding out if any transcript form certain groups (“clusters” or “modules”) of
similar expression. There are many ways of measuring the similarity between a pair
of vectors, and it may not be immediately obvious which is best with regards to
gene expression. Common (though simple) ways of calculating this distance are the
Euclidean norm and the absolute Pearson correlation.

There are also many methods of using these distance measures to find clusters
among these vectors (transcripts). The most common are probably k-means [20] and
hierarchical clustering[21], and modifications thereof. Others include Weighted Gene
Co-expression Network Analysis (WGCNA) [22], Non-negative matrix factorisation
(NMF) [23, 24] and Markov clustering [25]. All clustering methods are expected to
reveal di�erent structures in a given dataset. Some of these structures may be shared
between the methods, but just because a given structure does not appear with the
use of all methods does not mean it is not real. It could be a true and biological
relevant feature of the data, which is only exposed by that particular model. But
there is not guarantee that it is not just an artifact of the clustering either.

Therefore, it is often beneficial to compare the results of di�erent clustering
methods on the data. Of course though, some clustering measures are simply more
suited to some types of data than others, and a lack of consensus between two given
methods could just as well be because both methods perform badly, as it could
be due to one of the methods performing well and the other not. It can be hard
to tell sometimes, so clustering results will need to be additionally validated using
biological information gathered from literature.

2.6.3 Reference Databases

A number of reference databases was used in this study:

NONCODE

NONCODE is a comprehensive database of noncoding RNAs, including lncRNAs,
collected by literature mining and from other specialised databases. The database
is developed and maintained by the Chinese Academy of Sciences. The number
or entries in the database at the time of writing (version 4) was over 210 000 (all
species included) [26]. The database was available to download on request, for
free. NONODE was used to identify previously annotated lncRNAs in the newly
assembled transcriptome.
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Gene Ontology

The Gene Ontology (GO) [27] defines and hierarchically organises standardised bi-
ological concepts. This enables a systematic categorisation of gene and protein
functionality. Three separate main ontologies are defined by the Gene Ontology
consortium (the body which created and maintains the GO): ”Biological process”,
”Molecular function” and ”Cellular component”. Molecular function refers to the
various ways a gene product can act biochemically. Examples include ”enzyme” and
”receptor ligand”. Such molecular functions may contribute to what is defined as
biological processes, general paths towards a biological goal. Biological processes
may be ”translation” or ”signal transduction”. Cellular component refers to the
location of a gene product in the cell.

One of the goals of creating this structured and well-defined set of terms was to
make it easier for researchers to both unambiguously assign functional annotation
to any given gene, and make queries on these terms to quickly find the gene par-
ticipating in any process of interest [27]. Another useful aspect, which was utilised
in this project, was the possibility of functionally annotating a given set of genes.
That way, it could for instance be discovered if co-expressed clusters of transcripts
are enriched for any particular biological functions.

MetaCore c�

MetaCore c� [28] is a commercial tool by Thomson-Reuters that is based on a curated
collection of interactions between “network objects” such as genes, proteins and nu-
cleic acids. The use of this tool was expected to be a valuable complement to Gene
Ontology enrichment, when assessing the biological significance of co-expression net-
work modules.

13



3. Methods

3.1 Read quality control

The quality control software FastQC [29] was used to inspect sequencing reads with
regards to overall sequencing quality aspects. The version utilised was 0.10.1, with
default options. The purpose of using this tool was to find out if any overrepresented
reads or large quality di�erences among samples was present.

RSeQC [30] (version 2.3.9) was further employed to profile the reads with respect
to mapping aspects. In particular, an estimation of ”mate inner distance” was
made with this program, based on preliminary alignments. The mate inner distance
is defined as the distance (in nucleotides) between the two reads in a pair, with
respect to where they have mapped on the genome. The value of this distance,
and its standard deviation, can be specified as optional parameters during mapping
with TopHat. This software also has the ability to infer experiment type, that is,
stranded or unstranded sequencing.

3.2 Read mapping

Read mapping was performed with TopHat 2.0.11. The option “--no-mixed” was
used to constrain the set of accepted reads to those where both reads in a pair could
be mapped. This rather strict option was used in order to minimise the amount of
assembled fragment artifacts in downstream analysis steps, of particular importance
when aiming to discover novel transcripts. Another potentially helpful restriction on
read mapping could be to also use the “--no-discordant” option, which disqualifies
reads in which the members of a read pair map to di�erent chromosomes. This was
not used, however, since it caused the current version of TopHat to crash.

In addition, a reference annotation file in GTF format was provided (option
“-G”), as it can increase the accuracy of alignment to take into account both the
genome and the known transcriptome when mapping [11, 12]. Library type ”fr-
secondstrand” was specified, as the library preparation was stranded and originated
from the second strand of cDNA synthesised form the RNA fragments. The values
of ”mate inner distance” and ”mate-std-deviation” were provided for each sample
as they had been estimated by RSeQC on preliminary mapping runs (plots can be
found in the supplementary material). The version of the short read aligner Bowtie
used by TopHat was 2.2.2.

The reference transcript annotation that was provided to TopHat was the En-
sembl [10] mm9 reference annotation (the reason to go with mm9 for the main anal-
ysis, rather than mm10, was that the current noncoding RNA reference database
NONCODE was only available based on mm9) provided by the Illumina iGenomes
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project,which had been specifically made to be suitable with the TopHat and Cuf-
flinks software (“NCBIM37”, accessed April 11, 2014).

3.3 Transcript assembly

Transcript assembly was performed with Cu�inks 2.2.0 [13]. The “-g” option was
used in order to make use of Reference Annotation Based Transcriptome (RABT)
assembly, which is beneficial when searching for novel transcripts [14, 19]. The
“fr-secondstrand” library type was also specified.

A run of Cu�inks in ab initio mode (default parameters, except for “--library-
type=fr-secondstrand”), was also made in order to estimate the FPKM distributions
of partially assembled fragments and artifacts in comparison to the distributions of
assembled fragments that completely matched the reference (more on this under the
section on prediction of novel lncRNA).

Both RABT and ab initio assembly was performed on the merged set of all
alignments, excluding two samples that was deemed outliers (these samples had
considerably worse mapping performance, di�erent overall FPKM distributions and
formed their own groups during principal component analysis (PCA) and multidi-
mensional scaling (MDS) analysis; the PCA and MDS analyses were performed with
the CummeRbund version 2.6.1 R package [19] on preliminary di�erential expression
results (not shown)).

All transcriptome assemblies were annotated with the Cu�compare [13] software
included in the Cu�inks package (utilising the options ”-G”, ”-C” and ”-r”). The
reference used was the same Illumina iGenomes provided Ensembl [10] mm9 anno-
tation as during the alignments. During the comparisons, Cu�compare assigns so
called “class codes” to the assembled fragments. These indicate the nature of any
overlap to reference transcripts that may be found. The meaning of the class codes
is summarised in table 3.1.

Table 3.1: Cu�compare class codes mentioned in this work. The definitions have been cited from
the Cu�compare manual.

Class Meaning

= “Complete match of intron chain”
c “Contained”
j “Potentially novel isoform (fragment): at least one splice junction is

shared with a reference transcript”
i “A transfrag falling entirely within a reference intron”
o “Generic exonic overlap with a reference transcript”
x “Exonic overlap with reference on the opposite strand”
u “Unknown, intergenic transcript”

3.4 Identification of known long noncoding RNAs

Identification of known lncRNAs was accomplished through the use of the Cu�com-
pare software (version 2.2.1) included in the Cu�inks package [19]. Provided to the
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algorithm was a reference annotation file in GTF format downloaded from the NON-
CODE database (version 4) [26], together with the RABT assembly of transcripts
(besides this, default options were used). Comparisons were made twice, once with
the NONCODE annotation as reference (“-r” flag) and the merged assembly as pri-
mary input; once with the merged assembly as reference (-r) and the NONCODE
annotation as primary input. Then the intersection between the output mapping
files were taken. This eliminated cases where the matching was incomplete.

After this, annotated lncRNAs were extracted from the Ensembl reference an-
notation (the categories “3prime overlapping ncrna”, “ambiguous orf”, “antisense”,
“lincRNA”, “ncrna host”, “non coding”, “processed transcript”, “retained intron”,
“sense intronic”, “sense overlapping”, which according to Ensembl’s terminology de-
note lncRNAs) and the union of the Cu�compare NONCODE intersection set and
the Ensembl lncRNA set was taken. The result was the set of all lncRNAs present
in the novel transcriptome assembly, which had been previously annotated by either
NONCODE or Ensembl.

3.5 Prediction of novel long noncoding RNAs

The general outline of the search for novel long non-coding RNAs was adapted from
Sun et al. [15], whose scripts included in the “lncRscan” pipeline were employed in
the execution of some of the filtering steps described below.

Filtering of partially assembled transcripts

In order to reduce the risk of making false predictions, fragments that were entirely
contained by known annotated transcripts were filtered away together with other
fragments suspected to be mere artifacts. The method for doing so was based on
the hypothesis that the overall FPKM values estimated for such fragments would be
lower than that of true transcripts. This method has been used previously by, for
instance, Sun et al. [15]. A custom pipeline was developed for this purpose, using
Perl and R.

Inference of transcript coding potential

There are many strategies for judging how likely a transcript is to be protein cod-
ing. The software PhyloCSF (Phylogenetic Codon Substitution Frequency) performs
multiple alignments between several species and uses the substitution frequency of
bases in a given transcript, throughout the phylogeny, to determine whether it is
likely to code for a protein [31]. Another, Coding Potential Calculator (CPC) is
based on a support vector machine (SVM) classifier that takes into account features
such as alignment scores to protein databases and certain aspects of any open reading
frames (ORFs) that are found within the transcripts. iSeeRNA [32], included in the
Sebnif [33] lincRNA detection pipeline, is also a support vector machine based tool,
which has been shown to compare favourably to CPC. PhyloCSF and iSeeRNA has
been shown to perform better than several of the prominent tools, including CPC
[31, 32]. For this project, PhyloCSF was used.

After coding potential has been inferred using any of the methods mentioned
above, one might further validate the transcripts by searching for similarity to known
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protein coding domains in Pfam, for instance. This was the strategy employed here.

3.6 Functional characterisation

If any novel lncRNAs are indicated by the data, it is of course also of interest to find
out what, if anything, these transcripts may be doing. One approach to this is to see
if they are di�erentially expressed in the studied dataset. Another, complementary,
approach is to look for similarities in expression to known transcripts. This can
be done by co-expression network inference. Transcript clusters obtained through
the use of such network methods can additionally be mapped to Gene Ontology
categories. The di�erential expression and network analyses are described in detail
below. GO analysis was performed with the BiNGO plugin of Cytoscape 3.1.1 [34].

These approaches do not, however, give a final conclusion about what the tran-
scripts are actually doing. Rather, the strategy should be seen as a way of generating
hypotheses that can later be tested using, for instance, molecular biology techniques.

3.6.1 Di�erential expression testing

Transcript level di�erential expression testing was performed with Cu�di� 2.2.1
[18]. The Cu�inks RABT assembly that had been performed on the merged BAM
files of aligned reads from all samples (excluding outliers) was used as reference.
Multi-hit correction was performed with the “-u” option, and the library-type “fr-
secondstrand” was specified. Isoforms were considered significantly di�erentially
expressed if they had a p-value less than 0.05 and a q-value less than 0.05. The
“getSig” function of the cummeRbund R package (version 2.6.1) [19] was used to
select those fragments, using 0.05 as the value of the parameter “alpha”.

3.6.2 Co-expression network inference

Co-expression network inference was carried out with the WGCNA R package by
Langfelder and Horvath [22]. This network construction method uses absolute Pear-
son correlations between gene profiles (defined as the expression levels of a gene
across all samples). These correlations are then raised to a power � in order to em-
phasise high correlations more than low correlations. � is considered a soft thresh-
olding power, an alternative to a hard cuto� threshold for forming network mod-
ules. This has been shown to aid in accomplishing a scale free topology [22], that
is, a topology with a few highly connected nodes, rather than many approximately
equally connected ones (a so called random topology). Scale free topologies are
thought to better reflect biologically relevant information than random topologies
[22]. The transformed correlation coe�cients are then the basis for a hierarchi-
cal clustering of the genes, whereafter the resulting dendrogram is cut using an
algorithm called “dynamic tree cut” [35], yielding clusters of genes (modules). Pre-
vious studies have applied this method mostly on microarray gene expression data
[36, 37, 38], but also on RNA-seq data [37, 39, 40].

In order to run such an analysis within the resource constraints of the project, it
was necessary to reduce the dataset to a reasonable level, as opposed to construct-
ing a network based on all transcripts (over 700 000). The method employed to
accomplish such a dimensionality reduction was a filtering based on the coe�cient
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of variation of each gene in the dataset, after log-transformation of all FPKM val-
ues. It was reasoned that more variable transcripts would contribute more valuable
information for co-expression network inference. A similar strategy has been used
previously by Kugler et al. [40]. Genes and transcripts that do not vary at all would
per definition be considered co-expressed with each other, but would not contribute
any new knowledge about AAA disease in addition to what is already revealed by
the di�erential expression analysis. Therefore, the dataset was reduced to around
16600 genes (using a coe�cient of variation threshold of 0.60).

In order to determine the value of the soft thresholding power �, iterative calcu-
lations were made, assessing how scale-free the network topology was for each value
of the parameter. Values from 2 to 34, with interval 2, were tested. A value of
16 was found to give a su�ciently scale-free structure, and was accordingly applied
for the network construction. The scale-free property of the network for the tested
values can be seen in figure 4.5 in section 4.4.

For the dynamic tree-cut algorithm, a minimum module size of 30 was used,
together with a “mergeCutHeight” of 0.25 and otherwise default parameters.

Furthermore, the correlation between the first principal component (the ”eigen-
gene”) of the matrix of transcript profiles of each module and a binary vector of
sample treatment information (using the values 1 for the A7 group and 0 for the S7
group) was calculated. This ranking was only performed on the basis of the mice
harvested after seven weeks (the A3 group was excluded). This should indicate any
relationships between the modules and the treatment.

3.6.3 Clustering comparison

It is not trivial to estimate the performance of an unsupervised learning algorithm
on a dataset where no class labels are known beforehand. Rather, a common ap-
proach is to visually inspect the clusters and judge whether they seem to make sense
biologically. Another is to compare clustering results of di�erent algorithms to see if
general conclusions can be drawn from any consensus that might be found between
them.

