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Bayesian inference in aggregated hidden Markov models 

Emil Marklund 

Populärvetenskaplig sammanfattning 

Rörelse och interaktioner hos biologiska makromolekyler (såsom proteiner och DNA) kan 
idag undersökas på enmolekyl nivå på tillräckligt korta tidsskalor för att kunna studera 
processen i detalj. Sådana detaljstudier av biologin har potential att ge mycket gott till 
samhället i stort, om metodutvecklingen fortsätter gå framåt. Studier på molekylärnivå kan till 
exempel hjälpa oss att förstå mekanismer bakom antibiotikaresistens vilket kan leda till 
upptäckter av nya antibiotika, eller lära hos hur mikrober effektivast producerar förnybara 
energikällor, för att nämna två exempel. 

Brist på bra beräkningsmetoder för dataanalys är idag en flaskhals när man vill tolka 
resultaten från enmolekyl-experiment. Arbetet under detta examensarbete har gått ut på att 
studera metoder som kan användas för att bygga matematiska modeller från enmolekyl-data 
och därmed bidra till att lösa problemen med dataanalys i forskningsfältet. Mer specifikt så 
har s.k. aggregerade dolda Markovmodeller studerats, en typ av modeller som kan användas 
för att beskriva många intressanta molekylära system som ribosomen och RNA-polymeraset. 
Kortfattat så grundar sig modellerna på att de beskriver de dolda bindingstillstånden hos den 
studerade molekylen samt övergångarna mellan dessa tillstånd. Till exempel så ser man från 
experimentdata från ribosomer endast om ribosomen är bunden till mRNA eller om den är 
fritt diffunderande i cellen. Ribosomen har dock egentligen ett stort antal dolda 
bindingsstillstånd som motsvarar varje kodon som den translaterar till en aminosyra under 
proteinsyntesen. Detta kan de aggregerade dolda Markovmodellerna beskriva, varför det är 
intressant att kunna konstruera sådana modeller. 

Den mest grundläggande egenskapen hos en aggregerad dold Markovmodell är hur många 
dolda tillstånd den har och under detta arbete har vi undersökt hur man på ett korrekt sätt kan 
bestämma antalet dolda tillstånd utifrån experimentella data.  Detta har vi gjort genom att ge 
poäng till olika modellstorlekar med det Bayesianska evidenset (beviset) och sen välja 
modellstorleken med högst poäng. Metoden ”variational Bayes inference” som visade sig 
approximera evidenset bra för icke aggregerade dolda Markovmodeller underskattade 
evidenset grovt för aggregerade modeller. Att beräkna evidenset exakt är möjligt när man har 
väldigt lite data men det tar däremot extremt lång tid när datamängden växer. Nested (nästlad) 
sampling är en metod som har potential att snabba upp den exakta beräkningen, men en 
algoritm som var tillräckligt effektiv hittades aldrig under detta projekt. 

Examensarbete 30 hp 

Civilingenjörsprogrammet i Molekylär bioteknik 

Uppsala universitet, januari 2015 
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BIC Bayesian information criterion 

BKU Bauer Kienker uncoupled 

FRET Förster resonance energy transfer 

HMM hidden Markov model 

KL Kullback-Leibler 
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Background 

Analyzing single molecule data 
Modern biological research is highly dependent on analyzing quantitative data measured from 
various experimentally studied systems. Single molecule experiments generate a huge amount 
of quantitative data and development of efficient methods for data analysis is therefore crucial 
for new insights and breakthroughs in the field. Simplistic or inappropriate approaches to data 
analysis leave a big amount of the information present in the single molecule data unused, 
which of course is not desirable.  

The data generated from different types of single molecule experiments studying different 
kinds of systems often have many properties in common. When plotting the signal from the 
experiment against time the noisy readout is often seen to stay centered at some relatively 
constant mean before jumping to some other level and staying approximately constant for a 
period of time, then jumping to some other level, and so on. Real experimental data1,2,3 
demonstrating these properties can be found in Fig. 1. 

 

Figure 1. Data generated from different kinds of single molecule experiments have many properties in 
common. The signals of all three experiments are seen to stay approximately constant around a number of mean 
levels. Transitions between the levels are fast and the exact value of the mean at each level is obscured by noise 
in the signal. (a) Patch clamp measurement of the electric current through a membrane ion channel. Figure1 used 
with permission from Nature Publishing Group. (b) A Förster resonance energy transfer (FRET) experiment 
measuring the FRET efficiency between two fluorophores situated on the h3 helix of 16S RNA and the 
ribosomal protein S4, respectively.  This signal is a measure of the distance between the two components during 
assembly of the small ribosomal subunit. Figure2 used with permission from Nature Publishing Group. (c) 
Measurement of the displacement along a microtubule of a single copy of the motor protein kinesin. Figure3 used 
with permission from Nature Publishing Group. 

 

Examples of experimental techniques that generate this kind of data are single particle 
tracking (SPT), patch clamp measurements of ion channels and Förster resonance energy 
transfer (FRET) experiments. The similarities in the data are no coincidence; the single 
molecule techniques all study associations, dissociations or conformational changes of 
proteins or other biological macromolecules. The transitions between the different mean 
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levels in the signal are explained by the chemical transitions that the molecule goes through. 
The noise in the signal can come from limitations in the experimental measurements, but can 
also be caused by inherent stochastic properties in the quantity that is measured. 

Describing the data with hidden Markov models 
The conformational changes in a macromolecule studied by a single molecule experiment are 
in many cases well described, or at least well approximated, by a unimolecular reaction 
scheme. In these situations the experimental single molecule data has great potential to be 
described by a hidden Markov model (HMM). In this section a brief introduction to HMMs 
are given along with explanations of notations used later in the report. The HMM has for a 
long time been a well used tool for statistical analysis and hence there exists many more 
thorough introductions than the one given here. For the interested reader see for example this 
text by Rabiner and Juang4. 

An HMM (Fig. 2a) is a statistical model consisting of a number of, say N , different hidden 
states. In discrete time the Markov process that is seen to obey the HMM is always found in 
one of these hidden states during each time step t . As time progresses so does the process and 
during each time step there is a probability to leave the current hidden state for any of the 
other hidden states in the model. The probabilities ijA  to leave state i  for state j  during a 

time step makes up the elements of the transition probability matrix A . The process is 
Markovian, meaning that the transition probabilities only depends on the current hidden state, 
and not the state belonging at any previous or later time point. To generate the hidden state 
sequence of the process the initial state probabilities iπ , that is the probability for the process 

to start in state i , are also needed. With these definitions the row vector π


, containing all 
initial state probabilities, together with the transition probability matrix A  fully describe the 
statistics generating the hidden state sequence s



. 

The definitions in the previous paragraph do not only apply for HMMs but for all discrete-
time Markov chains. What further defines a process following a hidden Markov model is that 
the states of the process are just that: hidden. For an outside observer the sequence of hidden 
states s



 is not visible. Instead an observation that is dependent on the hidden state is recorded 
by the observer (Fig. 2b). The observed sequence x



 obtained by observing the process for a 
period of time can be interpreted as the signal of the experiment when studying this system 
experimentally. The process generating each observation is often stochastic which contributes 
to noise in the signal. 
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Figure 2. Schematic example of a three state HMM. (a) The three hidden states of the HMM and the possible 
transitions with probabilities ijA  connecting them. (b) A part of a hidden state sequence and an observed 

sequence generated by the three state HMM. At each time point t  the hidden state ts  is not observed directly, 

but a noisy observation tx  dependent on the hidden state is. (c) The transition probability matrix A  of a three 
state HMM. 

 

Aggregated hidden Markov models 
Aggregated hidden Markov models (Fig. 3a) are of special interest in this work. Following the 
naming convention of Fredkin and Rice5, and Kienker6, an aggregated HMM is here defined 
as an HMM where two or more hidden states have identical observable statistics. The hidden 
states are grouped into different aggregates where it is impossible to distinguish observations 
generated by different hidden states in the same aggregate. A given aggregate thus consists of 
one or more hidden states which are impossible to separate for an outside observer. In 
probabilistic terms, the observations from hidden states in the same aggregate are generated 
from identical statistical distributions (Fig. 3b).  
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Figure 3. Schematic example of a three state aggregated HMM with two aggregates. (a) The three hidden 
states of the aggregated HMM and the possible transitions with probabilities ijA  connecting them. The hidden 

states 2 and 3 are aggregated giving the model two aggregates (α  and β ). (b) A part of a hidden state sequence 
and an observed sequence generated by the three state aggregated HMM. At each time point t  the hidden state 

ts  is not observed directly, but a noisy observation tx    dependent on the hidden state is. The observations 
generated from states 2 and 3 are indistinguishable because these hidden states belong to the same aggregate. 

 

In this work the parameters describing an aggregated HMM is for computational and 
pedagogical reasons dived into the model parameters ( , )θ π=



A , describing how the hidden 

state sequence is generated, and model structure ( , )N fη =


, describing the model size and 

aggregate belonging of the different hidden states. Here, f


 is a vector defining which 
aggregate each hidden state belongs to, such that ( )tf s  is the aggregate of state ts . An 
assumption throughout this work has been that no noise is present in the observed data 
sequence x



, and thus there are no parameters included in θ  that can generate noise in the 
signal. In this work the observed data is explicitly given by the aggregate belonging of the 
current hidden state according to 

( ).t tx f s=       (0.1) 

This simplification is made so that it is only general properties of aggregated HMMs that are 
studied here, and not some other special properties caused by noisy data. Put in other words, 
the hidden part of the hidden Markov models is here only caused by the aggregation of the 
hidden states, and not caused by difficulty to separate different aggregates from each other. 
The investigated analysis methods can however handle noisy data after small changes in the 
algorithms, which motivates the usefulness of this study for future works where noise is 
present. Examples on how the vector f



 can look in practise are (1 2)f =


 for an 

unaggregated model with two hidden states and (1 2 2)f =


 for an aggregated HMM with 
three hidden states were two hidden states belong to the second aggregate. 
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Because of the aggregation of the hidden states the concept of equivalence arises in 
aggregated HMMs. Equivalent models are defined to have identical observable statistics. This 
means that two equivalent models with different sets of parameters θ  and 'θ  are both just as 
likely to have generated any observed sequence x



. In other words, it is impossible to separate 
the models based on experimental data, which means that is impossible to uniquely determine 
the most likely parameter set θ  from an experiment studying an aggregated HMM. The 
concept of equivalence and how it is used in this work is further explained in the Methods 
chapter.  

