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Introduction

Dynamical system theory is an area of mathematics that studies models de-
scribing physical phenomena; events in nature such as population growth,
environmental or financial forecasting, chemical reactions and a wide variety
of other applications. The solutions of the models are represented in a state
space as curves called trajectories that evolve over time, the states of flows
are obtained in time steps t that can be calculated by numerical methods.
The integration method used will be the 4th order Runge-Kutta since it is
one of the most commonly used algorithms when very high accuracy is not
required and we will be treating basic two-dimensional models. Depending
on factors like linearity or non-linearity, there are different behaviors for the
solutions, these flows of the vector fields can be drawn on a phase portrait.

A very useful tool to understand these behaviors is the Poincaré map which
gives us a different way of analyzing the data. In this project we will first
enunciate some important theorems about Dynamical system solutions and
their dependence with parameters and initial conditions, then introduce the
topic of Poincaré Maps to later give some examples and numerical calcula-
tions of periodic orbits. The goal of the project is to produce a program
that recognizes every time a solution crosses a Poincaré Section, graph the
Map and analyze the results for periodic orbits or limit cycles. This will be
implemented on two-dimensional examples like the Lotka-Volterra ”Predator
vs. Pray” system and the Van der Pol system.
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Chapter 1

Preliminaries

1.1 Existence and Uniqueness Theorem

When you are solving an initial value problem of an ordinary differential
equation you could ask yourself if this problem indeed has a solution and if
this solution is unique, the next theorem gives certain properties that guar-
antee the problem has a unique solution, but this is not an if and only if
situation which means that in the case of the problem not meeting these
requirements there could still be a solution to the problem and moreover a
unique one. Now we present a definition of the theorem taken from [1].

Consider the initial value problem:

dx

dt
= f(t, x), x(t0) = x0

Theorem 1.1.1. Suppose that f(t, x) and ∂f(t,x)
∂t

are continuous functions
defined on the region R = {(t, x) : t0 − δ < t < t0 + δ, x0 − ε < x <
x0 + ε} where δ, ε > 0.
Then there exists a number δ1 such that the solution x = f(t) exists and is
the unique solution of the problem for t0 − δ1 < t < t0 + δ1.

One important corollary of this theorem is that different trajectories never
intersect, otherwise from any starting point there could be more than one
solution, we know this is not possible from the uniqueness part of the theo-
rem. This is why phase portraits have no crossing curves.
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There is another important consequence of this theorem for two-dimensional
phase spaces. Suppose there is a closed orbit C in the plane, then for any
trajectory starting inside this orbit it cannot cross it, therefore it will stay
confined. If there are no fixed points inside the orbit then the trajectory will
eventually approach the curve C. This result is stated from the Poincaré-
Bendixon theorem.

1.2 Dependence of solutions on parameters

and initial conditions

The next theorems show that the solution’s continuity and differentiabil-
ity depend on the parameters (t, x0, t0).Taken from [10] ”licoes de equacoes
diferenciais ordinarias” by Sotomayor, Jorge.

Theorem 1.2.1 (Continuity Theorem). Suppose f is continuous in an open
region Ω of R x Rn x Λ, for every (t0, x0, λ) ∈ Ω consider the IVP
with a fixed λ:

x′ = f(t, x, λ), x(t0) = x0

with a unique solution ϕ = ϕ(t, t0, x0, λ) defined in an open interval ((t0, x0, λ)−
ω, (t0, x0, λ) + ω) then

D = {(t, t0, x0, λ) : (t0, x0, λ) ∈ Ω, t ∈ ((t0, x0, λ)− ω, (t0, x0, λ) + ω)}

is an open region in R x Ω and ϕ is continuous in D.
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Theorem 1.2.2 (Differentiability Theorem). Suppose f is continuous in an
open region Ω of R x Rn x Λ with D2f continuous in Ω. Then for a
fixed λ a solution ϕ = ϕ(t, t0, x0, λ) of

x′ = f(t, x, λ), x(t0) = x0

is unique and D3ϕ exists with respect to x0.
Even more, the application (t, t0, x0, λ)→ D3ϕ(t, t0, x0, λ) is continuous in

