
!

UPTEC X 13 015

Examensarbete 30 hp
Maj 2015

Stealth tRNAs: Strategies for
mining orthogonal tRNA candidates
from genomic data

Ingemar Ohlsson

!

UPTEC X 13 015 Date of issue 2015-05
Author

Ingemar Ohlsson
Author

Ingemar Ohlsson
Title (English)

Stealth tRNAs: Strategies for mining orthogonal tRNA
candidates from genomic data

Title (English)
Stealth tRNAs: Strategies for mining orthogonal tRNA

candidates from genomic data
Title (Swedish)Title (Swedish)

Abstract
Pairs of orthogonal tRNAs and aminoacyl-tRNA synthetases can potentially be used to
augment the genetic code of a chosen host organism. Contemporary methods for finding
candidate orthogonal tRNAs - ones that do not interact with the host’s aminoacylation
enzymes - are based on resource-intensive in vivo assays. In this project, I have evaluated
several bioinformatics approaches to finding candidate orthogonal tRNAs, dubbed “Stealth
tRNAs.” Information logos obtained with the logofun software package, and rough set
classification using the ROSETTA software package, show some ability to distinguish known
orthogonal tRNAs from others. With further study and proper adaptation of the software,
mining Stealth tRNAs from genomic data appears entirely possible.

Abstract
Pairs of orthogonal tRNAs and aminoacyl-tRNA synthetases can potentially be used to
augment the genetic code of a chosen host organism. Contemporary methods for finding
candidate orthogonal tRNAs - ones that do not interact with the host’s aminoacylation
enzymes - are based on resource-intensive in vivo assays. In this project, I have evaluated
several bioinformatics approaches to finding candidate orthogonal tRNAs, dubbed “Stealth
tRNAs.” Information logos obtained with the logofun software package, and rough set
classification using the ROSETTA software package, show some ability to distinguish known
orthogonal tRNAs from others. With further study and proper adaptation of the software,
mining Stealth tRNAs from genomic data appears entirely possible.
Keywords

Bioinformatics, tRNA, orthogonal, genomic, data-mining

Keywords

Bioinformatics, tRNA, orthogonal, genomic, data-mining

Supervisors
David H. Ardell

University of California, Merced

Supervisors
David H. Ardell

University of California, Merced

Scientific reviewer
Suparna Chandra Sanyal

Uppsala University

Scientific reviewer
Suparna Chandra Sanyal

Uppsala University

Project name Sponsors

Language
English

Security

ISSN 1401-2138 Classification

Supplementary bibliographical information Pages
43

Biology Education Centre Biomedical Center Husargatan 3 Uppsala
Box 592 S-75124 Uppsala Tel +46 (0)18 4710000 Fax +46 (0)18 471 4687
Biology Education Centre Biomedical Center Husargatan 3 Uppsala
Box 592 S-75124 Uppsala Tel +46 (0)18 4710000 Fax +46 (0)18 471 4687

! !

Bioinformatics Engineering Program
Uppsala University School of Engineering

! !

Stealth tRNAs:
Strategies for mining orthogonal tRNA candidates

from genomic data

Ingemar Ohlsson

Populärvetenskaplig sammanfattning

Proteinkodande gener i alla levande organismer skrivs av från DNA till messenger-RNA (mRNA)
som utgör en sekvens av instruktioner till ribosomen som sätter samman proteiner, de viktigaste
komponenterna i biologiska mekanismer. Instruktionerna i mRNA läses av i kodon (avsnitt om

tre nukleinsyror i taget) som var för sig korresponderar till en viss aminosyra, byggstenarna som
kedjas ihop till proteiner av ribosomen.

Denna korrespondens mellan 64 kodon och 20 aminosyror utgör den genetiska koden, som
bibehålls av transport-RNA (tRNA) - molekyler som binder till ett specifikt kodon och en specifik

aminosyra - och de aminoacyl-tRNA-syntetas-enzymer (AARS) som laddar ett specifikt tRNA med
sin associerade aminosyra.

Den genetiska koden kan variera mellan organismer, men inbegriper i princip endast 20
aminosyror. Genom att hitta par av tRNA och AARS som är ortogonala, dvs. inte interagerar med
cellmaskineriet i en viss organism, kan man utöka den genetiska koden i denna organism med en

extra symbol. Denna symbol kan vara en modifierad aminosyra, till exempel märkt med en
radioaktiv isotop, eller potentiellt mer komplexa komponenter av nanomaskiner, som sedan kan

sättas ihop av cellens ribosomer.

Hittills har mycket få ortogonala par publicerats, eftersom det kräver djup detaljerad kunskap om
målorganismens biokemi för att hitta dem. I denna studie var målet att undersöka några möjliga

metoder för att snabba upp denna process genom att på bioinformatisk väg hitta sannolikt
ortogonala kandidater bland tRNA-gener i arvsmassan från sekvenserade organismer. I studien

benämns dessa potentiellt ortogonala tRNA “Stealth tRNAs”.

Examensarbete 30 hp
Civilingenjörsprogrammet Bioinformatik

Uppsala universitet, maj 2015

! !

! !

Table of Contents
Introduction! 7
Data & preprocessing! 9

Selecting example sequences! 9
Preprocessing! 11
Notes on nomenclature! 11
TRNA and Operon DataBase (TROPDB)! 11

Methods! 12
TFAM! 12
HMM ! 13
Function logo information plots! 14
SVM! 15
ROSETTA ! 16

Results! 17
TFAM! 18
HMM ! 18
Function logo information plots! 18
SVM! 18
ROSETTA ! 18

Discussion! 19
TFAM: hampered by excessive abstraction?! 19
HMM: unsuitable for distinguishing highly-conserved sequences?! 19
SVM: incompatible with discrete data?! 20
ROSETTA: partial success and great promise! 20
Function logo information plots: partial success and unexpected patterns! 20

Acknowledgements! 21
References! 22
Appendix 1: Stealth tRNA Assessment Pipeline! 23
Appendix 2: Flogiston User’s Guide! 25
Appendix 3: Flogiston Source Code (flogiston.pl)! 26
Appendix 4: tRNAscan-SE Output Processing Script (tse2fa.pl)! 42

!

Introduction
For all the obvious diversity among the living

organisms on this planet, there are many basic
and essential components that are very similar
throughout the Tree of Life. The translation
mechanism, that is, the translation of
informational messenger RNA (mRNA) into
proteins, is one such component. All organisms
have coding genes that are transcribed to
mRNA, which is read by the ribosome,
matching a cognate transport RNA (tRNA) to
each trinucleotide codon.

In many areas of life science, the ability to
alter these basic mechanisms could be very
useful to research and development.1,2 In
studies of protein folding, for example, it may
be useful to selectively replace certain amino
acid residues with radioactively labeled ones,
or with a subtly altered variant that changes the
protein’s shape. In synthetic biology, the ability
to modify or expand the genetic code in an
organism could be useful both to elucidate the
workings of natural organisms, and to engineer
complex subcellular structures using the cell’s
own protein production line.

Orthogonal pairs are perhaps the most
important tool3 for manipulating the genetic
code,consisting of a tRNA and its associated
aminoacylation enzyme. They must be
modified from the host organism’s own
translation machinery, or more commonly,
imported from another, preferably genetically
distant organism. Currently they are not easy to
find, and very few orthogonal pairs have been
documented.

The genetic code of most organisms uses
trinucleotide codons. This means that there are
64 (4·4·4) possible codons, each corresponding
to a certain elongator tRNA class, a start or a
stop signal. The different tRNA species are
each charged with one of typically 20 amino
acids, which are assembled by the ribosome

into the organism’s proteins. There are
normally more tRNA species than amino acids,
and the collection of tRNA species associated
with a certain amino acid is referred to as a
“tRNA functional class”.

The task of charging each elongator tRNA
with its assigned amino acid falls to the
aminoacyl-tRNA synthetases (AARSs). There
is at least one for each tRNA class, which
specifically binds the appropriate tRNAs and
attaches the appropriate amino acid.

In order to ensure that proteins are assembled
correctly, the AARS must bind only the right
tRNA species. Certain features of the tRNA
molecules cause them to be either recognized
or rejected by different AARSs (Fig.1). Some
studies have been conducted into the
mechanisms behind this specific recognition4,5,
but knowledge of these recognition elements
has yet to reach a point where a scientist can
deduce the potential interactions of a tRNA
directly from its sequence.

Figure 1: Sketch of tRNA recognition by different
AARSs. In order for protein translation to function with
any degree of accuracy, specific tRNAs must be charged
with specific amino acids. Each tRNA species has
certain identity elements that either promote recognition
(blue arrows) or inhibit recognition (red T-arrows) by
different aminoacyl-tRNA synthetases.

 7

An orthogonal tRNA is one that is in working
order - it is expressed and folded correctly, and
could be used in translation - but is not
recognised by any AARS in the organism. If it
is not recognised by any AARS it does not get
aminoacylated, and does not perform any
constructive function in protein expression.

If, on the other hand, an orthogonal tRNA is
engineered into an organism together with its
cognate AARS - and provided that AARS is
also non-interacting with native tRNAs - they
form an orthogonal pair. This pair can act as a
new aminoacylation pathway, separate from
the native ones. If the host organism’s genome
is altered so as to leave a codon “vacant”, and
the orthogonal tRNA is allocated that codon, it
becomes possible to change which amino acid
corresponds to that codon. This effectively

changes the genetic code, changing the nucleic
acid-to-amino acid dictionary the ribosome
uses to translate RNA into proteins. If the
orthogonal pair replaces one codon for a
degenerate tRNA class (one with multiple
associated codons), the genetic code can be
expanded beyond its usual 20 classes, for
example adding some exotic amino acid to the
alphabet6 - or potentially any small molecule
that can be attached to a tRNA and connected
to a nascent polypeptide chain.

To date, the conventional methods for finding
orthogonal tRNA-AARS pairs are heavily
based on experiments in vivo7,8, transfecting
tRNAs from other organisms into the model
and testing for interaction with the native
translation machinery. There is not at all much
information available on the principles of

8

Figure 2: Sketch of sequence alignment and resulting Profile Matrix. The analysis software
created during this project made frequent use of Profile Matrices, recording the number of
occurrences of each DNA sequence character (including gaps, “-”) at each position in a multiple
alignment of all sequences involved. The top graph illustrates an example alignment of five DNA
sequences, resulting in a gapped alignment of length 10. The lower graph shows the 5x10 Profile
Matrix P for that alignment; entry Pi,j is the number of sequences with character i at position j in
the alignment.

tRNA recognition by AARS’s, so potential
orthogonal pairs must be found through close
familiarity with both model organisms and the
source organism for the orthogonal pair.

The purpose of this study is to explore some
options for finding candidate orthogonal
tRNAs by mining genomic sequence and
publicly available annotations. If a tool could
be programmed that screens the tRNA-ome of
source organisms and suggests tRNAs that may
escape recognition in the chosen model
organism, that would surely be helpful in
finding more verified orthogonal pairs. More
such pairs could provide more tools and venues
for studies into synthetic biology and
expanding the genetic code, as well as more
data for exploring the mechanics of tRNA-
AARS interactions.

In this report I chose to call the candidate
orthogonal tRNAs “Stealth tRNAs”, in order to
emphasize the differences. True orthogonal
tRNAs must be verified experimentally, and
are mainly useful in conjunction with an
orthogonal AARS. Stealth tRNAs on the other
hand are tDNA sequences that show weak
r e c o g n i t i o n s i g n a l s a n d / o r s t r o n g
antirecognition signals that suggest that they
may be orthogonal. The problem of finding
“Stealth AARS’s” that would be required to
use the Stealth tRNAs is outside the scope of
this study.

Over the course of the project I focused on
five different approaches to separating non-
interacting tRNAs from interacting ones:
separation by TFAM 9 score, Hidden Markov
Models10, Support Vector Machines11, function
logo4 information plots, and Rough Set
classification using ROSETTA12. Software for
training of Hidden Markov Models appeared
difficult to adapt to the problem at hand, so that
approach was abandoned before practical
implementation for the benefit of the other
approaches.

In all implementations of the remaining
approaches, the sequences from known
orthogonal tRNAs were used as “positive
control” samples. Most of the currently known
orthogonal pairs were established in the
bacterium Escherichia coli, which is why E.
coli was most often chosen as the target
organism.

Support Vector Machines also encountered
problems with how to present tRNA data in a
form required by the software, which
effectively prohibited implementation of the
SVM method.

TFAM scores were easy to obtain and use,
since TFAM was used in preprocessing stages
for sequence alignment and supplemental
functional classification. However, attempts to
find a clear discriminator between interacting
and orthogonal tRNAs were unsuccessful.

