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Abstract
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The latest advances in digital cameras combined with powerful computer software enable us to
store high-quality microscopy images of specimen. Studying hundreds of images manually is
very time consuming and has the problem of human subjectivity and inconsistency. Quantitative
image analysis is an emerging field and has found its way into analysis of microscopy images for
clinical and research purposes. When developing a pipeline, it is important that its components
are simple enough to be generalized and have predictive value. This thesis addresses the
automation of quantitative analysis of tissue in two different fields: pathology and plant biology.

Testicular tissue is a complex structure consisting of seminiferous tubules. The epithelial
layer of a seminiferous tubule contains cells that differentiate from primitive germ cells to
spermatozoa in a number of steps. These steps are combined in 12 stages in the cycle of
the seminiferous epithelium in the mink. The society of toxicological pathology recommends
classifying the testicular epithelial into different stages when assessing tissue damage to
determine if the dynamics in the spermatogenic cycle have been disturbed. This thesis presents
two automated methods for fast and robust segmentation of tubules, and an automated method
of staging them. For better accuracy and statistical analysis, we proposed to pool stages into 5
groups. This pooling is suggested based on the morphology of tubules. In the 5 stage case, the
overall number of correctly classified tubules is 79.6%.

Contextual information on the localization of fluorescence in microscopy images of plant
specimen help us to better understand differentiation and maturation of stem cells into tissues.
We propose a pipeline for automated segmentation and classification of the cells in a whole
cross-section of Arabidopsis hypocotyl, stem, or root. As proof-of-concept that the classification
provides a meaningful basis to group cells for fluorescence characterization, we probed tissues
with an antibody specific to xylem vessels in the secondary cell wall. Fluorescence intensity in
different classes of cells is measured by the pipeline. The measurement results clearly show that
the xylem vessels are the dominant cell type that exhibit a fluorescence signal.
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1. Introduction

1.1 Motivation
Digitalization of biological data has enabled us to use computer sys-
tems to assist doctors and researchers in interpretation and analyzing
the data. Recent advances in image acquisition and analysis, together
with improvements in microprocessor performance, have brought au-
tomated image processing methods within reach. In the absence of
automated methods, analysis of the digital images is qualitative and
labor-intensive, and has the problem of human subjectivity and incon-
sistency. With emerging imaging tools, quantitative image analysis can
assist technicians and doctors to make more accurate diagnosis. Chal-
lenges in computer assisted analysis are the accuracy and speed for
proving a useful outcome and at the same time handling enormous data
involved in digital samples [2]. Another challenge is to make the meth-
ods usable for the biologists [2]. There is always a trade-off between the
simplicity of use and flexibility for diverse and complex applications. In
this thesis we addressed two issues in microscopy image analysis. One
of them relates to analyzing histopathological images of testicular tis-
sue. The other one deals with a quantification of gene expression in
fluorescent images of plant cells.

Testicular tissue is a complex structure consisting of seminiferous
tubules. The epithelium layer of seminiferous tubules contains cells
which differentiate from primitive germ cells to spermatozoa in a num-
ber of steps. These steps are combined in twelve stages in the cycle of
the seminiferous epithelium in the mink. Segmenting the epithelium of
tubules and classifying them to known stages can assist pathologist in
interpretation of the sectioned tissue.

Contextual information on the localization of fluorescence in micros-
copy images of plant specimen helps us in better understanding of dif-
ferentiation and maturation of stem cells into tissues. Changes in mor-
phology and wall composition are indicative for the degree of differen-
tiation and cell type. Segmenting cells and classifying them in different
cell types provide the ability to perform statistical analysis and quantifi-
cation of fluorescence on a specific cell type.

For both types data sets I) I suggest automated segmentation method
for segmenting regions of interest (ROIs), II) propose classification meth-
ods to classify ROIs into categories defined by an expert, III) perform
statistical analysis of ROIs.
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1.2 Outline of Thesis
The outline of this thesis is as follows: Chapter two is an overview of
segmentation methods. Chapter three is an overview of classification
and feature extraction methods. In both these chapters the main focus
is on methods that are used later in contribution chapters. Chapter four
and five are detailed descriptions of two developed pipelines. Chapter
four starts with an overview of testicular tissue and addresses a clas-
sification problem for stained testicular tissue. Then a pipeline is sug-
gested to automate the analysis. Chapter five starts with an overview
of fluorescent images of cross section of plant. In this chapter a de-
tailed pipeline for measuring florescence with sub-cellular resolution is
proposed and discussed. In chapter six I make concluding remarks and
give some suggestions for future work.

10





2. Segmentation

Image segmentation is the process of partitioning an image into disjoint
subdivisions. Every subdivision usually has similar properties such as
similar intensity value or texture. Segmentation is one the most impor-
tant steps in an image analysis pipeline. All further analysis such as
feature extraction and classification are dependent on the result of seg-
mentation. Some of the segmentation methods, like thresholding, are
largely based on ad-hoc ideas. Although these methods are not robust,
they are widely used because of their simplicity and speed.

In energy based segmentation methods, segmentation is the result of
minimizing an energy function. The energy function can be defined
in the continuous domain or the discrete domain. Snakes [24, 48]
and Level set segmentation methods [19, 20, 58, 60] are examples of
continuous domain methods and graph based segmentation methods
[13, 39, 79] are examples of discrete domain methods.

Active contour or Snakes is an evolving interface whose motion is
guided by internal and external forces. The external force is defined
based on regional properties of the image. In Snakes, we define an ini-
tial curve for every object, the curve grows until it reaches the bound-
aries. This method has some limitations, for example the initial curves
cannot split or merge, and they can only grow or shrink. This can be
problematic if topology of the object is changed. The level set method,
which is also an evolving interface, can handle topology changes such
as self-intersection better than Snakes.

Graph based segmentation treats an image as a graph where neigh-
boring pixels are connected by edges weighted based on intensity sim-
ilarity between pixels. Segmentation is performed by minimizing the
sum of edge weights for background and foreground.

Watershed segmentation is a morphology based image segmentation.
In Watershed segmentation [8, 9, 85] a grey level image is considered
as a landscape. Low intensity regions are valleys in the landscape and
high intensity are hills. The landscape is immersed in water and water
is flooded from local minima. A dam is placed where the water from
two different catchment basins meets. Watershed segmentation can be
implemented as an energy based segmentation using a graph [28].

Another segmentation method based on graphs is Livewire [5]. Livewire
is an interactive segmentation method. This technique requires the user
to place a point along the boundary of the desired object, the algorithm
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calculates the cost of the optimal path between this seed point and all
other pixels in the image. With the help of the algorithm the user can
select the next point on the boundary whose path cost to the seed point
is minimum. These segmentation methods will be described in more
detail in this chapter.

2.1 Level Set Segmentation
The Level set was first proposed by Osher and Sethian [70] as a numer-
ical method for computing the motion of an interface. Caselles et al.
[19] and Malladi et al. [60] used Level set in the context of Snakes
models for image segmentation. In the Level set segmentation, the
evolving curves are actually the zero iso-contours of a Level set func-
tion φ(x, y, t) : Ω −→ R, where Ω is the domain of an image. The Level
set function changes with time and evolving contours are computed in-
directly as its zero contours where φ(x, y, t) = 0. The equation for the
motion of the interface is

∂φ

∂t
+ F |∇φ| = 0, (2.1)

where F is a function that models the desired velocity on the inter-
face and ∇ is the gradient operator. The interior and exterior of φ in
the region Ω are respectively defined as {(x, y) ∈ Ω|φ(x, y, t) < 0} and
{(x, y) ∈ Ω|φ(x, y, t) > 0}. The most difficult task is to establish a Level
set function that can make a meaningful segmentation of a desired ob-
ject in the image. Li and Xu [58] suggested an energy function for the
Level set which includes both the edge and region information. If image
I belongs to domain Ω, the edge indicator can be defined as:

g = 1
1 + |∇Gσ ∗ I|2

, (2.2)

where Gσ is a zero-mean Gaussian distribution with standard deviation
of σ and operator ∗ is convolution. The function g usually has smaller
values at object boundaries than at other locations in the image. For a
Level set function φ, Li and Xu [58] suggested following energy func-
tion:

E(φ) = µ

∫
Ω
p(|∇φ|)dx+ λ

∫
Ω
gδ(φ)|∇φ|dx

+ α

∫
Ω
gH(−φ)dx . (2.3)

The first part of this equation is the Level set regularization term, where
p is the energy density function and µ, λ and α are energy coefficients,
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and δ and H are the Dirac delta and the Heaviside functions, respec-
tively. The coefficient α can have a negative or a positive value de-
pending on whether the initialized contour is inside or outside of the
object. This energy function is minimized when the contours reach the
boundary of the object. With the Dirac delta function, the second part
of energy function is the integral along the zero level contour of φ. The
last term is proportional to the area of the interior of φ and is used to
speed up the motion when the zero level contour is placed far away
from the object boundary.