Bayesian inference 
The goal of this study has been to investigate how to properly do model selection and 
parameter inference with aggregated HMMs. In this context, model selection means finding 
the optimal model structure η  given some observed data sequence x



 and parameter inference 
is done when the optimal set of parameters θ  are found given a model structure and some 
observed data. To do model selection some method to compare different model structures is 
needed, and here this has been done by scoring different models with the evidence obtained 
after doing Bayesian inference. The evidence ( | )Z p x η=



is defined as 

0( | ) ( | , ) ( | ) ( ) ( ) ,Z p x p x p d L p dη θ η θ η θ θ θ θ= = =∫ ∫
 

  (0.2) 

Where ( ) ( | , )L p xθ θ η=


 is the probability of x


 given θ  and η , more commonly known as 
the likelihood, and 0 ( ) ( | )p pθ θ η=  is the prior defining the a priori probability of different 
parameter values before observing any data.  

The evidence ( | )p x η


 can with Bayes rule be seen to relate to ( | )p xη


 according to 

( | ) ( )( | )
( )

p x p xp x
p

ηη
η

=
 



     (0.3) 

Given that all model structures and observed data are equally probable a priori, the 
maximization of the evidence is equivalent to the maximization of ( | )p xη



. This means that 

the probability of the model structure given the data ( | )p xη


 is maximized if models are 
selected with a criterion of maximum evidence, which intuitively is a good criterion for model 
selection.  

This Bayesian criterion for model selection has previously been shown to solve the problem 
of overfitting for unaggregated HMMs, which traditionally has been a problem for direct 
maximum likelihood fits of the parameters7. Furthermore, even though the data used in this 
work was perfectly segmented (no noise) Bayesian model selection also has the advantage of 
being able to handle noisy data directly in the model selection algorithm. The Bayesian 
strategy of model selection should therefore be more generally applicable than for example a 
previously proposed method for model selection using causal states8, which requires that the 
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data is segmented separately in an early step of the algorithm. 
 
The integrand in the evidence integral is not difficult to compute when the likelihood is given 
by an HMM and a nice prior has been chosen (see the Methods chapter for details), but the 
integral itself is a whole other matter. Because of the complexity of the likelihood function 
there exists no analytical solution to the problem and some numerical method is therefore 
needed for the evidence calculation. 

Three different strategies for numerically computing the evidence has been investigated 
during this study. The first method that was tested applies an algebraic approximation of the 
integrand when calculating the evidence. Doing inference with this approximation is 
commonly known as Variation Bayes inference9,10 and the method is therefore referred to as 
variational Bayes (VB). The other two methods are based on direct Monte Carlo estimation of 
the integral. In these methods no algebraic approximation is used on the integrand and the 
methods are therefore called exact since the results they give theoretically always converge to 
the correct evidence. These two methods are referred to as naive exact inference and nested 
sampling11,12. These three computational methods are further explained in the Methods 
chapter. 

Single particle tracking 
As discussed previously there exists many different kinds of single molecule experiments that 
generate similar types of data, and if this data was generated from an experimental system 
with aggregated states, data analysis tools implementing aggregated HMMs are needed when 
doing inference and model selection on this data. Even though such an inference method 
could be applied generally to different types of single molecule experiments, the major 
motivation for this study has been to apply such a method on data from intracellular single 
particle tracking experiments. In these experiments subsequent pictures are taken of 
fluorescently labelled molecules inside a cell. The fluorescent spots generated from one single 
molecule in each individual frame in this film are connected to form a trajectory describing 
the motion of the particle. The step lengths between adjacent points in these trajectories are 
the data from the experiment and are thus interpreted as the observed sequences x



 when 
speaking in terms of an HMM. The hidden state sequences s



 are in this set up modelling the 
diffusive state of the single molecule (bound or not bound for example) and the model 
parameters θ  are given by the reaction rates between these different diffusive states. 

A variational Bayes method has previously been developed for efficiently doing inference and 
model selection based on SPT trajectories when the data is unaggregated13. That method was 
implemented in the MATLAB software variational Bayes single particle tracking (vbSPT) 
which is available for free online14. However, since aggregation of the diffusive states add 
complexity to the data and the model, this work was started to investigate how inference 
could be properly done in the aggregated case. Many interesting experimental systems are 
very likely to have aggregated diffusive states and proper analysis methods are thus needed if 
one wants to do model selection on these systems. Examples of molecular systems that are 
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expected to have aggregated diffusive states are the ribosomal subunits (translating mRNA 
one codon at the time or freely diffusing), the RNA-guided DNA endonuclease Cas9 (bound 
or not bound to DNA15) and RNA polymerase (transcribing DNA to mRNA or freely 
diffusing). 

Methods 
In this chapter the methods used in this work are presented, along with discussions of 
established concepts from previous studies that the work in this report builds upon and makes 
use of.  

Discrete and continuous representations of an aggregated HMM 
The HMMs in this report is to large extent represented in discrete time, where the hidden state 
transitions can be described by the transition probability matrix A . HMMs and Markov 
chains in general can however just as well be considered in continuous time, and such a 
representation was also needed for some purposes during the work of this study. 

In a continuous time HMM the state transitions are described by the generator matrix Q
which can be seen to relate to the transition probability matrix A  and the time step t∆ in the 
discretization according to 

 .t= e QA       (0.4) 

Here the generator matrix Q  can be defined from the transition rate constants describing the 
state transitions of the model, and each row of Q  sums to zero.  

The generator matrix is here ordered in such a way that the states in the same aggregate kβ
appear as a block in Q . The generator matrix is then partitioned into submatrices and can be 
written on the form 

1 1 1

1

.
n

n n n

β β β β

β β β β

 
 
 
 
 



  



Q Q

Q =
Q Q

      (0.5) 

Here the submatrices 
k lβ βQ contains rate constants for transitions from states belonging to 

aggregate kβ  to states belonging to aggregate lβ . As an example, with two aggregates α and
β  the generator matrix Q  has the form 

.αα αβ

βα ββ

 
=  
 

Q Q
Q

Q Q
     (0.6) 

In discrete time, the transition probability matrix A  is ordered on the same form, that is 
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1 1 1

1

,
n

n n n

β β β β

β β β β

 
 
 
 
 



  



A A

A =
A A

     (0.7) 

which for a model with two aggregates becomes 

.αα αβ

βα ββ

 
=  
 

A A
A

A A
     (0.8) 

Dwell-time distributions in the different aggregates 
A very central property for every aggregated HMM is the dwell-time distributions in the 
different aggregates, describing the probability to stay in the aggregates for different periods 
of time. Below is a definition of the dwell-time distribution in continuous time followed by a 
similar definition in discrete time. 

Let a process generated by a continuous time aggregated HMM start by entering the aggregate 

0α . If the process is observed to visit 1r +  number of aggregates and the sequence of 

aggregates visited is 0 1( , ,..., )rα α α α=


, the dwell-times 0 1( , ,..., )rt t t t=


 that the aggregates in 

α


 will be visited is distributed according to the probability density function5,6,16 
   

 

0 010 0 0 01 1
0 00 1 1

1

( ) ... .mr m mr r

m mr r

r
t t tt t

m

f t e e e q e e qα α α α α αα α α α
α αα α α αα αα π π

−
=

 
= =  

 
∏

 

  Q Q QQ QQ Q  (0.9) 

Here απ


 is a row vector with elements being equal to the probability of aggregate α  being 
entered via each of the hidden states in the aggregate, conditional on that the process is 
actually entering aggregate α . The column vector qα



is defined according to 

,q uβαβα
β α≠

= ∑
 

Q      (0.10) 

where uβ



 is a column of Nβ  ones and Nβ  is the number of states in aggregate β . 

From the multidimensional dwell-time distribution in Eq. (1.9) the one- and two- dimensional 
dwell-time distributions, that is the distribution of dwell-times when visiting one and two 
aggregates, can be read out as 

( ) ,tf t e qαα ααα α απ=




Q      (0.11) 

and 

( , ) ,ttf t t e e qββ βαα αααβ α β αβ βπ=


QQ Q     (0.12) 
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where απ


, qα



 and qβ



 are defined correspondingly as for the multidimensional dwell-time 

distribution. 

The above dwell-time distributions consist of sums of decaying exponentials, which can be 
seen after evaluation of the matrix exponentials and the matrix products in Eq. (1.9). For a 
truly Markovian process without aggregation, the dwell-time distribution simplifies to a single 
decaying exponential, which is expected for these memoryless processes. A very important 
connection between an aggregated HMM and its one- and two-dimensional dwell-time 
distributions has previously been proven by Fredkin and Rice5. It is there shown that the 
observable statistics of a continuous time aggregated HMM in steady state is completely 
determined by the one- and two-dimensional dwell-time distributions. 

The one- and two-dimensional dwell-time distributions in discrete time has previously been 
written down on a similar form17 as for the continuous counterpart described above. This 
expression can easily be expanded to higher dimensions to give the following definition for 
the discrete dwell-time distribution. 

Let a discrete-time aggregated Markov process with state transition matrix A  start by 
entering aggregate 0α . If the process is observed to visit 1r +  number of aggregates and the 

sequence of aggregates visited is 0 1( , ,..., )rα α α α=


, the time steps 0 1( , ,..., )rt t t t=


 that the 

process dwells in the aggregates in α


 is distributed according to the probability mass function 

 0 01
00 0 0 1 1 1 0 0 1

1 1 11 1

1
0

( ) ... .mr

r r m m m mr r

r
t t tt t

m
r

f t q qα αα α α α α α α α α α α α α αα αα π π
−

− − −− −

=
>

 
 = =   
 
∏

 

  

A A A A A A A  (0.13) 

Here απ


 is a row vector with elements being equal to the probability of aggregateα being 
entered via each of the states in the aggregate, conditional on that the process is actually 

entering aggregate α . απ


 can be calculated from the transition matrix A  and the row vector
π


 containing the initial state probabilities for all states as 

  ,
u

β βα
β α

α
β αβα

β α

π
π

π
≠

≠

=
∑
∑





 

A

A
     (0.14) 

 where uα



 is a column of Nα ones and the denominator is a normalisation constant. The 

column vector qα



in the dwell-time distribution arises due to the fact that the process can 
leave aggregate α  for anyone of the other aggregates. This vector is defined according to 

,q uβαβα
β α≠

= ∑
 

A      (0.15) 

15 
 



where uβ



 is a column of Nβ  ones. 

From the multidimensional dwell-time distribution in Eq. (1.13) the one- and two- 
dimensional dwell-time distributions, that is the distribution of dwell-times when visiting one 
and two aggregates, can be read out as 



1( ) ,tf t qααα α αα απ −=




A      (0.16) 

and 



11( , ) ,ttf t t qβαααβ α β αα αβ ββ βπ −−=




A A A     (0.17) 

where απ


, qα



and qβ



are defined correspondingly as for the multidimensional dwell-time 

distribution. 