Using function logos and inverse function
logos as scoring matrices of a sort, and plotting
the “total inverse function information value”
of a tRNA versus its “total function
information value”, some scatterplots showed
orthogonal tRNAs grouping separate from
indigenous target tRNAs.

Rough Set classification in ROSETTA also
showed promise. Classification rules trained on
the E. coli tRNA-ome managed to avoid
grouping known orthogonal tRNAs with any
indigenous functional class.

Data & preprocessing
Selecting example sequences

For the purpose of detecting Stealth tRNAs,
it will be necessary to consider the sequence
and structure of tRNAs that belong to
confirmed orthogonal pairs. At the time of
writing, the selection of known orthogonal sets
was very limited, and the number of targets for
those orthogonal sets was even smaller.
Although a few orthogonal tRNAs are known
for the mammal H. sapiens and the fungus S.

 9

cerevisiae, most have been determined for E.
coli2. For all these targets, archaea seem to be
the preferred source realm for Stealth tRNA
candidates. This makes intuitive sense, since
archaea are evolutionarily distinct13 from the
other realms of life, and therefore more likely
to possess tRNAs that are sufficiently

dissimilar in sequence to display functional
orthogonality.

In fact, a previous study has shown that a
tRNATyr - tyrosyl-tRNA-synthetase pair from
the archaeon Methanococcus jannaschii can be
used to generate orthogonal pairs in E. coli8.
That made M. jannaschii tRNATyr a natural
choice for a “positive control” - a foreign

10

Figure 3: Density plots of TFAM scores for indigenous E. coli tRNAs. The plots above show, for each E. coli
identity class, the density function calculated from tDNAs matching that class; they hint at the distribution of scores
for true positive hits against the tFAMs in E. coli. The iMet and kIle plots are crossed out since, for this particular
set of tDNAs and TFAM parameters, no tDNAs were assigned to those classes. It is interesting to see that what
constitutes a “passing grade” varies strongly between identity classes. For the purpose of Stealth tRNA
identification, this may mean that scoring requires separate approaches for every identity class.

tRNA that has previously been proven to work
as part of an orthogonal pair in a model
organism. If the Stealth tRNA detection
algorithm can consistently detect “positive
controls” like M. jannaschii-tRNATyr for our
model organism, then it might also be able to
detect novel candidate Stealth tRNAs. Actually
verifying the orthogonality of a putative Stealth
tRNA is, however, well outside the scope of
this project. Currently orthogonal pairs can
only be confirmed through in vivo methods.

As previously mentioned, there appear to be
few documented orthogonal pairs, but they do
exist. A number of them are listed in a paper by
Xie and Schultz2. The orthogonal tRNA-
synthetase pairs for use in E. coli mentioned
therein (all derived from archaea) include a
TyrRS-tRNATyr pair from Methanococcus
jannaschii, LysRS-tRNATyr from Pyrococcus
h o r i k o s h i i , G l u R S - t R N A G l u f r o m
Methanosarcina mazei as well as the
heterogenous pairing of a LeuRS from
Methanobacterium thermoautotrophicum and a
mutant tRNALeu from Halobacterium sp. For
use in yeast, the article mentions a TyrRS-
tRNATyr pair from E. coli, a LeuRS-tRNALeu
pair also from E. coli, as well as E. coli GlnRS
paired with human initiator tRNA.

Preprocessing
Each of these selected genomes were

downloaded in .fna (FASTA) format from the
NCBI FTP server. To extract the tDNA
sequences from these genomes, tRNAscan-
SE14 (tSE) was run on each file. The resulting
tDNA gene records were also preprocessed by
condensing the FASTA sequence headers to a
shorter unique identifier, free of whitespace
characters. This was sometimes necessary
since output from some programs later in the
process tends to truncate long sequence names.
In the worst case this can lead to sequences
being unidentifiable after analysis. The
preprocessing Perl scripts were designed to

output a sequence legend file that shows the
full header of the original tSE output alongside
the new short-form header. The new headers
also contain the tRNA functional class
designation as provided by tSE.

The format used internally in the main script
package in this project was “>TAG_XXX-Y-
ZZZZZZ”. TAG is either “TGT” for “Target” or
“QRY” for “Query”, stating the purpose of the
tDNA in the current study (see the following
subsection “Notes on nomenclature”). XXX is
the anticodon in the tDNA, and Y is the single-
character tRNA class identity, as respectively
identified by tSE. ZZZZZZ is a six-digit
integer, identifying tDNAs in the order that
they are encountered by the scripts. This means
that the script software is currently limited to
106 - 1 tDNA sequences each in the Target and
Query sets.

Notes on nomenclature
Throughout the method development,

implementation and testing process, I used a
simple nomenclature to separate the sequence
sets used. In my code, and in the following
sections of this report, I use the terms “Target”
and “Query”. “Target organism” denotes the
organism currently selected as host for the
potential orthogonal pair. This is the organism
whose “Target tRNAs” are identified with
“Target classes” which an orthogonal tRNA
should evade. The “Query organisms” are
those selected to provide “Query tRNAs” to be
tested for “stealthiness”.

TRNA and Operon DataBase (TROPDB)
The Ardell lab has previously developed a

Perl-based pipeline for detecting genomic
features and storing them in a MySQL database
for easy access and use by other bioinformatics
applications. This is called the tRNA and
Operon Database (TROPDB).

 11

For large-scale bioinformatics studies,
TROPDB can be used as a unified and uniform
repository for sequence and annotations, stored
on a local server or even an internal (and
sufficiently large) hard drive.

For this study and others, it offered the
possibility to easily share datasets, compare
results and feed new annotations and
knowledge back into the database. It was
intended to have all software produced in this
project integrated with TROPDB.

However, some difficulties quickly arose that
ultimately led to the integration plans being
abandoned in order to focus on exploration of
the actual methods. The main problem was that
TROPDB was programmed to import genome
sequence and annotations in GENBANK15
format. This format is mainly used in NCBI’s
GenBank database, which meant that tying the
new software to TROPDB would limit its data
sources to NCBI only, at least until a new
import method could be designed. A
conversion script for reformatting other
sequence and annotation files to GENBANK
was sketched, but not fully implemented.

Methods
TFAM

TFAM is a perl script application that uses
alignment by covariance models to establish
the functional class identity of tRNAs. TFAM
takes its name from its product. Ardell &
Andersson2 coined the term “tFAM” to
describe a family of logical rules that
determine the charging identity of a tRNA,
analogous to how a pFAM characterizes a
family of proteins.

The tFAMs are created from multiple
alignments of tDNA sequences from the model
organism. The entire sequence set is initially
aligned using COVEMF. For each functional
identity class, the aligned sequences are
separated into a ‘positive’ set of tDNAs
belonging to the class, and a ‘negative’ set

containing the complement - all tDNAs of
other classes.

For each class, a “tFAM matrix” is then
generated. At each position in the alignment,
the total presence of each DNA base (A, C, G,
T), as well as gaps (-), is counted. Fig. 2 shows
an example of the process of recording such
counts. Note that the example in the figure is
not a finished tFAM matrix, but a “profile
matrix”, which was used for other methods in
this study.

From these counts TFAM calculates the odds
of encountering that character, at that position,
in a tDNA belonging to the current class versus
any other class (count in positive set divided by
count in negative set), and takes the logarithm
of the odds. The resulting log-odds are
recorded in a 5xL matrix (one row per base
plus gap characters, and L columns where L is
the length of the multiple alignment).

TFAM scores test tDNAs against these
matrices by stepping through the sequence and
summing the log-odds values for the
encountered base at each position. Matching
the positive consensus sequence will give a
stronger positive contribution to the score at
positions where the matched character is more
strongly related to the positive set - i.e., where
the odds versus finding that character in the
negative set are better than average.
Conversely, at positions where the odds for the
matched character are bad, it gives a negative
contribution to the score, and a weak
contribution where the odds are average.

The end result of this process is, for each
tRNA in the input, one score (called TFAM
score in the following) against each tRNA
functional class, and a class prediction chosen
as the highest-scoring functional class.

Using TFAM was a natural choice for several
reasons. Partly because of the lab’s familiarity
with the software, and because TFAM can
identify some special cases of functional

12

classes2, including for example initiatior
tRNAs. The output also automatically includes
multiple alignments of the sequences involved,
which are useful for many approaches.

Since TFAM employs sequence profiles of
each tRNA class to score test sequences, those
scores do, to some degree, reflect a scored
tRNA’s level of similarity to tRNAs of a given
class. This similarity measure might be enough
to establish a discriminator that can detect
possible orthogonal tRNAs.

A simple way to test this is to perform TFAM
classification of query and target tRNAs
against the target organism. A query tRNA that
scores lower than all target tRNAs against all
charging identities present in the target
organism may be a candidate orthogonal
tRNA. Fig. 3 shows density plots of the TFAM
scores for different classes of E. coli tRNAs.
Different classes appear to have distinct and
complex profiles, meaning that selecting a
proper cutoff may be difficult, and highly
class-specific.

HMM
Hidden Markov Models are a well-

established type of statistical model that can be
trained on pre-existing sequential data to
recognize and classify new data. In
bioinformatics, HMMs have long been used to
find biological sequences - DNA, RNA and
protein - matching certain patterns10. By
assuming that sequences of the targeted family
are produced as emissions of a Markov
process, and training the model with positive
examples, HMMs can be made to detect
members of the targeted family with great
accuracy.

There are many HMM-based softwares
available, for nucleic acid or amino acid
sequences. Any particular HMM software is
typically designed with a given task in mind,
such as recognizing proteins of a certain
family, aligning sequences to a reference, or
finding tRNA genes in genomic sequence.

 13

Figure 4: Example tRNA function logo and inverse function logo. The logofun software package produces function
logos like the above examples from profile matrix information. These logos were generated from the profile matrices
for 22 tRNA classes, which were in turn generated based on a multiple alignment (length 113 bases) of 2695 E. coli
tDNA sequences extracted from 70 E. coli genomes downloaded from NCBI. The topmost function logo shows the
functional identity information provided by an A (adenine) character at each position in the alignment. The letters show
which functional identity is supported by the presence of an A, and the letter height indicates the strength of the
identity signal. The graph below is an inverse function logo, which instead indicates the information provided against
each identity class by the presence of an A at each position. In summary, the top function logo indicates where in the
alignment and how strongly an A is a determinant for different identity classes; and the bottom inverse function logo
indicates where in the alignment and how strongly an A is an antideterminant against different identity classes.

If a HMM training software can be adapted
for tDNA functional classification, one can
train a model to recognize tDNAs belonging to
the identity classes of a given target organism.
Since it is as yet unclear, and likely very case-
specific what exactly makes an orthogonal
tRNA orthogonal, it might be best to use target
tDNAs as positive examples and try to find
Stealth tDNAs by what they do not match.

To accomplish this, one could conceivably
train one HMM for each functional identity
class using target tDNAs. Query tDNAs can
then be scored against each HMM, resulting in
one emission probability for each model. The
“stealthiness” of each query sequence would
then be judged by the number of failed matches
- a Stealth tRNA should ideally be a poor
match for each class.

Function logo information plots
When tRNA sequences are run through

TFAM, the output gives each sequence a score
against each tRNA class in the model. Each
score is a single real value based on its log-
odds scores versus the class’s positive and
negative tFAM matrices. Since matches to the
positive matrix give a positive contribution and
matches against the negative matrix make a
negative contribution, a tRNA that matches the
tFAM for class X better than anything else will
get a high positive against class X; conversely,
a sequence that matches some other class
better, or none at all, will get a strong negative
score. Intuitively, tRNAs that carry no signal -
positive nor negative - for class X should get
scores closer to 0 by randomly matching both
positive and negative.

When considering what these matches imply,
some new questions arise. Could one sequence
base with a strong negative signal be enough to
completely disqualify a tRNA from class X? If
the tRNA has this signal, can it be drowned out
by sufficiently many weak positive signals? Do

documented determinants and antideterminants
for class X actually give stronger contributions
than less-informative positions?

Logically, a tRNA matching class X should
contain either more positive information for
class X, or more negative information against
every other class. The tRNA should either be
actively selected by the AARS for class X, or
rejected by every other AARS. A putative
Stealth tRNA should contain as little positive
information as possible for all classes, and
preferably much negative information as well.

Logofun is a piece of software that produces
“function logos”4 from alignments of peptide-
or amino acid sequences. Similarly to TFAM, it
gathers character counts along the alignment.
These character counts are recalculated into
information values. Fig. 4 shows example
function and inverse function logos, calculated
from a set of 2695 E. coli tRNAs, for adenine.