2.2 Graph Cut Segmentation
Wu and Leahy [90] and Zahn [91] are among the first people who ap-
plied graph theory in image processing applications. This got a great
deal of attention in segmentation after Shi and Malik [79] introduced
the normalized cuts algorithm. A graph g = {ν, ε, ω} is defined as a
set of nodes, or vertices, ν = {vi} and a set of edges ε = {eij} with
weights ω = {wij}, eij is the edge between nodes vi and vj and wij is its
corresponding weight. A directed graph is a graph whose edges have a
direction associated with them. An s − t graph is a directed weighted
graph with two specific nodes called the source s and the sink t.

An s− t cut is a subset of edges C ⊂ ε such that the terminals s and t
become completely separated on the induced graph g = {ν, ε−C}. The
cost for a cut |C| is the sum of the costs of all the edges it contains, see
figure 2.1.

The minimum cut problem is to minimize the cost |C|, which is to find
an s− t cut with minimum cost. Based on combinational optimization,
a globally minimal s − t cut can be computed efficiently in low order
polynomial time.

Graph-cut segmentation methods became popular after Boykov et al.
[15] published a new and often fast approach for image segmentation
[13, 14, 15]. In binary segmentation every pixel p ∈ P is assigned a
label fp ∈ {0, 1}; if p is in the object then fp = 1 and if p is in the
background then fp = 0. Segmentation can be accomplished by defining
a proper energy function whose optimization gives the best labelling.
The general form of the energy function is defined as follows:

E(f) = λ
∑
p∈P

Dp(fp) +
∑

{p,q}∈N
Vpq(fp, fq) (2.4)

where N is the set of neighborhood pixels, Dp is called the data term
and is the cost of assigning fp to the pixel p, Vpq is called the regular-
ization or smoothness term and is the cost of assigning fp to pixel p and
fq to pixel q, and λ is a coefficient for balancing between Dp and Vpq.
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S

T

Cut

Figure 2.1. Graph cut segmentation, where Source (S) and sink (T) become
separated by a cut (red dashed line).

The regularization term penalizes the number of label transitions, and
in energy minimization the penalty is smaller when two neighbor pixels
are labeled the same. One of the main challenges in this procedure is
computational time in minimizing the energy function. Boykov et al.
[15] suggested limited types of smoothness assumption and showed
that with a proper choice of edge weight one can minimize the energy
function in equation 2.4 in reasonable time. Binary Graph cut segmen-
tation of grey level images can be extended to multi-label segmentation
with a one versus the rest strategy, or multi-cut.

2.3 Watershed Segmentation
In the Watershed segmentation a grey level image is regarded as a land-
scape, see figure 2.2. There are different ways of implementing Wa-
tershed. Beucher and Meyer [9] used a priority queue: first we find
the local minima and then we assign different label to every minimum
(seed). Neighboring pixels of seeds are prioritized based on their sim-
ilarity to the seed intensity. The pixel with the highest priority is ex-
tracted from the queue, and is assigned the same label as its neighbors.
If its neighbors do not share the same label, it does not get any label.
Non-labeled pixels will be the Watershed dam. The same concept can be
implemented using a graph [28]. Pixels are nodes in the graph which
are connected with weighted edges. Weights represent the similarity
between pixels and seed points. In this case, the edges adjacent to the
seeds are added in a priority queue, where the priority is the weight of
the edges.
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In the Watershed method local minima are very important. Local
minima can be computed directly from the image or its gradient or can
be determined by the user. Every region of interest should have one
local minimum, otherwise the Watershed dam, or object borders, are
placed in a wrong position and the image is oversegmented. There are
several approaches to solve this oversegmentation problem. For exam-
ple, we can pre-process the image to filter out non-significant minima
[75]. Alternatively, the image can be post-processed after the segmen-
tation, oversegmented regions are merged based on some predefined
condition such as similarity in average intensity offset [86]. The origi-
nal Watershed segmentation method does not include any smoothness
prior, and Watershed dams can be noisy. Nguyen et al.[67] represented
Watershed segmentation method as an energy minimization problem
and imposed smoothness as a term in the energy function.

Figure 2.2. On left is original image and a landscape representation of a part of
it, marked with green box is shown in right.

2.4 Livewire Segmentation
Livewire [5, 35] is a graph based segmentation method. In the graph
representation, the weights assigned to edges are function of the bound-
ary strength between two pixels in the image. In the Livewire algorithm
the user need to specify a seed point. For delineating the object bound-
ary the seed point should be paced on the object boundary. The shortest
path between the seed point and all other pixels is calculated using Di-
jkstra’s algorithm [33]. The user then can, by moving the mouse over
the image, instantly see the optimal boundary between that seed point
and the current mouse position. By clicking, the portion between the
seed and click point gets fixed, and the newly selected pixel becomes the
new seed point. The whole process is repeated. In this manner, the user
can, interactively and with only a few clicks, very precisely delineate
the whole object boundary.
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3. Classification

3.1 Feature Selection and Extraction
In an image analysis pipeline, the next step after segmentation is clas-
sification of regions of interest or objects to different groups. To do
so we need to map every object in an image to a vector that can de-
scribe the property of that object. This vector is called feature vector.
To make classification easier, it is better that feature vectors of different
objects have discriminatory information and as little overlap as possi-
ble. Irrelevant and redundant features can, in certain cases, make the
classification worse. Reducing the number of features used as input to
a classifier is referred to as dimensionality reduction, because the n fea-
tures are seen as spanning an n-dimensional space. There are two ways
of reducing the dimensionality: feature selection and feature extraction.
The former selects the best subset of features, whereas the latter com-
bines features to produce a reduced set. We lose interpretability of the
classifier, with feature extraction, even if it potentially improves clas-
sification. Feature selection methods are a better choice if we want to
interpret the effects of each original feature on the classification results
[88].

In feature selection methods, we need a search algorithm that deter-
mines the best subset of features to use. The naive search algorithm
considers all subsets, and hence is a very expensive approach: selecting
k features out of n requires evaluating

(n
k

)
= n!

(n−k)!k! combinations. If
we also want to find out how many features to keep, the number of
combinations to evaluate grows rapidly. Other approaches have been
suggested that are suboptimal but computationally feasible. Sequential
Forward Selection (SFS) and Sequential Backward Section (SBS) are
examples of such approaches. For both SFS and SBS we need to de-
fine a proper criterion function. SFS is a bottom-up search that adds
one feature at the time until the desired number of features that max-
imizes the criterion function is obtained. On the other hand, SBS is a
top down search algorithm which starts with all features, and then the
worst features are removed one at the time.

In a feature extraction method, we replace original features with a
smaller set of underlying variables. Leaner feature extraction methods
such as Principal Component Analysis (PCA) [72] and Linear Discrimi-
nant Analysis (LDA) [36] seek for a linear combination of features that
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best explain the data. PCA does not consider grouping or class of sam-
ples and is an unsupervised feature extraction method. The objective
in PCA is to find an orthogonal transformation such that derived vari-
ables are uncorrelated. Principal components are obtained by eigen-
decomposition of the covariance matrix of features. The first principal
component is aligned with the direction of largest variation of data.