One way of objectively doing the later is to calculate an overlap matrix. This
matrix would contain cells representing the number of genes that any pair of clusters
(one from each method) have in common. The matrix could then be seen as a
contingency table, and common statistical approaches may be used to determine
whether the two variables (the clustering methods) have any significant association.
One association measure that could be used is Cramér’s V. This approach yields a
score between 0 and 1, where 0 represents no association whatsoever and 1 signifies
perfect association (the two methods have given the exact same results --unlikely in
practice). A good association between two clusters would give increased support to
the common co-expression patterns identified therein.

There does not, however, seem to exist any universal consensus on what can
be regarded as a ”strong enough” association when dealing with the Cramér’s V
statistic. Some publications use values around 0.10 as a cuto�, others around 0.25.
In order to get a sense of how the method would perform on two methods that yield
largely the same results, a test was made where the k-means clustering method,
was compared to itself in two runs with k = 51 clusters and n = 1 random starting
points each. Usually, one uses hundreds of random starting points to compensate
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for entrapment in local optima. Only one starting point was used here in order
to provide some variability in the clustering results. The algorithm was applied to
the coe�cient of variation-filtered transcript dataset. The Cramér’s V calculated
based on this comparison was 0.76, indicating (as expected) a very high association
between the two runs, illustrated in figure 3.1. In the figure, one can see that each
module of the first clustering run only matches one other module well in the second
clustering.
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Figure 3.1: The overlap of two runs of k-means clustering on the coe�cient of variation filtered
dataset. In both cases, k set was equal to 1 and n = 1 starting points of the algorithm was
used. The image is a visualisation of the contingency matrix, wherein high values of a given cell is
displayed brightly and low or zero overlap between two given clusters is displayed darkly shaded.
(Additionally, in this image the number of transcripts in the intersection of each pair of modules
have been normalised by the total size of the modules for grater clarity.)

Besides this, a more biology-based cluster validation procedure was undertaken,
whereby network modules were uploaded to the commercial knowledge mining tool
MetaCore c� [28] (version 6.19) in order to inspect the biological aspects of the seem-
ingly co-expressed transcripts. Gene ontology enrichment was also performed for
this reason.
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4. Results

4.1 Read quality control

The FastQC [29] results of the twelve sequenced mouse samples (one from the A3
group and one from the S7 group) revealed that two of them deviated much in quality
from the rest, and principal component analysis (figure not included) confirmed large
inconsistencies in gene expression patterns compared to other samples in the same
condition groups. These two samples were thus excluded from further analysis.

Warning flags were also raised by the program regarding overrepresented se-
quences. These were almost exclusively found to be mitochondrial in origin. This
was initially not thought to be a problem, however (though, see the discussion in
section 5). Patterns of bias at the ends of reads, common to RNA-seq, were also
discovered. This bias was thought to be due to lack of su�cient randomness in the
”random” hexamer primers used during library preparation [41].

Furthermore, adapter contamination was found to be present. The cause for
this was likely the short average fragment size (around 170 nucleotides), which was
revealed with the RSeQC [30] quality control software (see figure 4.1).

Too short fragment size means that the sequencing machine will read not just
the ends of the fragment, but across the entire fragment and into the adapter ligated
to the opposite side.

These issues might lead to fewer reads being mapped by TopHat, although it was
initially not expected that they would have any serious e�ect on transcript assembly
and downstream analysis (but see also section 5 for more on this topic).

4.2 Prediction of novel long noncoding RNAs

Filtering of partially assembled fragments

Figure 4.2a shows the (log transformed) FPKM distributions of ab initio assembled
fragments that partially (“c”) and completely (“=”) match the reference annotation,
respectively. The best threshold for predicting these transcript classes from FPKM
values was found to be 1.03, with discriminatory performance according to the ROC
curve displayed in figure 4.2b. Both the sensitivity and specificity was found to be
quite low, perhaps owing to noisy data. The chosen filtering threshold 1.03 would
therefore discard a lot of potentially true lncRNAs, while simultaneously retaining
false positives. However, it was considered more important to filter out as many
false positives as possible, and thus applying this particular threshold, than to do
no filtering at all (and thus retaining more potentially true lncRNA candidates).
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Figure 4.1: Inner distance of paired end reads in one of the samples. The plot was produced on
one of the three AngII treated replicates that had been harvested after seven weeks using RSeQC
2.3.6, but is representative for all samples. A negative insert size indicates that reads mapped to
the genome overlap with each other.
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Figure 4.2: a) Log 10 transformed FPKM-distributions of fragments that partially (“c”) and
completely (“=”) match the reference annotation. b) ROC curve showing the discriminatory per-
formance of each threshold when classifying transcripts as either partially of completely assembled.
The optimal threshold should correspond to the point closest to the upper left corner of the coor-
dinate system (1,0).
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Identification of long noncoding RNAs

29 candidate lncRNAs were obtained subsequent to filtering with PhyloCSF and
matching against Pfam. Intersecting these candidates with NONCODE v4 revealed
an overlap of three transcripts. Furthermore, the genomic coordinates of these 29
candidates were translated (using the LiftOver tool from UCSC [42]) and matched
(using Cu�compare) against the most recent reference genomes (mm10) from En-
sembl, RefSeq and UCSC. Only the three lncRNAs that also matched NONCODE
were present on any these updated annotations. The remainder were thus 26 po-
tentially novel lncRNAs (table 4.1). Of these, three did not overlap any known
reference transcript (class code “u”) and could thus be long intergenic non-coding
RNA (lincRNA).

Table 4.1: Overview of the 26 novel lncRNA candidates. Nearest reference genes, transcripts
and class codes were assigned by Cu�compare, using the Ensembl mm9 annotation as reference.
Isoform IDs are the internal ones assigned to the transcripts by Cu�inks.

Isoform id Closest gene Nearest transcript Class Length Locus

TCONS 00026197 Obfc2a ENSMUST00000027279 j 4944 1:51522798-51535243
TCONS 00037991 Rasal2 ENSMUST00000078308 i 1775 1:159065313-159350366
TCONS 00038774 Mpzl1 ENSMUST00000111435 j 1460 1:167522311-167564672
TCONS 00053753 Pawr ENSMUST00000095313 i 788 10:107769244-107863779
TCONS 00075759 Ebf1 ENSMUST00000081265 i 996 11:44428427-44821593
TCONS 00076304 Mgat1 ENSMUST00000101293 j 3676 11:49057692-49076532
TCONS 00084766 - - u 10332 11:104790337-104801947
TCONS 00095737 Tnk1 ENSMUST00000108631 j 2348 11:69659877-69672232
TCONS 00117924 Ubxn2a ENSMUST00000020962 j 6341 12:4881930-4914511
TCONS 00121122 Tspan13 ENSMUST00000020896 j 1100 12:36741143-36769087
TCONS 00124446 Sos2 ENSMUST00000035773 i 233 12:70684747-70782839
TCONS 00134561 Gcnt2 ENSMUST00000067778 i 591 13:40955500-41108388
TCONS 00190470 Gpihbp1 ENSMUST00000023243 j 577 15:75426921-75432461
TCONS 00210492 Lpp ENSMUST00000038053 i 1118 16:24391697-24992662
TCONS 00275488 Gnaq ENSMUST00000025541 i 5807 19:16207320-16478609
TCONS 00298653 Cstf3 ENSMUST00000028599 j 14027 2:104430679-104552326
TCONS 00307567 - - u 615 2:171483568-171489341
TCONS 00355809 Ccnl1 ENSMUST00000154585 j 1102 3:65750072-65762171
TCONS 00385472 - - u 335 4:155610115-155610534
TCONS 00445558 Ubn2 ENSMUST00000160583 j 15372 6:38383924-38474825
TCONS 00451604 Slc6a6 ENSMUST00000032185 i 1553 6:91634060-91709057
TCONS 00455818 Clec2d ENSMUST00000032260 j 817 6:129112594-129136552
TCONS 00479043 Lsm14a ENSMUST00000085585 i 237 7:35129664-35179798
TCONS 00492246 Lsp1 ENSMUST00000105968 i 2021 7:149646713-149701914
TCONS 00559428 Pts ENSMUST00000034570 o 1688 9:50329722-50336746
TCONS 00583336 4930468A15Rik ENSMUST00000114054 i 1108 X:73827948-73848263

By comparison to the NONCODE v4 database and Ensembl mm9, 30490 pre-
viously annotated long non-coding RNA were additionally detected from the set
of RABT assembled fragments. A relative lack of small non-coding RNAs (and
miRNAs) was observed. The reason was thought to be due to greater technological
di�culties involved in the detection of short transcripts. Normally, small- and micro
RNA studies of RNA-seq requires a specialised type of library preparation in order
to be feasible [43].
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4.3 Di�erential expression testing

The total number of significantly di�erentially expressed transcripts (both coding
and non-coding) was 8801 (out of 642012 assembled transcripts in total). In the
comparison between between AngII treated mice and control mice harvested after
seven weeks (A7 and S7, respectively), the number was 6912.

Of the previously known lncRNAs (annotated in NONCODE v4 and Ensembl
mm9), 246 were found to be significantly di�erentially expressed (p-value less than
0.05 and using a q-value cuto� of 0.05). 185 of those were between A7 and the S7
mice. Among the 26 novel lncRNA candidates, two were significantly di�erentially
expressed between A7 and S7 (table 4.4).

The 35 overall most significantly di�erentially expressed genes (based on indi-
vidual isoforms from those genes) between A7 and S7 are presented in table 4.2
(novel genes have been excluded). Similarly, the 35 most di�erentially expressed
long noncoding RNAs are presented in table 4.3.

Some of the genes in table 4.3 have infinite fold change. This only means that
they were exclusively expressed in one of the sample groups. One of those was
Gm12245, which was a previously predicted pseudogene, whose expression was only
observed in the case mice. Given that it is 357 bp long and noncoding, it would be
classified as a lncRNA. Not much else is known about it however.

Three of the most di�erentially expressed genes (infinite fold change) were also
Hist1h4j, Hist1h3i and Hist1h2ah, which all code for histone cluster proteins. Hi-
stone proteins, important in the context of chromosomal structure, tend are up-
regulated during DNA replication [44]. Higher expression of histone proteins may
therefore be a sign of increased cellular proliferation.

Two other transcript exclusively expressed in case mice was SCARNA17, which
stands for Small Cajal body-specific RNA 17, and A930005H10Rik. Very little
appears to be known about SCARNA17, other than the fact that Cajal body-
specific RNAs seem to play a role in the spliceosomal machinery [45]. The EN-
SMUST00000067500 isoform of the A930005H10Rik is a 309 bp long processed
transcript which does not code for any protein. It is expressed antisense to the
gene Dph5.

Among the genes di�erentially expressed with finite fold change, H19 was the one
that deviated most between case and control. H19 encodes a long noncoding RNA
and is shown to interact with Igf2 (Insulin-like growth factor 2) via a chromatin
remodelling based epigenetic switch [46]. See also section 4.4.

Col11a1 and Col12a1 encode two types of collagen (type XI and XII). Collagens
are important constituents of the extracellular matrix. The extracellular matrix
(and possible degeneration thereof) is an important part of the arterial wall and
plays a large role in the mechanism of AAA disease [3].

Two of the other most di�erentially expressed genes were Thbs1 and Thbs4,
which encode thrombospondin proteins. According to Gonzalez-Quesada et al.
(2013) [47], thrombospondin interacts with the extracellular matrix and “is a proto-
typical matricellular protein that is not part of the normal cardiac matrix network,
but is upregulated in cardiac remodeling because of myocardial infarction or pres-
sure overload”. Thrombospondin has been found previously to be associated to
AAA [48].

Itm2a (integral membrane protein 2A), in turn, encodes a transmembrane protein
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Table 4.2: The overall 35 most di�erentially expressed genes (based on individual isoforms)
between AngII treated mice harvested after seven weeks (A7) and control mice harvested after
seven weeks (S7). Fold change, p- and q-values (the latter accounting for multiple testing) were
calculated with Cu�di� 2.2.1. A negative fold change indicates down-regulation in the control
group (up-regulation in the AngII-treated group). “Class” refers to the class codes detailed in
table 3.1.

Transcript ID Gene Class log2 fold change p-value q-value

ENSMUST00000117266 Gm12245 = -Inf 0.00005 0.00265555
ENSMUST00000087714 Hist1h4j = -Inf 0.00005 0.00265555
ENSMUST00000099704 Hist1h3i = -Inf 0.00005 0.00265555
ENSMUST00000091742 Hist1h2ah = -Inf 0.00005 0.00265555
ENSMUST00000158610 SCARNA17 = -Inf 0.00005 0.00265555
ENSMUST00000067500 A930005H10Rik = -Inf 0.00025 0.01074100
ENSMUST00000158415 RNaseP nuc = Inf 0.00065 0.02343650
ENSMUST00000150405 Cpxm2 = -Inf 0.00110 0.03559290
ENSMUST00000136359 H19 = -7.36622 0.00005 0.00265555
ENSMUST00000140716 H19 = -7.06716 0.00005 0.00265555
ENSMUST00000071750 Col12a1 = -6.56065 0.00015 0.00697443
ENSMUST00000022213 Thbs4 = -6.25172 0.00005 0.00265555
ENSMUST00000123619 Col11a1 = -6.08950 0.00030 0.01248340
ENSMUST00000039559 Thbs1 = -5.74065 0.00030 0.01248340
ENSMUST00000033591 Itm2a = -5.67131 0.00005 0.00265555
ENSMUST00000103095 Tnnc2 = -5.60156 0.00005 0.00265555
ENSMUST00000039178 Tnn = -5.53919 0.00005 0.00265555
ENSMUST00000006626 Actn3 = -5.50895 0.00015 0.00697443
ENSMUST00000001547 Col1a1 = -5.42860 0.00005 0.00265555
ENSMUST00000055770 Hist1h1a = -5.37595 0.00005 0.00265555
ENSMUST00000170872 Thbs2 = -5.35743 0.00025 0.01074100
ENSMUST00000080511 Hist1h1b = -5.32490 0.00005 0.00265555
ENSMUST00000031565 Fscn1 = -5.21660 0.00005 0.00265555
ENSMUST00000025497 Fbn2 = -5.17334 0.00005 0.00265555
ENSMUST00000032800 Tyrobp = -5.16206 0.00005 0.00265555
ENSMUST00000081035 Mpeg1 = -5.05190 0.00005 0.00265555
ENSMUST00000119429 Myl1 = -5.02694 0.00005 0.00265555
ENSMUST00000110455 Hist1h2bk = -5.01183 0.00075 0.02627970
ENSMUST00000027885 Angptl1 = -4.98405 0.00010 0.00490988
ENSMUST00000003643 Ckm = -4.96161 0.00005 0.00265555
ENSMUST00000171470 Lox = -4.94639 0.00060 0.02200790
ENSMUST00000138511 Col1a2 = -4.89817 0.00160 0.04753520
ENSMUST00000021231 Abcc3 = -4.86676 0.00095 0.03168320
ENSMUST00000021506 Serpina3n = -4.85405 0.00005 0.00265555
ENSMUST00000005255 Wisp1 = -4.78107 0.00005 0.00265555
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Table 4.3: The overall 35 most di�erentially expressed lncRNA candidates between the case
and control mice that had been harvested seven weeks after treatment (A7 and S7, respectively).
Column headers as in table 4.2. Transcript ID:s starting with “ENSMUST” are Ensembl ID:s,
those starting with “NONMMUT” refer to transcripts only annotated by NONCODE.