The input is a series of profile matrices, one
for each tRNA functional class to be studied.
The output is one logo graph for each sequence
character in the alignment - A,C,G,T and -. For
graph A, the letter height of character S at
position 51 can be roughly interpreted as ”the
signal strength for identification by a Ser-RS
carried by an adenine residue at alignment
position 51”.

Logofun can also generate inverse function
logos, which are constructed similarly to the
regular variety, but the letter heights indicate
information speaking against classification
with the corresponding class.

It may be possible to find some way to
discriminate between Stealth tRNAs and
interacting tRNAs using the information values
stored in function and inverse logos generated
from a target organism’s tDNAs. The main
approach tested was to use the logos as a form
of scoring matrices, summing the function logo
information values for a tDNA, likewise
summing the information values from the

14

corresponding inverse function logos, and
plotting the latter information total versus the
former.

SVM
Any classification procedure could be

generally described as an attempt to draw
boundaries around and between the different
categories in the given parameter space.
Support vector machines11 (SVMs) approach
this quite directly by constructing a hyperplane
that separates the samples of two different
classes in a training set. Where a line would be
enough to separate two sets of points that have
two coordinates, you will need a hyperplane of
n - 1 dimensions to separate two sets of points
in a n-dimensional attribute space. Figure 5

provides a sketch of a simple SVM
classification of 2D data.

In order to classify tRNAs using a SVM, we
would represent the molecules as vectors with
length on the order of 75-120, with each
element corresponding to the nucleotide
present at a consensus position in a tRNA
multiple alignment.

I t i s impor tan t to no te tha t SVM
implementations are normally designed to
work with samples that have real-valued
attributes. This does not mesh well with the
discrete nature of base sequence data, so in
order to attempt SVM-based classification of
Stealth tRNA candidates, some layer of
abstraction is necessary to somehow describe a
tRNA in terms of a set of real values.

The simplest way to make a tDNA sequence
numeric would be to simply assign a value to
each base; A - 1.0, T - 2.0, G - 3.0 and C - 4.0.
However, putting all the bases on the same
continuous axis may cause problems. Consider,
for example, if the SVM algorithm generates,
for a certain alignment position in a family of
tRNAs, the cutoff value 2.35. tRNAs with A or
T at the position get a positive signal, and those
with G or C get a negative signal. But what
does that mean, biochemically? If the positive
training set that generated this value had
mostly T and a few G at the position, we may
now get false positives with A and miss true
positives with G at this alignment position.
Also, any position with small differences
between the counts will receive a cutoff around
the middle of the range, so that tested
sequences will be arbitrarily scored positive or
negative when that position should actually
carry very little information at all.

Reducing the choice to a [0, 1] scale with
purine residues and pyrimidine residues scored
at opposite extremes might make the labeling
and cutoff make marginally more biochemical
sense, but some fidelity is lost. In addition,

 15

X1

X2

H1

H2

H3

Figure 5: Sketch of SVM partition of 2D samples.
The graph exemplifies the behaviour of a Support Vector
Machine that is given a set of samples with two real-
valued attributes: x1 and x2. The hollow circles
represent samples marked negative, and the filled circles
represent samples marked positive. The SVM algorithm
will propose an initial 1D discriminator (line H1) and
determine if the samples are separated. They are not, so
the discriminator is adjusted (H2) and evaluated again.
The samples are now successfully separated, but the
discriminator can be improved further. The algorithm
iteratively refines the discriminator until the sum
distance of the sample sets to the discriminator reach a
maximum (H3). The separating hyperplane (in this case,
line) should now be able to classify new data points as
positive or negative with an optimal margin.

since many of the nucleobases in the tRNA are
exposed, they may be involved in recognition,
and thus the exact base identity is likely
important for orthogonality.

ROSETTA
In rough set analysis and boolean reasoning,

information systems and decision tables are
used to classify samples with a number of
measured attributes into given decision classes.
The data samples in an information system all
have the same attributes, but individual
samples may lack values for any attribute.
Among the strengths of the rough set and
boolean reasoning approaches is that they can
be implemented with a high tolerance against
missing data.

The information system may be presented in
a table, with each attribute as a separate
column. A decision system is an information
system with a decision attribute appended to
the sample vectors. The decision attribute
contains the classification of the samples, and
is necessary to construct rules that can
determine the classification of new samples.

There are various algorithms available that
can reduce the attribute set of a decision
system to reducts: a minimal set of attributes
needed to separate samples of the different
classes (without necessarily preserving the
discernibility of different samples within a
class). From such reducts, one can generate
boolean rules that classify samples based on
their values for the reduced attribute set.

ROSETTA12 is a toolkit for rough set
analysis developed by A. Øhrn in the late ‘90s.
It provides a versatile environment for training
various types of classification rules on datasets
(in table form) and classifying samples based
on the rules generated. It can be used to create
classification pipelines for continuous data, but
that data needs to be discretized before creating
rules. Luckily, this is not necessary for
nucleotide sequences, which are (in most

interpretations) discrete by nature. On the other
hand they must be presented in a tabular form
that makes sense for further classification.

Since this study uses discrete data (tDNA
sequence) to perform supervised classification
with discrete labels (tRNA functional classes),
the problem is ideally suited for boolean
reasoning approaches.

After producing multiple alignments of all
tRNAs in the study, the PERL implementation
of this method produces ROSETTA-readable
CSV tables from the alignment. Each row
represents one tRNA, and each position in the
alignment has its own column. In addition, the
TFAM-determined charging identity of the
tRNA is recorded in the final column. This
serves as the decision attribute in constructing
classification rules.

After the decision system was loaded into
ROSETTA, the data was first separated into
target and query sets by sequence header. The
target set was randomly split 80-20 into a
training and testing set. From the training set,
reducts were generated using Johnson’s
algorithm and a genetic algorithm, in both
cases using default parameters.

After generating classification rules from the
reducts, the testing set could be classified with
those rules in order to test their sensitivity and
specificity. ROSETTA provides a confusion
matrix showing predicted class versus actual
class. In the confusion matrix for the testing
set, with a perfectly performing set of rules,
there should only be entries on the diagonal -
meaning ROSETTA’s predictions always
match the input.

Entries anywhere other than on the diagonal
means that the tDNA has been misclassified. If
a tDNA matches none of the generated rules, it
will remain unclassified - and that is how we
may find potential Stealth tRNAs.

16

Results
To the greatest possible extent, preprocessing

and analysis steps were automated in a Perl
dr iver scr ipt wi th the working t i t le
“flogiston” (Appendix 3; pipeline specification
and flogiston instructions are included in

Appendices 1 & 2, respectively). This includes
processing and organizing input and output
files, and running the various other programs
required for analysis. In order to leave users
more freedom to construct their tDNA datasets,
the preprocessing steps of extracting tDNA

 17

Figure 6: Example Function Logo Information Plot. The graph above shows the total inverse function logo
information content of tDNAs versus the total function logo information. These totals were calculated by treating
function logos and inverse function logos as a form of scoring matrices and taking the sum of total stack heights, at
each position, for each character in the sequence (including gaps). Class-specific letter height was ignored, taking only
the total stack height for the given position from the logo corresponding to the given character. The gray dots represent
2695 E. coli tDNA sequences; the red letters represent a set of tDNAs known to be orthogonal in E. coli. Note that
some, particularly the “E” orthogonal tDNAs plot slightly outside of the “cloud” of target tDNAs. Also interesting is
that all tDNAs appear clustered around a negative diagonal line, hinting that the sum of the total functional
information and inverse functional information in a tDNA may be near-constant. Whether this is an artifact of the logo
generation process is unknown.

sequences with tRNAscan-SE and sorting them
by taxa etc. was left out of the pipeline.

TFAM
Using TFAM for classification was an

attractive option, because of the lab’s
familiarity with the tool and the pre-existing
code. However, with further study, it became
apparent that the TFAM scores may abstract
recognition signals too much to be of use;
boiling down the contributions of the entire
tRNA sequence into a single score discards
much potentially relevant information.

As no heuristic could be established to find
the cutoff between interacting and non-
interacting tRNAs, this approach was
abandoned.

HMM
Although the popularity and successful

history of HMMs made their use an obvious
candidate for Stealth tRNA detection, their
sequence-specific and data-driven nature made
them less useful in practice.

In this project, the objective was to find or
construct a tool that can detect potential
orthogonal tRNAs by sequence alone.
However, it appeared necessary to locate and
study features of the query tRNA’s sequence in
ways that are not best done by Markov
modeling. Designing such a combined-signal
HMM is regrettably beyond the author’s
ability. The HMM approach was therefore
abandoned for the benefit of other methods.

Function logo information plots
Some of the scatter graphs generated by

plotting function logo information versus
inverse logo information for indigenous tRNAs
and known orthogonal tRNAs showed great
promise. Figure 6 shows an example of this.
When plotting the information values for
tRNAs from E. coli and known orthogonal

tRNAs, orthogonal tRNAGlu and tRNALeu were
noticeably separated from the E. coli “cloud”.

An unexpected feature of these plots was the
clear clustering of indigenous tRNAs around a
diagonal, the slope of which indicates that the
sum of function logo information and inverse
function logo information for each tRNA is
more or less constant in an organism’s tRNA-
ome.

SVM
Using state vector machines to separate

putative stealth tRNAs from interacting tRNAs
seemed like a sound approach, because of
seve ra l success s to r i e s wi th b ina ry
discrimination. However, as explained in the
Methods section, it is difficult to express a
tRNA as a string of real values. As a result,
SVM analysis was not fully implemented in
the course of this study.

ROSETTA
Classification using ROSETTA went further

than some other approaches. Rule sets trained
on E. coli tDNAs notably failed to classify
known orthogonal tDNAs. This is a good
outcome, as Stealth tRNAs should remain
unclassified. Other tDNAs from the same
organisms as the orthogonal sequences were
occasionally misclassified with some E. coli
identity class, but were also generally
unclassified. The Johnson algorithm worked
very quickly but generated a single, very
compact reduct. The genetic algorithm reducts
could take much longer depending on sample
sizes and parameters, but generated more and
varying reducts.

For reasons that could not be determined, the
ROC (Receiver Operating Characteristic,
i n d i c a t i n g t h e e f f e c t i v e n e s s o f t h e
discriminator) curves for these classifications
versus E. coli rules suffered from strange
errors. A recurring problem was that all ROC
parameters - area under the curve, standard

18

error, thresholds - were assigned a placeholder
value for “infinity”. This could be due to
emulation errors. ROSETTA is a Windows-
specific program, but was run in a virtual
machine using Wine (on a Macintosh
computer).

Discussion
TFAM: hampered by excessive abstraction?

Applying tFAMs to the task of detecting
stealth tRNAs was ultimately unsuccessful.
TFAM scores on indigenous tRNAs versus
orthogonal queries did not show any obvious
tendencies that might be used for detection of
stealth tRNAs. It is likely that the TFAM
algorithm, while useful for scoring tRNAs
based on their positive recognition by a certain
class of AARSs, abstract too much of the
interaction signals by condensing them to a
number.

This is analogous to how biologists recognize
tRNAs versus how AARSs recognize them.
Associating a tRNA with a certain amino acid
gives a researcher a simple overview of the
function and importance of that tRNA. A
AARS enzyme on the other hand cannot
analyze the entire sequence of a tRNA and
compare it to libraries of similar sequences.
Whether or not it treats a given tRNA as a
substrate depends on any number of residue-
level physical interactions which cannot be
adequately summed up by a single score.

The TFAM score is also heavily dependent
on the availability of data. As the score is in
part calculated from the logarithm of number
of observations for divided by number of
observations against, the mere amount of
sequences available for either side will affect
the magnitude of the score in ways that are not
easily normalized between tests.

For the task at hand, this data volume
dependency is a serious problem, as very few
orthogonal pairs are known. This is also

specific to each model organism, and for any
given organism, the number of known
interacting tRNA sequences is very likely to
grow much faster than the number of known
orthogonal sequences, for the foreseeable
future.
HMM: unsuitable for distinguishing highly-
conserved sequences?

A HMM-based stealth tRNA detection
method could not be established within the
timeframe of this project. This was mainly due
to difficulties in reconciling the efficient
pattern recognition of HMMs with the strong
conservation of tRNAs, and the fact that tRNA
recognition signals are poorly characterized.

HMMs are very good at finding sequences
that match the consensus training set - primary
or secondary sequences, depending on the
implementation - within margins also dictated
by the variability within the training set.
However, as part of the protein synthesis
machinery, both the primary and secondary
sequence of tRNAs are highly conserved, even
between widely divergent taxa. This brings an
additional set of challenges to the problem of
implementing a stealth tRNA-targeting HMM.