LDA is a supervised feature extraction method. In LDA, the objective
is to maximize between-class separability and to minimize within-class
variation. The axes of the transformed system are ordered in terms of
discrimination importance. LDA can be used for visualization of high
dimensional data as well. In these cases we only consider the first two
or three dimensions of the derived data.

3.2 Classification Methods
3.2.1 Support Vector Machine
Support vector machine (SVM) classifier [25] has a strong mathemat-
ical foundation. In binary classification, SVM constructs a hyperplane
which has the largest distance to its nearest training points of any class.
In other words, SVM maximizes the margin between two classes and
this margin is the distance between two canonical hyperplanes that have
no points between them. The separating hyperplane is half way in the
middle of these two canonical hyperplanes. In linear SVM, the sepa-
rating hyperplane is wTx + b = 0, and two canonical hyperplanes are
wTx + b = 1 and wTx + b = −1, where w denotes the normal vec-
tor to the hyperplanes. The distance for a point x0 to the separating
hyperplane is

d =
∣∣wTx0 + b

∣∣
‖w‖

(3.1)

The margin between two canonical hyperplines is 2
‖w‖ , and maximiz-

ing this margin is equivalent to minimizing ‖w‖. The constraint for
minimizing ‖w‖ is that there is no object between two hyperplanes.
This is a constrained optimization problem that can be solved by the
Lagrangian multiplier method. For the cases that data is not linearly
separable, soft support vector machine introduces a slack variable ξi,
which allows for a softer margin:

minimize
w,ξ,b

1
2‖w‖

2 + C
n∑
i=1

ξi,

subject to yi(wTxi + b) ≥ 1− ξi, ξi ≥ 0.
(3.2)
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The slack variables, ξis, measures the degree of misclassification, and
the coefficient C is used to control the trade-off between the maximum
margin and the misclassification error.

Non-linear SVM maps data into a higher dimensional space in the
hope to gain less overlap between classes, so that linear SVM can be
used. A linear boundary in the higher dimensional space corresponds
to a complex decision boundary in the original feature space. Instead
of computing the mapping, we can replace the original inner product of
the objects, which is involved when solving the optimization problem,
with the inner product of a kernel function [12]. Popular kernel func-
tions are radial basis function, Gaussian, and low degree polynomial.
SVM is frequently used in histopathology applications [26, 34, 87]. We
also used it in papers III and chapter 5.

3.2.2 Decision Tree
A decision tree classifier [17] is a classification in the form of a tree:
it consists of a root node, some internal nodes called decision nodes,
and terminal nodes called leaf nodes. Every decision node establishes
a threshold on a single feature, and has two branches; every leaf node
contains a classification label. An object to be classified will traverse
the tree, starting at the root node. At each decision node, one specific
feature of the object is compared to the threshold, the result determines
which of the two branches the object will follow. When a leaf node is
reached, the object has been classified.

During training, a decision node is created that separates the training
set into two groups, such that the entropy in each group is minimized.
For each of these two groups, again a decision node is created in the
same manner. This procedure is repeated recursively until a group con-
tains only elements from a single class (the least entropy possible); a
leaf node is created with the label for that class.

3.2.3 Random Forest
A Random Forest [16] is an ensemble classifier, combining many de-
cision trees. It outputs the classification label most often returned by
these trees (majority vote). To maximize the variation between trees,
a different subset of the data is used to train each tree. These subsets
are obtained by sampling the original data with replacement (bootstrap
samples). The samples left out are called out-of-bag (OOB) data, and
are used as test data to estimate the classification error of that tree. Fea-
ture importance is estimated as follows: feature m in the OOB data is
randomly permuted. For every tree, the resulting classification error is
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subtracted from the classification error of the untouched OOB data. The
average of these values over all trees in the forest, normalized by their
standard deviation, gives the importance score of feature m. Random
Forest has been used for pathology applications [6, 31, 68] and we used
it in IV and chapter 4.

3.2.4 RUSBoost
RUSBoost [77] is designed for imbalanced data sets, where RUS stands
for random under sampling. It under-samples the majority class and
uses the AdaBoost [38] method for training. AdaBoost is an ensemble
classifier and consists of subsequent week learners. In AdaBoost, every
observation has a weight. In the beginning the weights are uniform, for
every learner weights get updated based on the result of previous learn-
ers. The objects misclassified by previous learners, get higher weights.
The final result is the weighted sum of all week learner outputs. We
used this method in chapter 4.

3.3 Evaluation
3.3.1 Confusion Matrix
When the data is unbalanced, overall accuracy of the classifier is mis-
leading and biased toward the majority class. A confusion matrix can
give the whole picture of the classification performance. In confusion
matrix, each row represents instances in an actual class and each col-
umn represents instances in a predicted class. Samples on diagonal are
samples which are correctly classified and other samples are misclassi-
fied samples.

3.3.2 Cross-validation
Cross-validation gives an unbiased estimate of a model performance.
In cross-validation, the data set is randomly partitioned into two sets.
The model parameters are estimated using one set and its performance
is evaluated on the second set. In K-fold cross-validation, data is ran-
domly divided into K equal size subsamples. One subsample is consid-
ered as the testing set and remaining K−1 samples as training set. The
classifier is trained on K − 1 subsamples, and the Kth subsamples is
used to assess the classifier. The training is repeated K times, such that
each of the subsamples is used once for assessment. The results from K
folds are averaged.
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3.4 Texture Features
3.4.1 Gabor Filters
A Gabor filter can be seen as a Gaussian kernel function modulated by
a sinusoidal plane wave:

G(x, y, F, θ, σ) = 1√
2πσ

exp[−(x2 + y2)
2σ2 ] exp[i2πF (x cos θ + y sin θ)]

(3.3)
where σ is the standard deviation of Gaussian envelope (or scale), θ is
the angle between direction of the wave and x-axis (or orientation) and
F is the frequency of wave. Gabor filter bank is a set of Gabor filters
with different scales, orientations and frequencies. Gabor filter bank has
been used widely for calculating texture descriptor [4, 37, 45, 81, 89].
Bianconi and Fernndez [10] studied the effect of different parameters
on texture discrimination and concluded that F and σ have the highest
impact. They proposed the highest frequency FM for every scale as:

FM = σ

2(σ +
√

log(2)/π)
(3.4)

If we want to have Gaussian filters with 3 different frequencies, the
frequency set suggested by [10] is {F1 = FM , F2 =

√
2F1, F3 =

√
2F2}.

One way of using Gabor filter bank as feature descriptor, is to apply
every filter on an object and then use mean and standard deviation of
the magnitude of the filters responses as the feature values. This method
has been used in chapter 4.

3.4.2 Local Ternary Pattern
Local ternary pattern [82] is one of the variations of local binary pattern
(LBP) [69]. LBP uses a local threshold to binarize the local neighbor-
hood. The neighborhood is then summarized by concatenating binary
pixel values into a single number. The distribution of local numbers are
considered as feature vector. Ojala et al. [69] found that a small sub-
set of binary codes that at most have two transitions between zero and
one, corresponds to local structures such as edges, corners and spots.
These subset of binary codes have the most discriminatory information
of an object and are used as feature descriptors. Different LBPs based on
choice of thereshold and the binarization method have been suggested.
LTP for pixel c with intensity value gc is defined as:

LTPN,R(gc, gp, s, t) =
N−1∑
p=0

s(gp, gc, t)2p, (3.5)
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where

s(gp, gc, t) =


1, gp >= gc + t,

0, gc − t =< gp < gc + t,

−1, otherwise
(3.6)

where N is number of points (p) at the distance of R of point c, gp is
intensity value of point p and t is a threshold. LBP is used in medical
and histopatologycal application [63, 83, 78], we also used a rotation
invariant LTP in paper III.

