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Stealth tRNAs:
Strategies for mining orthogonal tRNA candidates 

from genomic data

Ingemar Ohlsson

Populärvetenskaplig sammanfattning

Proteinkodande gener i alla levande organismer skrivs av från DNA till messenger-RNA (mRNA) 
som utgör en sekvens av instruktioner till ribosomen som sätter samman proteiner, de viktigaste 
komponenterna i biologiska mekanismer. Instruktionerna i mRNA läses av i kodon (avsnitt om 

tre nukleinsyror i taget) som var för sig korresponderar till en viss aminosyra, byggstenarna som 
kedjas ihop till proteiner av ribosomen.

Denna korrespondens mellan 64 kodon och 20 aminosyror utgör den genetiska koden, som 
bibehålls av transport-RNA (tRNA) - molekyler som binder till ett specifikt kodon och en specifik 

aminosyra - och de aminoacyl-tRNA-syntetas-enzymer (AARS) som laddar ett specifikt tRNA med 
sin associerade aminosyra.

Den genetiska koden kan variera mellan organismer, men inbegriper i princip endast 20 
aminosyror. Genom att hitta par av tRNA och AARS som är ortogonala, dvs. inte interagerar med 
cellmaskineriet i en viss organism, kan man utöka den genetiska koden i denna organism med en 

extra symbol. Denna symbol kan vara en modifierad aminosyra, till exempel märkt med en 
radioaktiv isotop, eller potentiellt mer komplexa komponenter av nanomaskiner, som sedan kan 

sättas ihop av cellens ribosomer.

Hittills har mycket få ortogonala par publicerats, eftersom det kräver djup detaljerad kunskap om 
målorganismens biokemi för att hitta dem. I denna studie var målet att undersöka några möjliga 

metoder för att snabba upp denna process genom att på bioinformatisk väg hitta sannolikt 
ortogonala kandidater bland tRNA-gener i arvsmassan från sekvenserade organismer. I studien 

benämns dessa potentiellt ortogonala tRNA “Stealth tRNAs”.

Examensarbete 30 hp
Civilingenjörsprogrammet Bioinformatik

Uppsala universitet, maj 2015
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Introduction
For all the obvious diversity  among the living 

organisms on this planet, there are many basic 
and essential components that are very similar 
throughout the Tree of Life. The translation 
mechanism, that  is, the translation of 
informational messenger RNA (mRNA) into 
proteins, is one such component. All organisms 
have coding genes that are transcribed to 
mRNA, which is read by the ribosome, 
matching a cognate transport RNA (tRNA) to 
each trinucleotide codon.

In many areas of life science, the ability to 
alter these basic mechanisms could be very 
useful to research and development.1,2  In 
studies of protein folding, for example, it  may 
be useful to selectively replace certain amino 
acid residues with radioactively labeled ones, 
or with a subtly  altered variant  that changes the 
protein’s shape. In synthetic biology, the ability 
to modify or expand the genetic code in an 
organism could be useful both to elucidate the 
workings of natural organisms, and to engineer 
complex subcellular structures using the cell’s 
own protein production line.

Orthogonal pairs are perhaps the most 
important tool3  for manipulating the genetic 
code,consisting of a tRNA and its associated 
aminoacylation enzyme. They  must be 
modified from the host organism’s own 
translation machinery, or more commonly, 
imported from another, preferably  genetically 
distant organism. Currently  they  are not easy to 
find, and very few orthogonal pairs have been 
documented.

The genetic code of most organisms uses 
trinucleotide codons. This means that there are 
64 (4·4·4) possible codons, each corresponding 
to a certain elongator tRNA class, a start or a 
stop signal. The different tRNA species are 
each charged with one of typically 20 amino 
acids, which are assembled by  the ribosome 

into the organism’s proteins. There are 
normally more tRNA species than amino acids, 
and the collection of tRNA species associated 
with a certain amino acid is referred to as a 
“tRNA functional class”.

The task of charging each elongator tRNA 
with its assigned amino acid falls to the 
aminoacyl-tRNA synthetases (AARSs). There 
is at least one for each tRNA class, which 
specifically binds the appropriate tRNAs and 
attaches the appropriate amino acid.

In order to ensure that proteins are assembled 
correctly, the AARS must bind only  the right 
tRNA species. Certain features of the tRNA 
molecules cause them to be either recognized 
or rejected by different AARSs (Fig.1). Some 
studies have been conducted into the 
mechanisms behind this specific recognition4,5, 
but knowledge of these recognition elements 
has yet to reach a point where a scientist can 
deduce the potential interactions of a tRNA 
directly from its sequence.

Figure 1: Sketch of tRNA recognition by different 
AARSs. In order for protein translation to function with 
any degree of accuracy, specific tRNAs must be charged 
with specific amino acids. Each tRNA species has 
certain identity elements that either promote recognition 
(blue arrows) or inhibit recognition (red T-arrows) by 
different aminoacyl-tRNA synthetases.
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An orthogonal tRNA is one that is in working 
order - it is expressed and folded correctly, and 
could be used in translation - but is not 
recognised by any AARS in the organism. If it 
is not recognised by  any AARS it does not get 
aminoacylated, and does not perform any 
constructive function in protein expression. 

If, on the other hand, an orthogonal tRNA is 
engineered into an organism together with its 
cognate AARS - and provided that AARS is 
also non-interacting with native tRNAs - they 
form an orthogonal pair. This pair can act as a 
new aminoacylation pathway, separate from 
the native ones. If the host organism’s genome 
is altered so as to leave a codon “vacant”, and 
the orthogonal tRNA is allocated that codon, it 
becomes possible to change which amino acid 
corresponds to that  codon. This effectively 

changes the genetic code, changing the nucleic 
acid-to-amino acid dictionary  the ribosome 
uses to translate RNA into proteins. If the 
orthogonal pair replaces one codon for a 
degenerate tRNA class (one with multiple 
associated codons), the genetic code can be 
expanded beyond its usual 20 classes, for 
example adding some exotic amino acid to the 
alphabet6  - or potentially  any small molecule 
that can be attached to a tRNA and connected 
to a nascent polypeptide chain.

To date, the conventional methods for finding 
orthogonal tRNA-AARS pairs are heavily 
based on experiments in vivo7,8, transfecting 
tRNAs from other organisms into the model 
and testing for interaction with the native 
translation machinery. There is not at all much 
information available on the principles of 
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Figure 2: Sketch of sequence alignment and resulting Profile Matrix. The analysis software 
created during this project made frequent use of Profile Matrices, recording the number of 
occurrences of each DNA sequence character (including gaps, “-”) at each position in a multiple 
alignment of all sequences involved. The top graph illustrates an example alignment of five DNA 
sequences, resulting in a gapped alignment of length 10. The lower graph shows the 5x10 Profile 
Matrix P for that alignment; entry Pi,j is the number of sequences with character i at position j in 
the alignment.



tRNA recognition by AARS’s, so potential 
orthogonal pairs must be found through close 
familiarity  with both model organisms and the 
source organism for the orthogonal pair. 

The purpose of this study is to explore some 
options for finding candidate orthogonal 
tRNAs by  mining genomic sequence and 
publicly available annotations. If a tool could 
be programmed that screens the tRNA-ome of 
source organisms and suggests tRNAs that may 
escape recognition in the chosen model 
organism, that would surely be helpful in 
finding more verified orthogonal pairs. More 
such pairs could provide more tools and venues 
for studies into synthetic biology and 
expanding the genetic code, as well as more 
data for exploring the mechanics of tRNA-
AARS interactions.

In this report I chose to call the candidate 
orthogonal tRNAs “Stealth tRNAs”, in order to 
emphasize the differences. True orthogonal 
tRNAs must be verified experimentally, and 
are mainly useful in conjunction with an 
orthogonal AARS. Stealth tRNAs on the other 
hand are tDNA sequences that show weak 
r e c o g n i t i o n s i g n a l s a n d / o r s t r o n g 
antirecognition signals that suggest that they 
may be orthogonal. The problem of finding 
“Stealth AARS’s” that would be required to 
use the Stealth tRNAs is outside the scope of 
this study.

Over the course of the project I focused on 
five different approaches to separating non-
interacting tRNAs from interacting ones: 
separation by  TFAM 9 score, Hidden Markov 
Models10, Support Vector Machines11, function 
logo4 information plots, and Rough Set 
classification using ROSETTA12. Software for 
training of Hidden Markov Models appeared 
difficult to adapt  to the problem at hand, so that 
approach was abandoned before practical 
implementation for the benefit of the other 
approaches.

In all implementations of the remaining 
approaches, the sequences from known 
orthogonal tRNAs were used as “positive 
control” samples. Most of the currently known 
orthogonal pairs were established in the 
bacterium Escherichia coli, which is why E. 
coli was most  often chosen as the target 
organism.

Support Vector Machines also encountered 
problems with how to present tRNA data in a 
form required by the software, which 
effectively prohibited implementation of the 
SVM method.

TFAM  scores were easy to obtain and use, 
since TFAM  was used in preprocessing stages 
for sequence alignment and supplemental 
functional classification. However, attempts to 
find a clear discriminator between interacting 
and orthogonal tRNAs were unsuccessful. 

Using function logos and inverse function 
logos as scoring matrices of a sort, and plotting 
the “total inverse function information value” 
of a tRNA versus its “total function 
information value”, some scatterplots showed 
orthogonal tRNAs grouping separate from 
indigenous target tRNAs.

Rough Set classification in ROSETTA also 
showed promise. Classification rules trained on 
the E. coli tRNA-ome managed to avoid 
grouping known orthogonal tRNAs with any 
indigenous functional class.

Data & preprocessing
Selecting example sequences

For the purpose of detecting Stealth tRNAs, 
it will be necessary to consider the sequence 
and structure of tRNAs that belong to 
confirmed orthogonal pairs. At the time of 
writing, the selection of known orthogonal sets 
was very limited, and the number of targets for 
those orthogonal sets was even smaller. 
Although a few orthogonal tRNAs are known 
for the mammal H. sapiens and the fungus S. 
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cerevisiae, most have been determined for E. 
coli2. For all these targets, archaea seem to be 
the preferred source realm for Stealth tRNA 
candidates. This makes intuitive sense, since 
archaea are evolutionarily distinct13  from the 
other realms of life, and therefore more likely 
to possess tRNAs that are sufficiently 

dissimilar in sequence to display functional 
orthogonality.

In fact, a previous study  has shown that a 
tRNATyr - tyrosyl-tRNA-synthetase pair from 
the archaeon Methanococcus jannaschii can be 
used to generate orthogonal pairs in E. coli8. 
That made M. jannaschii tRNATyr a natural 
choice for a “positive control” - a foreign 
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Figure 3: Density plots of TFAM scores for indigenous E. coli tRNAs. The plots above show, for each E. coli 
identity class, the density function calculated from tDNAs matching that class; they hint at the distribution of scores 
for true positive hits against the tFAMs in E. coli. The iMet and kIle plots are crossed out since, for this particular 
set of tDNAs and TFAM parameters, no tDNAs were assigned to those classes. It is interesting to see that what 
constitutes a “passing grade” varies strongly between identity classes. For the purpose of Stealth tRNA 
identification, this may mean that scoring requires separate approaches for every identity class. 



tRNA that has previously been proven to work 
as part of an orthogonal pair in a model 
organism. If the Stealth tRNA detection 
algorithm can consistently  detect “positive 
controls” like M. jannaschii-tRNATyr for our 
model organism, then it might also be able to 
detect novel candidate Stealth tRNAs. Actually 
verifying the orthogonality of a putative Stealth 
tRNA is, however, well outside the scope of 
this project. Currently  orthogonal pairs can 
only be confirmed through in vivo methods.