If a stealth tRNA-finding HMM were trained
on the primary sequence of known orthogonal
tRNAs alone, the rarity of known orthogonal
pairs would mean that there is very little data
available with which to construct the model.
Because of the high degree of sequence
conservation in tRNAs, the resulting model
would likely give good “stealthiness” scores to
many non-orthogonal tRNAs.

If the model were trained on the host
organism’s indigenous tRNAs instead, higher
scores should indicate similarity to normally-
interacting tRNAs, and lower scores might
show that query tRNAs are non-interacting.
However, the main problem in this approach is
how to differentiate between a non-interacting
stealth tRNA and a sequence that is simply not

 19

functional as a tRNA. Again, as tRNA
sequence is highly conserved, this type of
model would essentially score high for query
sequences that are likely to fold into viable
tRNAs, and since the mechanics of recognition
and anti-recognition are not well understood, it
is hard to say whether a HMM would be able
to properly represent those signals.

If HMMs trained on whole sequences are
intrinsically too sequence-specific to
effectively separate non-interacting tRNAs
from the interacting, then a possible solution is
to train a model on RNA structural features
other than the primary base sequence. The
effect on AARS recognition by certain features
like the base present at a given coordinate, or
the presence, absence or size of the variable
arm, can be inferred from function logos and
by other means. If these features could then be
described by a HMM, in some combination of
whole sequence matching and motif matching,
disregarding uninformative regions of the
tRNA, it might be possible to get scores that
more clearly discriminate between stealth
tRNAs and others.

However, this would require extensive
modification of tRNA HMM structures.
Normal HMM implementations recognize
simple sequence signals of a single type -
nucleotides or amino acids occurring in
sequence. To enhance stealth tRNA detection,
it may be necessary to combine base sequence
with other signals that might be recognized by
the AARS, such as steric qualities like shape
and size of an arm, or whether a sequence
region is hydrophobic or hydrophilic on the
detectable surface. To train such a model, the
software would need to record not just the
nucleic acid symbols in order, but also
detectable qualities of single bases or sequence
regions of various sizes.

At the time of writing, no such HMM is
publicly available. It is possible that normal

HMM alignment to several interacting tRNA
classes could be combined with other sequence
annotation and analysis outside of the Markov
model, but that is left as an exercise for future
investigators.
SVM: incompatible with discrete data?

T h e m a i n p r o b l e m p r e v e n t i n g
implementation of a SVM stealth tRNA
detection algorithm is that most publicly
available SVM training software uses
exclusively continuous, real-valued sample
data. As mentioned in the Methods section,
while it is trivial to simply translate RNA
sequence to numbers, the meaning of those
numbers runs a severe risk of being distorted
by mathematical operations.

A way to incorporate discrete base sequences
in SVM analysis could not be found during the
run of this project. With no compatible data to
train a state vector machine on, it was
regrettably impossible even to include SVMs
in a compounded analysis across different
methods.

T h e p o w e r o f S V M s i n d a t a s e t
compartmentalization is indisputable, but until
a discrete-continuous hybrid SVM is
introduced, their usefulness in tRNA sequence
analysis is limited.
ROSETTA: partial success and great promise

Rough set approaches using ROSETTA
appeared quite successful. Another potential
advantage is that there are few preprocessing
steps between raw tRNA sequence and
classification - mostly alignment and
reformatting. ROSETTA-based Stealth tRNA
detection needs to be evaluated in greater
detail, with larger tests and more varied
parameters. In this study, Johnson reducts and
boolean reasoning were used for rules
generation; many options remain to be tested,
and better classification performance seems
very possible.
Function logo information plots: partial
success and unexpected patterns

20

The function logo information plots were
also interesting, particularly the unexpected
fitting to a diagonal. It makes some intuitive
sense that the information content is limited;
with 22 possible classes the absolute maximum
information content in bits should be roughly
log2(22) * L, where L is the length of the
sequence. It is less clear why that maximum
information should be divided between
functional and inverse functional signals.
Future researchers more familiar with the
mathematics of logo generation would be
welcome to establish whether this is an artifact
of the mathematics employed, or something
tha t may have ac tua l b io in format ic
significance. Also, in order to make practical
use of these plots for Stealth tRNA detection,
some way to automatically isolate potential
orthogonal tDNAs would be necessary, instead
of analyzing each graph by eye.

It must be noted that all of these studies were
done entirely from primary sequence data.
More information could and should be
integrated - secondary structure information to
begin with, and interactions with relevant
proteins if available. Generally, detailed
interaction information is rare. A database of
tRNA-protein interactions with standardized
format, or a way to estimate interactions from
sequence info, would be immensely useful.

It is also important to remember that
bioinformatical approaches are unlikely to
ent i re ly replace laboratory methods.
Ultimately, the best these in silico methods can
do is suggest candidates for experimental
verification. Orthogonal pairs can as yet only
be established by in vivo tests.

Acknowledgements
This project was carried out over the period

between September 6th, 2011 and March 6th,
2012, at Prof. David H. Ardell’s lab at the
University of California Merced campus.

I would like to thank Prof. David Ardell for
offering me the excellent opportunity to do
advanced bioinformatics research for my
degree project, and for entrusting me as a green
pseudo-graduate with entirely exploratory
research.

Thanks to Julie Phillips and family for all the
support on and off work; without you I would
have been starving on the street for six months.

Thanks to Katie Harris and Wes Swingley for
invaluable help with software and methods, as
well as being great co-workers.

Thanks also to Prof. Suparna Sanyal at the
Dept. of Molecular and Cell Biology, Uppsala
University, for her help in reviewing this
report; and to Lars-Göran Josefsson, student
faculty coordinator at the Biology Education
Centre, Uppsala University, for his great
patience and helpfulness in managing my
degree project.

Final thanks go to my family and my friends
in Uppsala, for all your support and for
inspiring and helping me to carry out my
dream project halfway across the globe.

 21

References

22

1 ! Kevin M. Esvelt, Harris H. Wang:
Genome-scale engineering for
systems and synthetic biology,
Molecular Systems Biology, Vol. 9, No. 1.
22 January 2013

2 ! Jianming Xie, Peter G. Schultz: Adding
amino acids to the genetic repertoire,
Current Opinion in Chemical Biology,
Volume 9, Issue 6, December 2005, pp.
548 - 554, ISSN 1367-5931

3 ! Qian Wang, Angela R. Parrish, Lei Wang:
Expanding the Genetic Code for
Biological Studies, Chemistry & biology,
volume 16 issue 3, 27 March 2009, pp.
323 - 336

4 ! Eva Freyhult, Vincent Moulton, David H.
Ardell: Visualizing bacterial tRNA
identity determinants and
antideterminants using function logos
and inverse function logos, Nucleic
Acids Research, Vol. 34, No. 3, 2006, pp.
905–916

5 ! Jing Yuan, Tasos Gogakos, Arianne M.
Babina, Dieter Söll, Lennart Randau:
Change of tRNA identity leads to a
divergent orthogonal histidyl-tRNA
synthetase/tRNAHis pair, Nucleic Acids
Research, 2011, Vol. 39, No. 6, pp.
2286-2293

6 ! David R. Liu, Thomas J. Magliery, Miro
Pastrnak, Peter G. Schultz: Engineering
a tRNA and aminoacyl-tRNA
synthetase for the site-specific
incorporation of unnatural amino acids
into proteins in vivo, Proc. Natl. Acad.
Sci. USA, Vol. 94, pp. 10092–10097,
September 1997

7 ! Heinz Neumann, Adrian L. Slusarczyk,
Jason W. Chin: De Novo Generation of
Mutually Orthogonal Aminoacyl-tRNA
Synthetase/tRNA Pairs, Journal of the
American Chemical Society, Vol. 0, No. 0,
1 February 2010

8 ! Lei Wang, Peter G. Schultz: A general
approach for the generation of
orthogonal tRNAs, Chemistry & biology,
Volume 8, issue 9, pp.883 - 890,
September 2001

9 ! David H. Ardell, Siv G. E. Andersson:
TFAM detects co-evolution of tRNA
identity rules with lateral transfer of
histidyl-tRNA synthetase, Nucleic Acids
Research, 2006, Vol. 34, No. 3, pp.893–
904

10 ! Sean R. Eddy: Profile hidden Markov
models, Bioinformatics, Vol. 14, No. 9, 1
January 1998, pp. 755-763

11 ! Corinna Cortes, Vladimir Vapnik:
Support-Vector Networks Machine
Learning, Vol. 20, No. 3. 1 September
1995, pp. 273-297

12 ! Aleksander Øhrn, Jan Komorowski:
ROSETTA: A Rough Set Toolkit for
Analysis of Data, Proc. Third
International Joint Conference on
Information Sciences, Fifth International
Workshop on Rough Sets and Soft
Computing (RSSC'97), Durham, NC,
USA, March 1-5, Vol. 3, pp. 403-407,
1997

! See also: ROSETTA project homepage,
http://www.lcb.uu.se/tools/rosetta/

13 ! Norman R. Pace: Time for a change,
Nature, Vol. 441, No. 7091, 17 May 2006,
pp. 289-289

14 ! Todd M. Lowe, Sean R. Eddy: tRNAscan-
SE: a program for improved detection
of transfer RNA genes in genomic
sequence, Nucleic acids research, Vol.
25, No. 5, 1 March 1997, pp. 955-964

15 ! Dennis A. Benson, Ilene Karsch-Mizrachi,
David J. Lipman, James Ostell, David L.
Wheeler: GenBank, Nucleic Acids
Research, Vol. 33, No. suppl 1, 01
January 2005, pp. D34-D38

http://www.lcb.uu.se/tools/rosetta/
http://www.lcb.uu.se/tools/rosetta/

Appendix 1: Stealth tRNA Assessment Pipeline
Note on using the scripts provided:

The scripts provided in these appendices are all written in the Perl scripting language. They
require a working installation of the Perl runtime of version 5.10.0 or later, and are executed from
the command line using the syntax:
 perl <script.pl> <options> <files and arguments>

Options are indicated with a dash and may be followed by an argument (e.g. -f out.fa). What
filenames and arguments are required for the script to run is detailed in each script’s usage
information, accessed by executing

 perl <script.pl> -h

1. Choose target organism and query organism(s).

Potentially any organism could be chosen. However, a more thoroughly studied target
organism will bring with it more sequence annotations and experimental data that can be used
to vet any candidate orthogonal tRNAs produced by this pipeline.

A good source for genomic data is ftp://ftp.ncbi.nlm.nih.gov/genomes/
2. Download genome sequences for all organisms.

Sequences must be in FASTA format to qualify as input for tRNAscan-SE. If your
sequences are not readily available in this format, there are many tools available for format
conversion. One online implementation is http://www.ebi.ac.uk/Tools/sfc/readseq/.

3. Extract all tRNA genes using tRNAscan-SE.
For this step, I generally used a tRNA model matching the target organism, e.g. built-in

bacterial model for E. coli. This is set by option flag -B; an archaeal model is set by -A. See
tRNAscan-SE manual or command-line help (-h) for more options.

IMPORTANT: tRNAscan-SE does not output FASTA-formatted sequences. To get those,
use the option -f <filename>, which will save secondary structure predictions (including
primare sequence) to the specified file. Then, use the tse2fa.pl script (Appendix 4) to convert
this output to a multi-FASTA file of the detected tRNAs.

4. Tag sequences for later identification
5. Run flogiston.pl script on the tRNA gene multi-FASTA files.

See Appendix 2 for available options for the flogiston script.
6. ROSETTA analysis:

 Please refer to the ROSETTA manual for detailed usage instructions and feature
 descriptions.

a. Open the the outputfile suffixed with “.rosetta”

Use the “Rosetta table import format” when prompted.
b. Separate target and query sequences

Target and query sequences will be co-aligned in one table. Right-click the table and select
“Duplicate”. Delete the query sequence rows from one table, and the target sequence rows
from the other, to end up with separate target and query tables.

!

http://www.ebi.ac.uk/Tools/sfc/readseq/
http://www.ebi.ac.uk/Tools/sfc/readseq/

c. Generate reducts

 Right-click your target sequence table and select any option under “Reduce”. Johnson’s
algorithm qill generate a single, naïve reduct quickly. Other methods may take longer but may also
give better reducts.

d. Generate rules
 Right-click a reduct and select “Generate rules ...”. Several options are available, including

the quick-and-dirty Johnson algorithm and a Genetic Algorithm, which will take longer but will
typically give more discriminating rules.

e. Classify query sequences
 Right-click your query sequence table and select “Classify ...”. Check the “Log individual

results to file” option in the dialog that appears, and input a file path where you want the
classifications to be saved. (Without this option, you will only see the classification statistics for the
whole dataset, i.e. if there are candidate orthogonal tRNAs, but not which sequences are
candidates.)