3.4.3 Rotation Invariant Texture Features
Many of texture descriptors are dependent on rotation. Some approaches
have been suggested to make them rotation invariant. One straight-
forward method is to compute the average features corresponding to
different orientations [42]. Another method circularly shifts features
according to the dominant direction [4]. Another approach is based on
a common property of the Fourier transform [81]: we know that trans-
lation in time corresponds to shift in phase in the Fourier transform.
By considering only the magnitude of the Fourier transform of features,
the shift is disregarded. The magnitude of the spectrum is symmetric
so half of it can be discarded. This rotation invariant method has been
used in paper III.

23





4. Automated Analysis of Histology
Images of Testicular Tissue

4.1 Background

Tubules

M

S1

St

S3

SA

SB

M

S2

St

Figure 4.1. On right is testis on left is histology image of a cross section of a
seminiferous tubule. M: myoid cell just outside the basal lamina; S1: primary
spermatocyte; S2: spermatid; S3: mature spermatid or spermatozoon; SB and
SA: spermatogonia; St: Sertoli cell, figures from [51] and [61]

The male reproductive system consists of penis, accessory glands,
genital ducts and testis. Spermatoza are produced in the testis at a
rate of 2 × 108 per day in a human male adult. Each testicle has 250-
1000 seminiferous tubules, where each tubule measures about 150-250
mm. in diameter and 30-70 cm in length [66]. A seminiferous tubule is
enclosed with a complex epithelium. The seminiferous epithelium has
two types of cells: non-dividing sertoli cells (St in figure 4.1) and prolif-
erative germ cells (S1, S2, S3, SA, SB in figure 4.1). The primitive germ
cells (SA, SB) are small round cells which go through different stages
of development to become spermatoza (sperm cells). Different stages
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of development are recognized by the shape of the cell nuclei and their
staining properties.

There are twelve different stages in the cycle of the seminiferous ep-
ithelium in mink, defined in detail by Pelletier [73], figure 4.2. The
Society of Toxicological Pathology recommends classifying the testicu-
lar epithelium into different stages when assessing tissue damage to de-
termine if the dynamics in the spermatogenic cycle has been disturbed
[54]. If a toxicant affects the testis it might lead to a new combination
of the cells in a certain stage. For example a particular cell type can be
missing or an inappropriate cell type can be present in a certain stage
due to exposure to a cytotoxic agent [30]. These changes may be the
only morphological sign of toxic damage and it can only be detected by
staging [52].

The quantitative analysis of digital pathology is important not only
from a diagnostic perspective, but also in order to understand the un-
derlying reasons for a specific diagnosis being rendered [41]. In this
study we use image analysis techniques on microscopy images of tes-
ticular tissue from mink. Mink is a semi-aquatic top predator that has
been suggested as a suitable sentinel species in environmental monitor-
ing of endocrine disruptive chemicals [7, 74]. The aim of this study is
to design a computerized method to determine the stages in histology
images of mink testicle tissue. Our ultimate goal is to provide an objec-
tive tool that can be used by all pathologists, and which is adjustable to
function for the analysis of tissue also from other species.

l ll lll
lV V Vl Vll Vlll lX

X
Xl Xll

Figure 4.2. The characteristic cellular composition of the 12 stages, figure form
[73]
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4.2 Animals and Dissection
Four healthy, sexually mature minks were collected at the annual culling
on a mink farm. No ethical approval was required due to the use of rou-
tinely culled mink from a fur farm. The commercial fur farm approved
the use of the mink for the study. Transverse tissue slices from testis
were fixed and embedded. The samples were cut in 5 micrometer sec-
tions and stained with Gata-4 antibody (brown) and and haematoxylin
counterstain (blue). Digital images of the sections were taken with a
Nikon Microphot-FXA microscope using the 20x objective lens. Size of
images in pixel is 1200 by 1600 and pixel size is 0.4 mm. Images are
RGB and for this analysis we only used channel R.

4.3 Algorithm
4.3.1 Segmentation
The first step in the algorithm is segmentation. One approach is to
segment all the cells and classify them into different groups (S1-S3,
SA-SC). Based on the type of the cells represented in each tubule, a
stage is assigned to that tubule. There are thousands of cells in every
tubule and every image in average contains around five tubules. These
cells have arbitrary shapes and color content. This makes an automated
segmentation and also classification of cells very challenging. Another
direction is to segment each tubule and treat its area as a texture.

We have suggested two automated segmentation methods for two
different stainings. For Periodic Acid Schiff (PAS) stained thin sections,
we first delineate the border of lumen using the Level set segmentation
method. The borders of tubules are then segmented using a thresh-
olding method followed by an approach based on geodesic distance to
correct undersegmentation (paper I).

For Gata-4 staining, the cell nuclei are first detected using the Fast
Radial Symmetry filter [59]. A graph is constructed on top of the ep-
ithelium cells. Graph cut segmentation method is used to cut the links
between cells of different tubules (paper II).

In papers III and V, we used a semi-automated Livewire segmentation
method. The user adds a seed point on the boundary of a tubule, and
the algorithm calculates the cost of the optimal boundary between this
seed point and all other pixels in the image. By moving the mouse over
the image, the user can then instantly see the optimal boundary be-
tween that seed point and the mouse position and delineate the tubules
boundary. The semi-automated method is controlled by the user, and
has fewer errors. This is the segmentation method we used before clas-
sification.
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4.3.2 Feature Description
The next step after segmentation is to find features for every object of
interest. Pathologists examine tubules locally and depending on cell
types they contain assign a stage to them. One approach is to partition
every tubule to patches or superpixels and for every patch find a feature
vector. Patches are clustered into different categories and the histogram
of different patch clusters within a tubule is considered as its feature
vector. Superpixels have been used for glandular structures segmenta-
tion in colon histology images [80]. Exploitation of superpixels made
the algorithm complicated without rendering a satisfactory results. We
consequently decided to directly find a feature vector for every tubule.

Texture descriptors capture spatial relationship between pixels. Tubules
with different cell types also are different in texture. We exploited
two texture descriptors: Gabor filters [37] and Local Ternary Pattern
(LTP)[82].

For this application, parameters of Gabor filter are four scales σ =
{1, 3, 5, 7}, seven orientations uniformly distributed over π radian and
four frequencies. The first frequency for every scale is calculated based
on equation 3.4 and the next frequency in the series is

√
2 times the

previous one. Feature vector is mean values and standard deviations of
magnitudes of filter responses. In order to make the features rotation
invariant, the Fourier Transform of the features at seven rotations is
calculated and the non-redundant part of power spectrum is used as
feature vector. For every tubule, number of features, Nr, are:

Nr = NfNs(No + 1) (4.1)

where Nf , and Ns and No are respectively number of frequencies, num-
ber of scales and number of orientations. In total we have 128 features.

LTP uses a local threshold and the local neighborhood is binarized
based on its relation to the threshold. The distribution of the local
binary numbers is considered as the feature vector. Binary codes are
grouped as one rational group if they can be circularly shifted to the
same code. The co-occurrence within rotation groups are Fourier trans-
formed and the non-redundant part of the power spectrum is used as
the feature vector. For every pixel we sampled eight points at radius of
four and the threshold value is five. We have 652 features.

4.3.3 Classification
For the classification we explored three different classifiers: linear Sup-
port Vector Machine, Random Forest and RUSBoost. A soft linear Sup-
port Vector Machine (SVM) classifier [18], was trained on a given set
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of tubules with known stages. Its parameters was optimized using grid
search. 5-fold cross-validation was used to assess the classifier’s accu-
racy. We used LIBSVM package[21] for SVM.

Random Forest [16] is an ensemble classifier method constructed of
forest of decision trees. In random forest cross-validation is internally
implemented and out of bag error is a good estimate of the general
error. We chose 100 trees for the forest.

RUSBoost [77] is designed for imbalanced data set, where RUS stands
for random under sampling. It is an ensemble classifier and consists of
subsequent week learners. The number of learners used for this appli-
cation is 200.

4.3.4 Evaluation Using Confusion Matrix
Here we have a multiclass unbalanced classification problem. Accuracy,
which is the ratio of correctly classified samples does not give the whole
picture of the performance of the classifier. We used a confusion matrix
to visualize the classifier results. In confusion matrix (figures 4.3, 4.4
and 4.5), numbers indicate how many tubules were assigned to stage
Y (row number) by the pathologist and to stage X (column number)
by the computerized staging program, as a percentage of all tubules
manually assigned to stage Y. Thus, each row adds up to 100%.