As previously mentioned, there appear to be 
few documented orthogonal pairs, but they do 
exist. A number of them are listed in a paper by 
Xie and Schultz2. The orthogonal tRNA-
synthetase pairs for use in E. coli mentioned 
therein (all derived from archaea) include a 
TyrRS-tRNATyr pair from Methanococcus 
jannaschii, LysRS-tRNATyr from Pyrococcus 
h o r i k o s h i i , G l u R S - t R N A G l u f r o m 
Methanosarcina mazei as well as the 
heterogenous pairing of a LeuRS from 
Methanobacterium thermoautotrophicum and a 
mutant tRNALeu from Halobacterium sp. For 
use in yeast, the article mentions a TyrRS-
tRNATyr pair from E. coli, a LeuRS-tRNALeu 
pair also from E. coli, as well as E. coli GlnRS 
paired with human initiator tRNA.

Preprocessing
Each of these selected genomes were 

downloaded in .fna (FASTA) format from the 
NCBI FTP server. To extract the tDNA 
sequences from these genomes, tRNAscan-
SE14 (tSE) was run on each file. The resulting 
tDNA gene records were also preprocessed by 
condensing the FASTA sequence headers to a 
shorter unique identifier, free of whitespace 
characters. This was sometimes necessary 
since output from some programs later in the 
process tends to truncate long sequence names. 
In the worst case this can lead to sequences 
being unidentifiable after analysis. The 
preprocessing Perl scripts were designed to 

output a sequence legend file that shows the 
full header of the original tSE output alongside 
the new short-form header. The new headers 
also contain the tRNA functional class 
designation as provided by tSE. 

The format used internally in the main script 
package in this project was “>TAG_XXX-Y-
ZZZZZZ”. TAG is either “TGT” for “Target” or 
“QRY” for “Query”, stating the purpose of the 
tDNA in the current  study (see the following 
subsection “Notes on nomenclature”). XXX is 
the anticodon in the tDNA, and Y is the single-
character tRNA class identity, as respectively 
identified by tSE. ZZZZZZ is a six-digit 
integer, identifying tDNAs in the order that 
they  are encountered by the scripts. This means 
that the script  software is currently limited to 
106 - 1 tDNA sequences each in the Target and 
Query sets.

Notes on nomenclature
Throughout the method development, 

implementation and testing process, I used a 
simple nomenclature to separate the sequence 
sets used. In my code, and in the following 
sections of this report, I use the terms “Target” 
and “Query”. “Target organism” denotes the 
organism currently selected as host for the 
potential orthogonal pair. This is the organism 
whose “Target tRNAs” are identified with 
“Target classes” which an orthogonal tRNA 
should evade. The “Query  organisms” are 
those selected to provide “Query tRNAs” to be 
tested for “stealthiness”. 

TRNA and Operon DataBase (TROPDB)
The Ardell lab has previously  developed a 

Perl-based pipeline for detecting genomic 
features and storing them in a MySQL database 
for easy  access and use by  other bioinformatics 
applications. This is called the tRNA and 
Operon Database (TROPDB). 
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For large-scale bioinformatics studies, 
TROPDB can be used as a unified and uniform 
repository  for sequence and annotations, stored 
on a local server or even an internal (and 
sufficiently large) hard drive. 

For this study  and others, it offered the 
possibility to easily share datasets, compare 
results and feed new annotations and 
knowledge back into the database. It was 
intended to have all software produced in this 
project integrated with TROPDB.

However, some difficulties quickly arose that 
ultimately  led to the integration plans being 
abandoned in order to focus on exploration of 
the actual methods. The main problem was that 
TROPDB was programmed to import genome 
sequence and annotations in GENBANK15 
format. This format is mainly used in NCBI’s 
GenBank database, which meant that tying the 
new software to TROPDB would limit its data 
sources to NCBI only, at least until a new 
import method could be designed. A 
conversion script for reformatting other 
sequence and annotation files to GENBANK 
was sketched, but not fully implemented. 

Methods
TFAM

TFAM  is a perl script application that uses 
alignment by covariance models to establish 
the functional class identity  of tRNAs. TFAM 
takes its name from its product. Ardell & 
Andersson2 coined the term “tFAM” to 
describe a family of logical rules that 
determine the charging identity of a tRNA, 
analogous to how a pFAM characterizes a 
family of proteins.

The tFAMs are created from multiple 
alignments of tDNA sequences from the model 
organism. The entire sequence set is initially 
aligned using COVEMF. For each functional 
identity class, the aligned sequences are 
separated into a ‘positive’ set of tDNAs 
belonging to the class, and a ‘negative’ set 

containing the complement - all tDNAs of 
other classes. 

For each class, a “tFAM matrix” is then 
generated. At each position in the alignment, 
the total presence of each DNA base (A, C, G, 
T), as well as gaps (-), is counted. Fig. 2 shows 
an example of the process of recording such 
counts. Note that the example in the figure is 
not a finished tFAM matrix, but a “profile 
matrix”, which was used for other methods  in 
this study. 

From these counts TFAM calculates the odds 
of encountering that character, at that position, 
in a tDNA belonging to the current class versus 
any other class (count in positive set divided by 
count in negative set), and takes the logarithm 
of the odds. The resulting log-odds are 
recorded in a 5xL matrix (one row per base 
plus gap characters, and L columns where L is 
the length of the multiple alignment). 

TFAM scores test tDNAs against these 
matrices by stepping through the sequence and 
summing the log-odds values for the 
encountered base at each position. Matching 
the positive consensus sequence will give a 
stronger positive contribution to the score at 
positions where the matched character is more 
strongly related to the positive set - i.e., where 
the odds versus finding that character in the 
negative set  are better than average. 
Conversely, at positions where the odds for the 
matched character are bad, it gives a negative 
contribution to the score, and a weak 
contribution where the odds are average.

The end result of this process is, for each 
tRNA in the input, one score (called TFAM 
score in the following) against each tRNA 
functional class, and a class prediction chosen 
as the highest-scoring functional class.

Using TFAM was a natural choice for several 
reasons. Partly because of the lab’s familiarity 
with the software, and because TFAM can 
identify some special cases of functional 
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classes2, including for example initiatior 
tRNAs. The output also automatically includes 
multiple alignments of the sequences involved, 
which are useful for many approaches. 

Since TFAM employs sequence profiles of 
each tRNA class to score test sequences, those 
scores do, to some degree, reflect a scored 
tRNA’s level of similarity  to tRNAs of a given 
class. This similarity measure might be enough 
to establish a discriminator that can detect 
possible orthogonal tRNAs.

A simple way to test this is to perform TFAM 
classification of query and target tRNAs 
against the target  organism. A query  tRNA that 
scores lower than all target tRNAs against all 
charging identities present in the target 
organism may be a candidate orthogonal 
tRNA. Fig. 3 shows density plots of the TFAM 
scores for different classes of E. coli tRNAs. 
Different classes appear to have distinct and 
complex profiles, meaning that selecting a 
proper cutoff may be difficult, and highly 
class-specific.

HMM
Hidden Markov Models are a well-

established type of statistical model that can be 
trained on pre-existing sequential data to 
recognize and classify new data. In 
bioinformatics, HMMs have long been used to 
find biological sequences - DNA, RNA and 
protein - matching certain patterns10. By 
assuming that sequences of the targeted family 
are produced as emissions of a Markov 
process, and training the model with positive 
examples, HMMs can be made to detect 
members of the targeted family with great 
accuracy.

There are many HMM-based softwares 
available, for nucleic acid or amino acid 
sequences. Any particular HMM software is 
typically designed with a given task in mind, 
such as recognizing proteins of a certain 
family, aligning sequences to a reference, or 
finding tRNA genes in genomic sequence.

  13

Figure 4: Example tRNA function logo and inverse function logo. The logofun software package produces function 
logos like the above examples from profile matrix information. These logos were generated from the profile matrices 
for 22 tRNA classes, which were in turn generated based on a multiple alignment (length 113 bases) of 2695 E. coli 
tDNA sequences extracted from 70 E. coli genomes downloaded from NCBI. The topmost function logo shows the 
functional identity information provided by an A (adenine) character at each position in the alignment. The letters show 
which functional identity is supported by the presence of an A, and the letter height indicates the strength of the 
identity signal. The graph below is an inverse function logo, which instead indicates the information provided against 
each identity class by the presence of an A at each position. In summary, the top function logo indicates where in the 
alignment and how strongly an A is a determinant for different identity classes; and the bottom inverse function logo 
indicates where in the alignment and how strongly an A is an antideterminant against different identity classes.



If a HMM training software can be adapted 
for tDNA functional classification, one can 
train a model to recognize tDNAs belonging to 
the identity classes of a given target organism. 
Since it is as yet unclear, and likely very case-
specific what exactly makes an orthogonal 
tRNA orthogonal, it might be best to use target 
tDNAs as positive examples and try to find 
Stealth tDNAs by what they do not match.

To accomplish this, one could conceivably 
train one HMM for each functional identity 
class using target tDNAs. Query  tDNAs can 
then be scored against each HMM, resulting in 
one emission probability for each model. The 
“stealthiness” of each query sequence would 
then be judged by the number of failed matches 
- a Stealth tRNA should ideally  be a poor 
match for each class.

Function logo information plots
When tRNA sequences are run through 

TFAM, the output gives each sequence a score 
against each tRNA class in the model. Each 
score is a single real value based on its log-
odds scores versus the class’s positive and 
negative tFAM  matrices. Since matches to the 
positive matrix give a positive contribution and 
matches against the negative matrix make a 
negative contribution, a tRNA that matches the 
tFAM  for class X better than anything else will 
get a high positive against class X; conversely, 
a sequence that matches some other class 
better, or none at all, will get  a strong negative 
score. Intuitively, tRNAs that carry no signal - 
positive nor negative - for class X should get 
scores closer to 0 by  randomly matching both 
positive and negative.

When considering what these matches imply, 
some new questions arise. Could one sequence 
base with a strong negative signal be enough to 
completely disqualify a tRNA from class X? If 
the tRNA has this signal, can it be drowned out 
by sufficiently  many weak positive signals? Do 

documented determinants and antideterminants 
for class X actually  give stronger contributions 
than less-informative positions?

Logically, a tRNA matching class X should 
contain either more positive information for 
class X, or more negative information against 
every  other class. The tRNA should either be 
actively selected by the AARS for class X, or 
rejected by every other AARS. A putative 
Stealth tRNA should contain as little positive 
information as possible for all classes, and 
preferably much negative information as well.

Logofun is a piece of software that produces 
“function logos”4 from alignments of peptide- 
or amino acid sequences. Similarly to TFAM, it 
gathers character counts along the alignment. 
These character counts are recalculated into 
information values. Fig. 4 shows example 
function and inverse function logos, calculated 
from a set of 2695 E. coli tRNAs, for adenine.

The input is a series of profile matrices, one 
for each tRNA functional class to be studied. 
The output is one logo graph for each sequence 
character in the alignment - A,C,G,T and -. For 
graph A, the letter height of character S at 
position 51 can be roughly  interpreted as ”the 
signal strength for identification by a Ser-RS 
carried by  an adenine residue at alignment 
position 51”.

Logofun can also generate inverse function 
logos, which are constructed similarly to the 
regular variety, but the letter heights indicate 
information speaking against classification 
with the corresponding class.

It may be possible to find some way  to 
discriminate between Stealth tRNAs and 
interacting tRNAs using the information values 
stored in function and inverse logos generated 
from a target organism’s tDNAs. The main 
approach tested was to use the logos as a form 
of scoring matrices, summing the function logo 
information values for a tDNA, likewise 
summing the information values from the 
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corresponding inverse function logos, and 
plotting the latter information total versus the 
former.

SVM
Any classification procedure could be 

generally  described as an attempt to draw 
boundaries around and between the different 
categories in the given parameter space. 
Support vector machines11 (SVMs) approach 
this quite directly by constructing a hyperplane 
that separates the samples of two different 
classes in a training set. Where a line would be 
enough to separate two sets of points that have 
two coordinates, you will need a hyperplane of 
n - 1 dimensions to separate two sets of points 
in a n-dimensional attribute space. Figure 5 

provides a sketch of a simple SVM 
classification of 2D data.