D = {(t, t0, x0, λ) : (t0, x0, λ) ∈ Ω, t ∈ ((t0, x0, λ)− ω, (t0, x0, λ) + ω)}

and

x(t) = D3ϕ(t, t0, x0, λ).ek =
∂ϕ

∂xk0
(t, t0, x0, λ)

for all 1 ≤ k ≤ dimRn, is a solution of

x′ = J(t)x, x(t0) = ek

where J(t) = J(t, t0, x0, λ) = D2f(t, ϕ(t, t0, x0, λ), λ)

The main importance of this theorem is to show that for a neighborhood
of the parameters chosen, the behavior of the trajectory will not differ after
enough period of time.

The topological consequences of these theorems will have an impact for the
Poincaré Maps defined later as the behavior of this will be dependent on
these results.
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Chapter 2

Poincaré Maps

Our main interest is to study dynamical systems that present periodic behav-
ior, solutions such as spirals that can converge or diverge to closed orbits, or
simply a continuous state space of closed curves. Sometimes we do not need
to use the entire flow of the system to get the information we are interested
in, we can find this information in a discrete system.

Poincaré Map is a discrete dynamical system that represents the continuous
periodic flow of another system. [5]

Figure taken from [6]
The next definition is taken from Strogatz book [11]. Consider an n-
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dimensional system,
ẋ = f(x)

Let S be a n− 1 dimensional surface of section. This surface must be trans-
verse to the flow, meaning that all trajectories must go through it and not
flow parallel to it. The Poincaré map is a mapping that goes from S → S,
this is obtained by taking every intersection from the trajectories one after
the other. We will denote xk as the kth intersection and define the Poincaré
map as

xk+1 = P (xk)

If x∗ = P (x∗) is a fixed point in the map, it means that a trajectory starting
at this point comes back after some time T, and this is a closed orbit for the
original system. The map P will contain information about the stability of
closed orbits near the fixed points.

A classical example of the use of a Poincaré Map can be for analyzing plane-
tary orbits. Suppose we have a planet that completes an orbit around a sun
every year but slightly varies the orbit each time. In the long run we can
have a better understanding of how this change evolves by using a Poincaré
section and studying this mapping, instead of analyzing the complete flow.
In this example we can clearly see the advantage that is taking a dimension
off the problem.[7]

Taken from [9]
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In any case the behavior of the original system will be adopted by the
Poincaré Map, either if it is chaotic or an n-period orbit. chaotic maps
can be very interesting and appealing to the eyes.

Poincaré sections of a passive tracer which visualize two different patterns;
left: combination of many islands embedded in chaotic areas, right: a chaotic
sea. Taken from [3]
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Chapter 3

Numerical Considerations

3.1 Integration Method

The integration method used to solve the systems in this investigation is
the Runge-Kutta 4. The fourth order Runge-Kutta method is an iterative
method used for solving ordinary differential equations taking a step h on
each iteration. This method was developed by the German mathematicians
Carl Runge and Martin Wilhelm Kutta. It is familiar to the Euler Method,

yn+1 = yn + hf(tn, yn)

,

But on each step the new y is determined by the previous y plus the weighted
average of four increments, these increments are the product of the step size
h times a slope specified by the right hand side function f of the differential
equation.
The formulas for the increments and the new values of the variables x and y
for the system taken from [2] are,

dx

dt
= F (t, x, y),

dy

dt
= G(t, x, y)

K1 = F (tn, xn, yn)h
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L1 = G(tn, xn, yn)h