The continuous and discrete dwell-time distributions were in this study mostly used for 
plotting, but are also needed for a deeper understanding of the concept of equivalence. 

Equivalence in aggregated HMMs 
As briefly mentioned in the introduction, two aggregated HMMs are considered equivalent if 
and only if they have identical observable statistics. The concept for equivalence is tightly 
connected to the dwell-time distributions in the different aggregates. One established 
definition of equivalence is that two models are equivalent if and only if their dwell-time 
distributions of all dimensions are identical5,6.  However, the definition of equivalence most 
useful for this work has been that of Ito et al.18, where the dwell-time distributions are not 
used explicitly for the definition. There, equivalence is instead defined by looking at the 
likelihoods of the two different models, a definition that is here freely translated from Ito et al. 
to match our notations. 

Definition 1. Two aggregated HMMs with model parameters and model structures ( , )θ η  and 
( ', ')θ η  are equivalent if and only if 

( | , ) ( | ', '),p x p xθ η θ η=
 

     (0.18) 

 for any observed data sequence x


, where ( | , )p x θ η


is the likelihood of the model described 
by ( , )θ η . 

Ito et al.18 has also proven a very useful theorem that states that two discrete-time aggregated 
Markov models are equivalent if and only if there exists an linear map connecting the two 
parameter sets θ  and 'θ . Kienker6 had earlier found a similar relationship concerning 
equivalent models in continuous time and under the constraint of steady state. Here, the 
results of Ito and notations of Kienker are used to state the following theorem about similarity 
transformations of equivalent models.  
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Theorem 1. Let ( , , )π η


A and ( ', ', )π η


A  describe two different aggregated hidden Markov 
models with the same model structure η . The models are then equivalent if and only if there 
exists a non-singular, similarity transformation matrix S such that 

1' ,= −A S AS       (0.19)

' ,π π=
 

S       (0.20) 

where S has the form 

1 1

2 2

0 0

0 0
,

0 0
n n

β β

β β

β β

 
 
 
 
 
 
 





   



S

S
S =

S

    (0.21) 

the block matrices ββS  are Nβ  by Nβ  matrices and all rows of S  sums to 1. 

The original theorem as stated by Ito et al.18 is somewhat more general than the one given 
here. The assumption about identical model structures is not made there, but is here made to 
make use of direct matrix multiplications with 1−S  and S  instead of abstract linear maps. 

Theorem 1 makes it possible to group all models related through a similarity transformation 
into an equivalence class. Every set of model parameters ( , )θ π=



A  belonging to the same 
equivalence class is then by definition equivalent, and the likelihood of every member of the 
equivalence class is known after calculating it for one of the members. In this work this 
property was used when many likelihood evaluations were needed in the given inference 
algorithm and samples could be generated in a somewhat arbitrary way (which is the case for 
nested sampling). When possible, new samples were generated by a similarity transformation 
to reduce the number of calls to the computationally expensive likelihood function. 

Canonical forms 
The similarity transformations described in the previous section enables the use of canonical 
forms to uniquely represent each equivalence class, that is writing the θ  on a specific form so 
that the θ  uniquely labels one and only one equivalence class. After similarity transforming 
two equivalent models to the canonical form, both models are identical. Thus can canonical 
forms, among other things, be used to decide if two models are equivalent or not. 

The canonical forms that have been used during this study are Bauer-Kienker uncoupled6 
(BKU) and Manifest Interconductance Rank19 (MIR). Both of these canonical forms are found 
by disallowing some state transitions (setting elements in 'A  to 0) through a similarity 
transformation specified by the A  before the similarity transformation. All transitions 
between hidden states in the same aggregate are disallowed after a model has been 
transformed to BKU form6. This is achieved by choosing S  to diagonalize the diagonal 
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blocks in A . The MIR canonical form is also based upon diagonalization but not of the same 
block matrices as for the BKU form. The MIR similarity transformation results in a model 
with the minimum number of non-zero transition probabilities possible for the given model 
structure19, which might be desirable for some inference applications if the number of 
parameters is to be kept to a minimum. 

These two canonical forms were originally defined in continuous time6,19 with the generator 
matrix Q  as a model parameter instead of the transition probability matrix A . The proofs that 
the two canonical forms are identifiable, i.e. that each equivalence class has one and only one 
member on the canonical form, were also done with this representation6,19. It turns out 
however, that the similarity transformation matrices S  used for transformation to the 
canonical forms can be found in discrete time with exactly the same algorithms as in 
continuous time (only replacing Q  with A  in the algorithms). Also, with the same arguments 
as for the continuous case as discussed by Bruno et al.19, the canonical forms are identifiable 
in discrete time since there only exists one normalized similarity transformation that 
diagonalizes a non-degenerate matrix. The proof given by Bruno et al. showing that the 
canonical forms are identifiable can thus be directly applied on A  instead of Q , which shows 
that the canonical forms are identifiable also in discrete time. However, there exists a 
constraint for identifiability stating that Q  (or A  in this case) has to have non-degenerate 
eigenvalues. This is not a very tough constraint since matrices with degenerate eigenvalues 
are infinitely more uncommon than matrices with non-degenerate eigenvalues. Thus will 
these degenerate matrices be infinitely uncommon in real-life applications with the canonical 
forms. This is at least true in a numerical sense when generating A  randomly according to 
some probability distribution that is not biased towards degenerate A , and can thus also be 
considered likely for biological systems since nothing indicates that these rare A  should 
occur more often in biology. 
 
Intuitively, one might naively think that the invention of the canonical forms solves all 
problems regarding inference in aggregated HMMs, since they remove all degeneracy from 
the problem and might therefore be used for model selection with methods like VB that has 
been proven to work well for unaggregated models. This is however not the case since many 
aggregated HMMs have some negative transition probabilities in A  when written on the 
canonical forms. Since VB is not able to handle such unphysical model representations, it is 
not possible to always use this method for approximating the evidence for fits to the canonical 
forms. 
 
The algorithms described by  Kienker6 (BKU) and Bruno et al.19 (MIR) to transform a model 
to the canonical forms were implemented in MATLAB, and then used to find the canonical 
forms when needed. 
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Generation of observed data sequences 
All data that was analysed during this study was generated in silico and without any process 
or measurement noise.  Given a set of model parameters ( , )θ π=



A  and a model structure 

( , )N fη =


 an observed sequence x


 of length T  was generated according to the following 
algorithm. 

1

1 1

1

random number generated by the probability distribution described by 
( )

for 2 :
random number generated by the probability distribution described by row  in 

( )
end of for

t t

t t

s
x f s

t T
s s
x f s

π

−

=
=
=
=
=



A
 

This algorithm was implement in MATLAB and when multiple observed sequences were 
needed they were generated by putting multiple subsequent x



 in the same long vector, and by 
keeping track of their start and end based on their length. 

The data used for the analysis results found in this report was generated from two different 
aggregated HMMs, designed to have different yet comparable dwell-time distributions in the 
aggregated states (see the Results chapter for more information). For both test models the 
model structure was set to ( )( , ) (3, 1 2 2 )N f =



 and π


 to the steady state probabilities 

given implicitly by the chosen A . The ( , )θ π=


A  were for Model 1 chosen as 

( )0.2634 0.2557 0.4809 ,π =


    (0.22) 

0.9 0.018 0.082
0.024 0.91 0.066 ,
0.042 0.038 0.92

 
 
 
 
 

A =     (0.23) 

and for Model 2 as 

( )0.2658 0.3531 0.3811 ,π =


    (0.24) 

0.9 0.095 0.005
0.017 0.922 0.061 .
0.054 0.006 0.94

 
 
 
 
 

A =     (0.25) 

For Model 1, the BKU and MIR canonical representations are physically valid, meaning that 
all elements of the canonical A   are positive. For Model 2 on the other hand, the BKU and 
MIR canonicals forms are unphysical with some negative elements in A . Because of this, it 
was only possible to do VB model selection on the canonical forms for Model 1, since VB is 
unable to handle unphysical A . 
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Likelihood and prior 
All three proposed methods for numerically estimating the evidence according to the integral 
in Eq. (1.2) is dependent on evaluating the likelihood ( | , )p x θ η



 and the prior ( | )p θ η  for a 

given set of x


,θ , and η . As it happens, there exists standard methods for such evaluations 
which are explained in this section. 

An analytic expression of the likelihood can be obtained after writing down the probability of 
a hidden state sequence conditional on the model parameters, and the probability of an 
observed sequence conditional on the hidden state sequence and the model structure. These 
two probabilities are given by 

1 1

1

,
1

( | ) ( | , ) ,
t t

T

s s s
t

p s p s Aθ π π
+

−

=

= = ∏
  

A     (0.26) 

and 

( ),
1

( | , ) ( | , ) ,
t t

T

f s x
t

p x s p x s fη δ
=

= =∏
    

    (0.27) 

where ijδ  is the Kronecker delta defined by 

1,
.

0,ij

i j
i j

δ
=

=  ≠
     (0.28) 

Because the joint distribution of the hidden and observed data conditional on the model 
parameters and structure can be factorized into a product of the two above given probabilities, 
the likelihood for an HMM can be calculated as a sum of such products over all possible 
hidden state sequences according to 

( ,| , ) ( , | , ) ( | , ) ( | , ).
s s

p x p x s p s p x s fθ η θ η π= =∑ ∑
 

       

A    (0.29) 

Direct evaluation of this expression is in almost all cases computationally infeasible since the 
number of terms in the sum grows exponentially with the length of x



. The likelihood in Eq. 
(1.29) can instead be evaluated by sweeping through all possible hidden state sequences s



 by 
a well established implementation of dynamic programming called the forward-backward 
algorithm4, which computes the likelihood in tractable time. 

The function implementing the forward-backward algorithm was here taken directly from 
vbSPT13. This code is written in C to speed up the computation14 and this function was called 
during this work when evaluation of the likelihood was needed in the higher level MATLAB 
code implementing VB, naive exact inference or nested sampling. 

The priors used during this study were all chosen to be Dirichlet distributed, mainly because 
the Dirichlet distribution is its own conjugate10, which has nice effects on the variational 
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distributions used during the VB estimation of the evidence (see Appendix 1).  More 
precisely, π



 and the rows of A  were chosen to be distributed on this form where the prior
( | )p θ η  can be written as 

( | ) ( , | ) ( | ) ( | ),p p p pθ η π η η π η= =
 

A A     (0.30) 

where, 



( )
,:,: ,:

1 1

( ) ( | ) Dir | ),
N N

ii i
i i

p p A = (A wη η
= =

=∏ ∏
A

A |    (0.31) 



( )
( | ) Dir | ),p ( w

π
π η π=





 

     (0.32) 

,:iA denotes the thi row of A , and 
( )
,:iw
A

and 
( )

w
π




are parameters of the Dirichlet distributions. 

