UPPSALA
UNIVERSITET

UPTEC X 15 011

Examensarbete 30 hp
Juni 2015

Automating model building in
ligand-based predictive drug discovery
using the Spark framework

Staffan Arvidsson

Degree Project in Bioinformatics

UPPSALA Masters Programme in Molecular Biotechnology Engineering,
UNIVERSITET Uppsala University School of Engineering
UPTEC X 15011 Date of issue 2015-06
Author
Staffan Arvidsson
Title (English)

Automating model building in ligand-based predictive drug
discovery using the Spark framework

Title (Swedish)

Abstract

Automation of model building enables new predictive models to be generated in a faster,
easier and more straightforward way once new data is available to predict on. Automation can
also reduce the demand for tedious bookkeeping that is generally needed in manual
workflows (e.g. intermediate files needed to be passed between steps in a workflow). The
applicability of the Spark framework related to the creation of pipelines for predictive drug
discovery was here evaluated and resulted in the implementation of two pipelines that serves
as a proof of concept. Spark is considered to provide good means of creating pipelines for
pharmaceutical purposes and its high level approach to distributed computing reduces the
effort put on the developer compared to a regular HPC implementation.

Keywords

Machine learning, predictive drug discovery, Spark, Big Data, Hadoop, pharmaceutical
bioinformatics, pipelining, cloud computing, OpenStack

Supervisors

Ola Spjuth

Uppsala University

Scientific reviewer

Ake Edlund

KTH Royal Institute of Technology
Project name Sponsors
Language Security
English
Classification
ISSN 1401-2138

Supplementary bibliographical information Pages

46

Biology Education Centre Biomedical Center =~ Husargatan 3, Uppsala
Box 592, S-751 24 Uppsala Tel +46 (0)18 4710000 Fax +46 (0)18 471 4687

Automating model building in ligand-based
predictive drug discovery using the Spark
framework

Staffan Arvidsson

Popularvetenskaplig sammanfattning

Farmaceutisk bioinformatik ar ett vetenskapligt omrade som kombinerar
likemedelskemi och informationsteknik for att underlatta framstallning av
nya lakemedel. Tillampningar ar exempelvis screening av potentiella lakemedel
och hur de berdknas interagera med tilltankta malproteiner av farmakologisk
relevans samt bestamning av fysikaliska och biologiska egenskaper hos nya
lakemedel, utan krav pa laboratoriestudier. Fordelen ar att nya potentiella
likemedel kan studeras in silico istallet for in vitro, vilket bade snabbar upp
framtagning av nya ldkemedel och gor det billigare da farre laborativa studier
behover genomforas.

Ramverket Spark har studerats i detta arbete for att undersoka dess
lamplighet for att skapa arbetsfloden, eller sa kallade pipelines, for far-
maceutiska dndamal. Under arbetet har tva pipelines utvecklats; en dar
prediktiva modeller skapas for att hitta potentiella interaktioner mellan nya
likemedel och proteiner med viktiga biologiska funktioner som kan leda
till biverkningar, och en dar prediktiva modeller skapas for att bestamma
fysikaliska och biologiska egenskaper hos likemedel. Slutsatsen av arbetet
ar att Spark ar ett lampligt ramverk som gor skapandet av pipelines bade
rattfram och flexibelt. Spark &ar dven lampligt da det innehaller ett bibliotek
for skapandet av prediktiva modeller genom anvandandet av maskininlarning,
samt att det har stod for skapandet av pipelines inbyggt.

Examensarbete 30 hp

Civilingenjorsprogrammet Molekylar bioteknik
inriktning Bioinformatik

Uppsala universitet, juni 2015

Contents

Abbreviations
1 Introduction
2 Background
2.1 Descriptor generation
2.2 Machine learningo oo
2.3 Pipeline
3 Spark Framework
3.1 Spark Basics.
3.1.1 Spark application overview
3.1.2 Memory model -RDDs
3.2 Spark input flexibility
3.3 Spark compared to High Performance Computing
3.4 Spark Machine Learning
3.4.1 Spark ML Pipelines
3.5 Spark Drawbacks,
4 Materials and Methods
4.1 Spark & Hadoop
4.2 Chemistry Development Kit
4.3 Openstack cluster, .
44 ChEMBL e
4.5 FreeMarker
4.6 Programming environment L.
5 Implementation
5.1 Pipeline API
5.2 Parameter Selection pipeline, .

5.3

Protein Target Prediction pipeline
5.3.1 The structure
5.3.2 Implementation
5.3.3 Improving performance - concurrent programming . . .
5.3.4 Reporting statisticsas HTML

10
10
12
13

14
14
14
14
15
16
16
17
18

19
19
19
19
19
20
20

21
21
24
24
24
27
28

6 Results

6.1 Parameter Selection pipeline
6.2 Protein Target Prediction pipeline .

6.2.1 Concurrent execution to improve performance

7 Discussion

7.1 Modularity
7.2 Alternative frameworks

7.3 Spark in non-Big Data applications
8 Conclusions
Acknowledgements
References
Appendices
A Flowchart symbols

B Implementation of PipelineSplitter

32
32
33
34

36
36
36
37

38

39

40

44

45

46

Abbreviations

API Application Programming Interface
CDK The Chemistry Development Kit

DAG Directed Acyclic Graph

HDEFS Hadoop Distributed File System

HPC High Performance Computing

IDE Integrated Development Environment
InChi IUPAC International Chemical Identifier

MDL Molfile File format for molecules including spatial information

MVC Model View Control

PTP Protein Target Prediction

QSAR Quantitative Structure-Activity Relationship

RDD Resilient Distributed Dataset

RMSE Root Mean Squared Error

SMILES Simplified Molecular Input Line Entry Specification
SVM Support vector machine

vCPU virtual CPU

1. Introduction

The goal of this thesis has been to evaluate the applicability of a framework
called Spark [1] for the creation of pipelines in predictive drug discovery.
Spark is a framework built for Big Data applications [2], with the purpose
of facilitating easy development of computer programs that can run on com-
puter clusters and cloud services. The Spark framework enables the user to
program in a high level fashion, letting the framework deal with distribut-
ing computations and scheduling, such things that ordinary High Perfor-
mance Computing (HPC) forces the programmer to take care of. Spark is
thus a promising framework for creating pipelines that scale to big computa-
tional problems and can be used on different computer architectures, without
putting too much effort into writing code that runs efficiently in a distributed
and parallel environment.