K2 = F (tn +
h

2
, xn +

K1

2
, yn +

L1

2
)h

L2 = G(tn +
h

2
, xn +

K1

2
, yn +

L1

2
)h

K3 = F (tn +
h

2
, xn +

K2

2
, yn +

L2

2
)h

L3 = G(tn +
h

2
, xn +

K2

2
, yn +

L2

2
)h

K4 = F (tn + h, xn +K3, yn + L3)h

L4 = G(tn + h, xn +K3, yn + L3)h

xn+1 = xn +
K1 + 2K2 + 2K3 +K4

6

yn+1 = yn +
L1 + 2L2 + 2L3 + L4

6

Scientists today consider RK4 to be very efficient and accurate for the in-
tegration of ordinary differential equations in comparison to others like the
midpoint method, but if a very high accuracy is required there are other
methods more suitable as the Bulirsch-Stoer. For our purposes in this inves-
tigation the Runge-Kutta method works well since we will use it to find the
step where the trajectories of solutions go through a Poincaré section, from
here we will use a bisection scheme to approach the point on the map.

3.2 Implementation

The technical computing language Matlab has been used to create a program
that simulates a Poincaré section . Joining the integration method Runge-
Kutta 4 with a bisection scheme we have been able to reproduce the concept
of a Poincaré Map in a two dimensional system. The idea of the program is
to take the section as a vertical line parallel to the y axis, then after obtain-
ing a sequence of points with the RK4 we check whenever the line has been
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crossed and start to bisect the step length used on the integration method
until we reach a tolerance of 2e-10, if the line has not been crossed in the
the specific time flow then a message is shown that the flow does not cut
the section. The inputs for this function are: ”y” the vector field defined
in another script,”tspan” a vector of two components representing the ini-
tial and final values of the desired time flow, ”y0” as the initial values,”h” is
the step size and ”x” the Poincaré section or vertical line equal to a constant.

After this first idea we obtain a set of points whenever the line is crossed
but this will only be useful for further analysis depending on the behavior of
these points as the theory of the Poincaré Maps dictates.

The first thing to clarify is that there will always be an error to the estima-
tions as it is impossible to have an exact precision, therefore we cannot find
two equal points, but this does not stop us from finding clear results like a
periodic orbit or convergence to a limit cycle.

One of the main uses of a Poincaré Section is to find closed orbits and for
this we must find points that will map to themselves. It is our interest to find
these points and test the program on vector fields such as the Lotka-Volterra
and Van der Pol system.

After creating the program that obtains the points of the Poincaré Section,
the next idea is to be able to obtain the nth step of a Poincaré crossing and
then graph the Poincaré map function f(x) : Σ→ Σ with the points obtained.

With this graph we can compare to the function y = x and the point where
they meet will be a closed orbit. For this a new Matlab function was created
where we find the zeros of the function g(x) = f(x)−x. In this case we use a
bisection scheme once again where there is a change of signs in the function
g until we reach a tolerance of 2e-10.
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Chapter 4

Computing Periodic Orbits via
Poincaré Maps

On this section we will implement the Matlab functions on two-dimensional
examples computing their periodic orbits with the use of a Poincaré Section
Σ = {x ∈ R2 : x1 = C}.

4.1 Lotka-Volterra Model

The Lotka-Volterra model also known as the Predator-Prey model was pro-
posed by Alfred J. Lotka in 1910. It represents the behavior or interaction
between a predator and its pray. Either the predator provokes the extinction
of his prey or the prey will manage to survive in time, depending on how
the model is constructed there are different scenarios. In this particular case,
only the interaction between the two is involved in the model.