The results reported here were all obtained with flat prior distributions, i.e. priors where 
( )
,:iw
A

and 
( )

w
π




were chosen so that all ,:iA and π


 were equally probable a priori. A flat prior is 

invariant under similarity transformations of the parameters, which might be desirable to get 
an unbiased evidence estimation. Flat Dirichlet distributions have previously been used for 
successful VB inference on unaggregated FRET data7, while the standard choice in vbSPT is 
a prior that makes it possible to make assumptions about the mean dwell-time in the hidden 
states13. 

For evidence calculations with the model structure ( )( , ) (2, 1 2 )N f =


 the prior parameters 

were set to 

  ( )
( )( )

,: 1 1 ,iw w
π

= =


A
     (0.33) 

and for the model structure ( )( , ) (3, 1 2 2 )N f =


 the corresponding choice of parameters 

were  

  ( )
( )( )

,: 1 1 1 .iw w
π

= =


A
      (0.34) 

The only exception for a truly flat prior was when model fitting was done to the canonical 
BKU and MIR forms for the model structure ( )( , ) (3, 1 2 2 )N f =



. Since these canonical 

forms are based upon setting some of the elements in the transition probability matrix A  to 

zero, the 
( )
,:iw
A

were in these cases chosen so that the prior ( | )p θ η  was zero for A  that were 

not written on the canonical form. When fitting models to the BKU canonical form 
( )A

w was 
chosen as 
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( )
1 1 1
1 1 0 ,
1 0 1

 
 =  
 
 

A
w      (0.35) 

when model fitting was done on the MIR canonical form 
( )A

w  was set to 



( )
1 1 0
1 1 1 ,
0 1 1

 
 =  
 
 

A
w      (0.36) 

while 
( )

w
π




 was still chosen according to Eq. (1.34) in both cases. 

The algebraic expression of the Dirichlet probability density function (see Eq. (2.40), 
Appendix 1) was for this study implemented in a MATLAB function, and this function was 
later called when evaluation of the prior was needed. 

Variational Bayes inference 
Variational Bayes inference has previously been shown to work well for model selection on 
unaggregated HMMs from FRET7 and SPT13 data. The invention9 of this method has been 
very significant since it in general converges much faster than exact methods and because 
other methods for approximately maximizing the evidence, such as the Bayesian information 
criterion (BIC), make many assumptions that are not applicable for HMMs. The BIC assumes 
totally uncorrelated data7, which is not true here since the elements in the observed sequence 
x


 depend on the hidden state at the previous time step. Also, BIC assumes that the likelihood 
( | , )p x θ η


 is sharply and uniquely peaked7, which is not true for aggregated HMMs because 
of the equivalence of different parameter sets θ . For aggregated HMMs the likelihood 
function is not only not uniquely peaked; it is not peaked at all. Instead a multidimensional 
ridge of maximum likelihood is expected for the aggregated HMMs, representing an 
equivalence class of maximum likelihood. Even though VB inference has been proven to 
work well for unaggregated models, the question if it can or cannot be used for model 
selection on aggregated HMMs has before this study been an unresolved problem. 
 
The VB framework relies upon the maximization of a lower bound of the evidence with the 
respect to two separable variational distributions ( )q θ  and ( )q s



 using the calculus of 
variations. These two distributions are obtained through a mean field approximation of the 
distribution 1: 1:( , | , )T Tp s xθ η

 

 given by 

( , | , ) ( , ) ( ) ( ).p s x q s q q sθ η θ θ= ≈
   

    (0.37) 
 
Maximizing the lower bound of the evidence with this approach is equivalent to minimizing 
the Kullback-Leibler (KL) divergence of ( , | , )p s xθ η

 

 from ( ) ( )q q sθ


. Since this KL-
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divergence is a measure of the distance between ( , | , )p s xθ η
 

 and ( ) ( )q q sθ


, the product of 
the variational distributions is by this definition certain to be an approximation of the real 
distribution, as long as the factorisation in Eq. (1.37) is a good approximation. The obtained 
maximized lower bound of the evidence can then be used as a valid approximation of the real 
evidence as long as the mean field assumption is a good one for the current problem at hand. 
 
For this study the VB algorithm was implemented in MATLAB, an implementation that 
greatly resembles and builds upon the one used by vbSPT13 (see Appendix 1 for a derivation 
of the algorithm). The start guess for the VB algorithm (used to give the start guess for ( )q θ ) 
was in all cases chosen as the correct θ  that the data was generated with. More precisely, 
since ( )q θ  is a product of Dirichlet distributions (see Appendix 1), the start guess for ( )q θ  

was given by Dirichlet parameters set to 510 ·θ , where θ  were the parameters that generated 
the data. 

Naive exact inference 
The evidence was also calculated by a naive implementation of Monte Carlo integration. In 
this approach the arithmetic mean of the likelihood was calculated when θ  was sampled from 
the prior. At the limit of infinitely many samples this mean can be seen to be equal to the 
evidence according to 

0 ( )( | )
( | , ) ( | ) ( | , ) ( ) .

pp
Z p x p d p x L

θθ η
θ η θ η θ θ η θ= = =∫

 

  (0.38) 

In the implementation used here, the maximum likelihood value found by the Baum-Welch 
algorithm4 was factorized out of the integral to avoid numerical underflow. What was actually 
computed was therefore 

0

max max
1max max( )

( )( ) 1 .
samplesN

i
exact

i samplesp

LLZ L L
L N L

θ

θθ
=

= = ∑    (0.39) 

Convergence of the calculation was checked by both looking at a plot of the evidence as a 
function of the number of samples used and then terminating the algorithm when the plot of 
the function had visually converged, but also by looking at the mean and standard error of the 
evidence calculated from sixteen independent workers running in parallel and thereby getting 
an estimation how much the results from different independent calculations varied. With this 
approach it became possible to vary the number of samples used in each evidence estimation 
to ensure sufficient convergence for the given number of observed sequences included in x



.  

Nested sampling 
An alternative method for doing exact inference with nested sampling11,12 was also 
investigated.  In nested sampling the prior is sampled in a more clever way than in the naive 
approach described above. For big datasets, only a very small fraction of the prior has a 
corresponding likelihood value that significantly contributes to the evidence integral, giving 
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that this form of more efficient sampling is needed when the data amount increases. The 
nested sampling algorithm relies upon the transformation of the multidimensional, difficult to 
evaluate evidence integral in Eq. (1.2) into a one dimensional integral with a well behaving 
integrand. This is done by first defining X as the fraction of prior mass where the likelihood 

( )L θ  is larger than some lower bound *L  so that 

0 ( ) ,dX p dθ θ=      (0.40) 

and 

*

*
0

( )

( ) ( ) .
L L

X L p d
θ

θ θ
>

= ∫       (0.41) 

The evidence integral in Eq. (1.2) can then be re-written as 

1

0

( ) ,Z L X dX= ∫       (0.42) 

where * ( )L L X≡  is the inverse of the function given by equation (1.41), a monotonic 
decreasing function that after sampling can be integrated over by standard methods for 
numerical integration in one dimension (Fig. 4.) 

 

Figure 4. A two dimensional likelihood function is transformed to one dimension. The plot to the left shows 
a contour plot of the likelihood for four different nested shells *

iL . The likelihood can be transformed from the 
vector domain θ  to the scalar domain X so that the evidence Z can be estimated as a weighted sum over all 

( )iL X . ( )L X  is a monotonically decreasing function that typically has a large magnitude for very small X and  
much smaller magnitude for bigger X . This means that it is only the left most parts of the plot of the function 
that contributes to the integral Z  (not demonstrated in the cartoon above). 
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The whole point of the nested sampling algorithm is to generate many samples in the regions 
where ( )L θ  is significantly larger than zero i.e. where the contribution to the evidence 
integral is big. This is achieved by generating new samples of θ  from the prior with the 
constraint *( )L Lθ >  and by increasing *L   for every new sample that is generated. 

The algorithm is initially given M different objects that are sets of model parameters iθ  
generated from the prior. This corresponds to sampling from the prior with the constraint 

0L > . Since the objects are generated from the prior the corresponding prior masses iX  are 
uniformly distributed between zero and one. If sample number j  is the current active object 

with the lowest likelihood, the algorithm then sets *
jL L=  and *

jX X= , discards object 

number j  (but keeps track of it as a sample for the evidence estimation) and replaces it with a 

new sample of θ  generated from the prior with the constraint *( )L Lθ > , and continues like 
this until the evidence converges.  The values of iX  for the samples are actually not known, 
but the distribution from which the X of a new active object was generated are always known 
(uniform between zero and *X ). This distribution enables the iX  to be estimated and the 
evidence to be calculated as the area under the graph of the function ( )L X .  

The step in the nested sampling algorithm of generating new, independent samples of θ  from 
the prior with the constraint *( )L Lθ >  is easier said than done. The major work done with 
nested sampling during this study has been trying to get an algorithm that can generate such 
samples to work. This is also the part of the algorithm where the special properties of the 
aggregated HMMs has to be considered most thoroughly, while other parts of the algorithm 
such as estimating the evidence from ( )iL X  and iX  values can be implemented similarly as 
in previous works11,20,21. This is why the results given in this report mainly focus on the part 
of generating new samples and not so much on other higher level parts of the algorithm. 

The nested sampling implementations used during this work all use different Markov chain 
Monte Carlo (MCMC) methods for sampling of the prior with a likelihood constraint. All 
algorithms tested centred around starting from one of the current objects in the nested 
sampling algorithm and from this θ  then randomly navigating the prior with a combination of 
small Gaussian steps and longer steps in θ  achieved by similarity transformations. An 
acceptance ratio given by the Metropolis choice22 was used in all implementations and to 
obey the likelihood constraint new samples θ  were only accepted if *( )L Lθ > . The step type 
of a given step (Gaussian or similarity transformation) was determined stochastically with a 
certain predefined probability and the step lengths of the Gaussian steps (effectively 
determined by the variance of the distribution that generated the step) were adaptively 
changed at checkpoints in the nested sampling algorithm when the acceptance ratio of an 
Gaussian step deviated to much from 50 %. The different implementations of MCMC tested 
here varied mostly in how the Gaussian steps were taken (perturbing the entire A  matrix in 
the same step, perturbing an entire row in A  in the same step or perturbing the elements pair 
wise etc.). However, all tested algorithms showed similar results, and none of them generated 
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uncorrelated θ  sufficiently fast. This is why more detailed descriptions of the algorithms are 
left out from this report. The attempt to MCMC sample the prior did however give some 
useful insight about the properties of the problem which can be useful for future works (see 
Results chapter for more information).  