The main pipeline developed in this thesis uses machine learning to create
predictive models for drug-protein interactions. These models can then be
used for predicting protein interactions for new potential drugs and reduce
the need for doing all tests in vitro and instead do initial screening in silico.
The generated models are meant to be used in Bioclipse [3, 4] as a plugin.
A second pipeline was also implemented, to show that the implementation
strategy is general.

2. Background

Pharmaceutical bioinformatics or pharmacoinformatics [5] is a field within
bioinformatics where the topic is related to drug discovery and how drugs in-
teracts with other substances in the body. These applications can be greatly
facilitated by using computers to perform in silico analysis instead of relying
on making all tests in vitro. Drug discovery encompasses the diverse task of
docking potential drugs to the intended target protein, model the change of
activity in the target protein after interaction with the drug, finding other
proteins that the drug might interact with and finding physicochemical prop-
erties of the drug (e.g. solubility and toxicity).

My thesis focuses on the last two of these areas, finding potential inter-
actions with other proteins and finding physicochemical properties of new
drugs. These problems are extremely important during drug development,
if a drug would be prone to interact with other proteins the chance for side
effects are large. Being able to predict if or how much a drug would interact
with other proteins can help to discard bad candidates at an early stage in the
development process. Discarding bad candidates early reduces time and cost
as fewer candidates need to be tested later on in development. Predicting
physicochemical and biological properties are also important as these factors
will determine where the drugs will end up in the human body (e.g. how well
they can penetrate cell membranes) and whether the drug might be toxic.
These tasks are part of the field known as Quantitative Structure-Activity
Relationship (QSAR) [6], which aims to find the link between the structure
of drugs and their activity (i.e. in terms of toxicity, binding affinity etc.).

This thesis aims to develop a pipeline, and a general technique, for how
to easily perform machine learning on big datasets to derive predictive mod-
els. These models are generated by learning from already tested chemical
substances and it is desirable to have a setup that can be run fast enough so
that new models can be generated as soon as new data is available to use for
model prediction.

2.1 Descriptor generation

When using machine learning algorithms the input has to be formatted in
a mathematical way that the algorithms can use. Typically, chemical sub-
stances are stored in formats that can describe the structure of the molecule,
in for instance SMILES (Simplified Molecular Input Line Entry Specifica-
tion), InChl (IUPAC International Chemical Identifier) and MDL molfiles [7].
These formats differ in how much detail they contain, where SMILES only

10

contain the 1D representation and molfiles attempt to describe the 2D and 3D
structure of the molecule. However, none of these formats are suitable to be
used directly in machine learning algorithms and they need to be converted
into a vector-based format by using descriptors.

Descriptors can be almost anything, for instance you could use number of
atoms, total molecular charge, solubility /hydrophobicity, number of a specific
chemical element etc. The key is to find good descriptors that can discern
between different substances and that they are related to the property that is
modelled. Machine learning is highly dependent on what type of descriptors
you use, and the results may vary depending on what you use and to what
type of data you use it on.

The descriptors used in this thesis have been molecular signatures of
different heights. This concept is very simple and illustrated in fig. 1 but has
proven to generate stable results in most cases [8]. Signatures are generated in
the following way; signatures of height zero means going through the molecule
and counting all atoms, see fig. 1b, whereas height one means that signatures
are each atom and its closest neighbouring atoms, see fig. 1c. Signatures of a
higher order are generated in the same fashion, but looking at atoms further
away from the current atom. Combining signatures from several heights, e.g.
height one to three, then forms the final descriptors.

Signature | Occurrences Signature | Occurrences
CN=C=0 C 2 CN 1
N 1 CN=C 1
0 1 N=C=0 1
C=0 1
(a) A molecule in (b) Signatures using height 0 (c) Signatures using height 1

SMILES format

Figure 1: Example of how signature generation is performed. Signatures
are generated from the molecule in fig. (a) by iteratively going through each atom
in the molecule and counting the number of occurrences of each signature. A
signature is the current atom and its neighbouring atoms at a specific height.
Using height 0 means only looking at the current atom, height 1 means looking at
the neighbouring atoms at maximum 1 chemical bound away.

Once the signatures are generated, they have to be transformed into vec-
tor form by associating a unique number(ID) to each unique signature. Each
molecules signature can thus be represented by vectors, which can be used
in the subsequent machine learning. The signature to ID mapping must be
kept so that new molecules will have the same mapping when generating
signatures for these molecules.

11

2.2 Machine learning

Machine learning is a big field and this report will not go into any greater
depth of the subject. This section will only give a brief overview of the
most necessary concepts. The important aspect is that by using the molec-
ular descriptors of molecules with known physical or biological properties,
it is possible to build models that can predict the same properties for new
molecules. There are several papers proving that machine learning algo-
rithms are applicable for the field of pharmaceutical bioinformatics and drug
discovery, see for instance [9], [10] and [11].

Machine learning can be divided into several systematic fields, each trying
to solve one type of problem. In Classification problems, each record (in this
case molecule) can be part of one or several classes. The classes are discrete,
for instance a molecule can be binding or non-binding, toxic or non-toxic. In
Regression problems, each record has a continuous value of the quantity that
is modelled. This value could be any type of physical or biological property,
for instance the binding affinity of a drug to the target protein or the degree
of solubility of a molecule in a solution.

The mathematical formulation in both classification and regression is that
each record can be described by a vector of descriptors, X , and the outcome,
Y. Each sample can thus be described by the pair ()? ,Y). The outcome, Y,
is the class or classes that the sample is part of in a classification problem
and the value of the modelled property in a regression problem.