Now we introduce the equations:

x′ = ax− bxy
y′ = −ry + cxy

In this model the prey population at time t is represented by x and the
predator population by y. ”a” represents the growth rate of the prey and
”b” the rate at which the predator eats the pray. ”r” represents the death
rate of the predator and ”c” represents the rate of increase of the predator.
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From the first equation we see that without the existence of a predator, the
prey would grow exponentially x′ = ax and from the second equation, with-
out a prey the predator would die exponentially y′ = ry. We can also see the
interaction term on the first equation −bxy means that every time the preda-
tor interacts with a prey the later one decreases. From the second equation,
the interaction term +cxy represents an increase on the predator when this
happens.[4]

To solve the system we multiply the first equation by y′

xy
and the second

equation by x′

xy
, then by subtracting both equations we obtain.

y′(
a

y
− b) + x′(

r

x
− c) = 0

Integrating both sides,∫
y′
a

y
dy −

∫
by′dy = −

∫
x′
r

x
dx+

∫
cxdx

we obtain
r log x− cx+ a log y − by = C

The solutions are the level curves of the function,

F (x, y) = |x|r|y|ae−(cx+by)

All solutions on the first quadrant are closed. Here are some of them shown
in the phase portrait taking a = 0.4, b = 0.1, r = 0.3, c = 0.5. Some ideas
for this example were taken from Warwick Tucker’s article for computing
Poincaré Maps [12].
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Now we want to know the behavior of the dynamical system with the use of
a Poincaré section on x = 1.
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We run the PoincareGraph program with x = 1 and y from 0.1 to 18, time
flow from 0 to 1000 and step size h = 0.1 and we obtain the next result,

>> y=PoincareGraph(lv,[0.1:0.5:18],1,2,[0 1000],0.1)

The vector field does not intersect the Poincare section 2 times with the given
initial value [1 4] and time flow 0 1000.

The program detects that the Poincaré Map is not well defined at the point
(1, 4), so we run the program again avoiding y = 4,

>> y=PoincareGraph(lv,[0.1:0.5:3.9],1,2,[0 1000],0.1) >> hold on >>
y=PoincareGraph(lv,[4.5:0.5:18],1,2,[0 1000],0.1)

Obtaining the graph,
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What this graph tells us is that the solutions of the Lotka-Volterra system
are closed curves and the Poincaré Map is not well defined when y = 4 since
the flow is tangent to the section in this point.

4.2 Van der Pol Oscillator

The Van der Pol Oscillator is a model that describes an oscillatory process
with non-linear damping. It was discovered in the 1920s by Balthasar Van
der Pol, a physicist and mathematician born in the Netherlands. The os-
cillations of the system converge towards a limit cycle so we will implement
the Poincaré Map to find this result. A limit cycle is an isolated closed
trajectory, this means that for a neighborhood S around this trajectory, all
trajectories Γz for all initial values z ∈ S are not closed. Our interest in this
model is to investigate the behavior of the trajectories and their convergence.

16



The equation of the model is,

ẍ− ε(1− x2)ẋ+ x = 0

We can rewrite it as, {
ẋ = y
ẏ = ε(1− x2)y − x

By Lienard’s theorem the system has exactly one limit cycle, if 0 < ε < 1
then this limit cycle lies within a neighborhood of distance O(ε) from the
circle centered at the origin with radius 2. The proof for the theorems can
be found in Wesley Cao’s paper [8].

Setting ε = 0.1 we obtain the phase portrait.

In the phase portrait we can see how the two flows converge to the limit cycle
centered at the origin and with radius ≈ 2 as we expected.
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Now we will use a Poincaré Section on x = 0 to understand the behavior of
the system from a different perspective.

We run the program PoincareGraph on the system with x = 0 and y values
from −4 to 4, number of steps equals 2 so we return to the initial point and
see if it converges, time flow from 0 to 100, and step size h = 0.01.

>> y=PoincareGraph(vdp,[-4:0.1:4],0,2,[0 100],0.01)

We obtain the next graph,
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With the PoincareGraphBisec program we can find the points that intersect
with y = x, this will represent either fixed points or periodic orbits.