In order to classify tRNAs using a SVM, we 
would represent the molecules as vectors with 
length on the order of 75-120, with each 
element corresponding to the nucleotide 
present at a consensus position in a tRNA 
multiple alignment.

I t i s impor tan t to no te tha t SVM 
implementations are normally designed to 
work with samples that have real-valued 
attributes. This does not mesh well with the 
discrete nature of base sequence data, so in 
order to attempt SVM-based classification of 
Stealth tRNA candidates, some layer of 
abstraction is necessary to somehow describe a 
tRNA in terms of a set of real values.

The simplest way to make a tDNA sequence 
numeric would be to simply assign a value to 
each base; A - 1.0, T - 2.0, G - 3.0 and C - 4.0. 
However, putting all the bases on the same 
continuous axis may cause problems. Consider, 
for example, if the SVM  algorithm generates, 
for a certain alignment position in a family of 
tRNAs, the cutoff value 2.35. tRNAs with A or 
T at the position get a positive signal, and those 
with G or C get a negative signal. But what 
does that mean, biochemically? If the positive 
training set that generated this value had 
mostly  T and a few G at the position, we may 
now get false positives with A and miss true 
positives with G at this alignment position. 
Also, any position with small differences 
between the counts will receive a cutoff around 
the middle of the range, so that tested 
sequences will be arbitrarily scored positive or 
negative when that position should actually 
carry very little information at all.

Reducing the choice to a [0, 1] scale with 
purine residues and pyrimidine residues scored 
at opposite extremes might make the labeling 
and cutoff make marginally  more biochemical 
sense, but some fidelity is lost. In addition, 
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Figure 5: Sketch of SVM partition of 2D samples. 
The graph exemplifies the behaviour of a Support Vector 
Machine that is given a set of samples with two real-
valued attributes: x1 and x2. The hollow circles 
represent samples marked negative, and the filled circles 
represent samples marked positive. The SVM algorithm 
will propose an initial 1D discriminator (line H1) and 
determine if the samples are separated. They are not, so 
the discriminator is adjusted (H2) and evaluated again. 
The samples are now successfully separated, but the 
discriminator can be improved further. The algorithm 
iteratively  refines the discriminator until the sum 
distance of the sample sets to the discriminator reach a 
maximum (H3). The separating hyperplane (in this case, 
line) should now be able to classify new data points as 
positive or negative with an optimal margin.



since many of the nucleobases in the tRNA are 
exposed, they may be involved in recognition, 
and thus the exact base identity  is likely 
important for orthogonality.

ROSETTA
In rough set analysis and boolean reasoning, 

information systems and decision tables are 
used to classify samples with a number of 
measured attributes into given decision classes. 
The data samples in an information system all 
have the same attributes, but individual 
samples may lack values for any attribute. 
Among the strengths of the rough set and 
boolean reasoning approaches is that they  can 
be implemented with a high tolerance against 
missing data.

The information system may be presented in 
a table, with each attribute as a separate 
column. A decision system is an information 
system with a decision attribute appended to 
the sample vectors. The decision attribute 
contains the classification of the samples, and 
is necessary to construct rules that can 
determine the classification of new samples.

There are various algorithms available that 
can reduce the attribute set of a decision 
system to reducts: a minimal set of attributes 
needed to separate samples of the different 
classes (without necessarily preserving the 
discernibility of different samples within a 
class). From such reducts, one can generate 
boolean rules that  classify samples based on 
their values for the reduced attribute set.

ROSETTA12 is a toolkit for rough set 
analysis developed by A. Øhrn in the late ‘90s. 
It provides a versatile environment for training 
various types of classification rules on datasets 
(in table form) and classifying samples based 
on the rules generated. It  can be used to create 
classification pipelines for continuous data, but 
that data needs to be discretized before creating 
rules. Luckily, this is not necessary for 
nucleotide sequences, which are (in most 

interpretations) discrete by nature. On the other 
hand they must be presented in a tabular form 
that makes sense for further classification.

Since this study uses discrete data (tDNA 
sequence) to perform supervised classification 
with discrete labels (tRNA functional classes), 
the problem is ideally  suited for boolean 
reasoning approaches.

After producing multiple alignments of all 
tRNAs in the study, the PERL implementation 
of this method produces ROSETTA-readable 
CSV tables from the alignment. Each row 
represents one tRNA, and each position in the 
alignment has its own column. In addition, the 
TFAM-determined charging identity of the 
tRNA is recorded in the final column. This 
serves as the decision attribute in constructing 
classification rules.

After the decision system was loaded into 
ROSETTA, the data was first separated into 
target and query sets by sequence header. The 
target set was randomly split  80-20 into a 
training and testing set. From the training set, 
reducts were generated using Johnson’s 
algorithm and a genetic algorithm, in both 
cases using default parameters.

After generating classification rules from the 
reducts, the testing set could be classified with 
those rules in order to test their sensitivity  and 
specificity. ROSETTA provides a confusion 
matrix showing predicted class versus actual 
class. In the confusion matrix for the testing 
set, with a perfectly  performing set of rules, 
there should only be entries on the diagonal - 
meaning ROSETTA’s predictions always 
match the input.

Entries anywhere other than on the diagonal 
means that the tDNA has been misclassified. If 
a tDNA matches none of the generated rules, it 
will remain unclassified - and that is how we 
may find potential Stealth tRNAs.
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Results
To the greatest possible extent, preprocessing 

and analysis steps were automated in a Perl 
dr iver scr ipt wi th the working t i t le 
“flogiston” (Appendix 3; pipeline specification 
and flogiston instructions are included in 

Appendices 1 & 2, respectively). This includes 
processing and organizing input and output 
files, and running the various other programs 
required for analysis. In order to leave users 
more freedom to construct their tDNA datasets, 
the preprocessing steps of extracting tDNA 

  17

Figure 6: Example Function Logo Information Plot. The graph above shows the total inverse function logo 
information content of tDNAs versus the total function logo information. These totals were calculated by treating 
function logos and inverse function logos as a form of scoring matrices and taking the sum of total stack heights, at 
each position, for each character in the sequence (including gaps). Class-specific letter height was ignored, taking only 
the total stack height for the given position from the logo corresponding to the given character. The gray dots represent 
2695 E. coli tDNA sequences; the red letters represent a set of tDNAs known to be orthogonal in E. coli. Note that 
some, particularly the “E” orthogonal tDNAs plot slightly outside of the “cloud” of target tDNAs. Also interesting is 
that all tDNAs appear clustered around a negative diagonal line, hinting that the sum of the total functional 
information and inverse functional information in a tDNA may be near-constant. Whether this is an artifact of the logo 
generation process is unknown.



sequences with tRNAscan-SE and sorting them 
by taxa etc. was left out of the pipeline.

TFAM
Using TFAM for classification was an 

attractive option, because of the lab’s 
familiarity  with the tool and the pre-existing 
code. However, with further study, it  became 
apparent that the TFAM  scores may abstract 
recognition signals too much to be of use; 
boiling down the contributions of the entire 
tRNA sequence into a single score discards 
much potentially relevant information.

As no heuristic could be established to find 
the cutoff between interacting and non-
interacting tRNAs, this approach was 
abandoned.

HMM
Although the popularity and successful 

history of HMMs made their use an obvious 
candidate for Stealth tRNA detection, their 
sequence-specific and data-driven nature made 
them less useful in practice.

In this project, the objective was to find or 
construct a tool that can detect potential 
orthogonal tRNAs by sequence alone. 
However, it appeared necessary to locate and 
study features of the query tRNA’s sequence in 
ways that are not  best done by  Markov 
modeling. Designing such a combined-signal 
HMM  is regrettably beyond the author’s 
ability. The HMM approach was therefore 
abandoned for the benefit of other methods.

Function logo information plots
Some of the scatter graphs generated by 

plotting function logo information versus 
inverse logo information for indigenous tRNAs 
and known orthogonal tRNAs showed great 
promise. Figure 6 shows an example of this. 
When plotting the information values for 
tRNAs from E. coli and known orthogonal 

tRNAs, orthogonal tRNAGlu and tRNALeu were 
noticeably separated from the E. coli “cloud”.

An unexpected feature of these plots was the 
clear clustering of indigenous tRNAs around a 
diagonal, the slope of which indicates that  the 
sum of function logo information and inverse 
function logo information for each tRNA is 
more or less constant in an organism’s tRNA-
ome.

SVM
Using state vector machines to separate 

putative stealth tRNAs from interacting tRNAs 
seemed like a sound approach, because of 
seve ra l success s to r i e s wi th b ina ry 
discrimination. However, as explained in the 
Methods section, it is difficult to express a 
tRNA as a string of real values. As a result, 
SVM analysis was not fully implemented in 
the course of this study.

ROSETTA
Classification using ROSETTA went further 

than some other approaches. Rule sets trained 
on E. coli tDNAs notably failed to classify 
known orthogonal tDNAs. This is a good 
outcome, as Stealth tRNAs should remain 
unclassified. Other tDNAs from the same 
organisms as the orthogonal sequences were 
occasionally misclassified with some E. coli 
identity  class, but were also generally 
unclassified. The Johnson algorithm worked 
very quickly but generated a single, very 
compact reduct. The genetic algorithm reducts 
could take much longer depending on sample 
sizes and parameters, but  generated more and 
varying reducts.

For reasons that could not be determined, the 
ROC (Receiver Operating Characteristic, 
i n d i c a t i n g t h e e f f e c t i v e n e s s o f t h e 
discriminator) curves for these classifications 
versus E. coli rules suffered from strange 
errors. A recurring problem was that all ROC 
parameters - area under the curve, standard 
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error, thresholds - were assigned a placeholder 
value for “infinity”. This could be due to 
emulation errors. ROSETTA is a Windows-
specific program, but was run in a virtual 
machine using Wine (on a Macintosh 
computer).

Discussion
TFAM: hampered by excessive abstraction?

Applying tFAMs to the task of detecting 
stealth tRNAs was ultimately unsuccessful. 
TFAM  scores on indigenous tRNAs versus 
orthogonal queries did not show any  obvious 
tendencies that might be used for detection of 
stealth tRNAs. It is likely that the TFAM 
algorithm, while useful for scoring tRNAs 
based on their positive recognition by  a certain 
class of AARSs, abstract too much of the 
interaction signals by  condensing them to a 
number.

This is analogous to how biologists recognize 
tRNAs versus how AARSs recognize them. 
Associating a tRNA with a certain amino acid 
gives a researcher a simple overview of the 
function and importance of that tRNA. A 
AARS enzyme on the other hand cannot 
analyze the entire sequence of a tRNA and 
compare it to libraries of similar sequences. 
Whether or not it treats a given tRNA as a 
substrate depends on any number of residue-
level physical interactions which cannot be 
adequately summed up by a single score.

The TFAM  score is also heavily  dependent 
on the availability  of data. As the score is in 
part calculated from the logarithm of number 
of observations for divided by  number of 
observations against, the mere amount of 
sequences available for either side will affect 
the magnitude of the score in ways that are not 
easily normalized between tests.

For the task at hand, this data volume 
dependency is a serious problem, as very few 
orthogonal pairs are known. This is also 

specific to each model organism, and for any 
given organism, the number of known 
interacting tRNA sequences is very likely  to 
grow much faster than the number of known 
orthogonal sequences, for the foreseeable 
future.
HMM: unsuitable for distinguishing highly-
conserved sequences?

A HMM-based stealth tRNA detection 
method could not be established within the 
timeframe of this project. This was mainly due 
to difficulties in reconciling the efficient 
pattern recognition of HMMs with the strong 
conservation of tRNAs, and the fact that tRNA 
recognition signals are poorly characterized.

HMMs are very good at finding sequences 
that match the consensus training set - primary 
or secondary sequences, depending on the 
implementation - within margins also dictated 
by the variability within the training set. 
However, as part of the protein synthesis 
machinery, both the primary and secondary 
sequence of tRNAs are highly conserved, even 
between widely divergent taxa. This brings an 
additional set of challenges to the problem of 
implementing a stealth tRNA-targeting HMM.