Solving classification and regression problems can be done by several al-
gorithms, and picking the best algorithm for your problem can be hard.
Decision trees, Neural Networks, Linear and Logistic regression and Support
vector machines (SVMs) are examples of popular machine learning algo-
rithms for classification and regression problems. This thesis has tested two
types of linear regression algorithms, those which were already implemented
in the Spark machine learning library, but other algorithms could also be
used once implemented. The focus has been to evaluate the framework and
not looking at the end result.

Evaluating and validating the models can be done by for instance cross-
validation [12]. In k-fold cross-validation, the full dataset (of records with
known outcome) is split up into & non-overlapping partitions and k& models
will be created, each leaving out one of the folds. Each of the & models will
be evaluated by using the left out fold, which will give an estimate on the
predictive power of the created model. There are more variations of cross-
validation, but the key is to use known records to get an estimate of how
accurate the model is.

12

2.3 Pipeline

The main goal of this thesis is to create a Protein Target Prediction (PTP)
pipeline that can create predictive models on drug-protein interactions for
a large number of proteins. This application uses existing records of drug-
protein interactions as discussed in previous sections. The pipeline should
be flexible in how to make changes in order to apply new machine learning
algorithms, change descriptors and other parameters. One other important
factor was that preferably only one framework should be used, instead of
mixing for instance a large set of smaller programs with a high level tool for
handling the dataflow between the smaller programs. Instead, this pipeline
should be easy to ”plug-and-play” with different components.

The overall structure of the pipeline is outlined in further detail in sec-
tion 5.3, but should contain data loading, filtration, descriptor generation,
model generation & evaluation and a final report & publish step. The com-
plexity of the pipeline increases as multiple datasets are treated at the same
time, but each dataset is independent of the others. As each dataset is in-
dependent of the others, it is also possible to execute them concurrently and
in parallel if there is enough hardware resources. The reason for treating
several datasets simultaneously is that several thousands of datasets are of
interest and it is far less time-consuming to only run everything once instead
of having to run them one by one.

Apart from the main pipeline that predicts protein-drug interactions,
another relevant application for running as a pipeline came up during the
progress of the thesis work. This new application can be described as a pa-
rameter selection pipeline. The pipeline would run several times, changing
the number of records used when generating the models, and evaluate the
accuracy of the models (measured as e.g. RMSE). Both runtime and model
accuracy can thus be plotted against dataset size, making it possible to find a
suitable size for optimising accuracy but not wasting computer resources by
using too much data. The pipeline could then be run multiple times, using
different parameters in model generation and vary other parameters as well.

13

3. Spark Framework
3.1 Spark Basics

Spark [1] is an open source project under the Apache Software Foundation.
The Spark framework is written in the programming language Scala and has
APIs (Application Programming Interface) for Java, Scala and Python. This
thesis has used the version 1.3.1 of Spark, using the Scala API to make full
use of the functional aspects that Spark give the user as well as skip some of
the boilerplate code needed for the Java API. The Scala interface also made
it possible to use a library written in Java that is used for handling parsing
molecules, see Section 4.2.

This section will be a short introduction to the concepts of Spark, for a
more complete walkthrough of this framework the reader is referred to the
Spark homepage [13] and the Spark book written by Karau and Zaharia [14].

3.1.1 Spark application overview

Spark can be run in both an interactive mode (in a computer shell) or run
as a stand-alone application. In interactive mode, the programmer can is-
sue commands one by one, getting responses after each command. This
can be handy for testing purposes and for simpler applications, but build-
ing pipelines are done in a stand-alone mode. Spark programs written as
stand-alone applications consists of a driver program which runs the main
function and issues the distributed operations on the computer cluster. The
application also contains a number of executors that are running on the other
machines on the computer cluster, each storing part of the distributed data
and available to perform operations on that data once a distributed opera-
tion is issued from the driver. The physical distribution of driver program
and executors depend on how the programmer runs the application on the
cluster, where both driver and executors have definable number of cores and
main memory. The Spark framework will then handle distribution of the
driver and executor processes on the cluster.

3.1.2 Memory model - RDDs

The main abstraction used in Spark is the Resilient Distributed Dataset
(RDD) [15]. This data structure provides an interface towards data that
is distributed over many machines physically, letting the programmer only
having to deal with one object and not be concerned with where data is lo-

14

cated. RDDs can contain any type of Scala, Java or Python objects and even
sets of objects. An important feature of RDDs is that they are immutable,
meaning that an RDD cannot be changed once it has been created. Forcing
RDDs to be immutable simplify things for the framework, not having to deal
with updates, synchronisation and issues tied to this. RDDs support two
types of operations; transformations and actions.

Transformations are operations that act on one or more existing RDDs
and produces a new RDD. These operations are coarse-grained, affecting
the entire data structure instead of individual records. Transformations are
lazily evaluated and will not be executed right away; instead the framework
will build lineages of transformations and only execute the lineages once the
program encounters an action. The basic transformation operations includes
the higher order functions map and filter, that either maps a function to
each element in the RDD or filters the RDD based on a function. There are
also transformations that combine RDDs, for instance union and join.

Actions are operations that compute non-RDD results, such as storing an
RDD to file, counting the number of records in an RDD or computing the sum
off all values in an RDD. Once actions are encountered, Spark will check the
lineage and dependencies to optimize the computations. The optimisation
is done by grouping transformations together, and thus only pass over the
data once, Spark will also try to omit transformations that the result do not
depend on.

RDDs also support some other important features such as persisting,
which means that an RDD can be stored in main memory (or on disc if
there is not enough space in main memory) once it has been computed. The
default principle is that once an action is encountered and the lineage has
been used to compute the result, the complete lineage will be re-computed
next time an action is called even though some parts might include the same
RDDs. Persisting is very favorable in applications that have iterative tasks
for instance, or simply where the same RDDs are used multiple times. Spark
also includes fault-tolerance, enabling a long run to recover even if machines
crashes during a run. This is done both by using checkpointing and by using
the lineages, only data that is lost and is needed in succeeding steps in the
program will be recomputed.