Transcript ID Gene Class log2 fold change p-value q-value

ENSMUST00000117266 Gm12245 = -Inf 0.00005 0.00265555
ENSMUST00000150405 Cpxm2 = -Inf 0.00110 0.03559290
ENSMUST00000136359 H19 = -7.36622 0.00005 0.00265555
ENSMUST00000140716 H19 = -7.06716 0.00005 0.00265555
ENSMUST00000138511 Col1a2 = -4.89817 0.00160 0.04753520
ENSMUST00000138145 Ccl6 = -3.72700 0.00030 0.01248340
ENSMUST00000112866 Cxcl12 = -3.22994 0.00020 0.00891552
ENSMUST00000145974 Col5a3 = -3.11406 0.00145 0.04401550
ENSMUST00000108631 Tnk1 j -2.98056 0.00155 0.04638690
ENSMUST00000131787 2410006H16Rik = -2.96827 0.00005 0.00265555
ENSMUST00000154058 Gm15639 = -2.95309 0.00155 0.04638690
ENSMUST00000053085 Nlrc5 = -2.92918 0.00005 0.00265555
ENSMUST00000164588 Gm17446 = -2.89507 0.00015 0.00697443
ENSMUST00000162785 Ms4a7 = -2.79884 0.00005 0.00265555
ENSMUST00000130179 Mtmr1 = -2.74925 0.00030 0.01248340
ENSMUST00000147681 F630028O10Rik = -2.69458 0.00005 0.00265555
ENSMUST00000167285 Usf2 = -2.66836 0.00020 0.00891552
ENSMUST00000139643 Pnpla7 = -2.61396 0.00125 0.03928280
ENSMUST00000143673 AI662270 = -2.59238 0.00005 0.00265555
ENSMUST00000140732 Ptov1 = -2.57090 0.00090 0.03036040
ENSMUST00000128161 Rgs12 = -2.49486 0.00020 0.00891552
ENSMUST00000159745 Tmem55b = -2.48982 0.00075 0.02627970
ENSMUST00000155083 Ppox = -2.47681 0.00005 0.00265555
ENSMUST00000132618 Eif1 = -2.45017 0.00010 0.00490988

NONMMUT029052 - = -2.39013 0.00020 0.00891552
ENSMUST00000161573 Psme2 = -2.38926 0.00010 0.00490988
ENSMUST00000128015 Plekhg2 = -2.38253 0.00005 0.00265555
ENSMUST00000153077 Megf8 = -2.37883 0.00010 0.00490988
ENSMUST00000165292 Gm17282 = -2.36673 0.00005 0.00265555
ENSMUST00000137837 Lrrc42 = -2.34961 0.00040 0.01584780
ENSMUST00000152710 Vgll4 = -2.29871 0.00045 0.01747430
ENSMUST00000034997 Snhg5 = -2.29561 0.00005 0.00265555
ENSMUST00000132340 Trem2 = -2.28742 0.00005 0.00265555
ENSMUST00000149391 Gdi1 = -2.27913 0.00005 0.00265555
ENSMUST00000146254 Cd300lf = -2.27148 0.00115 0.03682310
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involved in muscle cell di�erentialion [49] and T-cell activation [50]. It has also
been shown to interact with collagens in terms of its involvement in chondrogenic
di�erentiation [51]. A role in AAA via e�ects on the extracellular matrix of the
aortic wall is thus not unthinkable.

The novel di�erentially expressed transcript had the IDs TCONS 00095737 andT-
CONS 00559428. TCONS 00095737 was assigned by Cu�inks to the gene Tnk1
with the class code “j”, signifying that the transcript shares at least one splice junc-
tion with a reference isoform. This means that is could be a novel alternative splice
variant. TCONS 00559428 was closest to the Pts gene, sharing a “generic exonic
overlap” (class code “o”). This simply means that that the transcript overlaps at
least one exon with the reference transcript, but does not share any part of the
splicing structure with the reference. It may be a flanking single-exonic transcript
that overlaps one of the ends of the Pts gene (though, intuitively, it is more likely
to be an artifact as compared to any “j” isoform found).

TCONS 00095737 was the only one of the isoforms of Tnk1 that was di�erentially
expressed, as can be seen in figure 4.3. TCONS 00559428 showed a similar expres-
sion pattern as the other isoforms of Pts, only with lower overall expression (figure
4.4). This would perhaps suggest that the expression is a passive consequence of the
main protein coding isoform expression, maybe due to inaccuracies of the splicing
machinery. In mouse, only one isoform of this gene is described in the Ensembl
annotation (the protein coding variant). In human, nine ones are annotated, four
of them long noncoding. This raises the likelihood that this novel lncRNA could be
a true transcript variant.

Table 4.4: Di�erentially expressed novel lncRNA candidates between the case and control mice
that had been harvested seven weeks after treatment. Column headers as in table 4.2. The
transcript IDs correspond to those in table 4.1.

Transcript ID Closest gene Class log2 fold change p-value q-value

TCONS 00095737 Tnk1 j -2.98 0.002 0.037
TCONS 00559428 Pts o -1.39 0.001 0.028
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Figure 4.3: Expression of the isoforms of Tnk1, to which the novel transcript TCONS 00095737
was assigned. The blue bar shows expression in the A7 treated group and the orange bar shows
expression in the S7 control group. Black dots are the expression levels from individual samples
in each group and error bars are confidence intervals based on variance modelling calculated by
Cu�Di�.
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Figure 4.4: Expression of the isoforms of Pts, to which the novel long noncoding transcript
TCONS 00559428 was assigned. TCONS 00559427 was also a novel transcript. Axis labels and
figure elements the same as in figure 4.3.
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4.4 Co-expression network modules

In order to perform de novo network inference with the WGCNA method, an optimal
soft thresholding power needed to be calculated, as described in section 3.6.2. The
choice of this thresholding power was made based on figure 4.5. A value of 16 was
found to be appropriate with respect to desired network scale independence and
(low) mean connectivity.
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Figure 4.5: Left: Fit of the WGCNA network to a model of scale free topology as a function
of the soft thresholding power. Right: Mean connectivity as a function of the soft thresholding
power. The red line indicates where the gain in scale-free fit begins to level out. Red numbers
indicate the tested soft thresholding powers.

The network construction made with the 16689 transcripts that remained after
filtering yielded 51 modules. The dendrogram obtained after hierarchical clustering
is shown in figure 4.6, together with the module assignments made with the appli-
cation of dynamic tree cutting. The modules were assigned colours codes in this
process (as shown in figure 4.6), which from now on will be used to refer to them.
The colours are merely labels and do not reveal any other information about the
modules.

The first principal component of the modules (the “eigengene”, in the terminol-
ogy of Langfelder and Horvath [22]) was correlated with a vector of treatment status
as mentioned in section 3.6.2. The modules were subsequently ranked according to
the absolute Pearson correlation coe�cient obtained, also taking into account the
p-value of the correlation.

Intersecting the set of significantly di�erentially expressed previously known
lncRNAs with the transcripts in the most treatment-correlated modules revealed
that 20 of those lncRNAs were present in any of those clusters (see table 4.5). Of
the 26 novel lncRNA candidates, only two were left after coe�cient of variation fil-
tering. Of these, the intergenic TCONS 00385472 was assigned to the “red” cluster.
The other one was TCONS 00190470, which was assigned to the “blue” module.
Those of the top ranking modules that also contain interesting lncRNAs are shown
in table 4.5.
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Figure 4.6: An illustration of the WGCNA module assignment process for this dataset. The
black dendrogram is obtained through hierarchical clustering of the weighted correlation based
network. Modules are represented by individual colours and are the result of applying dynamic
tree cutting to the dendrogram.

Given those results, it would seem that two of the modules, “blue” and “red”
justify further scrutiny. Partly because they contain both novel and di�erentially
expressed lncRNAs, but also since they were found to be strongly correlated with
the treatment vector (see table 4.5).

Table 4.5: Ranking of modules according to Pearson correlation coe�cients calculated between
the eigengene of the module and a vector of treatment status (see section 3.6.2). Each module
is represented with a colour code that was assigned to it during the WGCNA procedure, and
which corresponds to the colours in figure 4.13. Only the most significantly correlated (an absolute
correlation of at least 0.80 and a p-value less than or equal to 0.05) modules which harbour either
di�erentially expressed lncRNAs or novel lncRNAs are shown here. “Size” refers to the number of
transcript isoforms in the module. ‘D.e.” stands for di�erentially expressed.

Module Correlation p-value Size D.e. lncRNAs Novel lncRNAs

magenta 0.95 0.0004 538 1 0
turquoise 0.95 0.001 2745 2 0

green 0.88 0.009 755 3 0
blue 0.87 0.01 2252 9 1
black 0.82 0.02 628 2 0
red 0.80 0.03 678 3 1

The “blue” module

Nine significantly di�erentially expressed lncRNAs were detected in the blue module.
They are presented in table 4.6. Besides those, a novel lncRNA was also present. It
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did not, however, present any significant di�erence in transcript abundance among
any of the sample groups. This lncRNA was denoted TCONS 00190470 in table
4.1 and appeared to be a novel noncoding isoform of the Gpihbp1 (glycosylphos-
phatidylinositol anchored high density lipoprotein binding protein 1) gene. The
main protein otherwise encoded by this gene acts as a lipoprotein lipase transporter
in capillary endothelial cells [52].

Table 4.6: Interesting lncRNAs in the “blue’ module. “Class” refers to the class code of the
transcript (see table 3.1). “Groups” refers to which sample groups the di�erence was observed in.
In all cases, p-values (as obtained from Cu�di�) were less than 0.05 and the di�erential expression
was considered significant after applying multiple testing correction (an alpha of 0.05 was used as
threshold for the “getSig” function in the cummeRbund R package).

Transcript ID Gene Class log2 fold change Groups

ENSMUST00000132313 Hmg20b = -2.35, -2.21 A3, S7; A7, S7
ENSMUST00000132340 Trem2 = -2.29 A7, S7
ENSMUST00000162785 Ms4a7 = 1.56, -1.24, -2.80 A3, A7; A3, S7; A7, S7
ENSMUST00000149366 Tmem48 = -3.00 A3, S7
ENSMUST00000134637 Cdca3 = 2.42 A3, A7
ENSMUST00000140732 Ptov1 = -2.57 A7, S7
ENSMUST00000136359 H19 = -7.37 A7, S7
ENSMUST00000145974 Col5a3 = -2.47, -3.11 A3, S7; A7, S7
ENSMUST00000152109 C430049B03Rik = -1.80806 A7, S7

Notable among the transcripts in table 4.6 was an isoform of H19, which had a
log2 fold change of -7.37 (up-regulated in A7 compared to S7). What is known about
this noncoding gene is that it can influence the expression of the neighbouring gene
Igf2 (insulin-like growth factor 2) [46, 53]. A transcript from Igf2 was present in the
same co-expression module as the H19 isoform discussed here. The log2 fold change
of the relevant Igf2 transcript was -3.38 (also up-regulated in A7 compared to S7),
although in this case the di�erence was not statistically significant after multiple
testing correction.

The second most di�erentially expressed lncRNA transcript in this module was
a noncoding isoform (with a retained intron) of Col5a3 (collagen, type V, alpha
3). The protein encoded by this gene has been shown to be important for glucose
homeostasis in mice [54]. It has also been indicated in a cardiovascular disease
a�ecting connective tissue known as Ehlers-Danlos syndrome (one symptom of which
can be arterial rupture) [55]. Col5a3 has also been shown to be targeted by the AAA-
related microRNA-29 family [56]. The protein coding transcript (with Ensembl
transcript ID ENSMUST00000004201) was also significantly di�erentially expressed
between both A3 and S7, A7 and S7 (the log2 fold changes were -3.06 and -3.78,
respectively for those two group comparisons). See figure 4.7.

The blue module was imported into Cytoscape 3.1.1 [34], which was used to
calculate the betweenness centrality and degree of each node, the result of which
is shown in figure A.7. In the process of importing the module, connections with
lesser weights than 0.29 were removed (due to the time it would take to perform an
analysis on all nodes). The calculations were thus made on 274 out of the original
2252 nodes. Highly connected and central (in terms of betweenness centrality)
transcripts, in the blue module came from the genes Aspm, Hhipl1, Mirg, Ltbp2,
Hist1h3i, Wisp1, Fkbp11, Ndc80, Kif11, Ms4a7, Cenpe, Sdc3, Gpx7, Ptpn13, Sorcs2,
Ccdc8, Plk1, Myo7a, Cmtm3, Ednra, Kif15 and Kif4. Four of those transcripts were
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Figure 4.7: Expression levels of the isoforms of Col5a3. TCONS 00555880 is the internal cu�inks
ID representing ENSMUST00000004201 (the protein coding isoform) and TCONS 00555881 rep-
resents ENSMUST00000145974 (the noncoding isoform). FPKM-values are shown on the vertical
axis. Black dots show the expression values of each individual replicate. Blue bars represent the
A3 group, pink the seven A7 group and green the S7 control group. Black dots are the expres-
sion levels from individual samples in each group and error bars are confidence intervals based on
variance modelling calculated by Cu�Di�.

novel isoforms of the genes Hhipl1, Mirg and Sdc3. None of them were lncRNAs,
though Mirg is a gene harbouring several miRNA.
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Figure 4.8: The “blue” WGCNA derived module. Larger nodes indicate higher betweenness
centrality. Thicker edges have more weight (the edge weights are also displayed on a colour scale
from green (low) to red (high)). Degree is indicated with a colour scale: green corresponds to
low connectivity and red to high connectivity. The names of the nodes are the internal identifiers
assigned to each transcript by the assembly software Cu�inks. A high resolution version of the
figure can be obtained from the author upon request.
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The “red” module

The three significantly di�erentially expressed lncRNAs in the red module are sum-
marised in table 4.7. In addition, one novel intergenic lncRNA (lincRNA) was
present (TCONS 00385472, see table 4.1), though not with a statistically significant
di�erence in transcript abundance between any of the sample groups (figure 4.12).