4.4 Results and Discussion
A Pathologist classified 370 sample tubules of four animals into 12 de-
velopmental stages. The distribution of tubules for 12 stages are shown
in table 4.1. As you can see we have unbalanced data set where some
of the stages (e.g. stage 11) are represented with very few examples.

Developmental stages are cyclic and neighboring stages are very sim-
ilar in structure. It is not an easy task for a pathologist to distinguish
some of the neighboring stages with high certainty. On the other hand,
we do not have enough samples for every stage. These issues are prob-
lematic when training a classifier. We have tested three different clas-
sifiers: Random Forest, RUSBoost and SVM for two feature descriptors:
LTP and Gabor. The confusion matrices of all results are shown in fig-
ure 4.3 and 4.4. None of the classifiers are able to capture the structure
of the data for all the stages and are confused between neighboring
stages. This problem is more evident in the minority stages. As you can
see in confusion matrices in figures 4.3 and 4.4, Random Forest is more
biased towards stages one and five which are majority stages whereas
RUSBoost is biased towards stages four, seven and eleven which are
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Figure 4.3. Confusion matrices for Gabor features, A is Result of RF, B is result
of RUSBoost and C is the result of SVM. Along the diagonal, in shades of green,
are the tubules staged identically by the pathologist and the computer program.
Other boxes, in shades of red , are tubules where the program did not agree with
the pathologist. Empty boxes indicate 0%
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Figure 4.4. Confusion matrices for LTP features, A is Result of RF, B is result
of RUSBoost and C is the result of SVM. Along the diagonal, in shades of green,
are the tubules staged identically by the pathologist and the computer program.
Other boxes, in shades of red, are tubules where the program did not agree with
the pathologist. Empty boxes indicate 0%
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Table 4.1. Distribution of tubules over 12 stages

stage count percent
1 57 15
2 37 10
3 27 7
4 28 8
5 57 15
6 40 11
7 26 7
8 31 8
9 16 4

10 22 6
11 7 2
16 22 6

minority stages. One reason that RUSBoost is biased toward minority
class is that it uses the number of the objects in the minority classes and
then undersample other classes to makes a balance data set. Undersam-
pled majority classes may not be a good representative of their original
classes. Linear SVM for both descriptors perform reasonably well. SVM
results are comparable for both Gabor and LTP features. SVM confuses
neighboring stages much more frequently than distant stages. This is ex-
pected, as the development of spermatids is a continuous process that
has been split into stages. The finer the division into stages, the more
likely it is that a tubule is close to the boundary between stages, and the
more likely it is that neighboring stages are confused.

Pooling of the 12 Stages

Table 4.2. Distribution of tubules over 5 stages

stage count percent
A 94 25
B 55 15
C 123 33
D 47 13
E 51 14

For better accuracy in classification we can pool stages into fewer
number of stages. We suggested pooling of the 12 stages in mink into
five different categories (A to E in table 4.2). The new stages (A to
E) were chosen based on morphology, but also which stages that are
important to evaluate in a toxicological evaluation of the seminiferous
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epithelium. Pooling of stages is not new. In rat McClusky et al. [64]
pooled the stages into 7 different groups based on the 14 stages defined
by Leblond and Clermont [56]. Hess et al. [44], on the other hand,
pooled the 14 stages of the rat into four groups.

As we can see in figure 4.5, the performance of classification is better
in 5 stage compared to 12 stages and the overall number of correctly
classified tubules is 79.6% in this case. Five-stage problem is easier for
the computerized staging program can be explained by two main rea-
sons. (1) When grouping tubules into fewer stages, there are more
example tubules for each stage, and the classifier is better able to gen-
eralize from these examples. (2) When grouping tubules into fewer
stages, fewer tubules are close to the boundary between stages, and
thus less likely to be confused with neighboring stages.
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Figure 4.5. Confusion matrix for 5 stages, for LTP feature and SVM classifier.
Along the diagonal, in shades of green, are the tubules staged identically by the
pathologist and the computer program. Other boxes, in shades of red , are tubules
where the program did not agree with the pathologist. Empty boxes indicate 0%

4.5 Conclusion
The computerized staging proposed here has a potential to modern-
ize the tedious staging process required in toxicological evaluation of
testicular tissue. With whole-slide imaging and automated tubule seg-
mentation in place, the computerized staging program, can be used to
efficiently direct the pathologist to tubules of the required stage.
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5. Cell type classification and
sub-cellular fluorescence
quantification in Arabidopsis

5.1 Background
Developmental studies are increasingly focused on the molecular mech-
anisms that drive differentiation and maturation of stem cells into tis-
sues, organs and organisms. In order to better understand the mech-
anisms underlying development processes, the study of spatial distri-
bution of molecular factors, which regulate differentiation and deter-
mine cell fate, is important. We are interested in study of stem cells
and their functionality in wood plant. Stem cells diversify in shape and
chemical composition over time in order to meet the functional require-
ments of wood. To learn about this process, we compare the morphol-
ogy and chemical composition of these emerging cell types at various
developmental stages. Many of these factors can be fluorescently im-
aged, either through their own inherent fluorescence, via fluorescent
fusion proteins, stains, probes, or through immunofluorescence. With
the wide range of fluorescence tools, Laser Scanning Confocal Micros-
copy (LSCM) has become the method of choice to localize and quantify
developmental makers. Fluorescent imaging of morphogen gradients
in the Drosophila embryo and of auxin transport proteins in the Ara-
bidopsis shoot and root tip have, for example, greatly contributed to our
understanding of pattern formation and development [40, 50]. Fluores-
cent images of Hypocotyl and stem are shown in figure 5.1. Stem cells
in hypocotyl and stem differentiate into several cell types of the xylem
(inner tissue) and phloem (outer tissue) [47].

The distribution of determinants of differentiation and development
over larger spatial ranges of tissues is often more relevant than local-
ization of the signal within a single cell. Thus, such analyses typically
involve thousands of nuclei or cells. Nevertheless, many of these studies
rely on comparison of fluorescence intensity between manually defined
regions of interest (ROIs) e.g. between different cell types. Obviously,
manual segmentation into ROIs is labor-intensive and underlies human
subjectivity and inconsistency that may severely limit the interpretabil-
ity of LSCM data. Recent advances in image acquisition and analy-
sis, together with improvements in microprocessor performance, have
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brought automated methods within reach. Computer-assisted quantifi-
cation of fluorescent targets on a cellular scale over large spatial ranges
requires both accurate automatic segmentation and quantification of
fluorescence in each individual segment [43].

Here, we provide an image analysis pipeline: 1) segment radial plant
organs into individual cells from cell wall specific stain, 2) to classify
cells into categories based upon Random Forest classification, 3) to di-
vide each cell into sub-regions, and 4) quantify fluorescence intensity
to a sub-cellular degree precision for a separate fluorescence channel.
In this study, we demonstrate the precision of this analytical process
for the relatively complex tissues of Arabidopsis hypocotyls at various
stages of development. High speed and robustness make our approach
suitable for large data sets and other tissue types.

Stem

Rosette

Hypocotyl

Root

Figure 5.1. Fluorescent images of hypocotyl and stem of Arabidopsis plant.

5.2 Materials and Imaging
Hypocotyl sections were imaged using a confocal laser scanning micro-
scope with a 10x, 0.45 NA plan-apochromat objective lens. The field of
view was adjusted slightly for each specimen to encompass all relevant
areas of the sample and maximize sampling density. Resulting images
were 1024 x 1024 pixels, with a pixel width and height 0.8 mm.
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5.3 Algorithm
5.3.1 Segmentation

ROI1

ROI2

ROI3

Figure 5.2. Three regions of interests ROI1: the whole cell , ROI2: the cell lumen,
ROI3: cell wall.