>> y=PoincareGraphBisec(vdp,-4,-1,0,2,[0 100],0.01)

y = −2.0018

>> y=PoincareGraphBisec(vdp,1,4,0,2,[0 100],0.01)

y = 2.0018

>> y=PoincareGraphBisec(vdp,-1,1,0,2,[0 100],0.01)

y = 1.0000

From these results we can interpret that zero is an unstable fixed point and
and there is a limit cycle of radius 2.0018 centered at zero.
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Chapter 5

Conclusions and further work

Dynamical systems theory is a very important branch of Mathematics in
which it is possible to model a wide variety of physical phenomena or ab-
stract ideas we have not been able to understand. With the help of computers
today we can predict many important things, not only in advanced topics in
science but also in everyday life.

There are various ways of analyzing the solutions of the models and as we
found in this investigation, the Poincaré Maps is a useful tool when it comes
to understanding the behavior of periodic orbits and finding accurate approx-
imations for limit cycles in two dimensional systems, it reduces the problem
by one dimension and provides a deeper understanding. For three dimen-
sional systems there is a whole new perspective to what this theory brings,
by setting up plane sections to intersect flows in space you can visualize from
within the changes in time.

Summary of contributions

In the project some useful programs were produced to represent Poincare
Maps, they can be used for obtaining the points that cross a Poincare Section,
to find periodic behaviors, to graph the mappings and to obtain closed orbits
or limit cycles. By varying the inputs of the functions you can obtain more
precise and faster results. Of course if there is a clear idea of the behavior
of the solution, you might have a good initial guess of a Poincaré section
that will provide interesting results, sometimes you already know the overall
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behavior but need some information in a specific period of the flow. In any
case there are many uses for them and they show a good performance for the
kind of examples provided in the project.
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Further work

It is of my interest to continue studying Dynamical System theory and de-
velop the idea of Poincaré maps for three dimensional systems, producing
a program for this and to make numerical analysis on important examples
found in modern science. Mathematical modeling is a vast world we are
working to unveil and with the help of this tool some new discoveries might
be at grasp.

22



Bibliography

[1] Department of Mathematics, University of Illinois - Existence and
Uniqueness theorem for First Order ODE’s. http://http://www.math.
uiuc.edu/~tyson/existence.pdf. Accessed: 2015-05-01.

[2] Department of Physics, Davidson College - Runge-Kutta method for
solving two coupled first order differential equations or one second order
differential equation. http://www.phy.davidson.edu/FacHome/dmb/

py200/RungeKuttaMethod.htm. Accessed: 2015-04-26.

[3] Eindhoven University of Technology- Tracers take the tube: mix-
ing in 3D viscous flows. http://www.tue.nl/en/university/

departments/applied-physics/research/transport-physics/

turbulence-and-vortex-dynamics/viscous-flow-and-mixing/

tracers-take-the-tube/. Accessed: 2015-05-19.

[4] Lotka-Volterra model. http://en.wikipedia.org/wiki/Lotka

[5] Poincare Map, Advanced concept team, ESA. http://www.esa.int/

gsp/ACT/mad/projects/inter_moon.html. Accessed: 2015-05-18.

[6] Poincare Map, Wikipedia. http://en.wikipedia.org/wiki/Poincar%
C3%A9_map#/media/File:Poincare_map.svg. Accessed: 2015-05-18.
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Chapter 6

Appendix

6.1 Matlab codes

6.1.1 Poincaré function

function PM = Poincare(y,tspan,y0,h,x)
if nargin < 5, error('at least 5 input arguments required'), end
n = length(tspan);
ti = tspan(1); tf = tspan(n);
tp = ti:h:tf;
s = length(tp);
yp = zeros(s,3);
yp(1,2:3)= [y0(1) y0(2)];
yp(:,1)=tp;
poin=zeros(s,2);
z=zeros(s,2);
ff=1;
m=1; %counter of yp matrix
cc=1; %counter of kl matrix
kl=zeros(s,10);
%To make the program faster we store the values of the ks and ls in a matrix
for n = ti:h:tf