Table 4.7: Interesting lncRNAs in the “red” module. “Groups” refers to which sample groups
the di�erence was observed in. Remaining column headers as in table 4.2.

Transcript ID Gene Class log2 fold change p-value q-value Groups

ENSMUST00000105240 Timeless = -3.55 0.00005 0.0027 A3, S7
ENSMUST00000148151 Flcn = -2.88 0.00015 0.0070 A3, S7
ENSMUST00000132193 Alkbh6 = -1.62 0.00055 0.021 A3, S7

One of the three di�erentially expressed previously annotated lncRNAs in the red
module was ENSMUST00000105240, a noncoding isoform of Timeless. The protein
coding transcript from this gene was named after its involvement in the regulation of
the circadian rhythm in Drosophila melanogaster, and its mouse homolog appears to
be essential in that context as well [57, 58]. Recently, the gene has also been shown
to play a role in coordinated apoptosis of embryonic cells [59]. However, the lncRNA
was the only isoform of this gene that was (significantly) di�erentially expressed.

The second di�erentially expressed lncRNA in this module was a noncoding
variant of Flcn, which otherwise codes for the protein folliculin. The main pro-
tein of the gene is believed to be a tumour suppressor [60]. This protein (EN-
SMUST00000102697) was also significantly di�erentially expressed (both between
the groups A3 and S7, and A7 and S7).

The third one was ENSMUST00000132193. The transcript is a 1112 bp long
non-coding isoform of the Alkbh6 (alkylation repair homolog 6) gene, spliced with
intron retention. It was the only one of the 12 assembled isoforms of this gene
that was found to be significantly di�erentially expressed. Expression of ENS-
MUST00000132193 was up-regulated in the AngII-treated mice compared to the
controls, though more so in the mice harvested three weeks after treatment than
those harvested after seven weeks (see figure 4.11).

Cytoscape 3.1.1 [34] was used to calculate the betweenness centrality and degree
of each node. The resulting network can be seen in figure 4.13. Connections with
lesser weights than 0.25 were removed (as before, this was mainly done to reduce the
computational time of the analysis, but also to focus on the strongest co-expression
relations)

The 10 most central nodes of this module are summarised in table 4.8. Notably,
one of them (TCONS 00190611) was a predicted novel fragment (although none of
the predicted novel lncRNAs). The transcript was present neither in the Ensembl
or NONCODE annotation, and attempting to use LiftOver to identify its position
on the mm10 genome failed. So either it is a novel fragment or an artifact of the
mm9 genome build, though the latter is suspected.
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Figure 4.9: Expression levels of four isoforms of Timeless. The lncRNA ENSMUST00000105240
is named TCONS 00056327 here (internal identifier of cu�inks). FPKM-values are shown on the
vertical axis. Black dots show the expression values of each individual replicate. Error bars are
confidence intervals based on variance modelling calculated by Cu�Di�. Blue bars represent the
A3 group, pink the seven A7 group and green the S7 control group.
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Figure 4.10: Expression levels of the isoforms of Flcn. The lncRNA ENSMUST00000148151 is
named TCONS 00094386 here (internal identifier of cu�inks). Axis labels and figure elements the
same as in figure 4.9.
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Figure 4.11: Expression levels of four isoforms of Alkbh6. The lncRNA ENSMUST00000132193
is named TCONS 00478367 here (internal identifier of cu�inks). Axis labels and figure elements
the same as in figure 4.9.
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Figure 4.12: Expression levels of the novel lncRNA TCONS 00385472.pdf. Axis labels and figure
elements the same as in figure 4.9.

Table 4.8: Summary of the ten of the most central transcripts in the “red” module. The Isoform
Ids are internal Cu�inks identifiers. The meaning of the class codes can be found in table 3.1.

Isoform id Gene Closest transcript Class code

TCONS 00079525 Rpain ENSMUST00000018593 =
TCONS 00161510 Lrp10 ENSMUST00000022782 =
TCONS 00190611 - - u
TCONS 00206829 Dhh ENSMUST00000023737 =
TCONS 00236333 Aars2 ENSMUST00000024733 =
TCONS 00304221 Tm9sf4 ENSMUST00000089027 =
TCONS 00312467 Ccbl1 ENSMUST00000044038 =
TCONS 00426158 Sh3tc1 ENSMUST00000037959 =
TCONS 00524701 Vac14 ENSMUST00000166307 =
TCONS 00534181 Ano8 ENSMUST00000093450 =
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Figure 4.13: The “red” WGCNA derived module. Figure elements are the same as was described
in the legend of figure A.7. A high resolution version of the figure can be obtained from the author
upon request.
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4.5 Gene ontology enrichment

The “blue” module

GO enrichment analysis was performed using the BiNGO plugin of Cytoscape 3.1.1,
with default settings used for multiple testing correction. All genes of the tran-
scripts in the blue module were included. In order to interpret those results more
easily, the resulting GO terms and false discovery rate (FDR) adjusted p-values were
analysed with the GO interpretation tool REVIGO [61] (the software lacks version
numbering), using “large” as the size of the output list of terms, “Mus musculus”
as reference and otherwise default settings (as they were defined 2014-08-08). This
tool uses semantic analysis to group the terms in sensible ways such as to reduce
redundancy.

Highly significant categories indicated by REVIGO in the biological process on-
tology were “DNA metabolism”, “regulation of immune system process”, “blood
vessel morphogenesis”, “defence response”, “organelle fission”, “cell cycle”, “cellu-
lar process” and “metabolism” (figure 4.14a).

Similarly, in the ontology “molecular function”, important categories were: “cal-
cium ion binding”, “receptor binding”, “protein kinase activity”, “binding”, “cat-
alytic activity”, “GTPase regulator activity”, “manganese ion transmembrane trans-
porter activity” and “cytokine receptor activity” (figure 4.14b).

In the “cellular component” category, important terms were “chromosomal part”,
“cell” (though that term is rather nondescript),“intrinsic to plasma membrane”, “or-
ganelle”, “extracellular region part”, “protein-DNA complex”, “perinuclear region
of cytoplasm”, “membrane” and “extracellular matrix’ (figure 4.14c).
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Figure 4.14: The most prominent terms among the significantly enriched GO terms of the “blue”
module; a) in the “biological process” ontology, b) in the “molecular function” ontology, c) in the
“cellular component” ontology. The size of the square representing each term is proportional to
the absolute log p-value of the enrichment significance of that term. Enrichment was calculated
with the BiNGO plugin of Cytoscape 3.1.1 and the semantic grouping in this figure was the result
of analysis with the REVIGO software, using the option “large” regarding the size of the resulting
list of terms and “Mus musculus” as reference(and otherwise default settings). The log10 p-values
visually presented here are the logarithms of the FDR-adjusted p-values from BiNGO. A high
resolution version of the figure can be obtained from the author upon request.
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The “red” module

GO enrichment analysis (using the BiNGO plugin of Cytoscape 3.1.1, with default
settings used for multiple testing correction) was performed on the “red” module,
and the results were parsed and analysed with REVIGO as described in section 4.5.

In the “biological process” ontology, the main terms highlighted by analysis with
REVIGO were: “small molecule biosynthesis”, “ncRNA metabolism”, “response
to DNA damage stimulus”, “cellular process”, “metabolism”, “embryonic digestive
tract development”, “protein transport” and “biological regulation” (figure 4.15a).

Similarly, the terms highlighted in the “molecular function” ontology were: “RNA
binding”, “ligase activity”, “binding”, “catalytic activity”, “identical protein bind-
ing”, “transcription regulator activity”, “cofactor binding”, “metal cluster binding”
and “RNA polymerase II transcription cofactor activity” (figure 4.15b).

The highlighted “cellular component” categories were: “cytosol”, “cell”, “or-
ganelle”, “soluble fraction”, “cell fraction”, “membrane”, “plasma membrane”, “en-
domembrane system”, “membrane-enclosed lumen” and “macromolecular complex”,
with the respective p-value significance ranking visualised in figure 4.15c (the en-
richment significance is proportional to the size of the rectangle enclosing each term
in the figure).
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Figure 4.15: The most prominent terms among the significantly enriched GO terms of the “red”
module; a) in the “biological process” ontology, b) in the “molecular function” ontology, c) in the
“cellular component” ontology. For a further description of the figure elements, see the legend of
figure 4.14. A high resolution version can be obtained from the author upon request.
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4.6 MetaCore c� analysis

The “blue” module

The central nodes of the “blue” module were analysed with MetaCore c� [28] (version
6.19). A network was built using the “shortest paths” algorithm (the “expand by
one” algorithm would expand the “blue” network with too many connections to
handle e�ciently), with default settings. The result is shown in figure 4.16.

Among the nodes connected to the central genes of the transcripts of the “blue”
module, 7 were connected to either of the following relevant disease terms: “Aneurysm”;
“Aortic Aneurysm”; “Aortic Aneurysm, Thoracic”; “Aortic Aneurysm, Abdomi-
nal”; “Aneurysm, Dissecting”; “Intracranial Aneurysm”; “Coronary Aneurysm”;
“Hypertension”. These MetaCore c� network objects were ESR1, SMAD3, TGF-
beta receptor type I, TGF-beta receptor type II, TGF-beta 1, MMP-9 and a broad
group of G protein-coupled receptors called “Galpha(q)-specific peptide GPCRs”
(to which one of the original “blue” transcripts was assigned). Additionally, “ther-
apeutic targets” in the network were PLK1 (one of the central genes of the “blue”
module), EGFR, ErbB2, SP1 and several others overlapping with the previously
mentioned ones.

Figure 4.16: MetaCore c� Interaction network constructed from central nodes of the “blue” mod-
ule. The “shortest paths” algorithm was used with default settings. The gene identifiers were in
some cases translated to network object carrying the internal naming scheme of MetaCore c�, but
the original genes are indicated with blue circles. Distances in the image have no meaning.
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The “red” module

The nine most central nodes with gene identifiers (table 4.8) of the “red” module
were further profiled with MetaCore c�. The network shown in 4.17 was built using
the “expand by one” algorithm (with default options).

Known therapeutic targets among the nodes in that network were CDK2, GPC3,
RELA, VDR, CTNNB1, ESR1 (also present in the MetaCore c� network constructed
from the central “blue” genes), ESR2, PGR, APH1A and ADAM10. Searching the
network for genes related to the terms “Aortic Aneurysm”; “Aneurysm”; “Aortic
Aneurysm, Abdominal”; “Aortic Aneurysm, Thoracic”; “Hypertension”, yielded
the following list of network objects: ESR1, ESR2, CLOCK, SMAD4, PGR, VDR,
Caveolin-1 and ATM. A connected compound that might be relevant in the context
of cardiovascular disease was cholesterol.

Furthermore, although not indicated by MetaCore c� as relevant in the contexts
of the conditions mentioned, microRNA-210 was also present in the network. This
noncoding RNA has been found to be over-expressed in several cardiovascular dis-
eases [62]. Unfortunately, this RNA could not be detected in the RNA-seq data
set, perhaps due to its short length providing challenges during sequencing (in line
with the previously mentioned overall relative lack of short noncoding transcripts
assembled) (110 bp).

Additionally, the presence of CLOCK may be notable, since the most di�eren-
tially expressed lncRNA in the “red” module was a noncoding isoform of Timeless
(table 4.7), another gene involved in circadian rhythm regulation with which it is
known to interact [63].

Figure 4.17: MetaCore c� Interaction network constructed from nine central nodes of the “red”
module. The “expand by one” algorithm was used. The gene identifiers were in some cases
translated to network object carrying the internal naming scheme of MetaCore c�, but the original
genes are indicated with blue circles. Distances in the image have no meaning.
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4.7 Clustering comparison

In an attempt to validate the WGCNA clustering, it was compared it with a sep-
arate clustering using the k-means method. Since the WGCNA method yielded 51
modules, k was set to 51 for the k-means method as comparison. For k-means, 200
starting points were used, which appeared to be su�cient for convergence.

As can be seen in figure 4.18, where the resulting overlap matrix is visualised.
It is apparent that very few pairs of modules share any specific overlap between the
WGCNA and k-means clustering. In accordance with this, the association score
was a Cramér’s V of 0.06, which indicates no significant association between the
two methods. Any overlap found is almost entirely due chance (proportional to the
sizes of the modules). For instance, the module 4 in the WGCNA method shares a
rather large overlap with almost all of the modules obtained from k-means. This is
merely the due to the large size of this module. Contrast this with the ideal result
illustrated in figure 3.1, where each module only matches well with one module from
the other clustering run. This is an intriguing result and exemplifies how di�erent
two given clustering methods can perform on the same gene expression dataset.
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Figure 4.18: The overlap of WGCNA module assignment and k-means clustering on the coe�-
cient of variation filtered dataset. For k-means k was set equal to 51 and n = 200 starting points
of the algorithm was used. The image is a visualisation of the contingency matrix, wherein high
values of a given cell is displayed brightly and low or zero overlap between two given clusters is
displayed darkly shaded. (Additionally, in this image the number of transcripts in the intersection
of each pair of modules have been normalised by the total size of the modules for greater clarity.)

This does not, however, invalidate the clustering results. There may be multiple
explanations for this observation: Either both methods highlight biologically rele-
vant, yet completely di�erent, co-expression patterns in the data; or one or both of
them perform particularly poorly on the data.

One reason for the di�erences may be that a step in the WGCNA method parses
the initial cluster assignment for sub-clusters displaying certain characteristics that
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it believes justifies reassigning such sub-clusters to other modules. This step has no
equivalent in the k-means method.

Also, since the k-means method is sometimes considered somewhat of a quick and
dirty method that may not give the most accurate results on complex datasets (and
whose performance highly depends on the user-specified value of the k parameter
[64]), one might suspect that the use of this clustering method is simply unsuitable
to this complex data, and therefore fails to highlight the same biological aspects
as the WGCNA method. But further study is required in order to draw any such
conclusions.