There are three different regions of interest (ROIs) to segment. The
whole cell, the cell wall and the cell lumen (figure 5.2). We used Wa-
tershed segmentation to delineate the cells borders. In order to have a
good segmentation result using Watershed every region of interest, here
cells, should have one minimum. The original images are noisy and we
first used Gaussian filter with variance 1 pixel to remove noise. Then
we applied Watershed. In some cells we have oversegmentation. We
merged regions where the intensity difference between their minimum
and the value of the first pixel on dam touching the two regions is less
than 10. The lumen boundary within each watershed region was pre-
cisely identified using Otsu’s thresholding algorithm [71]. The walls are
the result of subtraction of the cells from their lumens.

5.3.2 Feature Description
As you can see in figure 5.4, cells are different in terms of morphology,
location, orientation and amount of fluorescence they absorb. We mea-
sured features based on these differences. All the features are shown in
table 5.1.

The eccentricity in table 5.1 is defined as follows:

e =
√

1− L2
1

L2
2

(5.1)
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Table 5.1. Features extracted from ROIs

Morphology features for every cell

Area, perimeter, radius, product of lengths of major and mi-
nor axes of the cell, eccentricity (equation 5.1), P2A (equa-
tion 5.2), length of major axis of cell.

Location and orientation based features

Radial coordinate of cell center, origin at center of tissue,
Angular coordinate of cell center, origin at center of tissue
(θ1), The angle between major axis and horizontal axis (θ2),
Acute angle between radial vector of cell and major axis of
cell (θ3) (see figure 5.3)

Fluoresce based feature

Median of cell intensity, mean of cell intensity, median of
cell wall intensity, mean of cell wall intensity

where L1 is the length of minor axis and L2 is the length of major axis
of the object. P2A in table 5.1 is defined as follows:

P2A = p2

4πa (5.2)

where p is the perimeter and a is the area of the object.
In total we have 18 features. Some of the features are correlated

and using all of them has undesired effect on classification result. We
need to select the features that give the best classification result. The
naive search algorithm considers all subsets and is a very expensive ap-
proach. Instead we followed a heuristic approach, that yields a good
combination of features, though not necessarily the best. We started
with a few features that intuitively seemed important, then added fea-
tures one at the time and compared classification performances. At the
end, we selected five features: the radial coordinate of cell center, area,
acute angle between the radial vector of the cell and the major axis of
the cell (θ3), median of the cell intensity, and median of the cell wall
intensity.

5.3.3 Classification and Evaluation
We used supervised classifiers. For supervised classification we need
training data which consist of example cells from different classes. A bi-
ologist manually labeled six different cell types in 21-day old hypocotyls
(figure 5.4). For each class, cells were chosen that best represented the
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θ1

θ3

θ2

Center of tissue 

Figure 5.3. Red lines are major and minor axis of cells. Radial vector is defined
as the vector between center of tissue and center of cell, shown as black arrow.

class, avoiding selection of cells that lay on vague boundaries between
cell types or exhibited morphology that were intermediate between cell
classes. Cells were chosen from four different images and in total we
have 1270 training cells. We have 240 samples for every class except for
phloem fibers (yellow cells in figure 5.4) of which we have 70 samples.
Phloem fibers are generally represented few times in an image.

For the classification we tested three different classifiers: linear Sup-
port Vector Machine (SVM), non-linear SVM [18] and Random Forest
[16]. Random Forest is an ensemble classifier method constructed of
forest of decision tree. We chose 100 trees for the forest. SVM param-
eters were optimized using grid search. For the evaluation, we used
5-fold cross-validation on the training set and calculated the average of
5 confusion matrices. We also applied the classifiers on all the cells in
the images and an expert evaluated the results.

5.4 Result and Discussion
We applied Watershed and Otsu’s thresholding method to segment cells,
and their lumens. The result of the segmentation is shown in figure 5.5.
The cells are then divided to four sub-regions (figure 5.5). Sub-region-
specific ROIs provide a high resolution measurement of fluorescence
distribution.

The segmentation method works very well on majority cells of an im-
age. We applied three classifiers: Linear SVM, non-linear SVM (with ra-
dial basis function) and Random Forest. We used 5-fold cross-validation
for evaluation. The confusion matrix is the average of confusion matri-
ces of all the 5 folds. For SVM methods, parameters were optimized
using grid search. The confusion matrix of three classifiers is shown in
figure 5.6. Non-linear SVM has the worst result. Linear SVM and Ran-
dom Forest both work well and their results are comparable. Non-linear
SVM has a difficulty on detecting minority class (class 4 which is pholem
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Figure 5.4. Training set for 21-day old (dag) hypocotyls: xylem vessels (red) and
parenchyma (green), cells of the cambial zone (dark blue), phloem fibers (yellow),
phloem (blue), cortical cells (purple).

A B

C D

Figure 5.5. on left is original image and the segmentation result of region inside
red box is shown on right. A: segmented cells, B: segmented lumens, C: segmented
walls, D: sub-cell division. yellow arrow in D is the vector from center of tissue
(red dot) to center of cell.
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Figure 5.6. Confusion matrix for the three different classifiers, A: linear SVM,
B: SVM with radial basis function, C: Random Forest. 1:xylem vessels, 2:
parenchyma, 3: cells of the cambial zone, 4: phloem fibers, 5: phloem, 6: cortical
cells. Numbers indicate how many cells were assigned to class Y (row number)
by a biologist and to class X (column number) by the computer program, as a
percentage of all cells manually assigned to class Y. Thus, each row adds up to
100%. Along the diagonal, in shades of green, are the cells classified identically
by the biologist and the computer program. Other boxes, in shades of red , are
cells where the program did not agree with the biologist. Empty boxes indicate 0%
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A

B
Figure 5.7. Classification results, A: Random Forest, B: linear SVM.
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fiber ) and is more biased toward class 1 (xylem vessels) and 6 (cortical
cells). The location of the cells which plays a main role in manual cell
classification does not play the same role in non-linear SVM classifier.

In every image we have around 5000 cells and for all images we have
a few hundred thousand of cells. In the training set we have only 1270
cells which is not enough to capture all the variations of the cells. Con-
sidering this point, the estimate of performance of classifiers by cross-
validation on the training set may not be trustworthy. We applied the
classifiers on the whole cells of an image and a biologist expert evalu-
ated the result. The result of linear SVM and Random Forest are shown
in figure 5.7. As we can see in this figure, linear SVM cannot distin-
guish between xylem vessels and parenchyma while Random Forest is
doing a better job in classifying them correctly. Also Random Forest can
recognize minority class (class 4, phloem fibers) better.

We chose Random Forest as the classifier. As an output of Random
Forest we also have posterior probability for every cell. We can use this
value to remove cells with low probability, where the classifier is not
confident about their labels.

With robust, accurate classification, each ROI (and sub-ROI) provides
a mask to conduct a variety of measurements of fluorescence. For the
purpose of demonstration, we probed tissues with an antibody specific
to xylem in the secondary cell wall. A fluorescent secondary antibody
permitted visualization of epitope localization. In 21 dag hypocotyls,
secondary cell walls occur exclusively in the xylem vessels, thereby pro-
viding a clear case of cell type-specific fluorescence to validate the quan-
tification methodology. We measured the average value of wall inten-
sity (wall signal) in every cell. Comparison of the fluorescence channel
(figure 5.8B) with a spatial mapping of the ROI values for wall signal
(figure 5.8C) demonstrates that the quantification replicates the source
fluorescence image, although entire cells are filled-in since the display
methodology does not color walls discretely.