3.2 Spark input flexibility
Spark is very flexible in what kind of file format that it reads, accepting

all Hadoop-supported file formats (e.g. files in the normal file system and
HDFS [16]). Switching between different formats is as easy as adding the

15

prefix "file://” to files in the normal file system and omitting it when using
HDFS-files. This is another reason to why testing code can be done on a
local laptop without the need to install huge HDFS-files and the same code
can later be used on a cluster, once using really big data.

3.3 Spark compared to High Performance Com-
puting

Traditional High Performance Computing (HPC) has long been the solu-
tion for big computational problems and is one of the potential competitors
for Spark. HPC programs usually considers computation and data place-
ments jointly, moving data from storage during computation or as a separate
task [17, 18]. In a distributed computing setting and in applications that uses
large amounts of data, this strategy runs into problems such as congested
networks because of all data needed to be sent between computer nodes,
leading to deteriorating performance. This has lead to the new paradigm of
data-aware scheduling in data intensive applications [17]. Spark and other
data-aware scheduling frameworks take another approach to data, and in-
stead schedules computations to were data is located. This approach is often
very successful, especially when the amount of data is large.

Another difference between HPC and Spark is that HPC often requires
running on specialised HPC-clusters. These HCP clusters are usually referred
to as supercomputers which uses complex interconnections to facilitate fast
communication between cluster nodes. Spark on the other hand runs on
commodity hardware [1], which is cheaper and can be rented by cloud services
from e.g. Amazon [19].

Spark is however not replacing HPC in compute-intensive applications
were bandwidth is not the limiting factor. HPC is usually written in lan-
guages such as C, C++ or Fortran to achieve high performance, and outper-
forms Spark in compute-intensive applications. For applications that both
crunches lots of data and are compute-intense, the mix of HPC and data-

aware scheduling frameworks would be to prefer, studied for instance by
Luckow et al. [20].

3.4 Spark Machine Learning
Spark comes with a library for machine learning, called MLIlib [21] that con-

tains implementations of some commonly used machine learning algorithms.
This library builds a basis for machine learning applications and is continually

16

improved and extended with new functionality (new algorithms and optimi-
sation methods). One of the reasons for choosing Spark for this project was
that there already existed the MLIlib, making it easy to assess the applica-
bility of Spark when constructing pharmaceutical pipelines. As Spark is an
open source software, it is also possible for others to implement new func-
tionality and publish their results, such as Lin et al. [22] when their group
implemented logistic regression and linear SVMs in Spark. It is also possible
that the research group that I work for now implements their own algorithms
that are more suitable for their applications.

It is worth mentioning that there has been no direct assessment of how
well the machine learning works in Spark as this work only focuses on how
to build pipelines using Spark. Optimising the pipeline with the correct
algorithms and optimisation methods will be done outside the scope of this
thesis.

3.4.1 Spark ML Pipelines

Spark Pipelines APT [23] is a promising feature which enables a user to build
and set up their own machine learning pipelines in an easy way. This feature
came in the 1.2 version of Spark and it is currently (in version 1.3.1) only
an alpha component, meaning that it might encounter some big changes
before the API becomes stable. This feature is tightly linked to the Spark
MLIib and enables the user to think of pipelines at a higher abstraction level.
Currently, the ML pipeline API forces the user to use DataFrames, which
is the datatype that Spark SQL uses. DataFrames are similar to RDDs
in being lazily evaluated, distributed and fault-tolerant, but differs in what
type of data they can store. Where RDDs can store any type of user-defined
classes, DataFrames can like SQL databases only store structured data with
pre-defined types (e.g. numerical values, strings and more complex types).

The data used in pharmaceutical pipelines are not as structured as typical
databases so the lockdown to DataFrames did not seem promising. Another
disadvantage is that each step in an ML pipeline needs to pass a DataFrame,
which some of the steps in the PTP pipeline should not do (e.g. when creating
HTMTL-files). It would probably be a working approach to use ML pipelines
as a part of the complete pipeline, but the time restraint of the project did not
allow for this approach to be further investigated. However, the ML pipelines
do support DAG (Directed Acyclic Graph) pipelines which is a desired feature
and also model selection via cross-validation [23]. Furthermore, it is usually
better to use techniques and methods that others use, as these methods get
better tested. If more time was available, ML pipelines might be worth
evaluating in greater detail.

17

3.5 Spark Drawbacks

Spark has many great features that make it a good framework for implement-
ing the pipelines in this thesis work. However, there are a few features that
can be described as negative. First of all is the restriction of only allowing
for non-nested Spark-operations, meaning that multiple transformations or
actions cannot be used within each other. In some cases it is possible to
refactor the code to go around this shortcoming, but in other cases it is not
that simple.

Here follows one case where refactoring is possible. Consider that you
have one RDD containing your data of interest, another RDD containing a
lookup-table and that you wish to join the information in these. One could
be tempted to map over the data-RDD and for each record do a lookup in
the lookup-RDD. This produces nested operations and is thus not supported.
Instead, refactoring has to be done by either collecting the lookup-RDD into
a non-RDD datastructure (which can only be done if the lookup-RDD is
small enough), or do some transformations to both of the RDDs so that a
join can be performed between them.

Another problem, which cannot be refactored, is the following. Consider
that you have a fully functional Spark workflow that uses Spark operations
onto some dataset. Then consider that you wish to reuse this workflow several
times, for instance with different input parameters or different datasets. Then
it would be preferable to do a map over the parameters or datasets and apply
the workflow on each setup. This could thus, in theory, allow Spark to load-
balance several dataset-runs on the available data resources. However, this
is not allowed as both the upper level’ map and the 'lower level’ workflow
uses Spark operations, leading to nested operations. This issue is further
discussed and, to some extent, solved in Section 5.3.

Another disadvantage is that Spark is optimised for creating lazy trans-
formations and only a few actions leading to actual work done on the data.
However, if the pipeline needs to collect statistics during a run or decide how
the pipeline should act in a branching situation, then an action is required
for each time some information is needed. This means that a lot of actions
are spawned and slows down the run time significantly compared to the work
done for machine learning and other 'useful’ operations (see Section 6.2.1).
However, the Spark developers have a library with asynchronous RDD ac-
tions [24] which allows the user to execute non-blocking actions, without
having to wait for the result before continuing execution of the program.