kl(cc,1) = y{1}(n,[yp(m,2) yp(m,3)])*h;
kl(cc,2) = y{2}(n,[yp(m,2) yp(m,3)])*h;
kl(cc,3) = y{1}(n+(h/2),[yp(m,2)+(kl(cc,1)/2) yp(m,3)+(kl(cc,2)/2)])*h;
kl(cc,4) = y{2}(n+(h/2),[yp(m,2)+(kl(cc,1)/2) yp(m,3)+(kl(cc,2)/2)])*h;
kl(cc,5) = y{1}(n+(h/2),[yp(m,2)+(kl(cc,3)/2) yp(m,3)+(kl(cc,4)/2)])*h;
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kl(cc,6) = y{2}(n+(h/2),[yp(m,2)+(kl(cc,3)/2) yp(m,3)+(kl(cc,4)/2)])*h;
kl(cc,7) = y{1}(n+(h/2),[yp(m,2)+kl(cc,5) yp(m,3)+kl(cc,6)])*h;
kl(cc,8) = y{2}(n+(h/2),[yp(m,2)+kl(cc,5) yp(m,3)+kl(cc,6)])*h;
kl(cc,9) = yp(m,2) + ((1/6)*(kl(cc,1) + (2*kl(cc,3)) + (2*kl(cc,5)) + kl(cc,7)));
kl(cc,10) = yp(m,3) + ((1/6)*(kl(cc,2) + (2*kl(cc,4)) + (2*kl(cc,6)) + kl(cc,8)));
m=m+1;
yp(m,2:3)= [kl(cc,9) kl(cc,10)]; %yp(m,2:3)= [p q];

%bisection method

if (m>10) && (kl(cc,9)==x)
poin(ff,1:2) = [yp(m,2) yp(m,3)];
ff=ff+1;

end

if ((m>10) && (x<yp(m,2)) && (x > yp(m-1,2))) | | ((m>10) && (x>yp(m,2)) &&
(x<yp(m-1,2)))

d=n;
s=h;
v=m-1; z=d-s;

r=yp(v,2); w=yp(v,3); g=yp(v+1,2);

while (abs(r-x)>2e-10)
if ((x < r) && (x > g)) | | ((x > r) && (x < g))

s=s/2;

z=z+s;
k1 = y{1}(z,[r w])*s;

l1 = y{2}(z,[r w])*s;
k2 = y{1}(z+(s/2),[r+(k1/2) w+(l1/2)])*s;
l2 = y{2}(z+(s/2),[r+(k1/2) w+(l1/2)])*s;
k3 = y{1}(z+(s/2),[r+(k2/2) w+(l2/2)])*s;
l3 = y{2}(z+(s/2),[r+(k2/2) w+(l2/2)])*s;
k4 = y{1}(z+(s/2),[r+k3 w+l3])*s;
l4 = y{2}(z+(s/2),[r+k3 w+l3])*s;
uu = ((1/6)*(k1 + (2*k2) + (2*k3) + k4));
pp = ((1/6)*(l1 + (2*l2) + (2*l3) + l4));
r = r + ((1/6)*(k1 + (2*k2) + (2*k3) + k4));
w = w + ((1/6)*(l1 + (2*l2) + (2*l3) + l4));

else

26



r=r-uu;
w=w-pp;
z=z-s;

s=s/2;
z=z+s;

k1 = y{1}(z,[r w])*s;
l1 = y{2}(z,[r w])*s;
k2 = y{1}(z+(s/2),[r+(k1/2) w+(l1/2)])*s;
l2 = y{2}(z+(s/2),[r+(k1/2) w+(l1/2)])*s;
k3 = y{1}(z+(s/2),[r+(k2/2) w+(l2/2)])*s;
l3 = y{2}(z+(s/2),[r+(k2/2) w+(l2/2)])*s;
k4 = y{1}(z+(s/2),[r+k3 w+l3])*s;
l4 = y{2}(z+(s/2),[r+k3 w+l3])*s;
uu = ((1/6)*(k1 + (2*k2) + (2*k3) + k4));
pp = ((1/6)*(l1 + (2*l2) + (2*l3) + l4));
r = r + ((1/6)*(k1 + (2*k2) + (2*k3) + k4));
w = w + ((1/6)*(l1 + (2*l2) + (2*l3) + l4));