Comparing the evidence of different model structures 
To compare the evidence calculated for different model structures, the difference between the 
natural logarithm of the evidence of interest Z  and some reference evidence refZ  (often the 

evidence for the model structure ( )( , ) (2, 1 2 )N f =


) was calculated according to 

score ln ln .refZ Z= −      (0.43) 

To determine the data dependency of this score, it was in many cases plotted against the total 
number of time steps included in the observed sequences in the data. The break-point 
(intersection with x-axis) of selecting the model structure of interest instead of the reference 
model structure was then estimated by linear interpolation in log log scale between the two 
points adjacent to the x-axis. 

Results 

Varying the amount of data in VB model selection 
To test how much data VB needs to predict the correct model size for some given test model, 
the VB algorithm was run with different model structures η  on data generated in silico with 

the model structure ( )( , ) (3, 1 2 2 )N f =


. When this was done for different numbers of 

observed sequences x


 of length eleven (ten time steps in each sequence) generated from 
Model 1, about 3·106 time steps were needed in the data before VB gave a higher evidence 
score to the correct model structure  ( )( , ) (3, 1 2 2 )N f =



 than to the model structure 

( )( , ) (2, 1 2 )N f =


 (Fig. 5). The corresponding break-point for choosing the correct model 

size of three was somewhat lower when doing model fitting to the canonical BKU and MIR 
forms (about 1.5·106 time steps in the data). 
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Figure 5. Evidence estimated by VB for different number of observed sequences included in the data. The 
VB log evidence of different model fits minus the VB log evidence of the two state model fit, calculated for data 
generated from Model 1 and plotted against the number of time steps included in the data. Ten time steps were 
present in each observed sequence included in the data and the mean dwell-times in the aggregates were 10 
(aggregate 1) and 28 (aggregate 2) time steps respectively. 

 
 
Effect of different dwell-time distributions on VB model selection 
To test how the dwell-time in the aggregated states affects the VB model selection, the 
Models 1 and 2 were designed to have comparable yet different one dimensional dwell-time 
distributions in the aggregate with two hidden states. The distribution for both models gives a 
mean dwell-time of 28 time steps, but for Model 1 the dwell-time probability mass function is 
monotonically decreasing while it for Model 2 has a clear peak around 10 time steps (Fig. 6a). 
Because the dwell-time distribution in the unaggregated hidden state (hidden state 1) is 
identical for both models, the dwell-time distribution in the aggregated states is the only 
statistical difference between the models. When data then was generated with these models 
and analysed with VB, the effect of the different dwell-time distributions on VB model 
selection could be investigated. The results show that VB needs approximately 100 times less 
data to correctly chose the correct three state aggregated model instead of the two state 
unaggregated model when the data was generated from the model with a peaked dwell-time 
distribution (Model 2) compared to when it was generated from the model that has a 
monotonically decreasing dwell-time distribution (Model 1) (Fig. 6b).  
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Figure 6. VB needs less data for correct model selection when the aggregated dwell-time distribution is 
peaked. (a) The discrete dwell-time distribution in aggregate 2 (aggregated hidden states 2 and 3) for Model 1 
and 2. Both distributions have an expected value (mean dwell-time) of 28 time steps. (b) The VB log evidence of 
the three state full model fit minus the VB log evidence of the two state model fit, calculated for data generated 
from Model 1 and 2 and plotted against the number of time steps in the data. Ten time steps were present in each 
observed sequence included in the data and the mean dwell-times in the aggregates were for both models 10 
(aggregate 1) and 28 (aggregate 2) time steps respectively. 

 

The intuitive cause of this result, that VB needs less data to do correct model selection on an 
aggregated HMM when the dwell-time distribution is peaked, is that a peaked dwell-time 
distribution clearly is not a single exponential. For unaggregated HMMs, all one dimensional 
dwell-time distributions are by definition single exponentials. When it is easy to see that a 
dwell-time distribution consists of two or more exponentials, it is also easy to determine that 
the model is aggregated. This is a welcome result for future experimental applications since 
many interesting molecular biological systems (ribosome and RNA-polymerase etc.) are 
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likely to have peaked dwell-time distributions in the slowly diffusing aggregate (see the 
Discussion chapter for more information). 

Varying the number of time steps per sequence in VB model selection 
All results reported so far were obtained after analysing observed sequences with ten time 
steps in each sequence. However, to investigate how the sequence length affects the VB 
model selection, this property was varied in other numerical experiments. The VB algorithm 
was run on datasets with five different numbers of time steps per observed sequence x



 and 
the evidence of the three state model relative to that of the two state model was plotted against 
the number of time steps in the data (Fig. 7) as demonstrated in the previous sections. The 
results show that the VB algorithm needs less data for correct model selection when the 
observed sequences x



 are long compared to when they are shorter. This trend becomes even 
clearer when looking at the results from 50 independent experiments performed with the same 
procedure as described above but instead plotting the mean of all 50 experiment against the 
number of time steps in the data. Such experiments were performed and the break-point 
(intersection with x-axis) of correct model selection was determined for all sequence lengths 
(Table 1). For Model 2, about 20 times less data was needed for doing correct model selection 
when all the data was present in one long observed sequences compared to when the data had 
two time steps per observed sequence. 

 

Figure 7. VB needs less data for correct model selection when the observed sequences are long. The VB log 
evidence of three state model fits minus the log evidence of the corresponding two state model fits, calculated for 
data generated from Model 2 and plotted against the number of time steps in the data. Five different curves are 
shown representing five different lengths of the observed sequences included in the data. 
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Table 1.  Amount of data needed for correct model selection for different lengths of the observed 
sequences. The experiment generating the plot in Fig. 7 was repeated 50 times with 50 independently generated 
datasets and the intersection with the x-axis for each mean curve was determined by linear interpolation between 
the two points adjacent to the x-axis.  All points were generated with the same number of time steps as in Fig. 7 
and every curve did only cross the x-axis at one point with the plotting resolution used in the experiment. 

Number of time steps per observed sequence Break-point of correct model selection 
(intersection with x-axis) 

2 4·105 

5 1·105 

10 6·104 

100 3·104 

All steps in the same observed sequence 2·104 

Comparing exact and VB evidence estimations 
The most important property for any method that is estimating some quantity like the 
evidence is probably that the calculated estimate is relatively correct and close to the real 
value. To test if this is true for VB evidence estimations for aggregated HMMs, the estimated 
evidences from VB was compared with the evidence calculated with direct Monte Carlo 
integration using naive exact inference (Fig. 8). The results show that the evidence for a three 
state aggregated HMM is heavily underestimated by VB and that the error increases when 
more data is added to the evidence calculation. On the other hand, the VB evidence estimation 
for a two state unaggregated Markov model is very close to the correct value as calculated by 
naive exact inference, which supports that VB evidence estimates are accurate for 
unaggregated HMMs. 

 

30 
 



 

Figure 8. VB is underestimating the evidence for aggregated model fits. The VB log evidence of two and 
three state model fits minus the corresponding log evidence estimated by naive exact inference, calculated for 
data generated from Model 2 and plotted against the number of time steps in the data. The error bars represent 
the standard error of sixteen independent calculations. Ten time steps were present in each observed sequence 
included in the data. 

 

Corresponding experiments were performed on data generated from Model 1 (Table 2), giving 
results that were very similar to those found for Model 2 (Fig. 8). For Model 1 it was however 
also possible to compare the model selection methods for fits to the BKU and MIR canonical 
forms. The results show that the VB evidence estimation is closer to the evidence calculated 
by naive exact inference for fits to the canonical forms than for fits to a full three state model. 
The VB evidence estimations for fits to the aggregated canonical forms are however still not 
at all as accurate as the VB evidence estimation for an unaggregated two state model. The 
relevance of calculating the evidence by naive exact inference for the canonical forms without 
further validation could (and maybe should) also be questioned. Only physically valid 
samples of θ  are generated from the prior in the Monte Carlo integration giving the evidence, 
meaning that all equivalence classes where the canonical forms have negative elements in A   
are neglected in the integration. The integrand in the evidence integral is not expected to take 
a maximum for such unphysical A  for data generated from Model 1, but one cannot with 
certainty say that the contribution from these equivalence classes to the integral is negligible 
before investigating the matter further. However, it is probably safe to say that VB is 
underestimating the evidence for the canonical fits. ln exactZ  should only be able to increase if 
more equivalence classes are considered in the parameter space that is sampled, giving an 
even bigger underestimation. 
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Table 2. VB is underestimating the evidence for fits to canonical aggregated models. The VB log evidence 
of different model fits minus the corresponding log evidence estimated by naive exact inference. The reported 
values are means and standard errors from sixteen independent calculations.  113 observed sequences were used 
in the data and ten time steps were present in each observed sequence. 

Data fitted to ln lnVB exactZ Z−  Standard error  

2 state model 0.00136 0.00206 
3 state aggregated model on 
BKU form 

-3.83922 0.00992 

3 state aggregated model on 
MIR form 

-5.57410 0.00144 

3 state aggregate full model -9.47487 0.00860 

Comparing exact and VB model selection 
The results from the VB and naive exact inference were also plotted in the same way as in the 
experiment demonstrated in Fig. 5, to show how well VB determines the break-point in data 
amount needed for correct model selection. The results show that VB needs a larger amount 
of data for correct model selection of an aggregated three state model than the corresponding 
exact evidence calculation needs. For an experiment with observed sequences generated from 
Model 2 with ten time steps per sequence, about 7 times more data was needed by VB for 
correct model selection compared to the exact inference calculation (Fig. 9). 

 

Figure 9. VB is underfitting aggregated data. The exact and VB log evidence of an aggregated three state 
model fit minus the corresponding log evidence of a two state model fit, calculated for data generated from 
Model 2 and plotted against the number of time steps included in the data. The error bars (on the exact graph) 
represent the standard error of sixteen independent calculations of the difference in log evidence.  Ten time steps 
were present in each observed sequence included in the data. 
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Sampling of the prior in nested sampling 
In the trials of doing nested sampling calculations of the evidence integral for aggregated 
HMMs, the prior proved to be difficult to sample by MCMC for high values of the likelihood 
lower bound *L . In all MCMC sampling methods tested, the correlation time for some of the 
elements in the transition probability matrix A  was too high to give a sufficient improvement 
in the rate of convergence for the nested algorithm compared to naive exact inference. The 
correlation between the MCMC samples was often even worse when looking at the elements 
of A  transformed to the BKU or MIR canonical form, which might suggest that the tested 
methods for sampling the prior has trouble finding all equivalence classes sufficiently fast. 