18

4. Materials and Methods
4.1 Spark & Hadoop

Several versions of both Spark [13] and Hadoop [25] have been used during
the work in this thesis, using newer versions as they are launched as stable
versions by the Spark community. The versions used for creating the final
results seen in the Results section were done with Spark version 1.3.1 built
for Scala 2.11 and using Hadoop version 2.5.2.

4.2 Chemistry Development Kit

The Chemistry Development Kit (CDK) [26] is an open source toolkit im-
plemented in Java that has functionality for handling diverse applications
within chemical manipulations on molecules. This toolkit can read and write
chemical data in different file formats and perform manipulations on the
loaded molecules, among other functionality. Both Scala and Java runs in
the Java Virtual Machine and Scala provides seamless integration of Java
code, making CDK easy to integrate in the implementation. CDK version
1.5.10 was used for handling the parsing of molecules in SMILES format and
creating descriptors for succeeding ML steps.

4.3 Openstack cluster

Uppsala University’s resource for high performance computing, UPPMAX [27],
was used for testing and doing full scale runs. UPPMAX has a new cloud
computer cluster that uses Openstack [28] for virtualisation and handling of
computer resources. The computer resources were set up with an image of
Ubuntu Precise Pangolin, using m1.xlarge as 'Flavor’, giving each machine 8
virtual CPU-cores (vCPUs) and 16 GB of virtual memory.

4.4 ChEMBL

Data used for testing was obtained from the open database ChEMBL [29, 30]
which is a curated database for bioactive drug-like substances. The actual
data and results were not important for the project, as it is mainly focused
on building the pipeline and evaluating Spark. Data was collected by using

19

parameters used in previous work done by the research group, collecting data
that should be similar to what is later to be crunched in the pipeline.

4.5 FreeMarker

The open source template engine FreeMarker [31] was used for creating
HTML-pages in the ending stages of the pipeline (used for reporting statistics
about the run). This software attempts to use the MVC pattern (Model View
Control), to separate the data model from the visual design. FreeMarker is a
Java library that is fairy lightweight and facilitates fast generation of HTML-
pages and served as a proof of concept for how to create the reports within
the Spark framework.

4.6 Programming environment

Programming was done in the OSx operating system, using Eclipse as IDE.
This setup was used to mimic the behaviour that will be used by the research
group later on. Eclipse has built in support for using Apache Maven [32] for
project management and build automation, in this way making it easy to
deploy a new pipeline version to the cluster with only a few commands.
Maven also takes care of dependencies to other libraries and downloads all
extra code you need.

20

5. Implementation

This chapter of the report will outline how the pipelines were implemented
using Scala and Spark. To illustrate the flow of data in the two pipelines,
flowcharts have been used. Readers not familiar with these types of illustra-
tions are referred to Appendix A for a cheat sheet of the symbols used in
these flowcharts.

5.1 Pipeline API

The pipelines created in this thesis builds on the idea of pipelines given in the
exercises of AMPCamp 5 [33] given at the AMPLab [34] faculty at Berkeley
University. A pipeline will in this report be defined as a workflow composed
of nodes. A node can be any functional unit and can be connected to another
node only if their corresponding input and output types match each other,
see fig. 2. Pipelines themselves can be reused by connecting them to other
nodes or pipelines, making it possible to assemble big pipelines out of smaller
sub-pipelines.

PipelineNode PipelineNode
e e
r R r R
—A> Node | —B>» —B > Node Il —C>»
Pipeline
e
r R
—A> Node | —B—> Node Il —C>

Figure 2: The basic structure of a pipeline and its components. A pipeline
is composed of PipelineNodes, where nodes can be chained or linked together if
the output type of the first node matches the input type of the second node. The
pipeline composed by node I and II in the figure can now be used as a node itself,
having input type A and output type C.

The implementation of the Pipeline API was based on the type-safe func-
tional programming that Scala supports [33]. There are three basic things
that is needed for defining pipelines using this method. First the PipelineAPI

21

needs to be added to your project, seen in fig. 3. This "API’ defines the basic
type that is needed, PipelineNode, which is the only type that is needed
when composing linear (non-branching) pipelines and is taken from the AM-
PCamp exercises [33]. PipelineSplit and PipelineBranch are types that
I have defined to be able to incorporate branching pipelines as well.

object PipelineAPI {
type PipelineNode[Input, Output] = (Input => Output)
type PipelineSplit[T,S] = (Either[T,S] => Any)
type PipelineBranch[Input] = (Input => Any)

}

Figure 3: Code for defining the Pipeline API. The most important func-
tion is the PipelineNode, which can be used by itself to create linear pipelines.
The PipelineNode is taking two type parameters, specifying the input and output
types of a function. (Input => Output) defines a function that takes one param-
eter of type Input and will return a result of type Output. PipelineSplit and
PipelineBranch are types that help when creating branching pipelines, where
PipelineSplit can act as a decision for how to pass data (depending on the
data). PipelineBranch can add branching by sending the same data to multiple
processes, which all can execute indenpendent of each other (depending on how it
is implemented).

Once the pipeline API is defined, the second thing that is needed is to
implement the PipelineNode type in all of the nodes that you wish to take
part of the pipeline. This can be done in Scala by either creating an Object
or a Class and extending PipelineNode, see fig. 4. The only thing that is
needed except extending PipelineNode on line 1-2 is to override the apply-
function (line 4). This apply-function is the corresponding function in the
PipelineAPI, taking a parameter of type Input and returning a result of type
Output. fig. 4 illustrates a minimal working example and the code within
the apply-function is just as any other function, it can call other functions,
create objects etc.

The third and final step of creating a pipeline is outlined in fig. 5. A
pipeline can either be created by itself or can be composed of several nodes,
each implementing the PipelineNode type. Subsequent nodes are chained
together using the Scala function andThen, which simply forwards the output
of the first function as input to the following function. The object, pipeline,
on line 5 in fig. 5 is a function having the same input type as of DataLoader
and the same output type as of Report.