 Click “Parameters ...” in the Classifier box to show a dialog where you can select the
classification rule set to be used, among other parameters. Any rules you have created should be
available in the drop-down list.

 Double-clicking the classification you just generated will show you a confusion matrix.
Rows represent the “actual” tRNA class (as read from the .rosetta file). Columns represent the
predicted class according to the rule set you generated. Entries on the diagonal will have been
classified with the same class that TFAM gave them; i.e., they are likely interacting with the target’s
AARS’s. Entries off the diagonal have been misclassified, and may be of interest. Most interesting
are the entries in the “Undefined” column, those that were not given a classification by the
generated rules. These could be considered Stealth tRNAs, and should be further studied to assess
their orthogonality.

 The reader is encouraged to read up on and test the effects of the many, many options and
parameters that ROSETTA offers. The program also allows batch scripting, meaning that this
process could be partially or entirely automated.

24

Appendix 2: Flogiston User’s Guide
Flogiston Command-line Help:
flogiston.pl: (F)unction (Log)o (I)nformation-based (S)tealth-(t)RNA detecti(ON) v. 0.3

Usage: perl flogiston.pl [Options] <target.fa> <query.fa> [<legend_filename>]

-h! ! Print this help and exit

-t <str>! Set prefix tag for this project (default "new_")

-c ! ! Output tRNAs' scores vs target functional classes to "<prefix>_clspec_scores"

-e ! ! Use existing function logos & inverse logos !

! ! (format: "<logo filename prefix>:<inverse logo filename prefix>")

-x #:#!Exclude region in alignment from scoring !

! ! (format: "a:b" excludes from position a to pos b)

! ! If the first two elements are 'save:info', info value for the excluded regions !

! ! will be saved (e.g. "save:info:56:77")

-g! ! Score gaps (default NO)

-l! ! Score only for the largest signal (default NO)

-m [A/E]! Select TFAM tRNA model: A for archaeal, E for eukaryotic. Default bacterial.

-p! ! Score basepair function logos

-s <file>! Output all tRNA's scores vs Profile Information Matrix and Inverse ditto to <file>

-r! ! Refactor headers in input FASTA files

Requirements:
UNIX-like system (only tested on Apple Macintosh computers running Snow Leopard or later)
Perl v5.10.0
BioPerl v.1.6.910
TFAM v.1.3
logofun 1.0
bplogofun 0.3
The script is not guaranteed to work with other versions of these software dependencies.

Detailed Options:
-c Functional class-specific function logo information scores will be output to

<prefix>_clspec_scores
-e <file>:<file> Can be used to skip the function logo generation step by using existing function logo files (in .eps

format). Assumes
Argument format: <function_logo_prefix>:<inverse_function_logo_prefix>
You must have 10 logo files in total, with names of the format
<function/inverse prefix>_<A,C,G,T or ->.eps

-g Toggles gap scoring on. When this is off, the function logo information values for gaps in the
alignment are ignored when calculating information scores.

-l When this is on, only the largest functional signal in the function logo will be recorded for scoring,
instead of the sum of all signals.

-m [A/E] Specifies which tRNA recognition model TFAM should use: E for eukaryote, A for archaeal. If this
option is left out, the default is bacterial.

-p Experimental option using bplogofun instead of regular logofun. This generates logos for base-
pairs in the RNA secondary structure as well, instead of just single nucleotides.

-r Refactors the headers of all input tRNAs; target sequence headers will start with “>TGT” and
query sequence headers with “>QRY”. Useful if TFAM causes problems by truncating sequence
headers. A header key will be saved to “<prefix>legend”

-s <file> Outputs function logo information scores for all tested tRNAs to the specified filename.
-t <prefix> All output filenames will be prefixed with this tag.
-x a:b Exclude the region (in multiple-alignment positions) from function logo information-scoring.

Several regions can be specified in sequence, i.e. “a:b:c:d ...”. If the first pair reads “save:info”, the
information values of the excluded region will be saved to the file specified by option -s, under the
column “Excluded”.

!

Appendix 3: Flogiston Source Code (flogiston.pl)
#!/opt/local/bin/perl -w
Copyright (C) 2011-2013 by Jan Ingemar Ohlsson
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
Contact information: ingotron (at) gmail (dot) com

use strict;
use Getopt::Std;
use Bio::AlignIO;
use Statistics::Descriptive;
use Time::localtime;
use Chart::Graph::Gnuplot qw(gnuplot);
use List::Util qw(max);
use subs 'timestamp', 'zeroes', 'log2';

##################
Initialization
##################
Version 0.3
my $version = "0.3";
my @blick = split('/',$0);
my $name = pop(@blick);

Help and instructions
my $help_string;
$help_string = "$name: (F)unction (Log)o (I)nformation-based (S)tealth-(t)RNA detecti(ON)
v. $version\n";
$help_string .= "Usage: perl $name [Options] <target.fa> <query.fa> [<legend_filename>]
\n";
$help_string .= "\n";
$help_string .= "-h\t\tPrint this help and exit\n";
$help_string .= "-t <str>\tSet prefix tag for this project (default \"new_\")\n";
$help_string .= "-c \t\tOutput tRNAs' scores vs target functional classes to
\"<prefix>_clspec_scores\"\n";
$help_string .= "-e \tUse existing function logos & inverse logos (format: \"<logo
filename prefix>:<inverse logo filename prefix>\")\n";
$help_string .= "-x #:#\tExclude region in alignment from scoring (format: \"a:b\"
excludes from position a to pos b)\n";
$help_string .= "\t\tIf the first two elements are 'save:info', info value for the
excluded regions will be saved (e.g. \"save:info:56:77\")\n";
$help_string .= "-g\t\tScore gaps (default NO)\n";
$help_string .= "-l\t\tScore only for the largest signal (default NO)\n";
$help_string .= "-m [A/E]\tSelect TFAM tRNA model: A for archaeal, E for eukaryotic.
Default bacterial.\n";
$help_string .= "-p\t\tScore basepair function logos\n";
$help_string .= "-s <file>\tOutput all tRNA's scores vs Profile Information Matrix and
Inverse ditto to <file>\n";
$help_string .= "-r\t\tRefactor headers in input FASTA files\n";
$help_string .= "\n";

my %Opts;
&getopts('ce:ghlm:prs:t:x:',\%Opts);

!

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

my $opt_h = $Opts{'h'}; # Print help and die
my $opt_t = ($Opts{'t'} ? $Opts{'t'} : "new_"); # Set project tag for labeling output
my $opt_c = $Opts{'c'}; # Output scores vs target's func classes
my $opt_e = $Opts{'e'}; # Use existing logos
my $opt_x = $Opts{'x'}; # Exclude this region in alingment from scoring - necessary to
know the alignment beforehand
my $opt_g = $Opts{'g'}; # Score gaps too
my $opt_l = $Opts{'l'}; # Score for largest signal only
my $opt_m = $Opts{'m'}; # TFAM tRNA model: A for archaeal, E for eukaryote; default
Bacterial
my $opt_p = $Opts{'p'}; # Gnuplot function info vs inv info
my $opt_r = $Opts{'r'}; # Refactor FASTA headers
my $opt_s = $Opts{'s'}; # Output qry & tgt scores vs info & inv info

if ($opt_m) {
! unless ($opt_m eq 'E' || $opt_m eq 'A') {
! ! $opt_m = 0;
! }
}

die $help_string unless @ARGV;
die $help_string if $opt_h;

Check exclusion regions
my $xstart = 500;
my $xend = -1;
my @xlimits;
my $savexc = 0;
if ($opt_x) {
! @xlimits = split(':',$opt_x);
! if (scalar(@xlimits) % 2 != 0) {
! ! die "ERROR: Odd number of region delimiters in \"$opt_x\". Will not exclude!
\n";
! } elsif (scalar(@xlimits) == 0) {
! ! @xlimits = ($xstart, $xend);
! }
}

If the prefix tag contains a folder, make sure it exists
my @pfxbits = split('/',$opt_t);
if (scalar(@pfxbits) > 1) {
! pop @pfxbits;
! my $path = join('/',@pfxbits);
! system "mkdir -p $path";
}

Store AA names & codes and generate lookup tables; might need it when dealing with TFAM
output
my $aa_string = 'ACDEFGHIKLMNPQRSTVWXY';
my @aa_letters = split(//,$aa_string);
my @aa_abbrevs =
split(/,/,'Ala,Cys,Asp,Glu,Phe,Gly,His,Ile,Lys,Leu,Met,Asn,Pro,Gln,Arg,Ser,Thr,Val,Trp,iM
et,Tyr');
my %aa_let2int;
my %aa_abb2int;
my $i = 0;
foreach (@aa_letters) {
! $aa_let2int{$_} = $i;
! $i++;
}
$i = 0;
foreach (@aa_abbrevs) {
! $aa_abb2int{$_} = $i;
! $i++;
}

 27

$i = 0;

my $aa_disjunction = join('|',@aa_abbrevs);
print "AA abbreviation disjunction: $aa_disjunction\n";
my @presentaas;

my @nts = ('A','C','G','T','-');

(# samples)x25 matrices (cols: seq ID, AA pred, 23 AA scores)
Note: this will disregard seqs without AA pred
my @target_scores;
my @query_scores; # added bc of errors

Definitions
my $profmatfile;
my $alnlen;
my %query_seqs;
my %target_seqs;
my $flname;
my $ilname;
if ($opt_e) {
! ($flname, $ilname) = split(':', $opt_e);
}

###################
Echo parameters
###################
my ($tfile, $qfile, $lfile) = @ARGV;

print "Parameters:\nOutput files prefixed with $opt_t\n";
foreach my $opt (keys(%Opts)) {
! print "$opt\t".$Opts{$opt}."\n";
}
print "\nInput:\nTarget\t$tfile\nQuery\t$qfile\n\n";

############################
Generate new TFAM scores
############################
if (1) { # TODO: allow options to load scores from tropDB or file
! unless ($lfile) {$lfile = $opt_t."legend";}
! open TIN, $tfile or die "ERROR: Cannot open TARGET fasta named $tfile for reading!
\n";
! open QIN, $qfile or die "ERROR: Cannot open QUERY fasta named $qfile for reading!
\n";
! open MIXOUT, ">$opt_t"."combined.fa";
!
if ($opt_r) {
! print STDERR "Will refactor headers\n";
! # Refactoring sequence headers so that TFAM doesn't obscure names; max 10^11 tRNAs
per file!
! open LOUT, ">$lfile" or die "ERROR: Cannot open naming legend file named $lfile
for writing!\n";
!
! ### TODO: Make this instead apply "tSE-type" headers that TFAM can understand
! my $tcount = 0;
! while (<TIN>) {
! ! if (/^>.+/) {
! ! ! my ($cl, $ac) = $_ =~ /T:($aa_disjunction) A:(\S{3})/; # Capture
functional annotation
! ! ! if($cl){$cl = $aa_letters[$aa_abb2int{$cl}];}
! ! ! unless ($cl) {
! ! ! ! print "WARNING: Target tRNA $_ has an unsupported functional
annotation. Skipping!\n";
! ! ! ! next;
! ! ! }

28

! ! ! print MIXOUT ">TGT_$ac-$cl-".sprintf('%06s',$tcount)."\n";
! ! ! print LOUT ">TGT_$ac-$cl-".sprintf('%06s',$tcount)."\t$_";
! ! ! $_ = <TIN>;
! ! ! print MIXOUT;
! ! ! $tcount++
! ! }
! }
!
! my $qcount = 0;
! while (<QIN>) {
! ! if (/^>.+/) {
! ! ! my ($cl, $ac) = $_ =~ /T:($aa_disjunction) A:(\S{3})/; # Capture
functional annotation
! ! ! if($cl){$cl = $aa_letters[$aa_abb2int{$cl}];} else {$cl = 'Undet';}
! ! ! $ac = 'NNN' unless ($ac);
! ! ! print MIXOUT ">QRY_$ac-$cl-".sprintf('%06s',$qcount)."\n";
! ! ! print LOUT ">QRY_$ac-$cl-".sprintf('%06s',$qcount)."\t$_";
! ! ! $_ = <QIN>;
! ! ! print MIXOUT;
! ! ! $qcount++;
! ! }
! }
! close LOUT;
} else {
! # If NOT refactoring headers, combine all tRNAs into one file
! while (<TIN>) {
! ! print MIXOUT;
! }
! while (<QIN>) {
! ! print MIXOUT;
! }
}
! close TIN;
! close QIN;
! close MIXOUT;