This lack of a conclusive objective verification places further weight on the sub-
jective interpretation of biological patterns within the modules as a form of clustering
validation.
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Challenges

Due to the expenses of RNA-seq, it has been common to sequence few samples
deeply rather than many samples shallowly. This can cause problems when dealing
with the, often large, biological variability. In particular, this variability needs to
be adequately statistically modelled during di�erential expression testing in order
to make sure that any di�erences in expression levels are actually caused by the
treatment and not just there as a result of stochastic variation. Ideally, one should
also test more than one di�erential expression estimation tool, in order to study the
impact of di�erences in variance modelling on the results. This was not possible
here due to time limitations, however.

Another challenge was the fact that not all the assembled fragments were true
RNA transcripts expressed by the sampled organism. Some were mere artifacts
caused by, for instance, non-specific mapping of reads or failures of the assembly
algorithm. Likely, the quality of the library preparation and sequencing runs played
a large role in producing these artifacts as well.

Many parameters could be tuned in the Cu�inks assembler, and in hindsight
it may have been desirable to mask mitochondrial fragments due to the overrepre-
sentation of these. As it stands, it is suspected that this may have been a reason
for the undesirably large overlap between the FPKM distributions of the partially
and completely assembled fragments used for setting the expression threshold dur-
ing the novel transcript filtering. Another potential culprit may have been adapter
contamination. Ideally, the potential impact of this should have been studied more
in detail. Additional analyses are being performed. (Note added in proof: The
results of these analyses are presented in appendix A.)

It is, in general, quite challenging to objectively validate the performance of
an unsupervised learning method. At best these methods can be seen as tools for
hypothesis construction. The results here showed that the WGCNA module assign-
ment deviated very much from that of k-means clustering. Though one may argue
that this should be expected, since the WGCNA method was (after all) developed
to provide an alternative clustering algorithm that was better suited to expression
data. The poor association can have multiple explanations. However, ultimately, it
does not tell us as much about the biological data itself as it informs us of the dif-
ferences between the algorithms. Had there, however, been found to be a significant
association it would have made it much easier to justify conclusions of transcript
co-expression. Perhaps k-means was not be best choice for comparison. Another
clustering method such as NMF, which has been shown to perform well on biological
data [65], would most likely have been a better choice.
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Results

Among the 29 novel long non-coding RNA that remained after the filtering procedure
undertaken, three were already present in the noncoding RNA database NONCODE
(26 thus remaining as novel). This would appear to o�er some reassurance that these
may indeed be actual lncRNAs, rather than mere artifacts. Due to the inability of
finding a well performing FPKM based artifact filtering threshold, however, it is
hard to completely rule out that possibility. Regardless, actual verification with
biotechnology techniques is required in order to confirm them.

In total, 248 lncRNAs were found to be di�erentially expressed. 187 of those
were between the AngII treated mice harvested after seven weeks and the controls.
Two of those were novel. In the comparison between the treated mice harvested after
three weeks and the controls, 131 lncRNA (one of those novel) were di�erentially
expressed.

In several of the cases where lncRNAs were di�erentially expressed, they seemed
to follow the expression patterns of the protein coding isoforms of the same genes.
One may therefore suspect that the lncRNA expression in those cases was mainly
a passive byproduct of the overall gene expression, rather than a consequence of
independent functional significance. Though such independent roles can not be
precluded at this stage. The exclusively lncRNA producing gene H19, on the other
hand, would then appear more likely to have some role in the disease (perhaps via
its connection to Igf2).

Furthermore, transcript were clustered into co-expression groups (modules), which
were subsequently correlated to treatment. The results highlighted a few of those,
which appeared to display expression patterns related to the disease. Of those, a
couple contained both novel and known lncRNAs. Those modules were subject to
further analysis, which involved Gene Ontology enrichment and MetaCore c� profiling
of genes belonging to central (in terms of network properties) transcript isoforms.

The results of GO enrichment of the first (here called “blue”) module showed
an enrichment of terms such “DNA metabolism”, “regulation of immune system
process”, “blood vessel morphogenesis” and “defence response”. Since immune re-
actions, such as vascular inflammation, are known to be involved in the disease [3]
these results should not be surprising if the genes in that module were indeed related
to the disease. Another interesting term that was enriched was “extracellular region
part” (encapsulating the term “collagen”) and “extracellular matrix”, which would
perhaps be related to processes a�ecting the arterial wall in the progression of the
disease (collagen protein producing genes were also found to be among the most
significantly di�erentially expressed ones).

The second module analysed (called “red”), also displayed enrichment of a num-
ber of GO terms. “small molecule biosynthesis”, “ncRNA metabolism” (processes
involving tRNA seemed to be common under this term), “response to DNA damage
stimulus”, “RNA binding”, and “ligase activity” were among the highlighted ones.
These terms may be broad, but connections to the disease could be the terms “reg-
ulation of cell death” and “regulation of cell growth” encapsulated by “response to
DNA damage stimulus”. Enrichment of GO terms in a module would appear to
strengthen claims of some degree of actual co-expression.

Extracting the genes belonging to central transcripts in these modules and per-
forming analysis of curated interactions with MetaCore c� revealed that fairly close
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ties between those genes could be found, in networks that also included therapeutic
targets and a number of genes connected to aortic aneurysm diseases and hyperten-
sion. Network objects such as ESR1, SMAD3, TGF-beta receptor type I, TGF-beta
receptor type II, TGF-beta 1, MMP-9 (in the MetaCore c� network build from cen-
tral genes of the “blue” module) and ESR1, ESR2, CLOCK, SMAD4, PGR, VDR,
Caveolin-1 and ATM (based on the “red” module) may o�er some clues as to func-
tionality represented in those groups of putatively co-expressed transcripts. Long
noncoding RNAs included in those modules could, by guilt of association, be inter-
esting to study further.

Of the di�erentially expressed previously annotated lncRNAs, 11 ones were
present in either of these two highly treatment-correlated co-expression modules.
These modules also contained one novel lncRNA each (which, however, were not
significantly di�erentially expressed).
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6. Conclusions

This work has revealed 26 novel long noncoding RNA candidates in mouse, two of
which were up-regulated in the AngII treated group (which develops aneurysms) in
comparison with controls. In addition, 185 previously annotated lncRNAs were also
indicated as di�erentially expressed between those sample groups. One lncRNA in
particular displayed a high fold change between the groups: H19.

Protein coding isoforms that displayed large di�erences in expression between
case and control involved those from histone proteins, collagens (important parts
of the extracellular matrix), thrombospondin proteins (known to interact with the
extracellular matrix) and Itm2a (involved in T-cell activation and muscle cell dif-
ferentiation). These observations are interesting since degradation of extracellular
matrix in the arterial wall is an important part in the progression of abdominal
aortic aneurysm disease, and so are immune reations.

Furthermore, a network of transcriptional co-expression was built using weighted
gene co-expression network analysis. Several lncRNAs were found to be present in
a couple of co-expression modules obtained from this procedure, whose expression
patterns appeared to be related to treatment. Investigating these modules further
revealed ties to genes and processes that could be connected to abdominal aortic
aneurysm disease. Those results would suggest that the lncRNAs included in those
modules could warrant further research.

Understanding the role of noncoding RNAs in abdominal aortic aneurysm may
provide knowledge that can open paths to new diagnostic possibilities of a disease
that rarely present any symptoms until it is too late. In a best case scenario, new
therapies that can supplement or provide alternatives to current invasive last-minute
surgical procedures could be found along the way to towards the goal of unraveling
the complex genetic mechanisms underlying this life-threatening disease.
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A. Alternative analysis

A reiteration of the methods presented in the main body of this work was performed
in order to examine the impact of trimming reads with respect to sequencing adapter
oligonucleotides, as well as the e�ect of mitochondrial read overrepresentation. Ad-
ditionally, some parameters of mapping and assembly were changed to alternatives
that were deemed more likely to be appropriate for the purpose of this work.

A.1 Methods

A.1.1 Read trimming

Sequences representing the oligonucleotide adapters of the EpiBio Scriptseq v2
stranded sequencing protocol were removed from the ends of reads using the read
trimming tool Cutadapt [66] version 1.4.1, using the “-b” option (which instruct the
algorithm to match the oligonucleotide sequences against both the 3’ and 5’ ends,
as well as the interior of the reads). Poly-A and poly-T tails of reads were also
trimmed using the same method. Low quality bases (as determined using FastQC
[29] base quality plots) at the ends were removed prior to adapter trimming using
fastx-trimmer version 0.0.13 (16 nucleotides from the beginning and 15 nucleotides
from the end of each read). Since each read needs to have a corresponding paired
partner, “singleton” reads (without partner) were removed.

A.1.2 Read mapping

Mapping was performed largely identically as described in the methods section of the
main report, with the exception of the added option “–no-mixed”, which instructs
the program to only report alignments where both reads in a pair can be mapped.
It was reasoned that this option would decrease the risk of assembling transcript
artifacts downstream, due to otherwise potentially unreliable singleton read align-
ment. In addition, the “-r” and “–mate-std-dev” option was specified according to
the results of RSeQC [30] read mapping inspection (the procedure of which was
described in the methods section of the main body of the report).

A.1.3 Transcript assembly

Transcriptome assembly was performed as described in the main methods section,
with the addition of the “-M” option, which purpose was to mask reads mapping
to mitochondrial transcripts. The mask file was derived from the Ensembl [10]
transcriptome annotation file that was used for mapping and assembly. Assemblies
were merged with Cu�compare [13] (using the -M option and “-g”, which instructs
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the program to run RABT assembly, as described regarding the cu�inks runs in
the main methods section). The merged assembly was annotated with the Ensembl
annotation using cu�compare (options “-G”, “-C” and “-r”).

A.1.4 Di�erential expression testing

Di�erential expression testing was performed as as described in section 3.6.1, with
the exception that the “-u” option was not used (due to problems pertaining to
glitches of the Cu�di� [18] software and since it did not seem to a�ect the results in
any significant way). Version 2.2.1 of Cu�di� encountered serious issues of unknown
cause that were not seen in the previous runs (“Segmentation fault”), so 2.1.1 was
used instead. The “-b” option was also used, which inspects the ends of the reads
for overrepresentation of certain patterns, and tries to account for this overrepre-
sentation by adjusting FPKM values if such bias is found. The question was raised
that this was perhaps not appropriate when read ends have been trimmed (since
any such biased sequence motifs would have been stripped away), but since the al-
gorithm only performs correction if bias is actually detected (and would otherwise
do nothing at all), it was argued that it would not have any negative consequences
to use the option.

A.1.5 Identification of known long noncoding RNAs

Identification of previously annotated lncRNAs in the set of assembled fragments
was performed identically as previously described in section 3.4.

A.1.6 Prediction of novel long noncoding RNAs

The approach used previously to filter away potential artifacts (using the FPKM
distributions of completely and partially assembled transcripts) was deemed unsatis-
factory for two reasons. For one, the time and system resources required for running
cu�inks on merged alignment files was very significant. Secondly, the performance
of the previously constructed FPKM threshold classifier was very poor.

Therefore a new approach was used, whereby FPKM values, confidence intervals
and transcript abundance estimations status (“OK” or not) as given by Cu�di� (us-
ing merged assemblies from Cu�merge [19]) was used instead to filter out unreliable
transcripts. Only transcripts whose estimated FPKM confidence interval was above
zero, and whose status were “OK” were kept. Additionally, only those of the tran-
scripts having FPKM greater than zero in at least two mice in each condition were
retained. After thereby discarding low quality assemblies, the same filtering pipeline
as described in section 3.5 was employed to discover novel lncRNA candidates.

A.1.7 Co-expression network analysis

Co-expression network analysis was performed as described in section 3.6.3, with
the exception of using 12 as the soft thresholding power, setting minimum module
size to 100 and merge cut height to 0.15. In addition, the dataset was pre-filtered
in order to reduce its size to around 16000. This filtering was composed of two
steps: First, only keeping transcripts from genes that were either in the Ensembl
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annotation, novel lncRNA or NONCODE lncRNA. Then, filtering the dataset in
order to only keep the top ca 16000 transcripts with highest coe�cient of variation.

A.2 Results

A.2.1 Identification of long noncoding RNAs

69 novel long noncoding lncRNA candidates were discovered. Three of these over-
lapped with the NONCODE annotation (with IDs TCONS 00141617, TCONS 00722068
and TCONS 00722067 in the trimmed read based analysis), 66 thus remaining
as truly novel. One transcript overlapped with the previously identified novel
lncRNA candidates, (having the ID TCONS 00129545 in the new analysis and
TCONS 00084766 in the previous one). 30 of the novel lncRNA did not have any
kind of overlap with annotated genes and were thus considered intergenic (class
code “u”, table A.1). The remaining 36 appeared to be novel isoforms of previously
annotated transcripts (table A.2).

Regarding already known transcript isoforms, 31624 long noncoding RNA were
identified from previous annotations by NONCODE (v4) and Ensembl (mm9).
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Table A.1: Overview of the 30 novel intergenic lncRNA candidates. Nearest reference genes,
transcripts and class codes were assigned by Cu�compare, using the Ensembl mm9 annotation as
reference. Column headers as in main text table 4.1.

Isoform id Gene Nearest transcript Class Length Locus

TCONS 00078697 - - u 1174 10:62259045-62260412
TCONS 00122305 - - u 1070 11:58409413-58410669
TCONS 00126277 - - u 694 11:84684559-84685378
TCONS 00129545 - - u 3434 11:104796669-104801381
TCONS 00156551 - - u 403 12:32068232-32068765
TCONS 00170486 - - u 1074 12:113950607-113951761
TCONS 00189355 - - u 1250 12:107120334-107121995
TCONS 00224111 - - u 4478 13:74597747-74603043
TCONS 00305463 - - u 669 15:86592532-86593366
TCONS 00328957 - - u 1642 16:19892287-19893993
TCONS 00359545 - - u 2538 17:95166243-95174862
TCONS 00373910 - - u 2500 17:88351484-88354043
TCONS 00388566 - - u 2163 18:76813155-76815764
TCONS 00452647 - - u 844 2:171771282-171772189
TCONS 00496710 - - u 1543 3:69572143-69573834
TCONS 00502760 - - u 998 3:98061089-98062695
TCONS 00545054 - - u 1839 4:3016213-3018590
TCONS 00622031 - - u 511 5:28198977-28199610
TCONS 00637091 - - u 904 5:114545674-114547464
TCONS 00663966 - - u 517 6:135306139-135306768
TCONS 00681106 - - u 1238 6:90843187-90845069
TCONS 00713893 - - u 613 7:6928150-6928993
TCONS 00721729 - - u 2453 7:65876002-65879125
TCONS 00722564 - - u 974 7:69183232-69184816
TCONS 00738833 - - u 1493 8:19706436-19708036
TCONS 00742571 - - u 3569 8:43100252-43103910
TCONS 00743635 - - u 943 8:48001763-48002902
TCONS 00769513 - - u 2114 8:76172586-76174856
TCONS 00770093 - - u 536 8:79075977-79076569
TCONS 00829084 - - u 1035 X:41701449-4170340
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Table A.2: Overview of the 36 novel lncRNA candidates that appeared to be new isoforms of
previously known transcripts. Nearest reference genes, transcripts and class codes were assigned
by Cu�compare, using the Ensembl mm9 annotation as reference. Column headers as in main text
table 4.1.