To further investigate what the long correlations in the sampling might be caused by, the 
elements of A  for the MCMC samples were plotted in pairs for visualization (Fig. 10a). The 
plotting of this projection down to the plain of pairs of variables showed complex 
dependencies in the data points, suggesting that the constrained prior is a complex looking 
hypervolume for high likelihood constraints. Since the strategy in the tested implementations 
of MCMC is to perform a random walk in this parameter space, it is perhaps not surprising 
that the algorithms did not navigate the entire hypervolume sufficiently fast. 

However, when the elements of the MIR representation of A  was plotted in the 
corresponding way as described above, the resulting two dimensional projections did not look 
as complicated as for non-canonical A  (Fig. 10b). For high likelihood constraints the 
resulting surfaces were typically approximately round or elliptical, with high variance in one 
direction and smaller variance in the orthogonal direction. The results suggests that it might 
be easier to perform a random walk and do MCMC sampling in the MIR parameter space 
compared to the non-canonical parameter space. Similar plots were also made for the BKU 
canonical form, the resulting surfaces were not as complex as the non-canonical ones, but did 
still have more dependencies in the data than the plots for the MIR canonical form. 
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Figure 10. MCMC samples of the prior with a high likelihood constraint. 5,000 MCMC sweeps with 120 
steps per sweep generating 5,000 MCMC samples from a start point given by one of the active objects in a 
nested sampling evidence calculation. The Gaussian step probability was set to 0.1 and the similarity 
transformation probability step was correspondingly set to 0.9. The likelihood constraint was set to 

*ln 2.6103L = −  and the samples were plotted with different colours dependent on their likelihood value. The 
likelihood was normalized to the maximum likelihood calculated by the Baum-Welch algorithm4 so that 
max(ln ) 0L = . The data used consisted of 88,587 observed sequences with 10 time steps in each sequence, 

generated from Model 2. The model structure ( )( , ) (3, 1 2 2 )N f =


 was used in the nested sampling and 
MCMC algorithms. (a)  The values of the elements 32A  and 23A  for the MCMC samples (b) The values of the 
corresponding MIR transformed elements for the same samples.  

 

The posterior approximated by VB 
For further insights to why VB is bad at approximating the evidence for aggregated HMMs 
(Fig. 8) the posterior ( )q θ  approximated by VB was compared with MCMC samples of the 
prior generated with a high likelihood constraint. The posterior is the normalized product of 
the likelihood and the prior (the integrand in the evidence integral in Eq. (1.2)). With a flat 
prior like the one used here, the largest values of the posterior are found at the same set of 
parameters as the largest values of the likelihood function. With a high likelihood constraint, 
this is the same area in parameter space as the MCMC samples of the prior should be found. 
When samples from the VB posterior were plotted together with the MCMC samples of the 
prior in a corresponding way as in Fig. 10a, the resulting plots showed surfaces with very few 
properties in common (Fig. 11). As described earlier, the region of high likelihood generated 
by the MCMC samples is complex with many dependencies in the data, while the samples 
from the VB posterior are centred around the inferred parameter set with little correlations 
and dependencies between the parameters. This suggests that the posterior approximated by 
VB is a bad approximation of the real posterior, causing the KL-divergence of ( , | , )p s xθ η

 

 

from ( ) ( )q q sθ


to be big which in turns give that evidence estimated by VB is a bad 
approximation of the real evidence. In the implementation of VB used here, the posterior is 
assumed to be Dirichlet distributed. The plots shown here clearly demonstrate that this is not a 
good approximation for posteriors of aggregated HMMs. 
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Figure 11. VB is bad at approximating the posterior of aggregated HMMs. MCMC samples of the prior 
(blue) generated and plotted as described in Fig. 10. Plotted together with 5,000 samples of the posterior 
approximated by VB inference (red) run on the same dataset. 

 

Discussion 
The major conclusion and trend found by this work is perhaps that VB inference seems to be 
very inappropriate to use when doing model selection on aggregated HMMs. VB is both 
heavily underestimating the evidence (Fig. 8) and, which is perhaps even worse, underfitting 
the data for much bigger data amounts than an exact method (Fig. 9). Furthermore, naive 
exact inference is also not a sustainable method for frequently calculating the evidence for 
intermediate to big datasets. For example, the exact evidence of the three state model used for 
calculating the final point in Fig. 9 required sixteen CPU workers running in parallel for 50 
days to give a result with the standard error represented in the figure. This point had just over 
10,000 time steps present in the data, which is not at all an extreme amount when considering 
the amount of data that single molecule experiments can produce. The time complexity of the 
algorithm has not been thoroughly estimated. It is however with certainty far worse than 
linear since the time for convergence of the points in Fig. 9 goes from approximately 10 
seconds for the first point with 100 time steps in the data, to about 100,000 seconds for the 
next to the last point with 6,950 time steps, to over 4,000,000 seconds for the ninth and final 
point with 12,740 time steps. The total increase factor in the amount of data is about 100 
while the corresponding increase in the computation time is over 40,000. Automation and 
exact determination of the time complexity is however difficult to do for the naive exact 
inference algorithm since convergence of the algorithm is somewhat of a subjective measure. 
All calculations with this algorithm reported here did seem to converge nicely when looking 
at a plot of the evidence as a function of the number of samples used, and the small standard 
error between the independent workers is also a sign of convergence. However, while most of 
the calculations were terminated when the standard error had decreased to just under 100 
times of the mean of the evidence, such a hard constraint was not possible to use for the points 
using the largest amounts of data, demonstrated by their larger standard error in the plot in 
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Fig. 9. It is difficult to directly compare the convergence times for different points since the 
absolute error tolerance is smaller for earlier ones.  

Even though the results show that VB approximates the evidence badly for aggregated 
HMMs, some of the results found here for VB are expected to be generally applicable also for 
valid methods for computing the evidence. The result showing that it is easier to correctly 
determine a model to be aggregated if the dwell-time distribution is peaked (Fig. 6) is 
predicted to apply also for exact calculations of the evidence, for the same reasons mentioned 
in the Results chapter. If this is true, it may have nice effects for the model selection on 
experimental data generated from many interesting molecular biological systems. The reason 
for this is that many experimental systems are predicted to disobey detailed balance, giving 
them the possibility to have peaked dwell-time distributions, and will thus probably require 
less data for proper model selection. A chemical process at true equilibrium is defined to obey 
detailed balance, meaning that all elementary reactions in the process are equilibrated by their 
reverse reaction. All non energy consuming processes thus obey detailed balance at 
equilibrium. It has previously been shown23 that the one dimensional dwell-time distributions 
are always monotonically decreasing for aggregated HMMs that obey detailed balance, 
meaning that aggregated HMMs with peaked dwell-time distributions are not obeying detailed 
balance. Since many biological processes (transcription by RNA polymerase and translation 
by the ribosome etc.) are energy consuming, they are disobeying detailed balance, and can 
thus give rise to dwell-time distributions that are non-monotonically decreasing.  

As mentioned briefly in the Background chapter, model selection by Bayesian inference is 
expected to not overfit the data, which has previously been shown for model fitting to 
unaggregated HMMs7. No evidence calculation results are reported here for model sizes 
larger than the correct three state model, but VB evidence estimations were also performed on 
larger models for a few of the datasets. However, the evidence for larger model sizes was in 
all cases lower than the evidence for the three state models. This result is very consistent with 
the expectation that Bayesian inference does not overfit data, and a more thorough 
investigation with larger model sizes was therefore omitted during this work to focus on the 
more relevant problem of underfitting with smaller models. 

The implementation of nested sampling tested here did not generate samples of the prior 
sufficiently fast to be convenient to use in practice, but the general method still has promise to 
solve the problem of accurately calculating the evidence of aggregated HMMs much faster 
than naive exact inference. The methods tested here for generating samples from the prior 
were still very simplistic and basic, giving that other more refined methods might be able to 
solve the problem with greater success. For example, it would be very interesting to apply the 
sampling method of MultiNest20 for nested sampling on aggregated HMMs. This method has 
been able to compute the evidence for other problems with multimodal and degenerate 
posteriors and might therefore also work for the posterior of aggregated HMMs. Another 
possible solution is to make a change of variables in the evidence integral, and perform 
sampling on the canonical MIR form. Since the likelihood constrained prior did not look as 
complex on the MIR form (Fig. 10), it might be easier to navigate the prior after the variable 
change. In either way, sampling methods with pure MCMC like the ones used here are 
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probably not the most effective. Instead a better strategy is probably, in one way or another, to 
try to apply some form of ellipsoidal sampling. For example, the trick behind MultiNest20 is to 
enclose the prior in multiple ellipsoids that approximate the hard likelihood boundary, 
followed by generating samples within these ellipsoids. 
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Appendix 1 – Derivation of variational Bayes inference 

The aggregated hidden Markov model 
1:Tx


 is the observed data sequence in this case explicitly stating which aggregate is observed. 

1:Ts


 is the hidden state sequence. 

( , )N fη =


 is the model structure where N is the number of hidden states and f


 is a vector 
defining which aggregate each hidden state belongs to such that ( )tf s is the aggregate of state 

ts .  

( , ),aθ π=
 

B  are the model parameters. In this appendix the transition probability matrix A  

has been reparameterized into the matrix B  and the row vector a


. Here 1( | )i t ta p s i s i+= ≠ =

is the probability to leave state i  and 1( | , )ij t tB p s j s i i j+= = = ≠  is the probability to go from 

state i  to j , conditional on a transition occurring. This reparameterization makes it easier to 
chose priors that are non flat1 and by following this convention it became possible to re-use 
code from previous works1,2 when the algorithms found here were implemented in practice. 
The elements of transition probability matrix A  can be seen to relate to the elements of B  
and  a



 according to 

(1 ) (1 )ij ij i ij i ijA a a Bδ δ= − + −     (2.1) 

The distribution of the hidden state sequence according to an HMM is  

 , ,1 1

1 1

1
1

1: 1: ,
1

( | ) ( | , ) (1 ) ( ) .s s s st t t t

t t t t

T

T T s s s s s
t

p s p s ,a a a Bδ δθ π π + +

+

−
−

=

= = −∏
   

B    (2.2) 

Or written in another way to simplify some calculations later 

( )
, , 1

, 1

1
1

1: 1:
1 1 , 1

( | ) ( | , ) (1 ) ( ) .
i s j st t

m s ij ij
N T N

T T m i i ij
m t i j

p s p s ,a a a B
δ δ

δ δ δθ π π
+−

−

= = =

= = −∏ ∏∏
   

B  (2.3) 

The distribution of the observed aggregate sequence, conditional on the hidden state sequence 
is 

1: 1: 1: 1: ( ),
1

( | , ) ( | , ) .
t t

T

T T T T f s x
t

p x s p x s fη δ
=

= =∏
    

   (2.4) 