end
end
poin(ff,1:2) = [r w];
ff=ff+1;
end
cc=cc+1;

end
PM = poin(1:2:ff-1,1:2);
if poin==z
disp(['The vector field does not intersect the Poincare',...
' section with the given initial values and time flow']);
PM=[];
else
PM = poin(1:2:ff-1,1:2);
end

6.1.2 Poincaré One Step

function PM = PoincareStep(y,tspan,y0,h,x)
if nargin < 5, error('at least 5 input arguments required'), end
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ti = tspan(1); tf = tspan(2);
tp = ti:h:tf;
s = length(tp);
yp = zeros(s,3);
yp(1,2:3)= [y0(1) y0(2)];
yp(:,1)=tp;
m=1; %counter for the yp matrix
cc=1; %counter of kl matrix
kl=zeros(s,10);
ff=1;
poin = [];
for n = ti:h:tf

kl(cc,1) = y{1}(n,[yp(m,2) yp(m,3)])*h;
kl(cc,2) = y{2}(n,[yp(m,2) yp(m,3)])*h;
kl(cc,3) = y{1}(n+(h/2),[yp(m,2)+(kl(cc,1)/2) yp(m,3)+(kl(cc,2)/2)])*h;
kl(cc,4) = y{2}(n+(h/2),[yp(m,2)+(kl(cc,1)/2) yp(m,3)+(kl(cc,2)/2)])*h;
kl(cc,5) = y{1}(n+(h/2),[yp(m,2)+(kl(cc,3)/2) yp(m,3)+(kl(cc,4)/2)])*h;
kl(cc,6) = y{2}(n+(h/2),[yp(m,2)+(kl(cc,3)/2) yp(m,3)+(kl(cc,4)/2)])*h;
kl(cc,7) = y{1}(n+(h/2),[yp(m,2)+kl(cc,5) yp(m,3)+kl(cc,6)])*h;
kl(cc,8) = y{2}(n+(h/2),[yp(m,2)+kl(cc,5) yp(m,3)+kl(cc,6)])*h;
kl(cc,9) = yp(m,2) + ((1/6)*(kl(cc,1) + ...
(2*kl(cc,3)) + (2*kl(cc,5)) + kl(cc,7)));
kl(cc,10) = yp(m,3) + ((1/6)*(kl(cc,2) +...
(2*kl(cc,4)) + (2*kl(cc,6)) + kl(cc,8)));

m=m+1;
yp(m,2:3)= [kl(cc,9) kl(cc,10)];

%bisection method

if (m>10) && (kl(cc,9)==x)
poin(ff,1:2) = [yp(m,2) yp(m,3)];
ff=ff+1;
break

end

if ((m>10) && (x<yp(m,2)) && (x > yp(m-1,2))) | | ((m>10)...
&& (x>yp(m,2)) && (x<yp(m-1,2)))

d=n;
s=h;
v=m-1; z=d-s;

r=yp(v,2); w=yp(v,3); g=yp(v+1,2);

while (abs(r-x)>2e-10)
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if ((x < r) && (x > g)) | | ((x > r) && (x < g))

s=s/2;

z=z+s;
k1 = y{1}(z,[r w])*s;