As proof-of-concept that the classification provides a meaningful basis
to group cells for fluorescence characterization, we next examined the
means of wall signal values for all cells of each cell class, filtering at 50,
70, and 90% (figure 5.8G). From figure 5.8G, it is clear that the xylem
vessels are the dominant cell type that exhibit a fluorescence signal.
Not evident with visual examination of the spatial map of wall signal
(figure 5.8C), the xylem parenchyma exhibit signal. Where a vessel and
a parenchyma are neighbors, the thick wall of the vessel gets split into
two by the Watershed segmentation. Also the pixels given as boundary
by the Watershed segmentation method are assigned to both neighbors
when doing the measurement. These two issues can be primary causes
of signal bleed into parenchyma cells.
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Figure 5.8. Quantification of second channel (fluorescence) for a representa-
tive tissue (21-day-old wild-type hypocotyl) labeled with xylem-specific antibody
(LM10). A) Overlay image of CFW counterstain channel (magenta) and LM10 im-
munolabel (green) channel. B) Isolated immunolabel channel after background
fluorescence correction. C) Wall signal for ROIs objects. Classification result and
relative wall signal for 50 (D), 70 (E) and 90% (F) confidence filtering. G) Quan-
tification of relative fluorescence intensity. Error bars represent the standard de-
viations of relative signal intensities.
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5.5 Conclusion
We suggested a data analysis pipeline that efficiently and accurately pro-
vides a wealth of morphometric data for automatically categorizing cell
types of transverse sections of Arabidopsis hypocotyls. Furthermore, our
pipeline provides a robust means to accurately quantify immunofluores-
cence for specific cell types, filterable by confidence scores for individual
cells.
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6. Conclusions and Future Work

This chapter concludes the thesis and presents some directions for fu-
ture work.

6.1 Summary of Contributions
I developed two automated analysis pipelines for two rather different
applications. All developed methods in image processing have some pa-
rameters that need to be tuned and tailored based on application data.
Although many of these methods have a rich mathematical foundation,
they also make many assumptions that may not hold in real applica-
tions. Complicated structure and huge variation of data in biology data
make developing a fully automated pipeline a very hard task. I have de-
veloped pipelines that can work well on two complicated applications
and both have generalization property.

The first pipeline I developed is for histopathological analysis of tes-
ticular tissue, which could be used in toxicological research. To segment
tubular structure in testicular tissue, I suggested two automated meth-
ods for two different stainings. For Periodic Acid Schiff (PAS) stained
thin sections, I first delineate the border of the lumen using the Level set
method. The border of the tubules are then segmented using a thresh-
olding method followed by an approach based on geodesic distance to
correct under-segmentation. For Gata-4 antibody staining, the cell nu-
clei are first detected using the fast radial symmetry filter. A graph is
constructed on top of the epithelial cells, then a Graph cut segmentation
method is used to cut the links between the cells of different tubules.
To classify tubules in twelve different stages, I used texture descriptors
based on the local ternary patterns, and applied a linear support vector
machine for the classification. In the 5 stage case, the overall number
of correctly classified tubules is 79.6%.

The second pipeline I developed is for quantification of gene expres-
sion in the various cell and tissue types in plant organisms. In order
to better understand the mechanisms of the underlying development
processes, it is important to study the spatial distribution of molecu-
lar factors, which regulates the differentiation and determines the cell
fate. The segmentation of cell structures in the tissue is necessary for
quantitative and qualitative assessment of the gene expression. The
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classification of segmented cells further provides the ability to generate
chemical profiles of specific cell types. I segmented the cells using the
Watershed method. A range of feature descriptors based on morphol-
ogy, intensity, location and orientation of cells were defined. A Random
Forest classifier was used to classify cells into the different types in the
xylem (inner tissue) and phloem (outer tissue).

6.2 Future perspectives
The latest advances in digital cameras combined with powerful com-
puter software enabled us to store high quality images of specimen from
microscopy. The field of quantitative image analysis has steadily gained
relevance within the bio-medical sciences. Due to large variety of imag-
ing techniques and tissue preparation methods, there are many research
challenges in automating the analysis of data for different types of appli-
cations. It is important to develop a pipeline with components that are
simple enough to be generalized and have predictive value. Considering
huge variation in the available data set, designing such an algorithm is
one of the biggest challenges in the field of medical image processing.

Automated segmentation method
The first and most challenging step in an image analysis pipeline is seg-
mentation. In order to have a fully automated method, we need to
develop a segmentation technique that can segment regions of inter-
est in the image without user intervention. The general assumptions in
image segmentation methods is that the pixel intensity in objects are
coherent and distinct from the background or that the object has a clear
border. Such assumptions are difficult to meet in complicated histol-
ogy images. In the histology images of testicular tissue, the complex
structure of tubules and their weak border made the segmentation of
tubules very challenging. I suggested two automated methods for two
different staining techniques. They both worked well on the available
data set but still need improvement to be more general and robust. The
plant cells in florescent images had simpler structure and the suggested
segmentation method can detect ROIs with great accuracy.

Ground Truth
In order to evaluate different steps of an algorithm, we need a trust-
worthy ground truth. Large differences between data sets in biological
applications prohibit fair comparison of performance, reliability and ac-
curacy of proposed methods. In order to develop an algorithm, we need
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experts’ opinions to evaluate its performance. For complicated data, ex-
perts frequently do not agree [27, 59]. Establishing a rich ground truth
data set with the help of many biologist experts can assist in develop-
ing a more accurate algorithm. This can also help in reproduciblity of
experimental results. Unfortunately availability of such data is limited.
The proposed pipelines can definitely benefit from such data in terms of
performance and generalization.

6.3 Conclusion
As discussed, the generalization property of an automated algorithm is
very important. Complex algorithms with many parameters may ul-
timately lead to a better outcome in a specific data set, however at
the same time it can harm the generalization property of algorithm.
Fewer assumptions on the characteristics of the data can increase the
predictability of the algorithm. Medical images, such as histopatolgy
images and florescent images of plant cell are complicated and using
complex algorithms is inevitable. However it is important to keep the
effect of the parameters that influences the output as minimal as possi-
ble. In both pipelines we considered these issues.

Although developing a fully automated method is attractive, some-
times having some sort of interaction with the user can help in simpli-
fying the pipeline and improve accuracy. Developing a semi-automated
pipeline that can generate correct results in a reasonable time can also
be an option.
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Summary in Swedish

De senaste förbättringarna av digitala kameror tillsammans med kraft-
full programvara gjorde det möjligt för oss att skapa mikroskopibilder
av vävnad av hög kvalitet. Att analysera hundratals bilder manuellt
tar mycket lång tid och dessutom blir det problem med mänsklig sub-
jektivitet och inkonsekvens. Kvantitativ bildanalys är ett område på
frammarsch som är på väg att börja tillämpas på mikroskopibilder vid
kliniska forskningscentra. Eftersom bilderna kan skapas på många olika
sätt och eftersom det också finns många olika sätt att preparera vävnad
så finns det också många utmaningar när det gäller automatisering av
analysen inom olika tillämpningsområden. Det är viktigt att utveckla
en serie operationer, en pipeline, vars komponenter är enkla nog att
kunna generaliseras och som är prediktiva. Eftersom variationerna i
de tillgängliga datamängderna är mycket stora är en av de största ut-
maningarna inom medicinsk bildanalys att designa sådana algoritmer.
Den här avhandlingen behandlar automatisering av kvantitativ analys
av vävnad i två olika tillämpningar: patologi och växtbiologi.