If a stealth tRNA-finding HMM  were trained 
on the primary sequence of known orthogonal 
tRNAs alone, the rarity  of known orthogonal 
pairs would mean that  there is very  little data 
available with which to construct  the model. 
Because of the high degree of sequence 
conservation in tRNAs, the resulting model 
would likely give good “stealthiness” scores to 
many non-orthogonal tRNAs.

If the model were trained on the host 
organism’s indigenous tRNAs instead, higher 
scores should indicate similarity  to normally-
interacting tRNAs, and lower scores might 
show that query tRNAs are non-interacting. 
However, the main problem in this approach is   
how to differentiate between a non-interacting 
stealth tRNA and a sequence that is simply not 
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functional as a tRNA. Again, as tRNA 
sequence is highly conserved, this type of 
model would essentially  score high for query 
sequences that  are likely to fold into viable 
tRNAs, and since the mechanics of recognition 
and anti-recognition are not well understood, it 
is hard to say  whether a HMM would be able 
to properly represent those signals.

If HMMs trained on whole sequences are 
intrinsically too sequence-specific to 
effectively separate non-interacting tRNAs 
from the interacting, then a possible solution is 
to train a model on RNA structural features 
other than the primary base sequence. The 
effect on AARS recognition by certain features 
like the base present at a given coordinate, or 
the presence, absence or size of the variable 
arm, can be inferred from function logos and 
by other means. If these features could then be 
described by a HMM, in some combination of 
whole sequence matching and motif matching, 
disregarding uninformative regions of the 
tRNA, it might be possible to get  scores that 
more clearly  discriminate between stealth 
tRNAs and others.

However, this would require extensive 
modification of tRNA HMM structures. 
Normal HMM implementations recognize 
simple sequence signals of a single type - 
nucleotides or amino acids occurring in 
sequence. To enhance stealth tRNA detection, 
it may be necessary to combine base sequence  
with other signals that might be recognized by 
the AARS, such as steric qualities like shape 
and size of an arm, or whether a sequence 
region is hydrophobic or hydrophilic on the 
detectable surface. To train such a model, the 
software would need to record not just the 
nucleic acid symbols in order, but also 
detectable qualities of single bases or sequence 
regions of various sizes.

At the time of writing, no such HMM is 
publicly available. It is possible that normal 

HMM alignment to several interacting tRNA 
classes could be combined with other sequence 
annotation and analysis outside of the Markov 
model, but that is left  as an exercise for future 
investigators.
SVM: incompatible with discrete data?

T h e m a i n p r o b l e m p r e v e n t i n g 
implementation of a SVM  stealth tRNA 
detection algorithm is that most publicly 
available SVM training software uses 
exclusively  continuous, real-valued sample 
data. As mentioned in the Methods section, 
while it is trivial to simply translate RNA 
sequence to numbers, the meaning of those 
numbers runs a severe risk of being distorted 
by mathematical operations.

A way to incorporate discrete base sequences 
in SVM analysis could not be found during the 
run of this project. With no compatible data to 
train a state vector machine on, it was 
regrettably impossible even to include SVMs 
in a compounded analysis across different 
methods.

T h e p o w e r o f S V M s i n d a t a s e t 
compartmentalization is indisputable, but until 
a discrete-continuous hybrid SVM  is 
introduced, their usefulness in tRNA sequence 
analysis is limited.
ROSETTA: partial success and great promise

Rough set approaches using ROSETTA 
appeared quite successful. Another potential 
advantage is that there are few preprocessing 
steps between raw tRNA sequence and 
classification - mostly alignment and 
reformatting. ROSETTA-based Stealth tRNA 
detection needs to be evaluated in greater 
detail, with larger tests and more varied 
parameters. In this study, Johnson reducts and 
boolean reasoning were used for rules 
generation; many options remain to be tested, 
and better classification performance seems 
very possible.
Function logo information plots: partial 
success and unexpected patterns
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The function logo information plots were 
also interesting, particularly the unexpected 
fitting to a diagonal. It  makes some intuitive 
sense that the information content is limited; 
with 22 possible classes the absolute maximum 
information content  in bits should be roughly   
log2(22) * L, where L is the length of the 
sequence. It is less clear why that maximum 
information should be divided between 
functional and inverse functional signals. 
Future researchers more familiar with the 
mathematics of logo generation would be 
welcome to establish whether this is an artifact 
of the mathematics employed, or something 
tha t may have ac tua l b io in format ic 
significance. Also, in order to make practical 
use of these plots for Stealth tRNA detection, 
some way to automatically isolate potential 
orthogonal tDNAs would be necessary, instead 
of analyzing each graph by eye.

It must be noted that all of these studies were 
done entirely from primary  sequence data. 
More information could and should be 
integrated - secondary  structure information to 
begin with, and interactions with relevant 
proteins if available. Generally, detailed 
interaction information is rare. A database of 
tRNA-protein interactions with standardized 
format, or a way to estimate interactions from 
sequence info, would be immensely useful.

It is also important to remember that 
bioinformatical approaches are unlikely to 
ent i re ly replace laboratory methods. 
Ultimately, the best these in silico methods can 
do is suggest candidates for experimental 
verification. Orthogonal pairs can as yet only 
be established by in vivo tests.
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Appendix 1: Stealth tRNA Assessment Pipeline
Note on using the scripts provided: 

The scripts provided in these appendices are all written in the Perl scripting language. They 
require a working installation of the Perl runtime of version 5.10.0 or later, and are executed from 
the command line using the syntax:
 perl <script.pl> <options> <files and arguments>

Options are indicated with a dash and may be followed by an argument (e.g. -f out.fa). What 
filenames and arguments are required for the script to run is detailed in each script’s usage 
information, accessed by executing

 perl <script.pl> -h

1. Choose target organism and query organism(s).

Potentially any organism could be chosen. However, a more thoroughly studied target 
organism will bring with it more sequence annotations and experimental data that can be used 
to vet any candidate orthogonal tRNAs produced by this pipeline.

A good source for genomic data is ftp://ftp.ncbi.nlm.nih.gov/genomes/
2. Download genome sequences for all organisms.

Sequences must  be in FASTA format to qualify  as input for tRNAscan-SE. If your 
sequences are not readily available in this format, there are many tools available for format 
conversion. One online implementation is http://www.ebi.ac.uk/Tools/sfc/readseq/.

3. Extract all tRNA genes using tRNAscan-SE.
For this step, I generally used a tRNA model matching the target organism, e.g. built-in 

bacterial model for E. coli. This is set by  option flag -B; an archaeal model is set by -A. See 
tRNAscan-SE manual or command-line help (-h) for more options.

IMPORTANT: tRNAscan-SE does not output FASTA-formatted sequences. To get those, 
use the option -f <filename>, which will save secondary structure predictions (including 
primare sequence) to the specified file. Then, use the tse2fa.pl script (Appendix 4) to convert 
this output to a multi-FASTA file of the detected tRNAs.

4. Tag sequences for later identification
5. Run flogiston.pl script on the tRNA gene multi-FASTA files.

See Appendix 2 for available options for the flogiston script.
6. ROSETTA analysis:

 Please refer to the ROSETTA manual for detailed usage instructions and feature 
 descriptions.

a. Open the the outputfile suffixed with “.rosetta”

Use the “Rosetta table import format” when prompted.
b. Separate target and query sequences

Target and query sequences will be co-aligned in one table. Right-click the table and select 
“Duplicate”. Delete the query sequence rows from one table, and the target  sequence rows 
from the other, to end up with separate target and query tables.

!

http://www.ebi.ac.uk/Tools/sfc/readseq/
http://www.ebi.ac.uk/Tools/sfc/readseq/


c. Generate reducts

 Right-click your target sequence table and select any option under “Reduce”. Johnson’s 
algorithm qill generate a single, naïve reduct quickly. Other methods may take longer but may also 
give better reducts.

d. Generate rules
 Right-click a reduct  and select “Generate rules ...”. Several options are available, including 

the quick-and-dirty Johnson algorithm and a Genetic Algorithm, which will take longer but will 
typically give more discriminating rules.

e. Classify query sequences
 Right-click your query  sequence table and select “Classify ...”. Check the “Log individual 

results to file” option in the dialog that appears, and input  a file path where you want the 
classifications to be saved. (Without this option, you will only see the classification statistics for the 
whole dataset, i.e. if there are candidate orthogonal tRNAs, but  not which sequences are 
candidates.)

 Click “Parameters ...” in the Classifier box to show a dialog where you can select the 
classification rule set to be used, among other parameters. Any rules you have created should be 
available in the drop-down list.

 Double-clicking the classification you just  generated will show you a confusion matrix. 
Rows represent the “actual” tRNA class (as read from the .rosetta file). Columns represent the 
predicted class according to the rule set you generated. Entries on the diagonal will have been 
classified with the same class that TFAM gave them; i.e., they  are likely interacting with the target’s 
AARS’s. Entries off the diagonal have been misclassified, and may be of interest. Most interesting 
are the entries in the “Undefined” column, those that were not given a classification by the 
generated rules. These could be considered Stealth tRNAs, and should be further studied to assess 
their orthogonality.

 The reader is encouraged to read up  on and test the effects of the many, many options and 
parameters that ROSETTA offers. The program also allows batch scripting, meaning that this 
process could be partially or entirely automated.
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Appendix 2: Flogiston User’s Guide
Flogiston Command-line Help:
flogiston.pl: (F)unction (Log)o (I)nformation-based (S)tealth-(t)RNA detecti(ON) v. 0.3

Usage: perl flogiston.pl [Options] <target.fa> <query.fa> [<legend_filename>]

-h! ! Print this help and exit

-t <str>! Set prefix tag for this project (default "new_")

-c ! ! Output tRNAs' scores vs target functional classes to "<prefix>_clspec_scores"

-e ! ! Use existing function logos & inverse logos !

! ! (format: "<logo filename prefix>:<inverse logo filename prefix>")

-x #:#!Exclude region in alignment from scoring !

! ! (format: "a:b" excludes from position a to pos b)

! ! If the first two elements are 'save:info', info value for the excluded regions !

! ! will be saved (e.g. "save:info:56:77")

-g! ! Score gaps (default NO)

-l! ! Score only for the largest signal (default NO)

-m [A/E]! Select TFAM tRNA model: A for archaeal, E for eukaryotic. Default bacterial.

-p! ! Score basepair function logos

-s <file>! Output all tRNA's scores vs Profile Information Matrix and Inverse ditto to <file>

-r! ! Refactor headers in input FASTA files

Requirements:
UNIX-like system (only tested on Apple Macintosh computers running Snow Leopard or later)
Perl v5.10.0
BioPerl v.1.6.910
TFAM v.1.3
logofun 1.0
bplogofun 0.3
The script is not guaranteed to work with other versions of these software dependencies.

Detailed Options:
-c Functional class-specific function logo information scores will be output to 

<prefix>_clspec_scores
-e <file>:<file> Can be used to skip the function logo generation step by using existing function logo files (in .eps 

format). Assumes
Argument format: <function_logo_prefix>:<inverse_function_logo_prefix>
You must have 10 logo files in total, with names of the format
<function/inverse prefix>_<A,C,G,T or ->.eps

-g Toggles gap scoring on. When this is off, the function logo information values for gaps in the 
alignment are ignored when calculating information scores.

-l When this is on, only the largest functional signal in the function logo will be recorded for scoring, 
instead of the sum of all signals.

-m [A/E] Specifies which tRNA recognition model TFAM should use: E for eukaryote, A for archaeal. If this 
option is left out, the default is bacterial.

-p Experimental option using bplogofun instead of regular logofun. This generates logos for base-
pairs in the RNA secondary structure as well, instead of just single nucleotides.