l1 = y{2}(z,[r w])*s;
k2 = y{1}(z+(s/2),[r+(k1/2) w+(l1/2)])*s;
l2 = y{2}(z+(s/2),[r+(k1/2) w+(l1/2)])*s;
k3 = y{1}(z+(s/2),[r+(k2/2) w+(l2/2)])*s;
l3 = y{2}(z+(s/2),[r+(k2/2) w+(l2/2)])*s;
k4 = y{1}(z+(s/2),[r+k3 w+l3])*s;
l4 = y{2}(z+(s/2),[r+k3 w+l3])*s;
uu = ((1/6)*(k1 + (2*k2) + (2*k3) + k4));
pp = ((1/6)*(l1 + (2*l2) + (2*l3) + l4));
r = r + ((1/6)*(k1 + (2*k2) + (2*k3) + k4));
w = w + ((1/6)*(l1 + (2*l2) + (2*l3) + l4));

else

r=r-uu;
w=w-pp;
z=z-s;

s=s/2;
z=z+s;

k1 = y{1}(z,[r w])*s;
l1 = y{2}(z,[r w])*s;
k2 = y{1}(z+(s/2),[r+(k1/2) w+(l1/2)])*s;
l2 = y{2}(z+(s/2),[r+(k1/2) w+(l1/2)])*s;
k3 = y{1}(z+(s/2),[r+(k2/2) w+(l2/2)])*s;
l3 = y{2}(z+(s/2),[r+(k2/2) w+(l2/2)])*s;
k4 = y{1}(z+(s/2),[r+k3 w+l3])*s;
l4 = y{2}(z+(s/2),[r+k3 w+l3])*s;
uu = ((1/6)*(k1 + (2*k2) + (2*k3) + k4));
pp = ((1/6)*(l1 + (2*l2) + (2*l3) + l4));
r = r + ((1/6)*(k1 + (2*k2) + (2*k3) + k4));
w = w + ((1/6)*(l1 + (2*l2) + (2*l3) + l4));

end

end
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poin = [r w];
break
end
cc=cc+1;

end
PM=poin;

if isempty(poin) == 1
%disp(['The vector field does not intersect the Poincare',...
% ' section with the given initial values and time flow']);

else
PM = poin;

end

6.1.3 Poincaré Nth Step

function PM = PoincareNStep(y,y0,x,ns,tspan,h)
point = y0;
%When using this function you must comment line 100-101 of the function PoincareStep
for i = 1:ns

point = PoincareStep(y,tspan,point,h,x);
if isempty(point) == 1

% disp(['The vector field does not intersect the Poincare',...
%' section ',num2str(ns),' times with the given initial values and time flow']);

break
end

end
PM=point;

6.1.4 Poincare Map

function PM = PoincareGraph(y,y0,x,ns,tspan,h)
n=length(y0);
fy=zeros(n);
a=0;
%when calling this function it is adviced to comment line 100-101 of
%PoincarStep and line 7-8 of PoincareNStep to avoid repeated results
for i = 1:n

point = [x y0(i)];
point = PoincareNStep(y,point,x, ns, tspan,h);
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if isempty(point) == 1
disp(['The vector field does not intersect the Poincare',...
' section ',num2str(ns),' times with the given initial',...
' value ',num2str([x y0(i)]),' and time flow ', num2str(tspan)]);

a=1;
break
end

fy(i)=point(2);
end
if a~=1
plot(y0,fy(1:n),'r-',y0,y0,'b-')
title('Poincare Graph compared with y=x')
legend('Poincare Graph','y=x Graph')
end
PM=0;

6.1.5 Poincaré Map Bisection

function PM = PoincareGraphBisec(y,a,b,x,ns,tspan,h)
pointa=[x a];
pointb=[x b];
aux = PoincareNStep(y,pointa,x, ns, tspan,h);
ga= aux(2)-a;
aux = PoincareNStep(y,pointb,x, ns, tspan,h);
gb= aux(2)-b;

while abs(b-a)>10e-10
mid=(a+b)/2;
pointmid=[x mid];
aux = PoincareNStep(y,pointmid,x, ns, tspan,h);
gmid=aux(2)-mid;

if gmid*ga<0
b=mid;
gb=gmid;

else
a=mid;
ga=gmid;

end
end
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PM=mid;
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