22

N

~

9

class Dataloader (Q@transient val sc: SparkContext)
extends PipelineNode[String, RDD[String]] with Serializable {
// Override the apply function
override def apply(filePath: String): RDD[Stringl= {
sc.textFile(filePath)
}
}

Figure 4: Implementing a PipelineNode. To implement a PipelineNode you
need to extend the PipelineNode type and specify the type parameters. This is
a minimal example that takes a path to a file and reads the file into an RDD
and returns it. The SparkContext sc is needed for reading files and is markt as
@transient because it must not be serialised during execution.

// Using a single PipelineNode
val dataloader = new Dataloader(sc)
val data = dataloader("<some file path>") // Uses the apply
function
// Combining several nodes
val pipeline = new Dataloader(sc) andThen
new ExtractData andThen
new Model andThen
new Report
pipeline("<some file path>") // Executes all steps in pipeline

Figure 5: How to use PipelineNodes and combine them into pipelines.
PipelineNodes can both be used one by one, by creating an object of the class
and then calling the apply function as on line 3. Several PipelineNodes can be
combined by using the scala function andThen, which chains the result of each
apply function as input to the next (line 5-8). The combined nodes can then be
executed in the same way as a single node.

These three steps are enough for setting up complete linear pipelines and
the type system will make sure that the chaining of subsequent nodes are
correct (nodes that do not match will not compile). If the pipeline needs
branching, the PipelineSplit in the API will have to be used. This API
only needs to be implemented once and it is enough to create a new instance
for each split needed. Each splitting instance can be used as a node itself
and be added with the andThen function. An implementation and further
details can be found in Appendix B.

23

5.2 Parameter Selection pipeline

The Parameter Selection pipeline was the second pipeline implemented dur-
ing the work of this thesis, but it is somewhat simpler which makes it an
easier introduction. The overall structure of the pipeline can be seen in the
flowchart in fig. 6. This pipeline will create models and evaluate them for a
set of different training data sizes, thus evaluating the influence of amount of
training data on both the predicted error of the generated models and how
runtime will be influenced (thus looking at scaling of the algorithm).

Looking at the flowchart in fig. 6, the first step is to split the complete
dataset into a training dataset and a testing dataset. This step makes sure
that testing will always be performed on the same records to easier make a
distinction between models. Once the correct parameters have been found
using this pipeline, cross-validation (Section 2.2) can be used for getting a
better estimate on the predictive quality of the final model.

For each training dataset, the pipeline will begin by generating the signa-
tures of each molecule in the training dataset and give a mapping of signa-
tures to unique ID. The signature to unique ID mapping can then be used in
the generation of signatures for the testing data set (as these datasets must
share this mapping). Once both training and testing data is in a vector-form
that the machine learning algorithm uses, the model and evaluation can be
performed.

5.3 Protein Target Prediction pipeline

5.3.1 The structure

The Protein Target Prediction (PTP) pipeline, introduced in Section 2.3, has
one added level of complexity compared to the parameter selection pipeline.
This pipeline should take a file with multiple datasets, each dataset corre-
sponding to drug-protein inhibitory data from a unique protein. Each dataset
is thus independent from every other dataset and could be executed indepen-
dently of each other. The complete pipeline can be seen in fig. 7, where each
dataset D runs a sub-pipeline indicated by the curly brackets.

The PTP pipeline also includes steps for report and publish, where report
should generate an HTML-page with statistics about each dataset and the
corresponding model (if there is one) and the publish step should pack the
model so that it can be imported to Bioclipse [3, 4]. The reporting step is
described in Section 5.3.4 and the publish step will not be covered in this
report.

24

=

Spark)
Text/HDFS/DB
Complete
dataset
Random splitter
Training Testing
dataset dataset
—)
Signature
generation
Signature dataset Signature->ID
(training) mapping
Model generation Slgnatu_re
generation
Nx =<
Model evaluation
— —

Figure 6: A flowchart of the Parameter Selection pipeline. The flow
in the Parameter Selection pipeline follows this figure. Once the data is loaded
into Spark the complete dataset will be divided into a training dataset and a test
dataset, these partitions will be kept during the whole pipeline to always use the
same test data for evaluation. The pipeline will then perform the same sub-pipeline
(indicated by the curly brackets) several times, each with increasing size of the
training dataset. The sub-pipeline performs signature generation (construction of
descriptors), model prediction and finally model evaluation.

25

Another complexity compared to the Parameter Selection pipeline is that
the pipeline has a decision event where the pipeline should direct the flow
depending on what the data looks like at that particular point in the pipeline,
see the red rectangle in fig. 7.

Text/HDFS/DB
Dataset D

Filtration &
Signature
generation

D passed
filtration?

NG Yes

N

Model generation

Model &
Output info

Report & Publish > Bioclipse

Spark

Nx <

Figure 7: A flowchart of the PTP pipeline. This is an overview of the
complete PTP pipeline and what stages it includes, see fig. 8 for a closer look at the
stages that each Dataset D run through (sub-pipeline within the curly brackets).
The basic steps are that each Dataset D is first filtrated based on user defined
preferences (molecule size, inhibitory value etc.) and signatures are generated. If
D is still large enough to produce a good enough model it will be passed on to model
generation, model evaluation and final report/publish, otherwise the pipeline will
just generate a report on the filtration step.

26

Dataset D

Filtration &
Signature
generation

PipelineSplitter
(D passed
filtration?)

Yes

N

No Model generation
& evaluation

Report

|

Publish

Figure 8: A flowchart of the sub-pipeline in the PTP pipeline. This
flowchart shows the sub-pipeline within the complete PTP pipeline (the curly
brackets in fig. 7). Here the decision point in the previous flowchart has been
changed into a process that will direct the flow in the pipeline. Datasets that have
too few records to be likely to generate models of high quality do not pass the
model generation & evaluation step and will go directly to the Report € Publish
steps.

5.3.2 Implementation

The implementation of the PTP pipeline is rather straightforward and builds
on the PipelineAPI discussed in the beginning of this chapter. Once each
process in fig. 7 and 8 are implementing the PipelineNode type, they can
be composed into the complete pipeline, see fig. 9. Take specially note of
the high level of abstraction that can be achieved in this way, as the re-
semblance between the flowchart and implementation is very similar. The
object, pipeline, that is created on line 12 corresponds the sub-pipeline in
fig. 8 and it can be used for each of the datasets constructed on line 3.