-r Refactors the headers of all input tRNAs; target sequence headers will start with “>TGT” and 
query sequence headers with “>QRY”.  Useful if TFAM causes problems by truncating sequence 
headers. A header key will be saved to “<prefix>legend”

-s <file> Outputs function logo information scores for all tested tRNAs to the specified filename.
-t <prefix> All output filenames will be prefixed with this tag.
-x a:b Exclude the region (in multiple-alignment positions) from function logo information-scoring. 

Several regions can be specified in sequence, i.e. “a:b:c:d ...”. If the first pair reads “save:info”, the 
information values of the excluded region will be saved to the file specified by option -s, under the 
column “Excluded”.

!



Appendix 3: Flogiston Source Code (flogiston.pl)
#!/opt/local/bin/perl -w
## Copyright (C) 2011-2013 by Jan Ingemar Ohlsson
#
#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Contact information: ingotron (at) gmail (dot) com

use strict;
use Getopt::Std;
use Bio::AlignIO;
use Statistics::Descriptive;
use Time::localtime;
use Chart::Graph::Gnuplot qw(gnuplot);
use List::Util qw(max);
use subs 'timestamp', 'zeroes', 'log2';

##################
# Initialization #
##################
# Version 0.3
my $version = "0.3";
my @blick = split('/',$0);
my $name = pop(@blick);

# Help and instructions
my $help_string;
$help_string = "$name: (F)unction (Log)o (I)nformation-based (S)tealth-(t)RNA detecti(ON) 
v. $version\n";
$help_string .= "Usage: perl $name [Options] <target.fa> <query.fa> [<legend_filename>]
\n";
$help_string .= "\n";
$help_string .= "-h\t\tPrint this help and exit\n";
$help_string .= "-t <str>\tSet prefix tag for this project (default \"new_\")\n";
$help_string .= "-c \t\tOutput tRNAs' scores vs target functional classes to 
\"<prefix>_clspec_scores\"\n";
$help_string .= "-e \tUse existing function logos & inverse logos (format: \"<logo 
filename prefix>:<inverse logo filename prefix>\")\n";
$help_string .= "-x #:#\tExclude region in alignment from scoring (format: \"a:b\" 
excludes from position a to pos b)\n";
$help_string .= "\t\tIf the first two elements are 'save:info', info value for the 
excluded regions will be saved (e.g. \"save:info:56:77\")\n";
$help_string .= "-g\t\tScore gaps (default NO)\n";
$help_string .= "-l\t\tScore only for the largest signal (default NO)\n";
$help_string .= "-m [A/E]\tSelect TFAM tRNA model: A for archaeal, E for eukaryotic. 
Default bacterial.\n";
$help_string .= "-p\t\tScore basepair function logos\n";
$help_string .= "-s <file>\tOutput all tRNA's scores vs Profile Information Matrix and 
Inverse ditto to <file>\n";
$help_string .= "-r\t\tRefactor headers in input FASTA files\n";
$help_string .= "\n";

my %Opts;
&getopts('ce:ghlm:prs:t:x:',\%Opts);

!

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/


my $opt_h = $Opts{'h'}; # Print help and die
my $opt_t = ($Opts{'t'} ? $Opts{'t'} : "new_"); # Set project tag for labeling output
my $opt_c = $Opts{'c'}; # Output scores vs target's func classes
my $opt_e = $Opts{'e'}; # Use existing logos
my $opt_x = $Opts{'x'}; # Exclude this region in alingment from scoring - necessary to 
know the alignment beforehand
my $opt_g = $Opts{'g'}; # Score gaps too
my $opt_l = $Opts{'l'}; # Score for largest signal only
my $opt_m = $Opts{'m'}; # TFAM tRNA model: A for archaeal, E for eukaryote; default 
Bacterial
my $opt_p = $Opts{'p'}; # Gnuplot function info vs inv info
my $opt_r = $Opts{'r'}; # Refactor FASTA headers
my $opt_s = $Opts{'s'}; # Output qry & tgt scores vs info & inv info

if ($opt_m) {
! unless ($opt_m eq 'E' || $opt_m eq 'A') {
! ! $opt_m = 0;
! }
}

die $help_string unless @ARGV;
die $help_string if $opt_h;

# Check exclusion regions
my $xstart = 500;
my $xend = -1;
my @xlimits;
my $savexc = 0;
if ($opt_x) {
! @xlimits = split(':',$opt_x);
! if (scalar(@xlimits) % 2 != 0) {
! ! die "ERROR: Odd number of region delimiters in \"$opt_x\". Will not exclude!
\n";
! } elsif (scalar(@xlimits) == 0) {
! ! @xlimits = ($xstart, $xend);
! }
}

# If the prefix tag contains a folder, make sure it exists
my @pfxbits = split('/',$opt_t);
if (scalar(@pfxbits) > 1) {
! pop @pfxbits;
! my $path = join('/',@pfxbits);
! system "mkdir -p $path";
}

# Store AA names & codes and generate lookup tables; might need it when dealing with TFAM 
output
my $aa_string = 'ACDEFGHIKLMNPQRSTVWXY';
my @aa_letters = split(//,$aa_string);
my @aa_abbrevs = 
split(/,/,'Ala,Cys,Asp,Glu,Phe,Gly,His,Ile,Lys,Leu,Met,Asn,Pro,Gln,Arg,Ser,Thr,Val,Trp,iM
et,Tyr');
my %aa_let2int;
my %aa_abb2int;
my $i = 0;
foreach (@aa_letters) {
! $aa_let2int{$_} = $i;
! $i++;
}
$i = 0;
foreach (@aa_abbrevs) {
! $aa_abb2int{$_} = $i;
! $i++;
}
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$i = 0;

my $aa_disjunction = join('|',@aa_abbrevs);
print "AA abbreviation disjunction: $aa_disjunction\n";
my @presentaas;

my @nts = ('A','C','G','T','-');

# (# samples)x25 matrices (cols: seq ID, AA pred, 23 AA scores)
# Note: this will disregard seqs without AA pred
my @target_scores;
my @query_scores; # added bc of errors

# Definitions
my $profmatfile;
my $alnlen;
my %query_seqs;
my %target_seqs;
my $flname;
my $ilname;
if ($opt_e) {
! ($flname, $ilname) = split(':', $opt_e);
}

###################
# Echo parameters #
###################
my ($tfile, $qfile, $lfile) = @ARGV;

print "Parameters:\nOutput files prefixed with $opt_t\n";
foreach my $opt (keys(%Opts)) {
! print "$opt\t".$Opts{$opt}."\n";
}
print "\nInput:\nTarget\t$tfile\nQuery\t$qfile\n\n";

############################
# Generate new TFAM scores #
############################
if (1) { # TODO: allow options to load scores from tropDB or file
! unless ($lfile) {$lfile = $opt_t."legend";}
! open TIN, $tfile or die "ERROR: Cannot open TARGET fasta named $tfile for reading!
\n";
! open QIN, $qfile or die "ERROR: Cannot open QUERY fasta named $qfile for reading!
\n";
! open MIXOUT, ">$opt_t"."combined.fa";
!
if ($opt_r) { 
! print STDERR "Will refactor headers\n";
! # Refactoring sequence headers so that TFAM doesn't obscure names; max 10^11 tRNAs 
per file!
! open LOUT, ">$lfile" or die "ERROR: Cannot open naming legend file named $lfile 
for writing!\n";
!
! ### TODO: Make this instead apply "tSE-type" headers that TFAM can understand
! my $tcount = 0;
! while (<TIN>) {
! ! if (/^>.+/) {
! ! ! my ($cl, $ac) = $_ =~ /T:($aa_disjunction) A:(\S{3})/; # Capture 
functional annotation
! ! ! if($cl){$cl = $aa_letters[$aa_abb2int{$cl}];}
! ! ! unless ($cl) {
! ! ! ! print "WARNING: Target tRNA $_ has an unsupported functional 
annotation. Skipping!\n";
! ! ! ! next;
! ! ! }
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! ! ! print MIXOUT ">TGT_$ac-$cl-".sprintf('%06s',$tcount)."\n"; 
! ! ! print LOUT ">TGT_$ac-$cl-".sprintf('%06s',$tcount)."\t$_";
! ! ! $_ = <TIN>;
! ! ! print MIXOUT;
! ! ! $tcount++
! ! }
! }
!
! my $qcount = 0;
! while (<QIN>) {
! ! if (/^>.+/) {
! ! ! my ($cl, $ac) = $_ =~ /T:($aa_disjunction) A:(\S{3})/; # Capture 
functional annotation
! ! ! if($cl){$cl = $aa_letters[$aa_abb2int{$cl}];} else {$cl = 'Undet';}
! ! ! $ac = 'NNN' unless ($ac);
! ! ! print MIXOUT ">QRY_$ac-$cl-".sprintf('%06s',$qcount)."\n"; 
! ! ! print LOUT ">QRY_$ac-$cl-".sprintf('%06s',$qcount)."\t$_";
! ! ! $_ = <QIN>;
! ! ! print MIXOUT;
! ! ! $qcount++;
! ! }
! }
! close LOUT;
} else {
! # If NOT refactoring headers, combine all tRNAs into one file
! while (<TIN>) {
! ! print MIXOUT;
! }
! while (<QIN>) {
! ! print MIXOUT;
! }
} 
! close TIN;
! close QIN;
! close MIXOUT;

! # Run tfam with all the tRNAs in one big blob
! print "TFAM started at ".timestamp."\n";
! system "tfam ".($opt_m ? "-$opt_m" : '')." -s -t $opt_t"."combined.fa $opt_t > 
$opt_t"."tfamlog 2>&1";
! system "rm $opt_t.?.fas";
! print "TFAM finished at ".timestamp."\n";
!
! print "Parsing TFAM scores ... ";
! open RESIN, "$opt_t" or die "ERROR: Cannot open TFAM result file \"$opt_t\"!\n";
! my @lineparts;
! while (<RESIN>) {
! ! if (/TGT_/) {
! ! ! @lineparts = split(/\s+/, $_);
! ! ! shift @lineparts if ($lineparts[0] eq ''); # TFAM right-adjusts seq 
names by adding leading spaces, resulting in a blank first element after split()
! ! ! if ($lineparts[2] eq 'undet') {
! ! ! ! splice(@lineparts, 2, 2); # If input class is unknown, save 
TFAM class prediction (remove input & match columns)
! ! ! } else {
! ! ! ! splice(@lineparts, 1, 1); # Else, save pre-TFAM class (remove 
TFAM class column)
! ! ! ! splice(@lineparts, 3, 1); # (remove match column)
! ! ! }
! ! ! push(@target_scores,[@lineparts]);
! ! ! #print "Found target score!\n"
! ! }
! ! if (/QRY_/) {
! ! ! @lineparts = split(/\s+/, $_);
! ! ! shift @lineparts if ($lineparts[0] eq '');
! ! ! splice(@lineparts, 2, 2); # to remove input & match columns
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! ! ! push(@query_scores,[@lineparts]);
! ! }
! }
! close RESIN;
! # Peek at first tRNA to get alignment length, then reopen file
! open ALNIN, "$opt_t.aln.fas" or die "ERROR: Cannot open TFAM alignment file 
\"$opt_t.aln.fas\" for reading!\n";
! my $line = <ALNIN>;
! $line = <ALNIN>;
! chomp $line;
! $alnlen = scalar(split('',$line));
! close ALNIN;
! print "done!\n";
! print "$0 read alignment length $alnlen from alignment file \"$opt_t.aln.fas\". If 
this does not match TFAM output, redo analysis!\n";

! # Set up profile matrices
! my %profile_matrices;
! foreach my $aa (@aa_letters) {
! ! for (my $i = 0; $i < $alnlen; $i++) {
! ! ! $profile_matrices{$aa}{'A'}[$i] = 0;
! ! ! $profile_matrices{$aa}{'C'}[$i] = 0;
! ! ! $profile_matrices{$aa}{'G'}[$i] = 0;
! ! ! $profile_matrices{$aa}{'T'}[$i] = 0;
! ! ! $profile_matrices{$aa}{'-'}[$i] = 0;
! ! }
! }