! # Run tfam with all the tRNAs in one big blob
! print "TFAM started at ".timestamp."\n";
! system "tfam ".($opt_m ? "-$opt_m" : '')." -s -t $opt_t"."combined.fa $opt_t >
$opt_t"."tfamlog 2>&1";
! system "rm $opt_t.?.fas";
! print "TFAM finished at ".timestamp."\n";
!
! print "Parsing TFAM scores ... ";
! open RESIN, "$opt_t" or die "ERROR: Cannot open TFAM result file \"$opt_t\"!\n";
! my @lineparts;
! while (<RESIN>) {
! ! if (/TGT_/) {
! ! ! @lineparts = split(/\s+/, $_);
! ! ! shift @lineparts if ($lineparts[0] eq ''); # TFAM right-adjusts seq
names by adding leading spaces, resulting in a blank first element after split()
! ! ! if ($lineparts[2] eq 'undet') {
! ! ! ! splice(@lineparts, 2, 2); # If input class is unknown, save
TFAM class prediction (remove input & match columns)
! ! ! } else {
! ! ! ! splice(@lineparts, 1, 1); # Else, save pre-TFAM class (remove
TFAM class column)
! ! ! ! splice(@lineparts, 3, 1); # (remove match column)
! ! ! }
! ! ! push(@target_scores,[@lineparts]);
! ! ! #print "Found target score!\n"
! ! }
! ! if (/QRY_/) {
! ! ! @lineparts = split(/\s+/, $_);
! ! ! shift @lineparts if ($lineparts[0] eq '');
! ! ! splice(@lineparts, 2, 2); # to remove input & match columns

 29

! ! ! push(@query_scores,[@lineparts]);
! ! }
! }
! close RESIN;
! # Peek at first tRNA to get alignment length, then reopen file
! open ALNIN, "$opt_t.aln.fas" or die "ERROR: Cannot open TFAM alignment file
\"$opt_t.aln.fas\" for reading!\n";
! my $line = <ALNIN>;
! $line = <ALNIN>;
! chomp $line;
! $alnlen = scalar(split('',$line));
! close ALNIN;
! print "done!\n";
! print "$0 read alignment length $alnlen from alignment file \"$opt_t.aln.fas\". If
this does not match TFAM output, redo analysis!\n";

! # Set up profile matrices
! my %profile_matrices;
! foreach my $aa (@aa_letters) {
! ! for (my $i = 0; $i < $alnlen; $i++) {
! ! ! $profile_matrices{$aa}{'A'}[$i] = 0;
! ! ! $profile_matrices{$aa}{'C'}[$i] = 0;
! ! ! $profile_matrices{$aa}{'G'}[$i] = 0;
! ! ! $profile_matrices{$aa}{'T'}[$i] = 0;
! ! ! $profile_matrices{$aa}{'-'}[$i] = 0;
! ! }
! }

! print "Parsing TFAM alignment ... ";
! open ALNIN, "$opt_t.aln.fas";
! while (<ALNIN>) {
! ! if (/>TGT_/) { # Make sure that only target sequences are used to build
logos
! ! ! my $tid = $_;
! ! ! chomp $tid;
! ! ! my $class = '';
! ! ! my $tfclass = '';
! ! ! ($class,$tfclass) = /-(\S*)-.+\sTFAM:([A-Z?#])/;#/>.+TFAM:([A-Z])/;

! ! ! # In case of nonstandard headers, try again to catch TFAM
classification
! ! ! if ($tfclass eq '') {
! ! ! ! $tfclass = /TFAM:([A-Z?#])/;
! ! ! }
! ! ! if ($tfclass eq 'X' || $tfclass eq 'J' || $class eq '' || $class eq
'undet' || $class eq '???') {
! ! ! ! $class = $tfclass; # If original prediction was undetermined,
take tfam classification
! ! ! }

! ! ! my $seq;
! ! ! unless ($class eq '') {
! ! ! ! $seq = <ALNIN>;
! ! ! ! chomp $seq;
! ! ! ! my @seq = split('',$seq);
! ! ! ! $target_seqs{$tid} = [$class, [@seq]];
! ! ! ! my $pos = 0;
! ! ! ! foreach my $base (@seq) {
! ! ! ! ! $base =~ tr/a-z/A-Z/;
! ! ! ! ! my $unbase = "ACGT-";
! ! ! ! ! $unbase =~ tr/$base//; # Remove current base from base
list
! ! ! ! ! my @others = split('',$unbase); # Create base-complement
list
! ! ! ! ! $profile_matrices{$class}{$base}[$pos]++;
! ! ! ! ! $pos++;

30

! ! ! ! }
! ! ! }
! ! !
! ! ! # If creating basepair logos later, separate seqs by class
! ! ! if ($opt_p) {
! ! ! ! open COUT, ">>$opt_t"."_$class.fas";
! ! ! ! print COUT "$tid\n$seq\n";
! ! ! ! close COUT;
! ! ! }
! ! }
! ! if (/>QRY_/) {
! ! ! my $qid = $_;
! ! ! chomp $qid;
! ! ! my $class = '';
! ! ! my $tfclass = '';
! ! ! ($class,$tfclass) = /-(\S*)-.+\sTFAM:([A-Z?#])/;#/>.+TFAM:([A-Z])/;
! ! !
! ! ! # In case of nonstandard headers, try again to catch TFAM
classification
! ! ! if ($tfclass eq '') {
! ! ! ! $tfclass = /TFAM:([A-Z?#])/;
! ! ! }

! ! ! if ($class eq '?' || $tfclass eq 'X' || $tfclass eq 'J' || $class eq
'' || $class eq 'undet' || $class eq '???') {
! ! ! ! $class = $tfclass; # If original prediction was undetermined,
take tfam classification
! ! ! }

! ! ! my $seq = <ALNIN>;
! ! ! chomp $seq;
! ! ! $query_seqs{$qid} = [$class, [split('',$seq)]];
! ! }
! }
! close ALNIN;
! print "done!\n";

! # If making basepair logos later, convert alignments to clustal
! if ($opt_p) {
! ! foreach my $aa (@aa_letters) {
! ! ! my $fstub = "$opt_t_$aa";
! ! ! my $in = Bio::AlignIO->new(-file => "$fstub.fas", -format =>
'fasta');
! ! ! my $out = Bio::AlignIO->new(-file => ">$fstub.aln", -format =>
'clustalw');
! ! ! while (my $aln = $in->next_aln) {
! ! ! ! $out->write_aln($aln);
! ! ! }
! ! ! system "rm $fstub.fas";
! ! }
! }
!
! unless ($opt_e) {
! open PMATOUT, ">$opt_t"."profile_matrix" or die "ERROR: Cannot open profile matrix
file \"$opt_t"."profile_matrix\" for writing!\n";
! my $aacount = 0;
! my $nullcount = 0;
! my $nullstr = '';
! foreach my $class (@aa_letters) {
! ! $aacount++;

! ! # Check for zero matrix
! ! my $temp = 0;
! ! foreach (@nts) {
! ! ! $temp += $profile_matrices{$class}{$_}[0];
! ! }

 31

! ! if ($temp==0) {
! ! ! $nullcount++;
! ! ! $nullstr .= $class;
! ! }

! ! for (my $i = 0; $i < $alnlen; $i++) {
! ! ! print PMATOUT $profile_matrices{$class}{'A'}[$i]." ";
! ! ! print PMATOUT $profile_matrices{$class}{'C'}[$i]." ";
! ! ! print PMATOUT $profile_matrices{$class}{'G'}[$i]." ";
! ! ! print PMATOUT $profile_matrices{$class}{'T'}[$i]." ";
! ! ! print PMATOUT $profile_matrices{$class}{'-'}[$i]."\n";
! ! }
! ! print PMATOUT "\n"; # Class-separating blank line
! }
! close PMATOUT;
!

! $profmatfile = "$opt_t"."profile_matrix";
! print "Profile matrix file written to \"$profmatfile\" with $aacount matrices\n";
! if ($nullcount) {
! ! die "ERROR! $nullcount profile matrices ($nullstr) are zero!\n";
! }
! }
}

#####################################
Generate B- & T-heaps for each AA
#####################################
if (0) {
my %non_heaps; # Stores, per AA, scores for all Bkg & Tgt tRNAs NOT identified as that AA
my %tgt_heaps; # Stores, per AA, scores for Target RNAs identified as that AA

foreach my $amino (@aa_abbrevs) {
! $non_heaps{$amino} = [[],[]]; # Two arrays: [values, samplenames]
! $tgt_heaps{$amino} = [[],[]]; # Two arrays: [values, samplenames]
}

foreach my $tgtrecord (@target_scores) {
! my $rec_rna = @{$tgtrecord}[0]; # Store record's RNA identifier
! my $rec_aa = @{$tgtrecord}[1]; # Store record's AA identity
! for (my $i = 2; $i < 25; $i++) { # BEWARE! HARD CODED!
! ! if (($i-2) == $aa_abb2int{$rec_aa}) { # trigger for the record's aa
! ! ! push (@{$tgt_heaps{$rec_aa}[0]}, @{$tgtrecord}[$i]); # push record's
aa's score onto tgt-heap
! ! ! push (@{$tgt_heaps{$rec_aa}[1]}, @{$tgtrecord}[0]); # push record's
rna's identifier onto tgt-heap
! ! } else {
! ! ! push (@{$non_heaps{$rec_aa}[0]}, @{$tgtrecord}[$i]); # push record's
aa's score onto non-heap
! ! ! push (@{$non_heaps{$rec_aa}[1]}, @{$tgtrecord}[0]); # push record's
rna's identifier onto non-heap
! ! }
! }
}

Each hash value is an array of mean, std dev, range
my %target_stats;
my %other_stats;

print "\nAA\tTmean\tTstdev\tTrange\tOmean\tOstdev\tOrange\n";
print "--\t-----\t------\t------\t-----\t------\t------\n";

foreach my $aa (@aa_abbrevs) {
! my $stat = Statistics::Descriptive::Full->new();
! $stat->add_data(@{$tgt_heaps{$aa}[0]});

32

! $target_stats{$aa}=[$stat->mean(),$stat->standard_deviation(),$stat-
>sample_range()];
! $stat = Statistics::Descriptive::Full->new();
! $stat->add_data(@{$non_heaps{$aa}[0]});
! $other_stats{$aa}=[$stat->mean(),$stat->standard_deviation(),$stat-
>sample_range()];
! print "$aa\t".join("\t",map(sprintf('%.6g',
$_),@{$target_stats{$aa}}))."\t".join("\t",map(sprintf('%.6g',
$_),@{$other_stats{$aa}}))."\n";

}

}

###############
Run Logofun
###############
unless ($opt_e) {
$flname = $opt_t."funlogo";
$ilname = $opt_t."invlogo";
Make function logos
print "Function logo generation started at ".timestamp."\n";
system "python /sw/logofun-1.0/logofun --function --states 'ACGT-' --classes $aa_string
--exact 1 --output $flname --title -d d $profmatfile";
print "Function logo generation finished at ".timestamp."\n";

Make inverse function logos
print "Inverse function logo generation started at ".timestamp."\n";
system "python /sw/logofun-1.0/logofun --function --inverse --states 'ACGT-' --classes
$aa_string --exact 1 --output $ilname --title -d d $profmatfile";
print "Inverse function logo generation finished at ".timestamp."\n";
} else {
! print "Parsing function logo files $flname_{ACGT-} and inverse function logo
files $ilname_{ACGT-}.\n";
}

#################
Run bplogofun
#################
if ($opt_p) {
! open AIN, $opt_t."combined.fa.coveaf";
! open CSOUT, ">$opt_t"."cs";
!
! my $in = Bio::AlignIO->new(-file => "$opt_t.aln.fas",
! ! ! ! ! ! ! ! -format => 'fasta');
! my $out = Bio::AlignIO->new(-file => ">$opt_t.clustalw",
! ! ! ! ! ! ! ! -format => 'clustalw');
! while(my $aln = $in->next_aln) {
! ! $out->write_aln($aln);
! } # Translate multiple aln to clustalw
!
! while (<AIN>) {
! ! if (/#=CS/) {
! ! ! print CSOUT;
! ! }!
! }
! close AIN;
! close CSOUT;

! print "Basepair function logo generation started at ".timestamp."\n";
! system "bplogofun3 -c $opt_t"."cs $opt_t 2> /dev/null";# > $opt_t"."bplog 2>&1";
! print "Basepair function logo generation finished at ".timestamp."\n";

}!