Testikelvävnad har en komplex struktur, den består av tubformade
sädeskanaler, tubuli. Sädeskanalernas epitel innehåller celler som om-
vandlas från primitiva könsceller till spermier i ett antal steg. Hos
minken kombineras de olika stegen till tolv stadier. The society of tox-
icological pathology rekommenderar att testikelns epitel klassificeras
som dessa olika stadier vid utvärdering av vävnadsskador för att avgöra
om spermatogenesen har blivit störd. Avhandlingen presenterar au-
tomatiska metoder för snabb och robust segmentering och klassificer-
ing av tubulistrukturer. Vi föreslår segmenteringsmetoder för två olika
infärgningsmetoder. För Periodic Acid-Schiff (PAS) infärgning av tunna
snitt hittar vi först kanterna på lumi na med en level-set metod. Tu-
bernas kanter segmenteras fram med tröskling, vilket följs av en metod
baserad på geodetiska avstånd för att korrigera översegmentering. För
GATA4 antikroppsinfärgning detekteras först cellkärnorna med ett snabbt
radiellt symmetrifilter. En graf konstrueras sedan över epitelcellerna
och efter detta används en grafsnittsmetod för att bryta länkarna mellan
celler från olika tubuli. Nästa steg är att hitta särdrag som karakteriserar
informationen från varje tubulus. Patologer undersöker tubuli lokalt,
baserat på de celltyper de innehåller, och tilldelar dem ett stadium. Tex-
turdeskriptorer fångar de spatiala förhållandena mellan pixlar. Tubuli
som innehåller olika celltyper har också olika textur. Vi utnyttjar två
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texturdeskriptorer: Gabor-filter och Lokala Ternära Mönster (LTP). LTP
använder en lokal tröskel och den lokala omgivningen binäriseras baserat
på dess relation till tröskelvärdet. De binära talen omvandlas till dec-
imaltal och dessas histogram används som särdragsvektorer. Gabor-
filter är en samling filter med olika skala, orientering och frekvens.
Bilden filtreras med samtliga filter och sedan används medelvärde och
standardavvikelse för filtersvaren som särdragsvärden. För klassificerin-
gen använde vi tre olika klassificerare: stödvektormaskin (SVM), Ran-
dom Forest och Rusboost. Random Forest och Rusboost är ensemble-
klassificerare. Rusboost är designad för obalanserade datamängder, där
RUS betyder Random Under Sampling. Den undersamplar majoritet-
sklassen och använder AdaBoost för träning. Av de olika möjliga kom-
binationerna av dessa algoritmer fungerar LTP tillsammans med SVM
bäst. Den träningsdatamängd som tillhandahölls av patalogen är obal-
anserad: vissa stadier är starkt representerade medan andra är säll-
synta. Anledningen till att detta är ett problem är att klassificerare som
inte tar hänsyn till den här obalansen troligen snedvrider resultaten och
överrespresenterar de vanligaste stadierna. I klassificeringsresultaten
ser vi också en stark korrelation mellan andelen tubuli som klassas som
korrekt stadium och antalet exempel på detta stadium. Klassningsresul-
taten blir alltså inte tillfredställande för de ovanliga stadierna. För att
få bättre noggrannhet och statistisk analys föreslog vi att slå samman
stadierna och minska antalet från tolv till fem tydliga stadier. Sam-
manslagningen baseras på tubuliernas morfologi. Med fem stadier klas-
sas 79.6% av tubuli korrekt. Om avbildning av hela objektglaset och
automatisk segmentering av tubuli fungerar kan det datoriserade klas-
sificeringsprogrammet som presenteras här användas för att effektivt
visa patologen på tubuli i det begärda stadiet.

Kontextuell information för var flourescens förekommer i mikroskopi-
bilder av växtdelar hjälper oss att bättre förstå differentiering och om-
vandling av stamceller till olika vävnadstyper. Förändringar i morfologi
och cellväggssammansättning indikerar graden av differentiering och
celltyp. Att segmentera celler och klassificera dem som olika celltyper
gör det möjligt att utföra statistisk analys och kvantifiering av en viss
celltyp. Vi segmenterar cellerna med vattendelarmetoden (watershed).
Ett antal särdrag baserade på morfologi, intensitet, läge och orienter-
ing av cellerna definierades. Random Forest-klassificering och SMV tes-
tades på datamängden. Random Forest fungerade bäst när det gällde
att klassificera olika typer av celler i xylem (inre vävnad) och floem (yt-
tre vävnad). Med robust och noggrann klassificering av varje cell (och
celldel) kan vi utföra ett antal olika mätningar av flourescens i varje cell
och celltyp. För att visa att klassificeringen grupperar cellerna på ett
meningsfullt sätt för att sedan kunna karakterisera deras flourescens
använde vi en antikropp som binder till xylems sekundära cellvägg.
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Mätningar av flourescensens intensitet i olika cellklasser enligt vår metod
visar tydligt att xylemkärlen är den celltyp som avger mest flourescens.
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• Andreas Kårsnäs, for making my summer school trip to Burno
and the MICCAI Conference trip to Toronto a memorable time for
me.

• Jimmy Azar, for sharing his pattern recognition expertise, by giv-
ing an excellent course in pattern recognition. Thank you for fun
discussions.

• Bahareh Fakhrzadeh, Somayeh Azarnoush, Mahtab kamali, Nar-
ges Simjour and Masoomeh Rudafshani for helping me get through
the difficult times. Thank you for all the emotional support.

• I would like to thank my friends in Uppsala who made my life
here a wonderful experience: Mojataba Solatanalian, Azadeh
Haghighi, Elham Roshan, Sobhan Badiozamany, Narges Ra-
jabnezhad, Javad Bakhshi, Serveh Karimi and Rahim Kadkho-
damohammadi. Thank you for nice Persian dinners.

• Majed Ashoorioon, for manual segmentation and for encouraging
me to be active and do more physical activity.

• Hassan Fakhrzadeh, my late grandfather, for always encouraging
me to follow my dreams and be strong.

• My sister Faezeh, for being there when I needed her the most.
Thank you for always keeping me updated with all family’s news.
I would like to thank, my brother Mohammad for his sense of
humor and all rides he gave to me during my visits to Iran and my
sister in law Sara for her kindness.

• My dear mother Ashraf, and my dear father Mehdi, who stood by
me in every decision I made in life. Certainly, without their care
and support, I would have not been able to achieve what I did.

• I would like to thank my bundle of joy, for sharing every moment
of writing this thesis with me. Thank you for your patience, we
made it together! I am looking forward to see your beautiful face.

• Amjad, my husband and very best friend, for encouraging me to
apply for this Ph.D. position. His passion for science and research
is always inspiring for me. We accomplished a lot together and
I hope we continue as such. Thank you for your faithful support
and being my source of strength when I could not find my own. I
love you! ♥

56



References

[1] A. Lytwyn A, I. E. Salit, J. Raboud, W. Chapman, T. Darragh, B. Winkler,
J. Tinmouth, J. B. Mahony JB, and M. Sano. Interobserver agreement in
the interpretation of anal intraepithelial neoplasia. Cancer, 103:
1447–1456, 2005.

[2] Madabhushi A. Digital pathology image analysis: opportunities and
challenges. 2009.

[3] W.C. Jr. Allsbrook, K. A. Mangold, M. H. Johnson, R. B. Lane, C. G. Lane
CG, and J. I. Epstein. Interobserver agreement in the interpretation of
anal intraepithelial neoplasia. Human Pathology, 32(1):81–88, 2001.

[4] S. Arivazhagan, V. L. Ganesan, and S. P. Priyal. Texture classification
using gabor wavelets based rotation invariant features. Pattern
Recognition Letters, 27(16):1976–1982, 2006.

[5] William A. Barrett and Eric N. Mortensen. Interactive live-wire boundary
extraction. Medical Image Analysis, 1:331–341, 1997.

[6] P. Bassan, As. Sachdeva, J. H. Shanks, M. D. Brown, N. W. Clarke, and
P. Gardner. Automated high-throughput assessment of prostate biopsy
tissue using infrared spectroscopic chemical imaging. Proceedings of
SPIE, 9041:90410D–90410D–10, 2014.

[7] N. Basu, A.M. Scheuhammer, S.J. Bursian, J. Elliott, K. Rouvinen-Watt,
and H.M. Chan. Mink as a sentinel species in environmental health.
International Journal of Environmental Research and Public Health, 103:
130–144, 2007.

[8] S. Beucher and C. Lantuejoul. Use of watersheds in contour detection.
International Workshop on Image Processing: Real-time Edge and Motion
Detection/Estimation, Rennes, France, 1979.

[9] S. Beucher and F. Meyer. The morphological approach to segmentation:
the watershed transformation. E. R. Dougherty, Edited by Marcel Dekker,
New York, 1993.

[10] F. Bianconi and A. Fernndez. Evaluation of the effects of gabor filter
parameters on texture classification. Pattern Recognition, 40(12):
3325–3335, 2007. doi:
http://dx.doi.org/10.1016/j.patcog.2007.04.023.
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