! print "Parsing TFAM alignment ... ";
! open ALNIN, "$opt_t.aln.fas";
! while (<ALNIN>) {
! ! if (/>TGT_/) { # Make sure that only target sequences are used to build 
logos
! ! ! my $tid = $_;
! ! ! chomp $tid;
! ! ! my $class = '';
! ! ! my $tfclass = '';
! ! ! ($class,$tfclass) = /-(\S*)-.+\sTFAM:([A-Z?#])/;#/>.+TFAM:([A-Z])/;

! ! ! # In case of nonstandard headers, try again to catch TFAM 
classification
! ! ! if ($tfclass eq '') {
! ! ! ! $tfclass = /TFAM:([A-Z?#])/;
! ! ! }
! ! ! if ($tfclass eq 'X' || $tfclass eq 'J' || $class eq '' || $class eq 
'undet' || $class eq '???') {
! ! ! ! $class = $tfclass; # If original prediction was undetermined, 
take tfam classification
! ! ! }

! ! ! my $seq;
! ! ! unless ($class eq '') {
! ! ! ! $seq = <ALNIN>;
! ! ! ! chomp $seq;
! ! ! ! my @seq = split('',$seq);
! ! ! ! $target_seqs{$tid} = [$class, [@seq]];
! ! ! ! my $pos = 0;
! ! ! ! foreach my $base (@seq) {
! ! ! ! ! $base =~ tr/a-z/A-Z/;
! ! ! ! ! my $unbase = "ACGT-";
! ! ! ! ! $unbase =~ tr/$base//; # Remove current base from base 
list
! ! ! ! ! my @others = split('',$unbase); # Create base-complement 
list
! ! ! ! ! $profile_matrices{$class}{$base}[$pos]++;
! ! ! ! ! $pos++;
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! ! ! ! }
! ! ! }
! ! !
! ! ! # If creating basepair logos later, separate seqs by class
! ! ! if ($opt_p) {
! ! ! ! open COUT, ">>$opt_t"."_$class.fas";
! ! ! ! print COUT "$tid\n$seq\n";
! ! ! ! close COUT;
! ! ! }
! ! }
! ! if (/>QRY_/) {
! ! ! my $qid = $_;
! ! ! chomp $qid;
! ! ! my $class = '';
! ! ! my $tfclass = '';
! ! ! ($class,$tfclass) = /-(\S*)-.+\sTFAM:([A-Z?#])/;#/>.+TFAM:([A-Z])/;
! ! !
! ! ! # In case of nonstandard headers, try again to catch TFAM 
classification
! ! ! if ($tfclass eq '') {
! ! ! ! $tfclass = /TFAM:([A-Z?#])/;
! ! ! }

! ! ! if ($class eq '?' || $tfclass eq 'X' || $tfclass eq 'J' || $class eq 
'' || $class eq 'undet' || $class eq '???') {
! ! ! ! $class = $tfclass; # If original prediction was undetermined, 
take tfam classification
! ! ! }

! ! ! my $seq = <ALNIN>;
! ! ! chomp $seq;
! ! ! $query_seqs{$qid} = [$class, [split('',$seq)]];
! ! }
! }
! close ALNIN;
! print "done!\n";

! # If making basepair logos later, convert alignments to clustal
! if ($opt_p) {
! ! foreach my $aa (@aa_letters) {
! ! ! my $fstub = "$opt_t\_$aa";
! ! ! my $in = Bio::AlignIO->new( -file => "$fstub.fas", -format => 
'fasta');
! ! ! my $out = Bio::AlignIO->new( -file => ">$fstub.aln", -format => 
'clustalw');
! ! ! while (my $aln = $in->next_aln) {
! ! ! ! $out->write_aln($aln);
! ! ! }
! ! ! system "rm $fstub.fas";
! ! }
! }
!
! unless ($opt_e) {
! open PMATOUT, ">$opt_t"."profile_matrix" or die "ERROR: Cannot open profile matrix 
file \"$opt_t"."profile_matrix\" for writing!\n";
! my $aacount = 0;
! my $nullcount = 0;
! my $nullstr = '';
! foreach my $class (@aa_letters) {
! ! $aacount++;

! ! # Check for zero matrix
! ! my $temp = 0;
! ! foreach (@nts) {
! ! ! $temp += $profile_matrices{$class}{$_}[0];
! ! }
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! ! if ($temp==0) {
! ! ! $nullcount++;
! ! ! $nullstr .= $class;
! ! }

! ! for (my $i = 0; $i < $alnlen; $i++) {
! ! ! print PMATOUT $profile_matrices{$class}{'A'}[$i]." ";
! ! ! print PMATOUT $profile_matrices{$class}{'C'}[$i]." ";
! ! ! print PMATOUT $profile_matrices{$class}{'G'}[$i]." ";
! ! ! print PMATOUT $profile_matrices{$class}{'T'}[$i]." ";
! ! ! print PMATOUT $profile_matrices{$class}{'-'}[$i]."\n";
! ! }
! ! print PMATOUT "\n"; # Class-separating blank line
! }
! close PMATOUT;
!

! $profmatfile = "$opt_t"."profile_matrix";
! print "Profile matrix file written to \"$profmatfile\" with $aacount matrices\n";
! if ($nullcount) {
! ! die "ERROR! $nullcount profile matrices ($nullstr) are zero!\n";
! }
! }
}

#####################################
# Generate B- & T-heaps for each AA #
#####################################
if (0) {
my %non_heaps; # Stores, per AA, scores for all Bkg & Tgt tRNAs NOT identified as that AA
my %tgt_heaps; # Stores, per AA, scores for Target RNAs identified as that AA

foreach my $amino (@aa_abbrevs) {
! $non_heaps{$amino} = [[],[]]; # Two arrays: [values, samplenames]
! $tgt_heaps{$amino} = [[],[]]; # Two arrays: [values, samplenames]
}

foreach my $tgtrecord (@target_scores) {
! my $rec_rna = @{$tgtrecord}[0]; # Store record's RNA identifier
! my $rec_aa = @{$tgtrecord}[1]; # Store record's AA identity
! for (my $i = 2; $i < 25; $i++) { # BEWARE! HARD CODED!
! ! if (($i-2) == $aa_abb2int{$rec_aa}) { # trigger for the record's aa
! ! ! push (@{$tgt_heaps{$rec_aa}[0]}, @{$tgtrecord}[$i]); # push record's 
aa's score onto tgt-heap
! ! ! push (@{$tgt_heaps{$rec_aa}[1]}, @{$tgtrecord}[0]); # push record's 
rna's identifier onto tgt-heap
! ! } else {
! ! ! push (@{$non_heaps{$rec_aa}[0]}, @{$tgtrecord}[$i]); # push record's 
aa's score onto non-heap
! ! ! push (@{$non_heaps{$rec_aa}[1]}, @{$tgtrecord}[0]); # push record's 
rna's identifier onto non-heap
! ! }
! }
}

# Each hash value is an array of mean, std dev, range
my %target_stats;
my %other_stats;

print "\nAA\tTmean\tTstdev\tTrange\tOmean\tOstdev\tOrange\n";
print   "--\t-----\t------\t------\t-----\t------\t------\n";

foreach my $aa (@aa_abbrevs) {
! my $stat = Statistics::Descriptive::Full->new();
! $stat->add_data(@{$tgt_heaps{$aa}[0]});
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! $target_stats{$aa}=[$stat->mean(),$stat->standard_deviation(),$stat-
>sample_range()];
! $stat = Statistics::Descriptive::Full->new();
! $stat->add_data(@{$non_heaps{$aa}[0]});
! $other_stats{$aa}=[$stat->mean(),$stat->standard_deviation(),$stat-
>sample_range()];
! print "$aa\t".join("\t",map(sprintf('%.6g',
$_),@{$target_stats{$aa}}))."\t".join("\t",map(sprintf('%.6g',
$_),@{$other_stats{$aa}}))."\n";

}

}

###############
# Run Logofun #
###############
unless ($opt_e) {
$flname = $opt_t."funlogo";
$ilname = $opt_t."invlogo";
# Make function logos
print "Function logo generation started at ".timestamp."\n";
system "python /sw/logofun-1.0/logofun --function --states 'ACGT-' --classes $aa_string 
--exact 1 --output $flname --title -d d $profmatfile";
print "Function logo generation finished at ".timestamp."\n";

# Make inverse function logos
print "Inverse function logo generation started at ".timestamp."\n";
system "python /sw/logofun-1.0/logofun --function --inverse --states 'ACGT-' --classes 
$aa_string --exact 1 --output $ilname --title -d d $profmatfile";
print "Inverse function logo generation finished at ".timestamp."\n";
} else {
! print "Parsing function logo files $flname\_{ACGT-} and inverse function logo 
files $ilname\_{ACGT-}.\n";
}

#################
# Run bplogofun #
#################
if ($opt_p) {
! open AIN, $opt_t."combined.fa.coveaf";
! open CSOUT, ">$opt_t"."cs";
!
! my $in = Bio::AlignIO->new( -file => "$opt_t.aln.fas",
! ! ! ! ! ! ! ! -format => 'fasta');
! my $out = Bio::AlignIO->new( -file => ">$opt_t.clustalw",
! ! ! ! ! ! ! ! -format => 'clustalw');
! while( my $aln = $in->next_aln ) {
! ! $out->write_aln($aln);
! } # Translate multiple aln to clustalw
!
! while (<AIN>) {
! ! if (/#=CS/) {
! ! ! print CSOUT;
! ! }!
! }
! close AIN;
! close CSOUT;

! print "Basepair function logo generation started at ".timestamp."\n";
! system "bplogofun3 -c $opt_t"."cs $opt_t 2> /dev/null";# > $opt_t"."bplog 2>&1";
! print "Basepair function logo generation finished at ".timestamp."\n";

}!

###############
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# Parse logos #
###############
my %pim; # for Profile Information Matrix
my %pim_inv; # ditto for inverse logos
my %fldata;
my %ildata;
for (my $i = 0; $i < $alnlen; $i++) {
! foreach my $nt (@nts) {
! ! $pim{$i}{$nt} = 0;
! ! $pim_inv{$i}{$nt} = 0;
! ! foreach my $aa (@aa_abbrevs) {
! ! ! $fldata{$i}{$nt}{$aa} = 0;
! ! ! $ildata{$i}{$nt}{$aa} = 0;
! ! }
! }
}

# Excluded region limits, if option -x #:# is given
my %pim_exc;
if ($opt_x) {!
! my @dumparr = @xlimits;
! my $limitstring;
! if (($dumparr[0] eq 'save') && ($dumparr[1] eq 'info')) {
! ! # If the first two elements of the exclusion argument are 'save' and 'info', 
store excluded info
! ! shift @dumparr;
! ! shift @dumparr;
! ! shift @xlimits;
! ! shift @xlimits;
! ! $savexc = 1;
! }
! while (@dumparr) {
! ! $limitstring .= '['.shift(@dumparr).','.shift(@dumparr).'], ';
! }
! print "Excluding alignment region(s) $limitstring"."from scoring.\n";
}

foreach my $nt (@nts) {
! open FLIN, $flname."_$nt.eps" or die "ERROR: Cannot open function logo file 
\"$flname\_$nt.eps\" for reading!\n";
! open ILIN, $ilname."_$nt.eps" or die "ERROR: Cannot open inverse function logo 
file \"$ilname\_$nt.eps\" for reading!\n";