###############

 33

Parse logos
###############
my %pim; # for Profile Information Matrix
my %pim_inv; # ditto for inverse logos
my %fldata;
my %ildata;
for (my $i = 0; $i < $alnlen; $i++) {
! foreach my $nt (@nts) {
! ! $pim{$i}{$nt} = 0;
! ! $pim_inv{$i}{$nt} = 0;
! ! foreach my $aa (@aa_abbrevs) {
! ! ! $fldata{$i}{$nt}{$aa} = 0;
! ! ! $ildata{$i}{$nt}{$aa} = 0;
! ! }
! }
}

Excluded region limits, if option -x #:# is given
my %pim_exc;
if ($opt_x) {!
! my @dumparr = @xlimits;
! my $limitstring;
! if (($dumparr[0] eq 'save') && ($dumparr[1] eq 'info')) {
! ! # If the first two elements of the exclusion argument are 'save' and 'info',
store excluded info
! ! shift @dumparr;
! ! shift @dumparr;
! ! shift @xlimits;
! ! shift @xlimits;
! ! $savexc = 1;
! }
! while (@dumparr) {
! ! $limitstring .= '['.shift(@dumparr).','.shift(@dumparr).'], ';
! }
! print "Excluding alignment region(s) $limitstring"."from scoring.\n";
}

foreach my $nt (@nts) {
! open FLIN, $flname."_$nt.eps" or die "ERROR: Cannot open function logo file
\"$flname_$nt.eps\" for reading!\n";
! open ILIN, $ilname."_$nt.eps" or die "ERROR: Cannot open inverse function logo
file \"$ilname_$nt.eps\" for reading!\n";

! my $coord;
! my $include = 1;
! while (<FLIN>) {
! ! if ($_=~/^numbering \{\((\d{1,3})\) makenumber\} if/){
! ! ! # Encountered new alignment coordinate!
! ! ! $coord=$1; # Shift alignment-coordinate cursor
! ! ! if ($opt_x && ($coord==$xlimits[0])) {
! ! ! ! # Toggle inclusion flag if crossing an exclusion region border
! ! ! ! $include = !$include;
! ! ! }
! ! }
! ! if ($_=~/^ (\d+\.\d+) \(([A-Z])\) numchar/){
! ! ! # Encountered a logo character!
! ! ! my $data=$1; my $aa=$2;
! ! ! if ($include) {
! ! ! ! $pim{$coord}{$nt}+=$data;
! ! ! ! # Sum all information for each position
! ! ! ! $fldata{$coord}{$nt}{$aa} = $data; # Save function data for
INCLUDED regions
! ! ! } elsif ($savexc) {
! ! ! ! $pim_exc{$coord}{$nt}+=$data;
! ! ! }
! ! }

34

! }
! while (<ILIN>) {
! ! if ($_=~/^numbering \{\((\d{1,3})\) makenumber\} if/){
! ! ! # Encountered new alignment coordinate!
! ! ! $coord=$1; # Shift alignment-coordinate cursor
! ! ! if ($opt_x && ($coord==$xlimits[0])) {
! ! ! ! # Toggle inclusion flag if crossing an exclusion region border
! ! ! ! $include = !$include;
! ! ! }

! ! }
! ! if ($_=~/^ (\d+\.\d+) \(([A-Z])\) numchar/){
! ! ! # Encountered a logo character!
! ! ! my $data=$1; my $aa=$2;
! ! ! if ($include) {
! ! ! ! $pim_inv{$coord}{$nt}+=$data;
! ! ! ! $ildata{$coord}{$nt}{$aa} = $data; # Save inverse data for
INCLUDED regions
! ! ! } # Sum all information for each position
! ! ! elsif ($savexc) {
! ! ! ! $pim_exc{$coord}{$nt}+=$data;
! ! ! }
! ! }
! }
! close FLIN;
! close ILIN;
}

#############################
Score vs target's classes
#############################
if ($opt_c) {
! open CLOUT, ">$opt_t_clspec_scores" or die "ERROR: Cannot open score file
\"$opt_t_clspec_scores\" for writing!\n";
! print CLOUT "Sequence\tClass";
! # Print SVMlight-readable output
! open SVMOUT, ">$opt_t"."clspec_svmlight";
! print SVMOUT"#Class";

! foreach (sort @aa_letters) {
! ! print CLOUT "\tTGT_$_\tTGT_$__inverse";
! ! print SVMOUT " TGT_$_ TGT_$__inverse";
! }
! print CLOUT "\n";
! print SVMOUT " Seqname\n";
! open COMPOUT, ">$opt_t_compound_scores" or die "ERROR: Cannot open score file
\"$opt_t_compound_scores\" for writing!\n";
! print COMPOUT "Sequence\tClass\tCompound_score\n";

! # Calculate total information per class
! my %total_info;
! my $suminv = 0;
! print "Total information (obverse, inverse) per class:\n";
! foreach my $class (sort @aa_letters) {
! ! no warnings; # Avoid uninitialized element warnings
! ! for (my $i = 0; $i < $alnlen; $i++) {
! ! ! $total_info{$class}{'function'} += $fldata{$i}{'A'}{$class};
! ! ! $total_info{$class}{'function'} += $fldata{$i}{'C'}{$class};
! ! ! $total_info{$class}{'function'} += $fldata{$i}{'G'}{$class};
! ! ! $total_info{$class}{'function'} += $fldata{$i}{'T'}{$class};

! ! ! $total_info{$class}{'inverse'} += $ildata{$i}{'A'}{$class};
! ! ! $total_info{$class}{'inverse'} += $ildata{$i}{'C'}{$class};
! ! ! $total_info{$class}{'inverse'} += $ildata{$i}{'G'}{$class};
! ! ! $total_info{$class}{'inverse'} += $ildata{$i}{'T'}{$class};
! ! }

 35

! ! print "$class:\t".$total_info{$class}{'function'}."\t".$total_info{$class}
{'inverse'}."\n";
! ! $suminv += $total_info{$class}{'inverse'};
! }
! my @qkeys = sort(keys(%query_seqs));
! my @tkeys = sort(keys(%target_seqs));

! # In order to keep scores positive for extreme differences between function logo &
inverse information, add a multiple of theoretical max information
! my $aacount = scalar(@aa_letters);
! my $offset = $alnlen * 4 * log2($aacount);
! $offset = $suminv;
! print sprintf("Safety offset: %.2f\n",$offset);

! my ($maxscore, $minscore) = (-10e6, 10e6);

! # Score QUERY seqs
! foreach my $qkey (@qkeys) {

! ! my @seq = @{$query_seqs{$qkey}[1]};
! ! my $qcl = $query_seqs{$qkey}[0];
! !
! ! print CLOUT "$qkey\t$qcl";
! ! print SVMOUT "1";
! ! my $featcount = 0;
! ! my $prod_over_classes = 1;
! !
! ! foreach my $class (sort @aa_letters) {
! ! ! my $temp_flscore = 0;
! ! ! my $temp_flsum = 0;
! ! ! my $temp_ilscore = 0;
! ! ! my $temp_ilsum = 0;
! ! ! my $temp_totscore = 0;
! ! !
! ! ! # Make a list of the complement of the current class
! ! ! my $unclass = join('',@aa_letters);
! ! ! $unclass =~ tr/$class//;
! ! ! my @unclasses = split('',$unclass);

! ! ! for (my $i = 0; $i < $alnlen; $i++) {
! ! ! ! no warnings;
! ! ! ! # Sum of information heights for the current class
! ! ! ! $temp_flsum += $fldata{$i}{$seq[$i]}{$class};
! ! ! ! $temp_flscore += $fldata{$i}{$seq[$i]}{$class}/
$total_info{$class}{'function'};

! ! ! ! $temp_ilsum += $ildata{$i}{$seq[$i]}{$class};
! ! ! ! # Sum of inverse information heights for all classes BUT the
current class
! ! ! ! foreach $unclass (@unclasses) {
! ! ! ! ! $temp_ilscore += ($ildata{$i}{$seq[$i]}{$unclass})/
$total_info{$unclass}{'inverse'};
! ! ! ! }
! ! ! }
! ! ! print CLOUT "\t$temp_flscore\t$temp_ilscore";
! ! !
! ! ! # Print SVMlight-readable output
! ! ! $featcount++;
! ! ! print SVMOUT " $featcount:$temp_flsum";
! ! ! $featcount++;
! ! ! print SVMOUT " $featcount:$temp_ilsum";

! ! ! $temp_totscore = $offset + $temp_flscore - $temp_ilscore;#
$temp_flscore/$total_info{$class}{'function'} - $temp_ilscore/$total_info{$class}
{'inverse'};
! ! ! $prod_over_classes *= $temp_totscore;

36

! ! ! $maxscore = $temp_totscore if ($temp_totscore > $maxscore);
! ! ! $minscore = $temp_totscore if ($temp_totscore < $minscore);
! ! }
! ! my $comp_score = $prod_over_classes ** (1/$aacount); # N-th root of the
product, where N is the number of functional classes

! ! print COMPOUT "$qkey\t$qcl\t$comp_score\n";
! ! print CLOUT "\n";
! ! print SVMOUT " #$qkey\n";
! }

! # score TARGET seqs
! foreach my $tkey (@tkeys) {

! ! my @seq = @{$target_seqs{$tkey}[1]};
! ! my $tcl = $target_seqs{$tkey}[0];
! !
! ! print CLOUT "$tkey\t$tcl";

! ! my $prod_over_classes = 1;
! !
! ! print SVMOUT "-1";
! ! my $featcount = 0;

! ! foreach my $class (sort @aa_letters) {
! ! ! my $temp_flscore = 0;
! ! ! my $temp_ilscore = 0;
! ! ! my $temp_totscore = 0;
! ! ! my $temp_flsum = 0;
! ! ! my $temp_ilsum = 0;
! ! !
! ! ! # Make a list of the complement of the current class
! ! ! my $unclass = join('',@aa_letters);
! ! ! $unclass =~ tr/$class//;
! ! ! my @unclasses = split('',$unclass);

! ! ! for (my $i = 0; $i < $alnlen; $i++) {
! ! ! ! no warnings;
! ! ! ! # Sum of information heights for the current class
! ! ! ! $temp_flsum += $fldata{$i}{$seq[$i]}{$class};
! ! ! ! $temp_flscore += $fldata{$i}{$seq[$i]}{$class}/
$total_info{$class}{'function'};

! ! ! ! $temp_ilsum += $ildata{$i}{$seq[$i]}{$class};
! ! ! ! # Sum of inverse information heights for all classes BUT the
current class
! ! ! ! foreach $unclass (@unclasses) {
! ! ! ! ! #$temp_ilscore += $ildata{$i}{$seq[$i]}{$unclass};
! ! ! ! ! $temp_ilscore += ($ildata{$i}{$seq[$i]}{$unclass})/
$total_info{$unclass}{'inverse'};
! ! ! ! }
! ! ! }
! ! !

! ! ! print CLOUT "\t$temp_flscore\t$temp_ilscore";

! ! ! # Print SVMlight-readable output
! ! ! $featcount++;
! ! ! print SVMOUT " $featcount:$temp_flsum";
! ! ! $featcount++;
! ! ! print SVMOUT " $featcount:$temp_ilsum";
! ! !