27

// Load file and extract all datasets (one each for each protein)
val loader = new DataLoader(sc) andThen new ExtractTargetDatasets
val datasets = loader(filePath)
// Define the branches
val left = new ReportFailure(outputDirectory) andThen// Left branch
new Publish()
val right = new SignatureToLabeledPoint(sc) andThen // Right branch
new MakeMLModel(sc) andThen
new ReportSuccess(output_directory) andThen
new Publish()
// Complete pipeline
val pipeline = new FilterGenSignatures(sc) andThen
new PipelineSplitter(left, right)

Figure 9: Code for defining the PTP pipeline. The pipeline can be defined
in a high level approach, note the similarity to the flowchart in fig. 8. The con-
structor of PipelineSplitter takes two parameters (left and right) which is the
two branches that can be executed, depending on the output from FilterGenSigna-
tures. FilterGenSignatures gives either an OutputObject that contains information
about the filtration or it gives an (RDD, OutputObject) tuple that will be sent for
further execution in the pipeline.

5.3.3 Improving performance - concurrent program-
ming

The key thing in the PTP pipeline is that several datasets are present, each
being independent of all other datasets. This means that potentially the sub-
pipeline which performs signature generation, modelling and report/publish
can be performed in parallel as long as the machines has spare computer
resources to do so. This lead to the creation of a higher order function (that
is, a function that takes another function as input) which can take any user-
defined pipeline and execute the pipeline with an array of RDDs as input.
Each dataset can then run in a separate thread, which is allowed by Spark,
and can be scheduled on the cluster to fully utilize all computer resources
that are available. The improvement in runtime is shown in Section 6.2.1.
The higher order function can be called as asyncPipeline(pipeline,
datasets) where pipeline and datasets are the objects defined in fig. 9.
asyncPipeline is simply a higher order function with the signature def
asyncPipeline[T,S: ClassTag] (pipeline: (T=>S), input: Array[T]):
Array[S], meaning that the type system will force pipeline to have the
same input parameter as the array input has and that the function will

28

return an array of the type which pipeline has as return type. Under the
hood this function uses Scala Futures [35] and corresponding Await to spawn
a new thread for each dataset.

5.3.4 Reporting statistics as HTML

The output of the PTP pipeline contains both the generated model and
statistics for that model. Statistics should be in HTML-format so that it
can be used in the Bioclipse framework, thus adding the requirement of
being able to write HTML-files within the pipeline on a computer cluster.
The Freemarker [31] template engine was used and found to make creation
of HTML-pages fairly straightforward. To write files on the cluster, the
application must be executed in yarn-client mode instead of the normal yarn-
cluster mode. This changes how the cluster executes the application, either
by considering it to be executed externally (client mode) or internally on the
cluster (cluster mode).

Examples of how the output HTML-files could look like can be seen in
fig. 10 and 11. These only serves as proof of concept and the final HTML-files
should look a bit nicer and could contain other information.

29

Activin receptor type-1 : Failed dataset
This dataset was unfortunately skipped due to not fulfilling the filtration requirements. See further information below.

Data Info

Initial Dataset Size: 31
Dataset Size after filtration: 30

Filtration options

Filtration has been performed with the following options:

Option Value
minSignatureHeight

==Y

maxSignatureHeight||3
minNumRecords 50

minHeavyAtoms 5

maxHeavyAtoms ||50
ic50_threshold 10,000

Figure 10: An example HTML-page for a failed dataset. If a dataset is
considered to small for generating models on, the pipeline will skip model genera-
tion and only write out statistics about the filtration step. This is an example of
how such a page could look like and is how it is currently managed in this imple-
mentation. The final HTML-report is likely to look different as this just gives a
proof of concept for the ability to write HTML within Spark.

30

3-phosphoinositide dependent protein kinase-1

Model information

The model has the Mean Square Error (MSE) of: 2,705,698.213. The model used was Mock_linearRegression, using
the following options:

Option Value
numlterations||500

model_name |[LinearRegressionWithSGD
stepSize 0.001

Data Info

Initial Dataset Size: 343
Dataset Size after filtration: 269

Filtration options

Filtration has been performed with the following options:

Option Value
minSignatureHeight

—

maxSignatureHeight |3
minNumRecords 50

minHeavyAtoms 5

maxHeavyAtoms |50
ic50_threshold 10,000

Figure 11: An example HTML-page for a successful dataset. This is
how the output in HT'ML can look like for a dataset that goes through the com-
plete pipeline. The page contains model information (parameters, algorithm and
RMSE), data information (number of records used in model) and filtration param-
eters used. The final HTML-report is likely to look different as it just give a proof
of concept for the ability to write HI'ML within Spark.

31

6. Results

6.1 Parameter Selection pipeline

The Parameter Selection pipeline outputs the execution time and the root
mean squared error (RMSE) of the model when applied to an external test
set as a function of training set size, see fig. 12. This pipeline could also be
used with other machine learning algorithms or new parameter values and
evaluate these against each other. The Parameter Selection pipeline is in
this case used to predict on Log D values for different drug-like substances,
which is a measure of lipophilicity (how well the drug can penetrate the lipid
bilayers in cell walls), but the pipeline can be used for evaluating models on
a variety of biological or physical properties. The total dataset size can in
these applications be in the order of a few hundreds of thousands and it is
also possible to pick a dataset size, which takes both RMSE and runtime into
consideration.

60 7 - 10

- 9

50 o

c 40 A -7
\E, _GCI_}J)
2 30 -5 =
5 4

X 20 = L,

10 1 [2

-1

0 -)

0 100 200 300 400 500 600
Training dataset size (thousands of records)

Figure 12: Output from the Parameter Selection pipeline. This is an
example of how the output from the Parameter Selection pipeline could look like.
The RMSE (Root Mean Squared Error) is behaving strangely because of the pa-
rameters in the model optimisation have not been tuned yet, which can be done
later with for instance a grid search. This run was performed with 9 worker nodes,
each with 7 vCPUs and 14 GB virtual memory.