! my $coord;
! my $include = 1;
! while (<FLIN>) {
! ! if ($_=~/^numbering \{\((\d{1,3})\) makenumber\} if/){
! ! ! # Encountered new alignment coordinate!
! ! ! $coord=$1; # Shift alignment-coordinate cursor
! ! ! if ($opt_x && ($coord==$xlimits[0])) {
! ! ! ! # Toggle inclusion flag if crossing an exclusion region border
! ! ! ! $include = !$include;
! ! ! }
! ! }
! ! if ($_=~/^ (\d+\.\d+) \(([A-Z])\) numchar/){
! ! ! # Encountered a logo character!
! ! ! my $data=$1; my $aa=$2;
! ! ! if ($include) {
! ! ! ! $pim{$coord}{$nt}+=$data;
! ! ! ! # Sum all information for each position
! ! ! ! $fldata{$coord}{$nt}{$aa} = $data; # Save function data for 
INCLUDED regions
! ! ! } elsif ($savexc) {
! ! ! ! $pim_exc{$coord}{$nt}+=$data;
! ! ! }
! ! }

34



! }
! while (<ILIN>) {
! ! if ($_=~/^numbering \{\((\d{1,3})\) makenumber\} if/){
! ! ! # Encountered new alignment coordinate!
! ! ! $coord=$1; # Shift alignment-coordinate cursor
! ! ! if ($opt_x && ($coord==$xlimits[0])) {
! ! ! ! # Toggle inclusion flag if crossing an exclusion region border
! ! ! ! $include = !$include;
! ! ! }

! ! }
! ! if ($_=~/^ (\d+\.\d+) \(([A-Z])\) numchar/){
! ! ! # Encountered a logo character!
! ! ! my $data=$1; my $aa=$2;
! ! ! if ($include) {
! ! ! ! $pim_inv{$coord}{$nt}+=$data;
! ! ! ! $ildata{$coord}{$nt}{$aa} = $data; # Save inverse data for 
INCLUDED regions
! ! ! } # Sum all information for each position
! ! ! elsif ($savexc) {
! ! ! ! $pim_exc{$coord}{$nt}+=$data;
! ! ! }
! ! }
! }
! close FLIN;
! close ILIN;
}

#############################
# Score vs target's classes #
#############################
if ($opt_c) {
! open CLOUT, ">$opt_t\_clspec_scores" or die "ERROR: Cannot open score file 
\"$opt_t\_clspec_scores\" for writing!\n";
! print CLOUT "Sequence\tClass";
! # Print SVMlight-readable output
! open SVMOUT, ">$opt_t"."clspec_svmlight";
! print SVMOUT"#Class";

! foreach (sort @aa_letters) {
! ! print CLOUT "\tTGT_$_\tTGT_$_\_inverse";
! ! print SVMOUT " TGT_$_ TGT_$_\_inverse";
! }
! print CLOUT "\n";
! print SVMOUT " Seqname\n";
! open COMPOUT, ">$opt_t\_compound_scores" or die "ERROR: Cannot open score file 
\"$opt_t\_compound_scores\" for writing!\n";
! print COMPOUT "Sequence\tClass\tCompound_score\n";

! # Calculate total information per class
! my %total_info;
! my $suminv = 0;
! print "Total information (obverse, inverse) per class:\n";
! foreach my $class (sort @aa_letters) {
! ! no warnings; # Avoid uninitialized element warnings
! ! for (my $i = 0; $i < $alnlen; $i++) {
! ! ! $total_info{$class}{'function'} += $fldata{$i}{'A'}{$class};
! ! ! $total_info{$class}{'function'} += $fldata{$i}{'C'}{$class};
! ! ! $total_info{$class}{'function'} += $fldata{$i}{'G'}{$class};
! ! ! $total_info{$class}{'function'} += $fldata{$i}{'T'}{$class};

! ! ! $total_info{$class}{'inverse'} += $ildata{$i}{'A'}{$class};
! ! ! $total_info{$class}{'inverse'} += $ildata{$i}{'C'}{$class};
! ! ! $total_info{$class}{'inverse'} += $ildata{$i}{'G'}{$class};
! ! ! $total_info{$class}{'inverse'} += $ildata{$i}{'T'}{$class};
! ! }
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! ! print "$class:\t".$total_info{$class}{'function'}."\t".$total_info{$class}
{'inverse'}."\n";
! ! $suminv += $total_info{$class}{'inverse'};
! }
! my @qkeys = sort(keys(%query_seqs));
! my @tkeys = sort(keys(%target_seqs));

! # In order to keep scores positive for extreme differences between function logo & 
inverse information, add a multiple of theoretical max information
! my $aacount = scalar(@aa_letters);
! my $offset = $alnlen * 4 * log2($aacount);
! $offset = $suminv;
! print sprintf("Safety offset: %.2f\n",$offset);

! my ($maxscore, $minscore) = (-10e6, 10e6);

! # Score QUERY seqs
! foreach my $qkey (@qkeys) {

! ! my @seq = @{$query_seqs{$qkey}[1]};
! ! my $qcl = $query_seqs{$qkey}[0];
! !
! ! print CLOUT "$qkey\t$qcl";
! ! print SVMOUT "1";
! ! my $featcount = 0;
! ! my $prod_over_classes = 1;
! !
! ! foreach my $class (sort @aa_letters) {
! ! ! my $temp_flscore = 0;
! ! ! my $temp_flsum = 0;
! ! ! my $temp_ilscore = 0;
! ! ! my $temp_ilsum = 0;
! ! ! my $temp_totscore = 0;
! ! !
! ! ! # Make a list of the complement of the current class
! ! ! my $unclass = join('',@aa_letters);
! ! ! $unclass =~ tr/$class//;
! ! ! my @unclasses = split('',$unclass);

! ! ! for (my $i = 0; $i < $alnlen; $i++) {
! ! ! ! no warnings;
! ! ! ! # Sum of information heights for the current class
! ! ! ! $temp_flsum += $fldata{$i}{$seq[$i]}{$class};
! ! ! ! $temp_flscore += $fldata{$i}{$seq[$i]}{$class}/
$total_info{$class}{'function'};

! ! ! ! $temp_ilsum += $ildata{$i}{$seq[$i]}{$class};
! ! ! ! # Sum of inverse information heights for all classes BUT the 
current class
! ! ! ! foreach $unclass (@unclasses) {
! ! ! ! ! $temp_ilscore += ($ildata{$i}{$seq[$i]}{$unclass})/
$total_info{$unclass}{'inverse'};
! ! ! ! }
! ! ! }
! ! ! print CLOUT "\t$temp_flscore\t$temp_ilscore";
! ! !
! ! ! # Print SVMlight-readable output
! ! ! $featcount++;
! ! ! print SVMOUT " $featcount:$temp_flsum";
! ! ! $featcount++;
! ! ! print SVMOUT " $featcount:$temp_ilsum";

! ! ! $temp_totscore = $offset + $temp_flscore - $temp_ilscore;#
$temp_flscore/$total_info{$class}{'function'} - $temp_ilscore/$total_info{$class}
{'inverse'};
! ! ! $prod_over_classes *= $temp_totscore;
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! ! ! $maxscore = $temp_totscore if ($temp_totscore > $maxscore);
! ! ! $minscore = $temp_totscore if ($temp_totscore < $minscore);
! ! }
! ! my $comp_score = $prod_over_classes ** (1/$aacount); # N-th root of the 
product, where N is the number of functional classes

! ! print COMPOUT "$qkey\t$qcl\t$comp_score\n";
! ! print CLOUT "\n";
! ! print SVMOUT " #$qkey\n";
! }

! # score TARGET seqs
! foreach my $tkey (@tkeys) {

! ! my @seq = @{$target_seqs{$tkey}[1]};
! ! my $tcl = $target_seqs{$tkey}[0];
! !
! ! print CLOUT "$tkey\t$tcl";

! ! my $prod_over_classes = 1;
! !
! ! print SVMOUT "-1";
! ! my $featcount = 0;

! ! foreach my $class (sort @aa_letters) {
! ! ! my $temp_flscore = 0;
! ! ! my $temp_ilscore = 0;
! ! ! my $temp_totscore = 0;
! ! ! my $temp_flsum = 0;
! ! ! my $temp_ilsum = 0;
! ! !
! ! ! # Make a list of the complement of the current class
! ! ! my $unclass = join('',@aa_letters);
! ! ! $unclass =~ tr/$class//;
! ! ! my @unclasses = split('',$unclass);

! ! ! for (my $i = 0; $i < $alnlen; $i++) {
! ! ! ! no warnings;
! ! ! ! # Sum of information heights for the current class
! ! ! ! $temp_flsum += $fldata{$i}{$seq[$i]}{$class};
! ! ! ! $temp_flscore += $fldata{$i}{$seq[$i]}{$class}/
$total_info{$class}{'function'};

! ! ! ! $temp_ilsum += $ildata{$i}{$seq[$i]}{$class};
! ! ! ! # Sum of inverse information heights for all classes BUT the 
current class
! ! ! ! foreach $unclass (@unclasses) {
! ! ! ! ! #$temp_ilscore += $ildata{$i}{$seq[$i]}{$unclass};
! ! ! ! ! $temp_ilscore += ($ildata{$i}{$seq[$i]}{$unclass})/
$total_info{$unclass}{'inverse'};
! ! ! ! }
! ! ! }
! ! !

! ! ! print CLOUT "\t$temp_flscore\t$temp_ilscore";

! ! ! # Print SVMlight-readable output
! ! ! $featcount++;
! ! ! print SVMOUT " $featcount:$temp_flsum";
! ! ! $featcount++;
! ! ! print SVMOUT " $featcount:$temp_ilsum";
! ! !
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! ! ! $temp_totscore = $offset + $temp_flscore - $temp_ilscore;#
$temp_flscore/$total_info{$class}{'function'} - $temp_ilscore/$total_info{$class}
{'inverse'};
! ! ! $prod_over_classes *= $temp_totscore;

! ! ! $maxscore = $temp_totscore if ($temp_totscore > $maxscore);
! ! ! $minscore = $temp_totscore if ($temp_totscore < $minscore);
! ! }
! !
! ! my $comp_score = $prod_over_classes ** (1/$aacount); # N-th root of the 
product, where N is the number of functional classes

! ! print COMPOUT "$tkey\t$tcl\t$comp_score\n";
! ! print CLOUT "\n";
! ! print SVMOUT " #$tkey\n";
! }

! print "Maxscore: $maxscore\nMinscore: $minscore\n";
! close CLOUT;
! close COMPOUT;
! close SVMOUT;
}

######################################################
# Record total information content in function logos #
######################################################
my %qscores;
my @tgt_ftotals; # X values (total function logo information) for plots
my @tgt_itotals; # Y values (total inverse function logo information) for plots
my @qry_ftotals; # X values (total function logo information) for plots
my @qry_itotals; # Y values (total inverse function logo information) for plots

open SCOUT, ">$opt_t\_scores" or die "ERROR: Cannot open score file \"$opt_t\_scores\" 
for writing!\n";
print SCOUT "Sequence\tPred_class\tScore\n";
my @qkeys = sort(keys(%query_seqs));
foreach my $qkey (@qkeys) {
! my $class = $query_seqs{$qkey}[0];
! my @seq = @{$query_seqs{$qkey}[1]};
! my $score = 0;
! ############################# SCORING ALGORITHM 
#####################################
! for(my $i = 0; $i < $alnlen; $i++){
! ! my $nt = $seq[$i];
! ! $nt =~ tr/a-z/A-Z/;
! ! unless (($nt eq '-') && !$opt_g) {$score += ($pim{$i}{$nt} - $pim_inv{$i}
{$nt});}
! !
! ! if ($opt_s) {
! ! ! unless (($nt eq '-') && !$opt_g) {
! ! ! ! no warnings;
! ! ! ! $qscores{$qkey}{'function'} += $pim{$i}{$nt};
! ! ! ! $qscores{$qkey}{'inverse'} += $pim_inv{$i}{$nt};
! ! ! ! if ($savexc) {
! ! ! ! ! $qscores{$qkey}{'excluded'} += $pim_exc{$i}{$nt};
! ! ! ! }
! ! ! !
! ! ! ! if ($opt_l) {
! ! ! ! ! my $fmax = 0;
! ! ! ! ! my $imax = 0;
! ! ! ! ! foreach (@aa_letters) {
! ! ! ! ! ! # Select the largest information value at the 
position in logo
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! ! ! ! ! ! if ($fldata{$i}{$nt}{$_} > $fmax) {$fmax = 
$fldata{$i}{$nt}{$_};}
! ! ! ! ! ! # To take sum info in inverse
! ! ! ! ! ! $imax += $ildata{$i}{$nt}{$_};
! ! ! ! ! }
! ! ! ! ! $qscores{$qkey}{'function_max'} += $fmax;
! ! ! ! ! $qscores{$qkey}{'inverse_max'} += $imax;
! ! ! ! }
! ! ! }
! ! } 
! }
!
#####################################################################################
! print SCOUT "$qkey\t$class\t$score\n";
! if (scalar(@seq) != $alnlen) {print "WARNING: Query has alignment length 
".scalar(@seq)."!\n";}
}
close SCOUT;