The joint distribution of the hidden and observed data conditional on the model parameters 
and structure can then be factorized as 

1: 1: 1: 1: 1:( , | , ) ( | , ) ( | , ).T T T T Tp x s p s ,a p x s fθ η π=
       

B    (2.5) 
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Finding the optimal model structure by maximum evidence 
 The most probable model structure η  given some observed data 1:Tx



 is found by maximizing 

the probability 1:( | )Tp xη


. This probability can be obtained by marginalizing over the model 

parameters in the joint probability 1:( , | )Tp xθ η


 so that 

1: 1:( | ) ( , | ).T Tp x d p xη θ θ η= ∫
 

     (2.6) 

This probability can be seen to relate to the joint distribution of the hidden and observed data 
conditional on the model in Eq. (2.5). Marginalizing over the hidden state sequence in Eq. 
(2.5) gives 

1: 1: 1:( | , ) ( , | , ).T T T
s

p x p x sθ η θ η=∑
  

    (2.7) 

The integrand on the right side in Eq. (2.6) is the posterior probability of the likelihood 
1:( | , )Tp x θ η


 given by Eq.  (2.7). This posterior probability and the likelihood relates through 
Bayes rule as 

1:
1:

1:

( | , ) ( , )( , | ) ,
( )

T
T

T

p x pp x
p x
θ η θ ηθ η =





     (2.8) 

where  the likelihood 1:( | , )Tp x θ η


 is the probability of the observed data conditional on the 

model, 1:( )Tp x


 is a normalization constant and ( , )p θ η  is the prior of the model parameters 
and structure describing our beliefs of these quantities before observing any data. After 
performing the marginalization according to Eq. (2.6) the sought probability 1:( | )Tp xη



becomes 

1:
1: 1: 1:

1: 1:

( | , ) ( , ) 1( | ) ( , | , ) ( , ).
( ) ( )

T
T T T

T T s

p x pp x d d p x s p
p x p x
θ η θ ηη θ θ θ η θ η= = ∑∫ ∫



  

    (2.9) 

Since the prior probability of the model structure η  is independent of the model parameters θ
, the prior in Eq. (2.9) can be written as ( , ) ( | ) ( )p p pθ η θ η η= which gives 

1: 1: 1:
1:

1( | ) ( , | , ) ( | ) ( ).
( )

T T T
T s

p x d p x s p p
p x

η θ θ η θ η η= ∑∫
  

   (2.10) 

Under the assumption that ( )p η  is constant for a reasonable interval of model sizes N , 
which means that there is no difference in the prior beliefs of the model structure in this 
interval, and by noting that the normalization constant 1:( )Tp x



 is independent of model 

parameters and structure, maximization of 1:( | )Tp xη


 can equivalently be done by maximizing 

40 
 



1: 1: 1:( | ) ( , | , ) ( | ).T T T
s

p x d p x s pη θ θ η θ η= ∑∫
  

   (2.11) 

Here the marginal likelihood 1:( | )Tp x η


 is called the evidence of the model structure. In the 
next section this quantity will be sought by a mean field methodology enabling tractable 
estimation of the evidence. 

Variational maximum evidence 
To find the model structure η  that maximizes the evidence, the evidence has to be calculated 
for each η . In this and similar works2,3  the evidence is approximated  by first determining a 
mean field approximation of the lower bound of the evidence and subsequent maximization of 
this approximation using the calculus of variations. Hence the name variational  Bayes has 
been used to describe this kind of inference methods4. The derivation of the variational Bayes 
algorithm made here follows the derivation made for vbSPT, where the variational maximum 
evidence for unaggregated HMMs are found based on single particle tracking data1,2.  

The functions that the lower bound of the evidence is to be maximized with respect to are 
obtained through a mean field approximation of the distribution 1: 1:( , | , )T Tp s xθ η

 

 given by 

1: 1: 1: 1:( , | , ) ( , ) ( ) ( ),T T T Tp s x q s q q sθ η θ θ= ≈
   

   (2.12) 

where ( )q θ and 1:( )Tq s


 are separable variational distributions that the evidence will be 
maximized with respect to. 

The evidence in Eq. (2.11) is re-written as a functional that can make use of the mean field 
approximation in Eq. (2.12). This functional is obtained by multiplying and dividing the 
logarithm of the evidence with 1:( , )Tq sθ



. Jensen’s inequality is then used on this expression 
to get a lower bound of the evidence, which gives 

1: 1:
1: 1:

1:

1: 1:
1: 1: 1:

1:

( , | , ) ( | )ln ( | ) ln ( , )
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∑∫

 

 



 

  



 

      (2.13) 

The expression of F  in Eq. (2.13) gives a lower bound for the logarithm of the evidence. To 
get a tractable problem, the ansatz is here to find an approximation of the evidence by 
maximizing the lower bound F  and to do this with respect to separable variational 
distributions where the mean field approximation 1: 1:( , ) ( ) ( )T Tq s q q sθ θ≈

 

is used. 

Maximizing the lower bound of the evidence F  with the respect to ( )q θ  and 1:( )Tq s


 can in 
fact be interpreted as minimizing a measure of the distance between the distributions 
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1: 1:( , | , )T Tp s xθ η
 

 and  1:( ) ( )Tq q sθ


, which is what is wanted in the mean field approximation in 

Eq. (2.12). This can be seen if the logarithm of the evidence 1:ln ( | )Tp x η


 is both added and 
subtracted from the expression of F  in Eq. (2.13). 
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Here the distribution 1: 1:
1: 1:

1:

( , | , ) ( | )( , | , )
( | )

T T
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T

p x s pp s x
p x

θ η θ ηθ η
η
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 is introduced in the second 

last line and ( || )KLD q p  represent the Kullback-Leibler divergence (KL-divergence) of p
from q . The KL-divergence gives a non-symmetric measure of the difference between the 
distributions p and q and can thus be interpreted as a semi-norm. By comparing the the 
expressions of the lower bound of the evidence in the Eqs. (2.13) and (2.14) it becomes clear 
that maximizing F  with the respect to q is equivalent to minimizing ( || )KLD q p . From the 
properties of the KL-divergence described above this verifies that the optimal separable 
variational distribution 1:( ) ( )Tq q sθ



obtained from maximization of F  is an approximation of 

1: 1:( , | , )T Tp s xθ η
 

. 

The problem of finding the evidence have now been simplified to maximizing the functional 
F  with respect to the variational distributions ( )q θ and 1:( )Tq s



. This problem will be solved 
by optimization with the calculus of variations using Lagrange multipliers to enforce the 
constraints of normalization for the probability distributions ( )q θ and 1:( )Tq s



. The lower 
bound F can equivalently be written as 
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      (2.15) 

The expression of the lower bound F  in  Eq. (2.15) will now in turn be optimized with the 
respect to ( )q θ and 1:( )Tq s



. Optimization with the respect to ( )q θ  while keeping 1:( )Tq s


 fixed 
can equivalently be done on the functional 

 

 

      (2.16) 

since the last term in Eq. (2.15) does not depend on ( )q θ . The problem have now been 

narrowed down to optimizing *F with the constraint 

( ) 1,d qθ θ =∫       (2.17) 

since ( )q θ is a normalized probability density function. This problem can be solved with the 
Lagrange-Euler equation while using a Lagrange multiplier to ensure the constraint in Eq. 
(2.17). The auxiliary function *G  is therefore introduced so that 

 [ ] [ ]* ( ) ( ) ( ),G q G q qθ θ λ θ= +     (2.18) 

where G is the integrand in Eq. (2.16)  

[ ] 1: 1: 1:( ) ( ) ( ) ln ( , | , ) ( | ) ( ) ln ( ),T T T
s

G q q q s p x s p q qθ θ θ η θ η θ θ= −∑
  

   (2.19) 

and the term ( )qλ θ  is the product between a Lagrange multiplier and the variational 
distribution ( )q θ , which enforces the normalization constraint in Eq. (2.17). According to the 
Lagrange-Euler equation for variational problems (here with an integral constraint)  a 
necessary condition for an optimum is5 

[ ]*
1: 1: 1:

1: 1: 1:

( ) ( ) ( ) ln ( , | , ) ( | ) ( ) ln ( )
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d q q s p x s p q q

θ θ θ θ η θ η θ θ θ

θ θ θ η θ η θ θ

= −

 = −  

∑∫ ∫

∑∫
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* *

0,
( ) '( )
G d G

q d qθ θ θ
∂ ∂

− =
∂ ∂

     (2.20) 

and since *G  has no dependence of '( )q θ this is equivalent to 

*

0.
( )
G

q θ
∂

=
∂

      (2.21) 

With the auxiliary function *G according to the Eqs. (2.18) and (2.19)  the derivative in Eq. 
(2.21) can be re-written as 
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∑

∑



 

  

 

 

      (2.22) 

where the normalization constraint 1:( ) 1T
s

q s =∑


 has been used on the fourth line and the 

product rule has been used for derivation on the fifth line. This result means that the 
Lagrange-Euler  Eq. (2.21) can be written as 

1:
1: 1:

( )
ln ( ) ln ( , | , ) ln ( | ) 1 .

T
T T

q s
q p x s pθ θ η θ η λ= + − +



 

   (2.23) 

Here, the constant 1 λ− +  enforces normalization, and can instead be renamed 

1 ln ( ) ln ,d q Zθλ θ θ− + = − = −∫     (2.24) 

where Zθ is a normalization constant. Eq. (2.24) inserted into Eq. (2.23) gives the final 
expression for the optimization criterion for ( )q θ , 

1:
1: 1:

( )
ln ( ) ln ln ( , | , ) ln ( | ).

T
T T

q s
q Z p x s pθθ θ η θ η= − + +



 

  (2.25) 

The corresponding derivation must also be done for the variational distribution 1:( )Tq s


, that is 
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optimizing F  with the respect to 1:( )Tq s


while keeping ( )q θ  fixed. The modified functional 
*F  that has the same stationary points (with the respect to ( )q θ when 1:( )Tq s



is fixed) as F  is 
now chosen as 

*
1: 1: 1: 1: 1: 1:

1: 1: 1: 1: 1:

( ) ( ) ( ) ln ( , | , ) ( | ) ( ) ln ( )

( ) ( ) ln ( , | , ) ( | ) ( ) ln ( ) .

