

Effect of Al oxide top coatings on the durability of thermochromic VO_2 thin films

UPPSALA UNIVERSITET

Yu-Xia Ji, Shu-Yi Li, Gunnar A. Niklasson, Claes G. Granqvist Department of Engineering Sciences, The Ångström Laboratory, Uppsala University Box 534, SE-751 21 Uppsala, Sweden

MOTIVATION

• VO₂ undergoes metal-to-insulator (rutile phase to monoclinic phase) transition at a critical temperature, τ_c , about 68 °C

• It is a thermochromic (TC) material for energy-efficient window coating

(Modulation of the infrared transmittance of solar energy)

• Performance needs to be improved for practical use

RESULTS

The AI oxide prevents oxidation of the underlying VO₂ both in high temperature environment (300 $^{\circ}$ C) (Fig. 2) and also in humidity condition (60 $^{\circ}$ C, RH= 95 $^{\circ}$) (Fig. 3) since the optical data are almost unchanged.

For the thinner AI oxide layer (10 nm), it gives good preservation of the TC properties up to $t_h = 30$ h in the hot air (Fig. 2 (a) and (b)) and up to t_h = 72 h in the humidity condition (Fig. 3 (a) and (b)). The thicker Al oxide coating (30 nm) gives better durability.

OBJECTIVE

The VO₂-based films will lose their desirable properties during extended periods of time (Fig. 1) since VO_2 is not the thermodynamically stable oxide (V_2O_5) .

Fig. 2. Spectral transmittance for 80-nm-thick VO₂ films, coated with 10 nm (panels a and b) and 30 nm of AI oxide (panels c and d), in as-deposited state and after heating at 300 $^{\circ}$ C in dry air for the shown durations t_h . Data were taken at $\tau < \tau_c$ (panels a and c) and $\tau > \tau_c$ (panels b and d).

The goal of this project is to preserve the thermochromism in VO_2 -based materials by AI oxide top coating.

Fig. 1. Spectral transmittance for an 80-nm-thick VO₂ film in as-deposited state and after heating at 300 $^{\circ}$ C in dry air for one hour. Data were taken at $\tau < \tau_c$ (panel a) and $\tau > \tau_c$ (panel b).

METHODOLOGY

Fig. 3. Spectral transmittance for 80-nm-thick VO₂ films, coated with 10 nm (panels a and b) and 30 nm of AI oxide (panels c and d), in as-deposited state and after heating at 60 $^{\circ}$ C in air with a relative humidity of 95 % for the shown durations t_h . Data were taken at $\tau < \tau_c$ (panels a and c) and $\tau > \tau_c$ (panels b and d).

CONCLUSIONS

• 80-nm-thick VO₂ films rapidly converted to non-TC V₂O₅ under the chosen harsh conditions.

A 30-nm-thick sputter-deposited AI oxide top coating provided good protection and delayed the oxidation for more than one day upon heating in dry air at 300 °C and that protection occurred for several days at 95 % relative humidity and 60 ℃.

•Thin films of VO₂ were prepared by reactive DC magnetron sputtering on 1-mm-thick glass plates. Al oxide films with thickness in the 10 to 150 nm range were deposited onto VO_2 films.

•Films of VO₂ with and without Al oxide top layers, were subjected to two accelerated aging tests: thermal oxidative and humidity conditions.

 Increased thickness of the AI oxide yielded enhanced protection.

REFERENCES & ACKNOWLEDGEMENTS

Y-X Ji, S-Y Li, G. A. Niklasson, C. G. Granqvist, *Thin Solid Films*, in press, http://dx.doi.org/10.1016/j.tsf.2014.03.043

This work was financially supported by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013)/ERC Grant Agreement No. 267234 (GRINDOOR).