Isoform id Gene Nearest transcript Class Length Locus

TCONS 00002246 Gm16720 ENSMUST00000130710 j 3030 1:16647632-16652359
TCONS 00044520 Als2cr12 ENSMUST00000055313 j 1832 1:58713908-58752833
TCONS 00058021 9230116N13Rik ENSMUST00000140195 j 2077 1:138308120-138336735
TCONS 00080011 RP23-60H16.1.1 ENSMUST00000177104 j 1963 10:70773492-70777007
TCONS 00122763 Gm12273 ENSMUST00000137418 j 1592 11:61764276-61766238
TCONS 00126764 Coil ENSMUST00000135325 j 579 11:88831107-88852927
TCONS 00191604 Gm17177 ENSMUST00000169144 j 1305 13:3120377-3122425
TCONS 00199845 Gm904 ENSMUST00000099519 j 1151 13:50738596-50741207
TCONS 00315218 Cd200r2 ENSMUST00000102805 j 1176 16:44867209-44915953
TCONS 00335531 2310005G13Rik ENSMUST00000067173 j 3363 16:57036923-57071459
TCONS 00386270 Gm4951 ENSMUST00000031549 j 5278 18:60371224-60408364
TCONS 00416304 Slc22a28 ENSMUST00000065651 j 933 19:8136698-8206472
TCONS 00425961 Gm13293 ENSMUST00000131188 j 1719 2:11261115-11264989
TCONS 00479186 2310005A03Rik ENSMUST00000142569 j 1815 2:154923287-154925817
TCONS 00495995 RP23-445D13.2.1 ENSMUST00000176925 j 1393 3:64251244-64264017
TCONS 00545120 Gm11784 ENSMUST00000118568 j 1210 4:3313992-3315945
TCONS 00555933 Orm3 ENSMUST00000006687 j 888 4:63017086-63020545
TCONS 00562897 Gm12789 ENSMUST00000106914 j 1489 4:101659230-101662836
TCONS 00579840 Gm12505 ENSMUST00000146041 j 743 4:55423234-55431714
TCONS 00589000 Skint10 ENSMUST00000068851 j 980 4:112383751-112447495
TCONS 00590275 Gm12886 ENSMUST00000106266 j 2330 4:121086420-121095704
TCONS 00621502 Mir3096 ENSMUST00000116685 o 2228 5:23214891-23218029
TCONS 00621825 Speer4a ENSMUST00000079447 j 3079 5:26359122-26366046
TCONS 00640073 Gm454 ENSMUST00000160126 j 2029 5:138643516-138648896
TCONS 00650640 Vmn1r4 ENSMUST00000176838 j 845 6:56874015-56908094
TCONS 00662554 Clec2h ENSMUST00000032518 j 2218 6:128612403-128627547
TCONS 00663622 5530400C23Rik ENSMUST00000048459 j 1782 6:133242189-133246057
TCONS 00675723 A530053G22Rik ENSMUST00000060147 j 2808 6:60345557-60353737
TCONS 00686793 5930416I19Rik ENSMUST00000112152 j 1183 6:128306021-128312929
TCONS 00686826 Klrb1a ENSMUST00000032512 j 2088 6:128559085-128573419
TCONS 00686877 Klrb1b ENSMUST00000032472 j 3660 6:128763467-128777652
TCONS 00690369 Gm3104 ENSMUST00000171004 j 1454 7:3085852-3088038
TCONS 00714087 Nlrp4d ENSMUST00000086269 j 637 7:10944249-10974565
TCONS 00757200 Cd209c ENSMUST00000127592 j 1447 8:3940193-3954746
TCONS 00803647 Gm3867 ENSMUST00000086108 j 1222 9:36064625-36065962
TCONS 00823024 Enox ENSMUST00000140767 j 3866 X:100688894-100701683
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A.2.2 Di�erential expression testing

Among the previously known lncRNAs, 74 were significantly di�erentially expressed
(48 of those between the A7 and S7 groups). Of the novel lncRNAs, two were
di�erentially expressed between the case and control mice sacrificed after seven
weeks. In total, 3508 transcripts were di�erentially expressed between A7 and S7
(8277 if all pairwise comparisons between A3, A7 and S7 are included).

The overall most significantly di�erentially expressed transcript isoforms (be-
tween A7 and S7) are summarised in table A.3. Similarly, the most di�erentially
expressed lncRNA (both novel and previously known) are presented in table A.4.

Concordant with the results presented in the main analysis in section 4.3, hi-
stone proteins are among the ones displaying the largest di�erences in transcript
abundance estimates in the comparison of the A7 and S7 groups of mouse samples
(table A.3).

Sparc, however, was a gene not highlighted in the original results. The protein
produced by this gene takes part in the regulation of extracellular matrix formation
[67]. As previously mentioned in the main report, processes a�ecting the composition
and eventual degradation of the extracellular matrix are involved in AAA disease.

Tyrobp has roles in the immune system and takes part in inflammation “via its
coupling to myeloid receptors, such as the triggering receptors expressed by myeloid
cells (TREM) displayed by neutrophils, monocytes/macrophages and dendritic cells”
[68]. This is interesting in context of the inflammatory response observed during
abdominalaortic aneurysm formation, in which macrophages (among other immune
cells) are involved [3]. Another highly di�erentially expressed gene with connections
to the immune system is Pdpn, which besides regulating cell motility [69] also “plays
crucial roles in the biology of immune cells, including T cells and dendritic cells”
[70]. An additional connection to the immune system among the genes in table A.3
is Mpeg1, which stands for “Macrophage Expressed Gene 1”.

Angptl1 stands for Angiopoietin-Like Protein 1 and is known to display anti-
angiogenic properties by “inhibiting the proiferation, migration, tube formation,
and adhesion of endothelial cells” [71] and has additionally “been shown to exhibit
antiapoptotic activity in human endothelial cells” [71] (endothelial cells line the
inside of blood vessels). Given these descriptions and its high di�erential epression
between case and control, Angptl1 could be suspected to have a role in the disease
studied here.

It should also be mentioned, although its implications are rather unclear, that
other than the above discussed genes, a significant number of predicted genes and
pseudogenes were also present in table A.3.

Regarding the lncRNAs, ENSMUST00000130642 was the most di�erentially ex-
pressed transcript (table A.4). It stems from the gene “Sparc”, which was discussed
above. However, as such, one would probably suspect that its expression levels
are a passive result of the overall expression of the gene (and its main protein),
rather than indicative of any independent functionality for the noncoding isoform.
However, that hypothesis remains to be tested.

Several NONCODE lncRNAs were di�erentially expressed. Though these remain
to be characterized, and not much can be said about them. The exclusively lncRNA-
producing genes 2410006H16Rik, F630028O10Rik, BC029722 and C330006A16Rik
are also found among the transcripts in table A.4, though they remain unclassified.
Snhg5 also remains to characterize further (as not much information could be found
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about it). Similarly to table A.3, a multitude of predicted genes are also represented
in table A.4.

Table A.3: The overall 35 most di�erentially expressed genes (based on individual isoforms)
between AngII treated mice harvested after seven weeks (A7) and control mice harvested after
seven weeks (S7). Column headers as in main text table 4.2.

Transcript ID Gene Class log2 fold change p-value q-value

ENSMUST00000109141 Gm15427 = -Inf 0.00005 0.00636546
ENSMUST00000130642 Sparc = -Inf 0.00005 0.00636546
ENSMUST00000087714 Hist1h4j = -Inf 0.00005 0.00636546
ENSMUST00000078369 Hist1h2ab = -Inf 0.00005 0.00636546
ENSMUST00000099704 Hist1h3i = -Inf 0.00005 0.00636546
ENSMUST00000091751 Hist1h2an = -Inf 0.00005 0.00636546
ENSMUST00000091701 Hist1h3a = -Inf 0.00005 0.00636546
ENSMUST00000074245 Gm10119 = -Inf 0.00005 0.00636546
ENSMUST00000089396 Gm6723 = -Inf 0.00005 0.00636546
ENSMUST00000088648 Gm8759 = -Inf 0.00005 0.00636546
ENSMUST00000097682 Rpl27-ps3 = -Inf 0.00005 0.00636546
ENSMUST00000051412 Gm5512 = -Inf 0.00005 0.00636546
ENSMUST00000119459 H3f3c = -Inf 0.00005 0.00636546
ENSMUST00000169025 Gm17510 = -Inf 0.00005 0.00636546
ENSMUST00000122336 Gm12751 = -Inf 0.00005 0.00636546
ENSMUST00000118323 Gm11936 = -Inf 0.00005 0.00636546
ENSMUST00000117129 Pgam1-ps2 = -Inf 0.00005 0.00636546
ENSMUST00000121308 Gm5931 = -Inf 0.00005 0.00636546
ENSMUST00000083987 U6 = -Inf 0.00010 0.01118960
ENSMUST00000117045 Dynlt1-ps1 = -Inf 0.00010 0.01118960
ENSMUST00000117533 Gm12062 = -Inf 0.00035 0.03008360
ENSMUST00000093651 U6 = Inf 0.00040 0.03375630
ENSMUST00000050586 5430419D17Rik x -Inf 0.00055 0.04222160
ENSMUST00000006626 Actn3 = -5.58226 0.00010 0.01118960
ENSMUST00000032800 Tyrobp = -5.35215 0.00005 0.00636546
ENSMUST00000055770 Hist1h1a = -5.31370 0.00005 0.00636546
ENSMUST00000077389 Gm7536 = -5.28799 0.00065 0.04835630
ENSMUST00000030317 Pdpn = -5.25626 0.00005 0.00636546
ENSMUST00000027885 Angptl1 = -5.18182 0.00015 0.01562130
ENSMUST00000080511 Hist1h1b = -5.15822 0.00010 0.01118960
ENSMUST00000040359 Arsi = -5.11103 0.00005 0.00636546
ENSMUST00000021506 Serpina3n = -5.09322 0.00050 0.03911860
ENSMUST00000003643 Ckm = -5.08662 0.00005 0.00636546
ENSMUST00000081035 Mpeg1 = -5.06781 0.00005 0.00636546
ENSMUST00000163360 D17H6S56E-5 = -5.05824 0.00065 0.04835630
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Table A.4: The overall 35 most di�erentially expressed lncRNA (based on individual isoforms)
between AngII treated mice harvested after seven weeks (A7) and control mice harvested after
seven weeks (S7). Column headers as in main text table 4.2. Matches to protein coding genes may
be observed, but those refer to noncoding isoforms of those genes.

Transcript ID Gene Class log2 fold change p-value q-value

ENSMUST00000130642 Sparc = -Inf 0.00005 0.00636546
ENSMUST00000117533 Gm12062 = -Inf 0.00035 0.03008360
ENSMUST00000131787 2410006H16Rik = -3.26653 0.00005 0.00636546
ENSMUST00000153077 Megf8 = -2.46350 0.00025 0.02314610

TCONS 00545054 - u 2.45603 0.00020 0.01973000
ENSMUST00000023292 Arsa = -2.45424 0.00005 0.00636546
ENSMUST00000034997 Snhg5 = -2.44712 0.00005 0.00636546
ENSMUST00000137359 Gm15512 = -2.40868 0.00060 0.04528880
ENSMUST00000147681 F630028O10Rik = -2.34503 0.00010 0.01118960
ENSMUST00000110601 Gpr137b-ps = -2.29320 0.00005 0.00636546
ENSMUST00000124586 BC029722 = -2.25654 0.00005 0.00636546
ENSMUST00000133808 C330006A16Rik = -2.23649 0.00005 0.00636546

NONMMUT050162 NONMMUG031060 = -2.21508 0.00035 0.03008360
NONMMUT022945 NONMMUG014195 = -2.16479 0.00005 0.00636546

ENSMUST00000155507 Pgs1 = -2.14105 0.00025 0.02314610
ENSMUST00000172805 Map3k8 = -2.10502 0.00025 0.02314610

NONMMUT069993 NONMMUG043325 = -2.03938 0.00005 0.00636546
ENSMUST00000155949 6530402F18Rik = -2.03331 0.00020 0.01973000
ENSMUST00000151488 Yipf3 = -2.02016 0.00050 0.03911860
ENSMUST00000173269 Neu1 = -2.00370 0.00010 0.01118960
ENSMUST00000164646 E530011L22Rik = -2.00007 0.00010 0.01118960
ENSMUST00000148314 Gm13889 = -1.96165 0.00005 0.00636546
ENSMUST00000116685 Mir3096 o -1.93738 0.00045 0.03700300
ENSMUST00000175820 A230050P20Rik = -1.92682 0.00005 0.00636546

NONMMUT045116 NONMMUG027834 = -1.92268 0.00050 0.03911860
ENSMUST00000138323 Pfdn2 = -1.76269 0.00010 0.01118960

NONMMUT032612 NONMMUG020085 = -1.72129 0.00020 0.01973000
ENSMUST00000097503 Gm10524 = -1.71945 0.00025 0.02314610
ENSMUST00000163793 Gm17255 = -1.71467 0.00005 0.00636546
ENSMUST00000171743 Tmem134 = -1.70072 0.00050 0.03911860
ENSMUST00000165292 Gm17282 = -1.68657 0.00005 0.00636546
ENSMUST00000156380 2900053A13Rik = -1.65174 0.00065 0.04835630
ENSMUST00000134226 Gm12590 = -1.62306 0.00015 0.01562130

NONMMUT072544 NONMMUG044953 = -1.56763 0.00005 0.00636546
ENSMUST00000099459 Gm10780 = -1.49290 0.00005 0.00636546
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A.2.3 Co-expression network modules

Using WGCNA [22], 11 co-expression modules were obtained. A visualisation of the
WGCNA dynamic tree cut module assignment can be seen in figure A.1. As previ-
ously, the modules were ranked based on correlation between the module eigengene
and the treatment status vector. The best ranking modules are found in table A.5.
As before, the modules were assigned labels in the form of arbitrary colours by the
WGCNA software. From now on, the modules with be referred to by these colour
names.
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Figure A.1: The WGCNA module assignment of this dataset. The black dendrogram is obtained
through hierarchical clustering of the weighted correlation based network. Modules are represented
by individual colours and are the result of applying dynamic tree cutting to the dendrogram.