 37

! ! ! $temp_totscore = $offset + $temp_flscore - $temp_ilscore;#
$temp_flscore/$total_info{$class}{'function'} - $temp_ilscore/$total_info{$class}
{'inverse'};
! ! ! $prod_over_classes *= $temp_totscore;

! ! ! $maxscore = $temp_totscore if ($temp_totscore > $maxscore);
! ! ! $minscore = $temp_totscore if ($temp_totscore < $minscore);
! ! }
! !
! ! my $comp_score = $prod_over_classes ** (1/$aacount); # N-th root of the
product, where N is the number of functional classes

! ! print COMPOUT "$tkey\t$tcl\t$comp_score\n";
! ! print CLOUT "\n";
! ! print SVMOUT " #$tkey\n";
! }

! print "Maxscore: $maxscore\nMinscore: $minscore\n";
! close CLOUT;
! close COMPOUT;
! close SVMOUT;
}

##
Record total information content in function logos
##
my %qscores;
my @tgt_ftotals; # X values (total function logo information) for plots
my @tgt_itotals; # Y values (total inverse function logo information) for plots
my @qry_ftotals; # X values (total function logo information) for plots
my @qry_itotals; # Y values (total inverse function logo information) for plots

open SCOUT, ">$opt_t_scores" or die "ERROR: Cannot open score file \"$opt_t_scores\"
for writing!\n";
print SCOUT "Sequence\tPred_class\tScore\n";
my @qkeys = sort(keys(%query_seqs));
foreach my $qkey (@qkeys) {
! my $class = $query_seqs{$qkey}[0];
! my @seq = @{$query_seqs{$qkey}[1]};
! my $score = 0;
! ############################# SCORING ALGORITHM
#####################################
! for(my $i = 0; $i < $alnlen; $i++){
! ! my $nt = $seq[$i];
! ! $nt =~ tr/a-z/A-Z/;
! ! unless (($nt eq '-') && !$opt_g) {$score += ($pim{$i}{$nt} - $pim_inv{$i}
{$nt});}
! !
! ! if ($opt_s) {
! ! ! unless (($nt eq '-') && !$opt_g) {
! ! ! ! no warnings;
! ! ! ! $qscores{$qkey}{'function'} += $pim{$i}{$nt};
! ! ! ! $qscores{$qkey}{'inverse'} += $pim_inv{$i}{$nt};
! ! ! ! if ($savexc) {
! ! ! ! ! $qscores{$qkey}{'excluded'} += $pim_exc{$i}{$nt};
! ! ! ! }
! ! ! !
! ! ! ! if ($opt_l) {
! ! ! ! ! my $fmax = 0;
! ! ! ! ! my $imax = 0;
! ! ! ! ! foreach (@aa_letters) {
! ! ! ! ! ! # Select the largest information value at the
position in logo

38

! ! ! ! ! ! if ($fldata{$i}{$nt}{$_} > $fmax) {$fmax =
$fldata{$i}{$nt}{$_};}
! ! ! ! ! ! # To take sum info in inverse
! ! ! ! ! ! $imax += $ildata{$i}{$nt}{$_};
! ! ! ! ! }
! ! ! ! ! $qscores{$qkey}{'function_max'} += $fmax;
! ! ! ! ! $qscores{$qkey}{'inverse_max'} += $imax;
! ! ! ! }
! ! ! }
! ! }
! }
!
###
! print SCOUT "$qkey\t$class\t$score\n";
! if (scalar(@seq) != $alnlen) {print "WARNING: Query has alignment length
".scalar(@seq)."!\n";}
}
close SCOUT;

If saving scores, score target seqs
if ($opt_s) {
! my %tscores;
! my @tkeys = sort(keys(%target_seqs));
! foreach my $tkey (@tkeys) {
! ! my $class = $target_seqs{$tkey}[0];
! ! my @seq = @{$target_seqs{$tkey}[1]};
! ! my $score = 0;
! ! for(my $i = 0; $i < $alnlen; $i++){
! ! ! my $nt = $seq[$i];
! ! ! $nt =~ tr/a-z/A-Z/;
! ! ! unless (($nt eq '-') && !$opt_g) {
! ! ! ! no warnings;
! ! ! ! #Score target seqs like query seqs
! ! ! ! $tscores{$tkey}{'function'} += $pim{$i}{$nt};
! ! ! ! $tscores{$tkey}{'inverse'} += $pim_inv{$i}{$nt};
! ! ! ! if ($savexc) {$tscores{$tkey}{'excluded'} += $pim_exc{$i}
{$nt};}
! ! ! !
! ! ! ! #Score target seqs only by their predicted class:
! ! ! ! $tscores{$tkey}{'function_byclass'} += $fldata{$i}{$nt}
{$class};
! ! ! ! foreach my $unclass (@aa_letters) {
! ! ! ! ! # Antideterminant information content in a target tRNA
might be better represented by the sum of
! ! ! ! ! # inverse info for all OTHER classes
! ! ! ! ! unless ($unclass eq $class) {$tscores{$tkey}
{'inverse_byclass'} += $ildata{$i}{$nt}{$unclass};}
! ! ! ! }
! ! ! }
! ! }
! }
!
! open ALLSCOUT, ">$opt_s";
! print ALLSCOUT "Sequence\tTFAM_class\tFunction_score\tInverse_score\tFunction_byAA
\tInverse_byAA".($savexc ? "\tExcluded": '')."\n";
! foreach (keys(%qscores)) {
! ! if ($opt_l) {
! ! ! print ALLSCOUT $_."\t".$query_seqs{$_}[0]."\t".$qscores{$_}
{'function'}."\t".$qscores{$_}{'inverse'}."\t".$qscores{$_}{'function_max'}."\t".
$qscores{$_}{'inverse_max'}.($savexc ? "\t".$qscores{$_}{'excluded'} : '')."\n";
! ! ! push @qry_ftotals, $qscores{$_}{'function_max'};
! ! ! push @qry_itotals, $qscores{$_}{'inverse_max'};
! ! } else {
! ! ! print ALLSCOUT $_."\t".$query_seqs{$_}[0]."\t".$qscores{$_}
{'function'}."\t".$qscores{$_}{'inverse'}."\t0\t0".($savexc ? "\t".$qscores{$_}
{'excluded'} : '')."\n";

 39

! ! ! push @qry_ftotals, $qscores{$_}{'function'};
! ! ! push @qry_itotals, $qscores{$_}{'inverse'};
! ! }
! }
! foreach (keys(%tscores)) {
! ! print ALLSCOUT $_."\t".$target_seqs{$_}[0]."\t".$tscores{$_}
{'function'}."\t".$tscores{$_}{'inverse'}."\t".$tscores{$_}{'function_byclass'}."\t".
$tscores{$_}{'inverse_byclass'}.($savexc ? "\t".$tscores{$_}{'excluded'} : '')."\n";
! ! ! push @tgt_ftotals, $tscores{$_}{'function'};
! ! ! push @tgt_itotals, $tscores{$_}{'inverse'};
! }
! close ALLSCOUT;
}
###
Gnuplot input tRNAs' total logo info vs total inverse logo info
###

Global options for gnuplots
my %gpl_opts =! (
! ! ! ! ! 'title' => 'Total Inverse Function Logo Information\nvs.
Total Function Logo Information',
! ! ! ! ! 'output type' => 'png',
! ! ! ! ! 'output file' => $opt_t."infoplot.png",
! ! ! ! ! 'x-axis label' => 'Total Function Logo Information',
! ! ! ! ! 'y-axis label' => 'Total Inverse Function Logo
Information',
! ! ! !);

my %tgt_opts =! (
! ! ! ! ! #'color' => '#000000',
! ! ! ! ! 'style' => 'points',
! ! ! ! ! 'type' => 'columns',
! ! ! ! ! 'title' => 'Target tRNAs',
! ! ! !);

my %qry_opts =! (
! ! ! ! ! #'color' => '#FF0000',
! ! ! ! ! 'style' => 'points',
! ! ! ! ! 'type' => 'columns',
! ! ! ! ! 'title' => 'Query tRNAs',
! ! ! !);

print "Gnuplot generation started at ".timestamp.".\n";
gnuplot(\%gpl_opts, [\%tgt_opts, \@tgt_ftotals, \@tgt_itotals],
! ! ! ! ! [\%qry_opts, \@qry_ftotals, \@qry_itotals]);
print "Gnuplot generation finished at ".timestamp.".\n";

print "Done.\n";

###############
Subroutines
###############

ZEROES
sub zeroes {
! my $length = shift;
! my @result;
! for (my $i = 0; $i < $length; $i++) {
! ! push (@result, 0);
! }
! return \@result;
}

TIMESTAMP
Return a nicely readable string for the current time

40

sub timestamp {!
! my @abbr = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
! my @days = qw(Sun Mon Tue Wed Thu Fri Sat);
! # Get the time
! my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = @{localtime(time)};
! $year += 1900;
! return sprintf "%02d:%02d:%02d $days[$wday] $abbr[$mon] $mday $year",$hour,$min,
$sec;
}

LOG2
Return 2-logarithm of input
sub log2 {
! my $num = shift;
! return log($num)/log(2);
}

 41

Appendix 4: tRNAscan-SE Output Processing Script (tse2fa.pl)
#!/usr/local/bin/perl -w

use strict;
use Getopt::Std;

die ("Usage: tse2fa.pl <tSE structure file> <FASTA output filename>\n") unless $ARGV[0];

Handle options
my %Opts;
&getopts('hst:',\%Opts);
my $opt_h = $Opts{'h'};! ! # Print help and die
my $opt_t = $Opts{'t'};! ! # Generate TFAM-compatible "tSE" header
my $opt_s = $Opts{'s'};! ! # Generate TFAM-compatible "simple" header

my $helpline = "Usage: tse2fa.pl <tSE structure file> <FASTA output filename>\n";
$helpline .= "Designed to be used on tRNAscan-SE secondary structure output!\n";
$helpline .= "options:\n";
$helpline .= "\t-h\t\tprint this help and exit\n";
$helpline .= "\t-s\t\tgenerate headers in TFAM-compatible \"simple\" format\n";
$helpline .= "\t-t <string>\tgenerate tRNA headers in TFAM-compatible tSE format, with
given string as taxonomic ID\n";
die $helpline if ($opt_h);

Get arguments
my @args = @ARGV;
my $tsefile = $args[0];
my $fafile = ($args[1] ? $args[1] : "$tsefile.fa");
my $count = 0;
my ($header, $seq);

Check I/O
open IN, $tsefile or die("Could not open $tsefile for reading!\n");
open OUT, ">$fafile" or die("Could not open $fafile for writing!\n");

Store AA names & codes and generate lookup tables; might need it when dealing with
TFAM output
my $aa_string = 'ACDEFGHIjKLMNPQRSTVWXYZ$?';
my @aa_letters = split(//,$aa_string);
my @aa_abbrevs =
split(/,/,'Ala,Cys,Asp,Glu,Phe,Gly,His,Ile,kIle,Lys,Leu,Met,Asn,Pro,Gln,Arg,Ser,Thr,Val,T
rp,iMet,Tyr,SeC,Pseudo,Undet');
my %aa_let2int;
my %aa_abb2int;
my $i = 0;
foreach (@aa_letters) {
! $aa_let2int{$_} = $i;
! $i++;
}
$i = 0;
foreach (@aa_abbrevs) {
! $aa_abb2int{$_} = $i;
! $i++;
}

Loop through input
Assumes input
while (<IN>) {
! if ($_ =~ /\.trna\d+.+Length:/) {!# Match tRNA header
! !
! ! $header = $_;!! ! ! ! # Save header
! ! chomp $header;

!

! ! #### Format header to Yyyy[class character]xxx######### with Yyyy = opt_t, xxx =
anticodon, ##### = location
! ! if ($opt_t) {
! ! ! $header =~ /\((\d+)-(\d+)\)/;! ! ! ! # Catch location info
! ! ! my $location = ($1 < $2 ? $1 : "-$2");! ! # Save the gene location (with a
negative if it happens to be reversed)
! ! ! <IN> =~ /Type:\ (\S+)\s+Anticodon:\s(\S+)/; # Grab type & anticodon
! ! ! my $type;
! ! ! if (exists $aa_abb2int{$1}) {
! ! ! ! $type = $aa_letters[$aa_abb2int{$1}];! # If the detected type string matches a
registered class, save the appropriate class identifier
! ! ! } else {
! ! ! ! $type = "?";!! ! ! ! ! ! # else, mark as undetermined
! ! ! }
! ! ! $header = $opt_t.$type.$2.$location;!! # TODO: possibly add sequential
identifier and/or genome identifier after location? Can TFAM take the header with those
modifications?

! ! }
! ! #### Or, format header to "simple" TFAM-readable format: XxxxxYYY-Zzz-#####
! ! elsif ($opt_s) {
! ! ! my $num = $header =~ /\.trna(\d+)/; # Capture sequential id
! ! ! $header =~ s/[-\|:\.,;\s+]/_/g; # Dashes are delimiters in simple format -
replace! Also convert other delimiters
! ! ! $header =~ s/[^\w]//g; # Remove characters that are not alphanumeric or
underscores
! ! ! <IN> =~ /Type:\ (\S+)\s+Anticodon:\s(\S+)/; # Grab type & anticodon
! ! ! $header .= "_$2-$1-$num"; # Format: ConcentratedOldHeader<Anticodon>-<Class>-
<SequentialID>
! ! }
! ! #### Or, contract existing info into one header line
! ! else {
! ! ! $header =~ s/\s+/\ /g;! ! ! # Contract spaces
! ! ! $header =~ s/Length/L/g;! ! ! # Contract Length->L
! ! ! <IN> =~ /Type:\ (\S+)\s+Anticodon:\s(\S+)/; # Grab type & anticodon
! ! ! $header = $header." T:$1 A:$2";!# Attach to header
! ! }
! !
! ! $seq = <IN>;!! ! ! ! ! ! # Skip ruler line
! ! if ($seq =~ /pseudogene|intron/) {
! ! ! $seq = <IN>;
! ! }
! ! $seq = <IN>;!! ! ! ! # Get seq line
! ! chomp $seq;
! ! $seq =~ s/Seq:\ //;! ! ! ! # Remove leading "Seq: "
! ! print OUT ">$header\n$seq\n";! # Write to output
! ! $count ++;
! } else {
! ! next;!! ! ! ! ! ! # Skip non-header lines
! }
}

close IN;
close OUT;

print STDOUT "$count tRNAs parsed.\n";

 43