T T T T T T
s s

T T T T T
s

F q s d q q s p x s p q s q s

d q q s p x s p q s q s

θ θ θ η θ η

θ θ θ η θ η

  = − 

 = − 

∑ ∑∫

∑ ∫

     

    

  

      (2.26) 

Solving the problem of optimizing *F with the respect to 1:( )Tq s


 in the corresponding way as 
shown for ( )q θ gives 

1: 1: 1:
( )

ln ( ) ln ln ( , | , ) .T T Ts q
q s Z p x s

θ
θ η= − +

  

   (2.27) 

The two optimization criteria for ( )q θ  and 1:( )Tq s


are then 

1:
1: 1:

( )
ln ( ) ln ln ( , | , ) ln ( | ),

T
T T

q s
q Z p x s pθθ θ η θ η= − + +



 

  (2.28) 

1: 1: 1:
( )

ln ( ) ln ln ( , | , ) ,T T Ts q
q s Z p x s

θ
θ η= − +

  

   (2.29) 

where Zθ  and sZ  are constants that ensure normalization of the variational distributions and 

...
q
denotes an expected value with respect to the probability distribution q . 

What has been shown in this section are necessary (but not always sufficient) conditions for 
finding the maxima of F with the respect to ( )q θ and 1:( )Tq s



. This means that variational 
distributions calculated according to the update Eqs. (2.28) and (2.29) represent stationary 
points of F , but it has not been shown here that they always represent a maximum.  

The computational implementations and simulations done with these optimization criterion do 
however imply that the update Eqs. (2.28) and (2.29)  really do give a maximum to F .  
Iterative updating of the variational distributions according to the Eqs. (2.28) and (2.29) while 
keeping the other variational distribution fixed, gives increasing values of F . These iterations 
are run until F converges and as a result the optimal ( )q θ  and 1:( )Tq s



are also found for the 
current η . This iterative updating of the variational distributions can in many ways be 
compared with the traditional expectation-maximization algorithm (EM-algorithm) used for 
maximum likelihood estimation of model parameters. In the following sections it is shown 
how the quantities on the right side in the update Eqs (2.28) and (2.29) can be calculated, thus 
giving a recipe for the iterative updating of ( )q θ  and 1:( )Tq s



. 
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M-step of the VBEM algorithm – updating q(θ) 
In the M-step of the variational Bayes expectation-maximization (VBEM) algorithm, the 
variational distribution ( )q θ  is updated in such a way that it maximises the lower bound of 
the evidence. This is achieved when ( )q θ  follows the update equation 

1:
1: 1:

( )
ln ( ) ln ln ( , | , ) ln ( | ).

T
T T

q s
q Z p x s pθθ θ η θ η= − + +



 

  (2.28) 

The prior distribution ( | )p θ η  is chosen to factorize in a certain way which will lead to a 
variational distribution ( )q θ  that also factorizes nicely. The prior distribution is therefore 
chosen as 

,:
1
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i i
i
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= = = ∏
    

B B |   (2.30) 

Here ,:iB notes row i  of the matrix parameter B . With Eq. (2.5) as the joint distribution of the 

hidden and observed data conditional on the model according to the aggregated HMM and the 
above prior distribution the update Eq. (2.28) becomes 
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      (2.31) 

With 1:( | , )Tp s ,a π
  

B  given by the definition of an HMM in Eq. (2.3), the second term of the 
last line in Eq. (2.31) is 
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      (2.32) 

The third term in the last line of update Eq. (2.31) is constant for all θ  given a fixed 
variational distribution 1:( )Tq s



and can thus be integrated into the normalization constant Zθ . 
Insertion of Eq. (2.32) into update Eq. (2.31) and collecting of the terms that depend on the 
different parameters then gives a separable variational distribution so that 

ln ( ) ln ln ( ln ) ln ( ),q Z q )+ q( a qθθ π= − + +
 

B    (2.33) 

where the logarithms of the factors in the distribution are given by 
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    (2.36) 

Direct algebraic expressions of the factors (q )B , )q( a


and ( )q π


 in the variational distribution 
( )q θ  can be obtained by choosing priors that are Dirichlet and beta distributed. More 

specifically ,:( | )ip B η  and ( | )p π η


 are chosen to be Dirichlet probability density functions 

and ( | )ip a η   is chosen to be a beta probability density function. Since the priors are chosen 

to be products of Dirichlet or beta distributions, the distributions ( )q B , ( )q a


and ( )q π


 are, as 
will be seen, distributed on the same form as the prior. This is because the conjugate prior of a 
Dirichlet and beta distribution is a Dirichlet and beta distribution, respectively. The priors are 
therefore chosen as 
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   (2.38) 
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( | ) | ),p Dir( w

π
π η π=





 

     (2.39) 

where the variables w  are hyperparameters of the priors. The probability density functions of 
the Dirichlet distributions in Eqs. (2.37) and (2.39) can be written as 
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where the normalisation constant Z  (here for ( | )p π η


 as an example) is given by 
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    (2.42) 

The beta distribution is a special case with a Dirichlet distribution with only two 
hyperparameters. The probability density function of the beta distribution in Eq. (2.38) can be 
written as 
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    (2.43) 

With the form of the priors known, direct expressions of the factors of the variational 
distribution can be determined from the logarithm of the factors in the Eqs. (2.34), (2.35) and 
(2.36). Using Eq. (2.34) and doing the this derivation for (q )B  gives 
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With the hyperparameters of (q )B defined as 
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Eq. (2.44) describes a product Dirichlet distributions such that 
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The corresponding derivation can be done for ( )q a


 and ( )q π


 which gives the following 
expressions for the factors of the variational distribution ( )p θ  
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  (2.48) 
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   (2.49) 

Some averages with the respect to these distributions are used in the subsequent E-step. These 
are 
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where ψ denotes the digamma function. 

The described hyperparameters of ( )q θ  are calculated in each M-step of the VBEM algorithm 
and ( )q θ  is in that way updated. The algorithm can then go on to the E-step where the 

averages and modes are used in the update of 1:( )Tq s


. 

E-step of the VBEM algorithm – updating q(s) 
In the E-step of the VBEM algorithm, the variational distribution 1:( )Tq s



 is updated in such a 

way that it maximises the lower bound of the evidence. This is achieved when 1:( )Tq s


 follows 
the update equation 
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1: 1: 1:
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    (2.29)

   
Since the variational distribution  ( )q θ  factorizes according to the Eq. (2.33) and with the 
joint distribution of the hidden and observed data conditional on the model according to Eq. 
(2.5), the update Eq. (2.29) can be re-written as 
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      (2.54) 

To determine the variational distribution 1:( )Tq s


, the terms on the right side of Eq. (2.54) has 
to be determined .The third term is determined by using the expression for the probability 
distribution of the observed aggregated sequence from Eq. (2.4) which gives 
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For the second term in Eq. (2.54) the factors ( )q B , ( )q a


and ( )q π


 from the variational 
distribution ( )q θ  are needed. These are obtained from the previous M-step as 
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π π=



  

     (2.49) 

where the hyperparameters w  are calculated in the previous M-step in the VBEM algorithm. 
With the distribution of the hidden state sequence according to Eq. (2.2) the second term in 
the update Eq. (2.54) becomes 
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The right side of Eq. (2.56) is now a sum of expected values with the respect to Dirichlet and 
beta distributions which can be calculated with the Eqs. (2.50), (2.51), (2.52) and (2.53). Eq. 
(2.56) then becomes 
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By inserting the Eqs. (2.55) and (2.57) as terms in the update Eq. (2.54) of the variational 
distribution 1:( )Tq s



, and introducing the variables , tt sH and
1,t ts sQ
+

,  the update Eq. (2.54) 

becomes 
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Here, ,ln
tt sH and  

1,ln
t ts sQ

+
are given by inspection of the Eqs. (2.55) and (2.57) as 
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Or  
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, tt sH and 
1,t ts sQ
+

are updated according to these equations in each E-step of the VBEM 

algorithm. With these expressions known the variational distribution 1:( )Tq s


can be calculated 

for all possible values of the hidden state sequence 1:Ts


. The naïve implementation of the 
calculation of all possible 1:( )Tq s



would however require an enormous amount of calculations. 
Instead all possible hidden state sequences can be swept through an implementation of 
dynamic programming called the forward-backward algorithm. The normalization constant 

sZ  can be obtained through this algorithm along with two expectation values that will be used 
in the next M-step. These expectation values are 

, ( )
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tj s tq s
p s jδ = =      (2.62) 

1, , 1( )
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t tj s k s t tq s
p s k s jδ δ

+ += = =     (2.63) 

 
With the averages ( )tp s j= and 1( | )t tp s k s j+ = =  calculated the M-step is finished. These 
averages are then used in the next E-step of the VBEM algorithm (see the Eqs. (2.47) 

, (2.48) and (2.49)). 

Calculating the lower bound F 
The goal of this inference method is to find the model structure η  with optimized parameters 
θ  that maximises the lower bound F of the evidence. A way of calculating this lower bound 
is therefore needed, both to check for convergence for each η  and to compare the converged 
lower bound for different η  to find the maximum. This approximation of the evidence is 
sought by first looking at the expression of the lower bound found in Eq. (2.15) and utilizing 
that ( )q θ  and  1:( )Tq s



 are normalized probability distributions. This gives 
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1:( )Tq s


 is given by the update Eq. (2.29) just after the E-step, and when this is inserted to the 
expression above, Eq. (2.64) simplifies to 
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The first term in Eq. (2.65) is the normalization constant for 1:( )Tq s


 (i.e. the likelihood of the 
current θ ). This value is obtained through the forward-backward algorithm and has thus just 
been calculated after the E-step. The second term is also easy to compute because of the 
separable ( )q θ  and ( | )p θ η . The second term can be expanded according to 
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All of the three terms in Eq.(2.66) can be calculated as expected values of the variational 
distributions given by the Eqs. (2.50), (2.51) and (2.53). The terms are thus calculated 
according to 
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The lower bound F  can now finally be calculated, which is done as a last step in the 
algorithm after the VBEM iterations have converged. This maximized lower bound is used as 
an approximation of the logarithm of the evidence and can then be used for model selection 
when comparing the evidence of different model structures η  with each other. 

Multiple observed sequences 
When multiple observed sequences x



 are used in one call to the VBEM algorithm, the sum of 
the lower bound from each observed sequence is maximized with one single model. This is 
effectively done by summing over all observed sequences M  when calculating the 
parameters of the variational distribution ( )q θ  in the M-step. For example, ( )

ijw B which is 

calculated according to Eq. (2.45) for one observed sequence, is for multiple sequences 
calculated according to 
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BB     (2.70) 

where m
ts  is the hidden state at time t  for the thm  observed sequence in the dataset. 

Similarily, contributions from additional observed sequences are just added as new rows to 
the matrices ln H  and ln Q , which serve as the input to the forward-backward algorithm. 
This means that the normalization constant sZ  (i.e. likelihood) also has contributions from 

multiple observed sequences when such are given, meaning that sZ  is the likelihood of the 
entire dataset. 
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