Table A.5: Ranking of modules according to absolute Pearson correlation between the eigengene
of the module and a vector of treatment status. Each module is represented with a colour code
corresponding to figure A.1. Only the most significantly correlated modules are shown here (ab-
solute correlation greater than or equal to 0.80 and p-value less or equal to 0.05). “Size” refers to
the number of transcript isoforms in the module.

Module Correlation p-value Size D.e lncRNAs Novel lncRNAs

yellow 0.94 0.002 1313 2 14
pink 0.89 0.007 547 1 0
blue 0.88 0.008 3421 19 6

turquoise 0.84 0.02 4245 21 7

The “yellow” module

As can be seen in table A.5, the transcript isoforms in the “yellow” module appears
to be expressed in patterns that correlate highly with the treatment. The genes of the
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most central transcripts (in terms of betweenness centrality and degree, calculated
with Cytoscape and visualised in figure A.2) of the yellow module were Gm16576,
Ttk, Cd109, Fmod, BC034090, Trip13, Rasgrf1, 7SK, Tlr9, Ddah1, and C1qtnf3.
Gm16576 is a predicted lincRNA gene with unknown function. BC034090 appears
to an unclassified protein coding gene.

The expression of Gm16576, which can be seen in figure A.3, was higher in the
“A7” mice than in the “S7” control, and the di�erence was statistically significant
according to the “getSig” function of the CummeRbund R package, using an alpha
cuto� of 0.05. Other significantly di�erentially expressed among the central nodes
were Tlr9 (figure A.4), Fmod (figure A.5) (both in the comparison A7, S7 and A3,
A7) and Trip13 (figure A.6) (in the comparison A7, S7). Tlr9 stands for “Toll-
like receptor 9”, Fmod stand for “fibromodulin” and Trip13 for “Thyroid Receptor
Interacting Protein 13”.

In total, 34 transcripts (6 lncRNAs) were significantly di�erentially expressed
between any two samples in the “yellow” module, 21 (2 lncRNAs) between A7 and
S7. Gm16576 was the only one of these that was previously annotated in Ensembl.
The others were present in NONCODE. The remaining five di�erentially expressed
lncRNAs were novel transcripts. The overall most di�erentially expressed transcripts
in the “yellow” module can be seen in table A.7.

Table A.6: Di�erentially expressed lncRNAs in the “yellow” module. Column headers as in main
text table 4.7.

Transcript ID Gene Class log2 fold change p-value q-value Groups

ENSMUST00000128342 Gm16576 = -1.2 5e-05 0.00636546 A7, S7
TCONS 00722067 - u -2.47005 5e-05 0.00636546 A3, A7
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Figure A.2: The “yellow” WGCNA derived module. Figure elements are the same as was
described in the legend of main text figure A.7. A high resolution version of the figure can be
obtained from the author upon request.
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Figure A.3: Expression of the lincRNA Gm16576, the most central transcript of the “yellow”
WGCNA module. The blue bar corresponds to the “A3” sample, pink to “A7” and green to “S7”.
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Figure A.4: Expression of Tlr9, one of the most central transcripts of the “yellow” WGCNA
module. The blue bar corresponds to the “A3” sample, pink to “A7” and green to “S7”.
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Figure A.5: Expression of Fmod. TCONS 00023959 was one of the most central tran-
scripts of the “yellow” WGCNA module. TCONS 00023958 was a novel transcript overlapping
TCONS 00023959. The blue bar corresponds to the “A3” sample, pink to “A7” and green to
“S7”.
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Figure A.6: Expression of Trip13. TCONS 00224031 was one of the most central transcripts
of the “yellow” WGCNA module. TCONS 00224033 was a novel transcript isoform overlapping
TCONS 0022403. The blue bar corresponds to the “A3” sample, pink to “A7” and green to “S7”.

Table A.7: Di�erentially expressed transcripts between A7 and S7 in the “yellow” module. Col-
umn headers as in main text table 4.2.

Transcript ID Gene Class log2 fold change p-value q-value

ENSMUST00000087316 Capn6 = -4.92985 0.00005 0.00636546
ENSMUST00000048183 Fmod = -4.25981 0.00005 0.00636546
ENSMUST00000060710 Cdc25c = -3.10131 0.00065 0.04835630
ENSMUST00000072119 Ccnb1 = -2.74186 0.00020 0.01973000
ENSMUST00000029848 Col24a1 j -2.61988 0.00020 0.01973000
ENSMUST00000076505 Pyroxd2 = -2.57141 0.00005 0.00636546
ENSMUST00000020899 Matn3 = -2.38223 0.00005 0.00636546
ENSMUST00000128727 Actr3b = -2.24899 0.00035 0.03008360
ENSMUST00000083546 Mir133b = -2.20249 0.00005 0.00636546
ENSMUST00000062241 Tlr9 = -2.20233 0.00005 0.00636546
ENSMUST00000048246 Fgb = 2.15004 0.00015 0.01562130
ENSMUST00000098382 Adamts17 j -2.04165 0.00060 0.04528880
ENSMUST00000058825 Ccdc121 = -1.96315 0.00005 0.00636546
ENSMUST00000032341 Art4 = -1.82901 0.00020 0.01973000
ENSMUST00000098953 Mex3a = -1.74837 0.00005 0.00636546
ENSMUST00000090473 Gpr88 = -1.72988 0.00005 0.00636546
ENSMUST00000022053 Trip13 = -1.67750 0.00005 0.00636546
ENSMUST00000109212 Gm5431 = -1.48573 0.00005 0.00636546
ENSMUST00000043183 Ces2g = -1.41782 0.00050 0.03911860
ENSMUST00000128342 Gm16576 = -1.20000 0.00005 0.00636546

TCONS 00314402 - u 1.06805 0.00030 0.02649240
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The “blue” module

The central nodes of the “blue” module (visualised in figure A.7) were transcript
isoforms from the genes Gns, Pctp, Heatr5a, Wdfy2, Eny2, Ext1, Ifnar1, Dscr3,
B3gnt1, Ppp3ca, Hey1, Pole, Rpn1, Dera and C230081A13Rik. Several lncRNA were
present in this module. Those can be found in table A.8. The 25 most significantly
di�erentially expressed transcript isoforms in the “blue” module are shown in table
A.9.

Seven of the central nodes corresponded to di�erentially expressed isoforms:
Pctp, Wdfy2, Ifnar1, Dscr3, B3gnt1, Hey1 and Dera.
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Figure A.7: The “blue” WGCNA derived module. Larger nodes indicate higher betweenness
centrality. Figure elements are the same as was described in the legend of main text figure A.7. A
high resolution version of the figure can be obtained from the author upon request.
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Chapter A: Alternative analysis

Table A.8: Di�erentially expressed lncRNAs in the “blue’ module. Column headers as in main
text figure 4.7

Transcript ID Gene Class log2 fold change p-value q-value Groups

ENSMUST00000131787 2410006H16Rik = -3.27 0.00005 0.0064 A7, S7
ENSMUST00000153077 Megf8 = -2.46 0.00025 0.023 A7, S7
ENSMUST00000023292 Arsa = -1.86; -2.45 0.00055; 0.00005 0.042; 0.0064 A3, S7; A7, S7
ENSMUST00000137359 Gm15512 = -2.41 0.00060 0.045 A7, S7
ENSMUST00000147681 F630028O10Rik = -2.35 0.00010 0.011 A7, S7
ENSMUST00000110601 Gpr137b-ps = -2.29 0.00005 0.0064 A7, S7

TCONS 00592563 - u -2.22 0.00035 0.030 A7, S7
NONMMUT022945 NONMMUG014195 = -2.16 0.00005 0.0064 A7, S7

ENSMUST00000155949 6530402F18Rik = -2.03 0.00020 0.020 A7, S7
ENSMUST00000151488 Yipf3 = -2.02 0.00050 0.039 A7, S7
ENSMUST00000164646 E530011L22Rik = -2.00 0.00010 0.011 A7, S7
ENSMUST00000175820 A230050P20Rik = -1.93 0.00005 0.0064 A7, S7
ENSMUST00000171743 Tmem134 = -1.70 0.00050 0.039 A7, S7
ENSMUST00000165292 Gm17282 = -1.50; -1.69 0.00040; 0.00005 0.034; 0.0064 A3, S7; A7, S7
ENSMUST00000134226 Gm12590 = -1.62 0.00015 0.016 A7, S7
ENSMUST00000146416 Rbm12b = -1.48 0.00005 0.0064 A7, S7
ENSMUST00000168014 Gm17401 = -1.33 0.00005 0.0064 A7, S7
ENSMUST00000105140 AW011738 = -1.21; -1.32 0.00050; 0.00015 0.039; 0.016 A3, S7; A7, S7
ENSMUST00000131147 Gm13387 = -1.14 0.00045 0.037 A7, S7

Table A.9: The 25 most di�erentially expressed transcript isoforms between A7 and S7 in the
“blue” module. Column headers as in main text table 4.2.

Transcript ID Gene Class log2 fold change p-value q-value

ENSMUST00000055770 Hist1h1a = -5.31370 0.00005 0.00636546
ENSMUST00000030317 Pdpn = -5.25626 0.00005 0.00636546
ENSMUST00000040359 Arsi = -5.11103 0.00005 0.00636546
ENSMUST00000081035 Mpeg1 = -5.06781 0.00005 0.00636546
ENSMUST00000043069 Cyth4 = -4.97811 0.00005 0.00636546
ENSMUST00000025497 Fbn2 = -4.93516 0.00005 0.00636546
ENSMUST00000099703 Hist1h2bb = -4.77073 0.00005 0.00636546
ENSMUST00000024118 Clec4n = -4.76126 0.00005 0.00636546
ENSMUST00000021685 Hhipl1 = -4.71655 0.00005 0.00636546
ENSMUST00000002883 Sfrp4 = -4.68946 0.00005 0.00636546
ENSMUST00000006956 Saa3 = -4.62616 0.00005 0.00636546
ENSMUST00000015664 Ctsk = -4.55248 0.00005 0.00636546
ENSMUST00000034774 Itga11 = -4.54105 0.00005 0.00636546
ENSMUST00000024981 Hn1l = -4.48850 0.00005 0.00636546
ENSMUST00000018918 Cd68 = -4.43995 0.00005 0.00636546
ENSMUST00000028897 Cpxm1 = -4.42749 0.00005 0.00636546
ENSMUST00000060484 Clec4a1 = -4.40459 0.00025 0.02314610
ENSMUST00000030202 Glipr2 = -4.37610 0.00060 0.04528880
ENSMUST00000025419 Ppic = -4.31323 0.00005 0.00636546
ENSMUST00000087557 Tspan6 = -4.29439 0.00005 0.00636546
ENSMUST00000003445 Fkbp11 = -4.28323 0.00005 0.00636546
ENSMUST00000034742 Ccnb2 = -4.27510 0.00010 0.01118960
ENSMUST00000004587 Clec11a = -4.21670 0.00005 0.00636546
ENSMUST00000004201 Col5a3 = -4.20165 0.00005 0.00636546
ENSMUST00000086763 Emr1 = -4.16421 0.00005 0.00636546
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Chapter A: Alternative analysis

The “turquoise” module

The central nodes of the “turquoise” module (visualised in figure A.8) corresponded
to the genes Tmem131, Atf6, Fig4, Tspan31, Itsn2, Arf6, Cpsf2, Ubr7, Hist1h4d,
Fam120a, 2610301G19Rik, Ep300, Scaf8, Sos1, Trim56, Gm5578, Atp6v0d1. Signif-
icantly di�erentially expressed isoforms among these were from the genes Tmem131,
Fig4, Arf6, Hist1h4d, 2610301G19Rik, Gm5578 and Atp6v0d1.

Di�erentially expressed lncRNA in this module are summarised in table A.10.
The overall 25 most di�erentially expressed transcript isoforms, both coding and
noncoding, are shown in table A.11.
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Figure A.8: The “turquoise” WGCNA derived module. Figure elements are the same as was
described in the legend of main text figure A.7. A high resolution version of the figure can be
obtained from the author upon request.
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Table A.10: Di�erentially expressed lncRNAs in the “turquoise” module. Column headers as in
main text table 4.2.

Transcript ID Gene Class log2 fold change p-value q-value Groups

ENSMUST00000148314 Gm13889 = -3.97; -1.96; -2.00 0.00005; 0.00005; 0,00050 0.0064; 0.0064; 0.0064 A3, S7; A7, S7; A3, A7
ENSMUST00000023207 Apod = -3.59; -2.95 0.00010; 0,00050 0.011; 0.039 A3, S7; A3, A7
ENSMUST00000168817 Fcgr3 = -3.49 0.00055 0.042 A3, S7
ENSMUST00000133808 C330006A16Rik = -2.91; -2.24 0.00005; 0.00005 0.0064; 0.0064 A3, S7; A7, S7
ENSMUST00000034997 Snhg5 = -2.63; -2.45 0.00010; 0.00005 0.011; 0.0064 A3, S7; A7, S7
ENSMUST00000155507 Pgs1 = -2.58; -2.14 0.00005; 0.00025 0.0064; 0.023 A3, S7; A7, S7
ENSMUST00000172805 Map3k8 = -2.52; -2.11 0.00005; 0.00025 0.00637; 0.023 A3, S7; A7, S7

TCONS 00453772 - = -2.39 0.00045 0.037 A3, S7
TCONS 00789319 - = -2.38; -2.04 0.00005; 0.00005 0.0064; 0.0064 A3, S7; A7, S7

ENSMUST00000173269 Neu1 = -2.00 0.00010 0.011 A7, S7
NONMMUT045116 NONMMUG027834 = -1.99; -1.92 0.00045; 0.00050 0.037; 0.039 A3, S7; A7, S7

ENSMUST00000132305 Clcf1 = -1.90 0.00045 0.037 A3, S7
TCONS 00386479 - = -1.82; -1.72 0.00015; 0.00020 0.016; 0.020 A3, S7; A7, S7

ENSMUST00000123544 Gm16516 = -1.78 0.00020 0.020 A3, S7
ENSMUST00000135037 2810001G20Rik = -1.74 0.00060 0.045 A3, S7
ENSMUST00000070085 AI504432 = -1.66 0.00005 0.0065 A3, S7

TCONS 00274088 - = -1.61; -1.28 0.00005; 0.00005 0.0064; 0.0064 A3, S7; A7, S7
ENSMUST00000164804 Gm17056 = -1.60 0.00050 0.039 A3, S7

TCONS 00710288 - = -1.41 0.00045 0.037 A3, S7
ENSMUST00000070085 AI504432 = -1.05 0.00015 0.016 A7, S7

Table A.11: The 25 most di�erentially expressed transcripts between A7 and S7 in the
“turquoise” module. Column headers as in main text table 4.2.