# If saving scores, score target seqs
if ($opt_s) {
! my %tscores;
! my @tkeys = sort(keys(%target_seqs));
! foreach my $tkey (@tkeys) {
! ! my $class = $target_seqs{$tkey}[0];
! ! my @seq = @{$target_seqs{$tkey}[1]};
! ! my $score = 0;
! ! for(my $i = 0; $i < $alnlen; $i++){
! ! ! my $nt = $seq[$i];
! ! ! $nt =~ tr/a-z/A-Z/;
! ! ! unless (($nt eq '-') && !$opt_g) {
! ! ! ! no warnings;
! ! ! ! #Score target seqs like query seqs
! ! ! ! $tscores{$tkey}{'function'} += $pim{$i}{$nt};
! ! ! ! $tscores{$tkey}{'inverse'} += $pim_inv{$i}{$nt};
! ! ! ! if ($savexc) {$tscores{$tkey}{'excluded'} += $pim_exc{$i}
{$nt};}
! ! ! !
! ! ! ! #Score target seqs only by their predicted class:
! ! ! ! $tscores{$tkey}{'function_byclass'} += $fldata{$i}{$nt}
{$class};
! ! ! ! foreach my $unclass (@aa_letters) {
! ! ! ! ! # Antideterminant information content in a target tRNA 
might be better represented by the sum of 
! ! ! ! ! # inverse info for all OTHER classes
! ! ! ! ! unless ($unclass eq $class) {$tscores{$tkey}
{'inverse_byclass'} += $ildata{$i}{$nt}{$unclass};}
! ! ! ! }
! ! ! }
! ! }
! }
!
! open ALLSCOUT, ">$opt_s";
! print ALLSCOUT "Sequence\tTFAM_class\tFunction_score\tInverse_score\tFunction_byAA
\tInverse_byAA".($savexc ? "\tExcluded": '')."\n";
! foreach (keys(%qscores)) {
! ! if ($opt_l) {
! ! ! print ALLSCOUT $_."\t".$query_seqs{$_}[0]."\t".$qscores{$_}
{'function'}."\t".$qscores{$_}{'inverse'}."\t".$qscores{$_}{'function_max'}."\t".
$qscores{$_}{'inverse_max'}.($savexc ? "\t".$qscores{$_}{'excluded'} : '')."\n";
! ! ! push @qry_ftotals, $qscores{$_}{'function_max'};
! ! ! push @qry_itotals, $qscores{$_}{'inverse_max'};
! ! } else {
! ! ! print ALLSCOUT $_."\t".$query_seqs{$_}[0]."\t".$qscores{$_}
{'function'}."\t".$qscores{$_}{'inverse'}."\t0\t0".($savexc ? "\t".$qscores{$_}
{'excluded'} : '')."\n";
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! ! ! push @qry_ftotals, $qscores{$_}{'function'};
! ! ! push @qry_itotals, $qscores{$_}{'inverse'};
! ! }
! }
! foreach (keys(%tscores)) {
! ! print ALLSCOUT $_."\t".$target_seqs{$_}[0]."\t".$tscores{$_}
{'function'}."\t".$tscores{$_}{'inverse'}."\t".$tscores{$_}{'function_byclass'}."\t".
$tscores{$_}{'inverse_byclass'}.($savexc ? "\t".$tscores{$_}{'excluded'} : '')."\n";
! ! ! push @tgt_ftotals, $tscores{$_}{'function'};
! ! ! push @tgt_itotals, $tscores{$_}{'inverse'};
! }
! close ALLSCOUT;
}
###################################################################
# Gnuplot input tRNAs' total logo info vs total inverse logo info #
###################################################################

# Global options for gnuplots
my %gpl_opts =! (
! ! ! ! ! 'title' => 'Total Inverse Function Logo Information\nvs. 
Total Function Logo Information',
! ! ! ! ! 'output type' => 'png',
! ! ! ! ! 'output file' => $opt_t."infoplot.png",
! ! ! ! ! 'x-axis label' => 'Total Function Logo Information',
! ! ! ! ! 'y-axis label' => 'Total Inverse Function Logo 
Information',
! ! ! ! );

my %tgt_opts =! (
! ! ! ! ! #'color' => '#000000',
! ! ! ! ! 'style' => 'points',
! ! ! ! ! 'type' => 'columns',
! ! ! ! ! 'title' => 'Target tRNAs',
! ! ! ! );

my %qry_opts =! (
! ! ! ! ! #'color' => '#FF0000',
! ! ! ! ! 'style' => 'points',
! ! ! ! ! 'type' => 'columns',
! ! ! ! ! 'title' => 'Query tRNAs',
! ! ! ! );

print "Gnuplot generation started at ".timestamp.".\n";
gnuplot(\%gpl_opts, [\%tgt_opts, \@tgt_ftotals, \@tgt_itotals],
! ! ! ! ! [\%qry_opts, \@qry_ftotals, \@qry_itotals]);
print "Gnuplot generation finished at ".timestamp.".\n";

print "Done.\n";

###############
# Subroutines ################################################################
###############

# ZEROES
sub zeroes {
! my $length = shift;
! my @result;
! for (my $i = 0; $i < $length; $i++) {
! ! push (@result, 0);
! }
! return \@result;
}

# TIMESTAMP
# Return a nicely readable string for the current time
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sub timestamp {!
! my @abbr = qw( Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec );
! my @days = qw( Sun Mon Tue Wed Thu Fri Sat);
! # Get the time
! my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = @{localtime(time)};
! $year += 1900;
! return sprintf "%02d:%02d:%02d $days[$wday] $abbr[$mon] $mday $year",$hour,$min,
$sec;
}

# LOG2
# Return 2-logarithm of input
sub log2 {
! my $num = shift;
! return log($num)/log(2);
}
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Appendix 4: tRNAscan-SE Output Processing Script (tse2fa.pl)
#!/usr/local/bin/perl -w

use strict;
use Getopt::Std;

die ("Usage: tse2fa.pl <tSE structure file> <FASTA output filename>\n") unless $ARGV[0];

#### Handle options
my %Opts;
&getopts('hst:',\%Opts);
my $opt_h = $Opts{'h'};! ! # Print help and die
my $opt_t = $Opts{'t'};! ! # Generate TFAM-compatible "tSE" header
my $opt_s = $Opts{'s'};! ! # Generate TFAM-compatible "simple" header

my $helpline = "Usage: tse2fa.pl <tSE structure file> <FASTA output filename>\n";
$helpline .= "Designed to be used on tRNAscan-SE secondary structure output!\n";
$helpline .= "options:\n";
$helpline .= "\t-h\t\tprint this help and exit\n";
$helpline .= "\t-s\t\tgenerate headers in TFAM-compatible \"simple\" format\n";
$helpline .= "\t-t <string>\tgenerate tRNA headers in TFAM-compatible tSE format, with 
given string as taxonomic ID\n";
die $helpline if ($opt_h);

#### Get arguments
my @args = @ARGV;
my $tsefile = $args[0];
my $fafile = ($args[1] ? $args[1] : "$tsefile.fa");
my $count = 0;
my ($header, $seq);

#### Check I/O
open IN, $tsefile or die("Could not open $tsefile for reading!\n");
open OUT, ">$fafile" or die("Could not open $fafile for writing!\n");

#### Store AA names & codes and generate lookup tables; might need it when dealing with 
TFAM output
my $aa_string = 'ACDEFGHIjKLMNPQRSTVWXYZ$?';
my @aa_letters = split(//,$aa_string);
my @aa_abbrevs = 
split(/,/,'Ala,Cys,Asp,Glu,Phe,Gly,His,Ile,kIle,Lys,Leu,Met,Asn,Pro,Gln,Arg,Ser,Thr,Val,T
rp,iMet,Tyr,SeC,Pseudo,Undet');
my %aa_let2int;
my %aa_abb2int;
my $i = 0;
foreach (@aa_letters) {
! $aa_let2int{$_} = $i;
! $i++;
}
$i = 0;
foreach (@aa_abbrevs) {
! $aa_abb2int{$_} = $i;
! $i++;
}

#### Loop through input
# Assumes input 
while (<IN>) {
! if ($_ =~ /\.trna\d+.+Length:/) {!# Match tRNA header
! !
! ! $header = $_;!! ! ! ! # Save header
! ! chomp $header;

!



! ! #### Format header to Yyyy[class character]xxx######### with Yyyy = opt_t, xxx = 
anticodon, ##### = location
! ! if ($opt_t) {
! ! ! $header =~ /\((\d+)-(\d+)\)/;! ! ! ! # Catch location info
! ! ! my $location = ($1 < $2 ? $1 : "-$2");! ! # Save the gene location (with a 
negative if it happens to be reversed)
! ! ! <IN> =~ /Type:\ (\S+)\s+Anticodon:\s(\S+)/; # Grab type & anticodon
! ! ! my $type;
! ! ! if (exists $aa_abb2int{$1}) {
! ! ! ! $type = $aa_letters[$aa_abb2int{$1}];! # If the detected type string matches a 
registered class, save the appropriate class identifier
! ! ! } else {
! ! ! ! $type = "?";!! ! ! ! ! ! # else, mark as undetermined
! ! ! }
! ! ! $header = $opt_t.$type.$2.$location;!! # TODO: possibly add sequential 
identifier and/or genome identifier after location? Can TFAM take the header with those 
modifications?

! ! }
! ! #### Or, format header to "simple" TFAM-readable format: XxxxxYYY-Zzz-#####
! ! elsif ($opt_s) {
! ! ! my $num = $header =~ /\.trna(\d+)/; # Capture sequential id
! ! ! $header =~ s/[-\|:\.,;\s+]/_/g; # Dashes are delimiters in simple format - 
replace! Also convert other delimiters
! ! ! $header =~ s/[^\w]//g; # Remove characters that are not alphanumeric or 
underscores
! ! ! <IN> =~ /Type:\ (\S+)\s+Anticodon:\s(\S+)/; # Grab type & anticodon
! ! ! $header .= "_$2-$1-$num"; # Format: ConcentratedOldHeader<Anticodon>-<Class>-
<SequentialID>
! ! }
! ! #### Or, contract existing info into one header line
! ! else {
! ! ! $header =~ s/\s+/\ /g;! ! ! # Contract spaces
! ! ! $header =~ s/Length/L/g;! ! ! # Contract Length->L
! ! ! <IN> =~ /Type:\ (\S+)\s+Anticodon:\s(\S+)/; # Grab type & anticodon
! ! ! $header = $header." T:$1 A:$2";!# Attach to header
! ! }
! !
! ! $seq = <IN>;!! ! ! ! ! ! # Skip ruler line
! ! if ($seq =~ /pseudogene|intron/) {
! ! ! $seq = <IN>;
! ! }
! ! $seq = <IN>;!! ! ! ! # Get seq line
! ! chomp $seq;
! ! $seq =~ s/Seq:\ //;! ! ! ! # Remove leading "Seq: "
! ! print OUT ">$header\n$seq\n";! # Write to output
! ! $count ++;
! } else {
! ! next;!! ! ! ! ! ! # Skip non-header lines
! }
}

close IN;
close OUT;

print STDOUT "$count tRNAs parsed.\n";
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