Transcript ID Gene Class log2 fold change p-value q-value

ENSMUST00000032800 Tyrobp = -5.35215 0.00005 0.00636546
ENSMUST00000021506 Serpina3n = -5.09322 0.00050 0.03911860
ENSMUST00000119853 Gm12174 = -4.68687 0.00005 0.00636546
ENSMUST00000038144 Esm1 = -4.63327 0.00005 0.00636546
ENSMUST00000005548 Hmox1 = -4.56687 0.00005 0.00636546
ENSMUST00000116487 Lgals3 = -4.41037 0.00005 0.00636546
ENSMUST00000118928 Gm13456 = -4.33618 0.00005 0.00636546
ENSMUST00000033004 Il4ra = -4.22683 0.00005 0.00636546
ENSMUST00000025486 Lmnb1 = -4.16269 0.00005 0.00636546
ENSMUST00000040772 Fermt3 = -4.12244 0.00005 0.00636546
ENSMUST00000034214 Mt2 = -4.07249 0.00005 0.00636546
ENSMUST00000071130 Alox5ap = -4.02396 0.00005 0.00636546
ENSMUST00000113440 Ccdc88b = -3.99798 0.00020 0.01973000
ENSMUST00000002678 Tgfb1 = -3.98090 0.00065 0.04835630
ENSMUST00000100198 Bin2 = -3.93078 0.00005 0.00636546
ENSMUST00000030651 Sh3bgrl3 = -3.90295 0.00005 0.00636546
ENSMUST00000079957 Fcer1g = -3.88466 0.00005 0.00636546
ENSMUST00000021011 Ccl7 = -3.88466 0.00020 0.01973000
ENSMUST00000069988 Xpnpep1 = -3.86411 0.00005 0.00636546
ENSMUST00000058914 Tuba1c = -3.84341 0.00005 0.00636546
ENSMUST00000034215 Mt1 = -3.69782 0.00005 0.00636546
ENSMUST00000102881 Plek = -3.69213 0.00005 0.00636546
ENSMUST00000034339 Cdh5 = -3.66873 0.00005 0.00636546
ENSMUST00000111315 Adamts4 = -3.64842 0.00050 0.03911860
ENSMUST00000021676 0610007P14Rik = -3.64035 0.00045 0.03700300
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A.2.4 MetaCore c� analysis

The “yellow” module

Constructing a network of curated relations among the most central nodes of the
“yellow” module using the “expand by one” algorithm in MetaCore c� gave the re-
sults shown in figure A.9. Among the genes connected to the central yellow nodes
in the MetaCore c� network, 16 were annotated as being relevant in the context of
at least one of the following diseases: “Aneurysm, Ruptured”; “Aneurysm”; “Aor-
tic Aneurysm”; “Aortic Aneurysm, Thoracic”; “Aortic Aneurysm”, “Abdominal”;
“Hypertension”; “Atherosclerosis”; “Intracranial Aneurysm”.

Figure A.9: MetaCore c� interaction network constructed from central nodes of the “yellow”
module. The “expand by one” algorithm was used (default settings). The gene identifiers were
in some cases translated to the internal naming scheme of MetaCore c�, but the original genes are
indicated with blue circles. A high resolution version of the figure can be obtained from the author
upon request.
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The “blue” module

Constructing a network of curated relations among the most central nodes of the
“blue” module using the “shortest paths” algorithm (without the option “use canon-
ical pathways”) gave the results shown in figure A.10. Among the nodes in the
MetaCore c� interaction network constructed from these genes, Tyk2, Calcineurin A
and the androgen receptor were annotated as therapeutic targets. HEY1, 26S pro-
teasome and the androgen receptor were related to the term “hypertension”. Tyk2,
IFN-alpha/beta receptor, DNA polymerase epsilon, c-Myc, c-Jun, the androgen re-
ceptor, HEY1, Calcineurin A, Huntingtin, 26S proteasome and CREB1 were related
to “cardiovascular disease” according to the Metacore c� annotation.

Figure A.10: MetaCore c� interaction network constructed from central nodes of the “blue”
module. The “shortest paths” algorithm was used (with ”use canonical pathways” turned o�).
The gene identifiers were in some cases translated to the internal naming scheme of MetaCore c�,
but the original genes are indicated with blue circles.
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The “turquoise” module

The MetaCore c� network constructed from the genes belonging to the central tran-
scripts from the “turquoise” module was built using the “shortest paths” algo-
rithm (without the option “use canonical pathways”). Searching the network for
therapeutic targets highlighted 13 nodes: H-Ras, ESR1, CDK1, TORC2, c-Src,
p38 MAPK, HDAC3, HIF1A, the androgen receptor, c-Abl, EGFR, FGFR1 and
VEGFR-3. Network objects related to either “Aortic Aneurysm; Abdominal”, “Aor-
tic Aneurysm”, ‘Aneurysm” or “Hypertension” were ATM, GCR-beta, AHR, Sirtuin
1, ESR1, HIF1A, PGC1-alpha, p85-alpha, BMAL1 and the androgen receptor.

Figure A.11: MetaCore c� interaction network constructed from central nodes of the “turquoise”
module. The “shortest paths” algorithm was used (with ”use canonical pathways” turned o�).
The gene identifiers were in some cases translated to the internal naming scheme of MetaCore c�,
but the original genes are indicated with blue circles.
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A.2.5 Clustering comparison

Using the method mentioned in section 3.6.3, a Cramér’s V of 0.025 was obtained
when testing for association between WGCNA and k -means clustering. For a visu-
alisation of the overlap between modules (clusters), see figure A.12. These results
indicate that no significant association between k -means and WGCNA clustering
was present (see the discussion in section 5).
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Figure A.12: The overlap of WGCNA module assignment and k-means clustering on the coef-
ficient of variation filtered dataset. For k-means k was set equal to 11 and n = 200 starts of the
algorithm was used. The image is a visualisation of the contingency matrix, wherein high values
of a given cell is displayed brightly and low or zero overlap between two given clusters is displayed
darkly shaded. (Additionally, in this image the number of transcripts in the intersection of each
pair of modules have been normalised by the total size of the modules for greater clarity.)

A.3 Discussion

The results of the trimmed read analysis revealed a rather di�erent picture. Other
genes and long noncoding RNAs were highlighted as most likely to be important
in context of the disease. Other novel lncRNAs were also discovered, (with the
exception of one, which was identified in the original analysis as well).

It remains hard to determine which of the two analyses is the more correct one,
especially given the multitude of parameters changed between the two:

The trimming procedure can be done in many ways, and there is no guarantee
that the one performed here is optimal, or even better than performing no trimming
at all.

In addition, the e�ectiveness of bias correction in Cu�di� is unclear and may
need to be examined further. One concern when using trimmed reads and bias
correction in combination is that, since bias correction examines the ends of reads
for overrepresented patterns, necessary information for e�ectively performing this
correction may be lost during trimming. Though this would mostly be a concern
if bias correction is thought to indeed be valuable to perform, something that was
not entirely obvious throughout the analysis performed here. Further testing of the
impact of such parameters is thus recommended.
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Also, two di�erent artifact filtering schemes were employed in the novel lncRNA
discovery step of the two analyses, so those results need not be di�erent entirely due
to the trimming performed. And since multiple parameters of mapping, assembly
and di�erential expression testing were changed (besides the trimming of the reads)
between the original analysis and the supplementary one, it is not certain which
factors contributed the most to the di�erences observed.

There is, however, one indication which makes the original analysis appear more
trustworthy: The trimmed read based transcriptome assembly yielded many more
”novel” RNA transcript isoforms (around 200 000 more than in the original analysis).
There are two likely explanations for this: The first is that shorter reads map less
specifically to the reference genome. The other, and perhaps the most important one,
is that stricter read filtering leads to more coverage gaps in the structure of individual
transcripts, so that spurious isoforms are discovered. Inspection of several of these
”extra” novel fragments indeed revealed generally poor coverage (in comparison to
annotated variants from the same genes). The vast majority of these are thus likely
artifacts. It is not unlikely that poor isoform reconstruction may have negatively
a�ected transcript abundance estimation (and therefore also di�erential and co-
expression testing).

As such, it is recommended that these alternative results rather be seen as a
complementary set of hypotheses to the old ones, while noting that the original is
somewhat more likely to be correct. Finally, appendix B presents a table (B.1)
comprising the top 50 long noncoding RNAs deemed most promising for further
research in the context of AAA disease, weighing in results from both the original
and the alternative analysis.
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B. Candidate lncRNAs

Table B.1 presents 50 candidate lncRNAs recommended for further research. The
list is based mainly on the results from the original (main article) analysis, with
notes about di�erences to the alternative one (appendix A) included. The reason
for choosing to focus on the original analysis was motivated by the principle of par-
simony, based on the fact that the trimmed read analysis yielded far more (about
200 000 extra) novel assembled transcripts, many of which are most likely artifacts.
The presence of these suspected artifacts additionally appeared to “dilute” the read
coverage of many established (previously annotated) transcript isoforms, contribut-
ing to worse statistical significance in di�erential expression testing (and likely also
a�ecting the co-expression analysis).

In selecting candidates for this list, intergenic lncRNAs were given higher pri-
ority than lncRNAs overlapping with protein coding genes. When such isoforms of
protein coding transcripts appeared to closely follow the expression levels of the cor-
responding coding variants, these lncRNAs were excluded (if the relative abundance
of the coding and non-coding variant does not change, one could suspect that the
expression of the non-coding isoform is merely a passive side-e�ect of the expres-
sion of the protein coding variant, rather than indicative of independent lncRNA
function). Additionally, di�erentially expressed lncRNAs were given higher prior-
ity than lncRNAs that were merely co-expressed in treatment correlated modules.
Transcript isoforms with inconsistent annotation in online databases were excluded.
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Table B.1: 50 candidate lncRNAs recommended for further research, ranked by absolute log2 fold
change between the A7 and S7 groups (case and control at seven weeks) in the original analysis.
”Module” refers to co-expression module assignment in the original anaysis (only modules in table
4.5 taken into account). LncRNAs that were significantly di�erentially expressed (on transcript
level) between A7 and S7 in both the original and the alternative analysis were placed on top of
the list. Di�erences between the two analyses are noted.

Transcript ID Gene Rank in orig. Rank in alt. Note Module

ENSMUST00000131787 2410006H16Rik 10 3
ENSMUST00000147681 F630028O10Rik 16 9
ENSMUST00000034997 Snhg5 32 7
ENSMUST00000133808 C330006A16Rik 43 12
ENSMUST00000097503 Gm10524 69 28
ENSMUST00000175820 A230050P20Rik 84 24
ENSMUST00000164646 E530011L22Rik 114 21
ENSMUST00000099459 Gm10780 118 35
ENSMUST00000131248 5430416O09Rik 148 166
ENSMUST00000156243 4732414G09Rik 169 46
ENSMUST00000108969 Gm14401 173 49
ENSMUST00000117266 Gm12245 1 - *
ENSMUST00000136359, ENSMUST00000140716 H19 3, 4 - ** blue
ENSMUST00000143673 AI662270 19 - *
ENSMUST00000155083 Ppox 23 - **
ENSMUST00000132618 Eif1 24 - *
TCONS 00234018/TCONS 00348192 (novel) 17:30713409-30714566 25 - ***
ENSMUST00000132340 Trem2 33 - * blue
ENSMUST00000145164, ENSMUST00000152828 Pisd-ps1 36, 75 - *
ENSMUST00000127901 Nsun7 38 - * turquoise
ENSMUST00000127652 Tmem59 39 - **
ENSMUST00000145089 Cd37 42 - *
ENSMUST00000129649, ENSMUST00000127981 A530020G20Rik 47, 70 - *
ENSMUST00000118528 Gm14293 54 - *
ENSMUST00000171670, ENSMUST00000166221 Snhg1 55, 82 - *
ENSMUST00000164690 Gm17586 56 - **
ENSMUST00000169511 Gm9917 63 - *
ENSMUST00000170675 Xpo6 66 - **
ENSMUST00000162030 Gm10075 (AC098736.2) 67 - *
ENSMUST00000131275 Hoxb3os 68 - **
ENSMUST00000170093 Snhg7 73 - **
ENSMUST00000148900 D4Wsu53e (Rsrp1) 74 - **
ENSMUST00000151043 1300002E11Rik 76 - *
ENSMUST00000152109 C430049B03Rik 79 - ** blue
ENSMUST00000147076 Rrp1b 83 - * magenta
ENSMUST00000146721 Ndufaf4 87 - *
ENSMUST00000123292 Dynll1 90 - **
ENSMUST00000177539 RP23-164N15.3.1 (Gm20645) 94 - *
ENSMUST00000139026 Vsig10 97 - *
ENSMUST00000132305 Clcf1 99 - *
ENSMUST00000149667 9430008C03Rik 101 - **
ENSMUST00000063040 Minos1 113 - **
ENSMUST00000170099 D930016D06Rik 135 - *
ENSMUST00000152147 1810058I24Rik 136 - *
ENSMUST00000154405 Qrsl1 140 - *
ENSMUST00000145894 Gm14703 - - ** green
ENSMUST00000156068 6330403K07Rik - - ** green
ENSMUST00000105240 Timeless - - * red
ENSMUST00000132193 Alkbh6 - - * red

*Significantly di�erentially expressed on gene level in both analyses. Only significantly di�erentially expressed on transcript level

in the original analysis.
**Only significantly di�erentially expressed in the original analysis. Overall expression pattern looks very similar.
***Novel lncRNA. Significantly di�erentially expressed in both the original and the alternative analysis (log2 fold changes -2.39/-2.64.).

Not present in table A.4 since it was removed in the pre-filtering step of the novel lncRNA detection pipeline in the alternative

analysis (likely due to too low read coverage).
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