32

6.2 Protein Target Prediction pipeline

The PTP pipeline uses considerably smaller datasets compared to the Pa-
rameter Selection pipeline. Two different datasets have been tried, either
the complete dataset composed of 1940 proteins with in total 484 thousand
records of drug-protein interactions or a subset using only 263 proteins and
80 thousand records. Currently only the small dataset has been able to run
successfully, resulting in the speedup graph in fig. 13 for the asynchronous
version of the pipeline. The speedup graph shows a linear speedup going
from one to five nodes, but then the speedup decreases. This is probably due
to the dataset being too small to benefit of the added nodes.

There has been issues when running the bigger dataset on the computer
cluster, which are not yet solved. This might be due to a severe crash of the
cluster a few weeks earlier, which lead to some changes in the cluster setup.

2,5 1

Speedup
o

0,5 1

0 2 4 6 8 10
Number of Worker Nodes

Figure 13: Speedup for the PTP pipeline using a small dataset and
asyncPipeline. The small dataset contains 263 protein datasets and in total
more than 80 thousand records. The speedup is good initially when adding new
worker nodes but levels off quickly, probably due to the dataset being too small
to gaining more by using more machines. This speedup is generated by using the
final PTP pipeline, which uses the asyncPipeline discussed in Section 6.2.1. Each
worker node has 7 vCPUs and 14 GB virtual memory.

33

6.2.1 Concurrent execution to improve performance

As mentioned earlier, the PTP pipeline runs several protein datasets at the
same time, while each dataset is independent from the others. Evaluat-
ing the gain in runtime while using the asyncPipeline function which can
run datasets concurrently compared to the naive approach of running each
dataset one by one gave a respectable speedup of more than 5 times when us-
ing a setup with 9 computer nodes, each having 7 vCPUs and 14 GB virtual
memory, see fig. 14. This speedup is probably due to that each individual
dataset is fairly small, and it was possible to repartition each dataset to only
be stored on one computer node. Thus it is possible for the driver program to
run several operations concurrently as they will operate on different nodes,
keeping in mind that the driver schedules operations based on data locality.
The difference in using the normal, blocking, RDD actions and their non-
blocking counterparts in the asyncRDD library [24] gave a 12% increase in
runtime for blocking over non-blocking, fig. 14. This was found when swap-
ping the blocking count to the non-blocking countAsync, when collecting
statistics about the initial dataset size. Adding one extra action thus lead
to a 12% increase in runtime, making it important to use non-blocking calls
whenever possible, and try to restrict the number of actions in your code.

34

Runtime (min)

Complete PTP Executing datasets = Executing datasets
pipeline asyncronously asyncronously, using
countAsync

Figure 14: Comparison between serial and asynchronous code. These
runs were performed using the small dataset in the PTP pipeline and 9 worker
nodes, each having 7 vCPU cores and 14 GB virtual memory. The leftmost bar
shows the runtime of the final pipeline when executing all datasets one by one
in a synchronous fashion. The middle bar shows the runtime when executing all
datasets asynchronously with the asyncPipeline function. The rightmost bar
shows the final pipeline, which uses the non-blocking countAsync function for
collecting statistics. The label above the two rightmost bars are their correspond-
ing speedup compared to the leftmost bar. Speedup is defined as the quotient
Runtimeyq/ Runtimeney.

35

7. Discussion
7.1 Modularity

The pipelining approach used in this thesis made it easy to plug and play with
different components without making further changes. If e.g. the input is
formatted in a new way or perhaps in the form of a database instead of text-
file, it is enough to write a new parser or make changes to the current one, and
nothing else needs to be changed in the pipeline. This is important as new
descriptors, machine learning algorithms and other factors should be easy
to switch between, making it easy for the end user. The PipelineSplitter
class also provides an easy view of how a pipeline should branch of, depending
on different events and make it easy to programmatically define the complete
pipeline in a concise way. It is also beneficial to be able to reuse pipelines
in bigger pipelines so that sub-pipelines can be defined separately, making it
easier to change smaller parts of the pipeline.

7.2 Alternative frameworks

Spark is indeed a promising framework for this kind of applications, especially
as they put time into developing the machine learning pipeline library [23].
However, there are many up and coming projects with similar goals of Spark,
such as the Flink [36] and the Crunch [37] frameworks. These too are open
source projects, part of the Apache Software Foundation.

Flink is a framework that has very much in common with Spark as both
uses in memory computation and sits on top of Hadoop. The difference
between the two is that Flink was built for accommodating cyclic work-
flows efficiently and that the internal structure differs. Flink was shown to
be faster in the iterative process of finding k-means, in a study at Sidney
University [38] were Spark, Hadoop and Flink was compared. Hadoop was
outperformed greatly by the other two frameworks because of its lack of in
memory storing. The downside of Flink is that it does not, at this point,
support fault-tolerance as in Spark where a fault easily can be fixed by com-
puting the lineage of that data and recompute only what is necessary.

Apart from looking at frameworks that can incorporate everything them-
selves, there is another option to how to build pipelines. There exists several
workflow tools, e.g. Luigi [39] and Nextflow [40], with as many different
approaches and flavours of how to create pipelines using separate tools. By
using these types of high level workflow tools, one could write each step in

36

the current pipelines as independent programs and simply pipeline them to-
gether using any of these workflow tools. In very big pipelines and workflows,
this might be the preferred way but this has not been investigated further
within this thesis. The research group is currently using the Luigi frame-
work but prefers using only one framework as the Luigi approach had many
drawbacks, such as the need for using several bash-programs to handle file
transfers, need to write intermediate steps to file etc.

7.3 Spark in non-Big Data applications

Spark is design to be a Big Data [2] framework, meaning that it is focused
on handling large amounts of data, usually in the range of hundreds of gi-
gabytes and up to petabytes [41]. Big Data applications has huge gains
in having data aware scheduling and distributed data between nodes (e.g.
HDFS), which can minimise the amount of data sent between nodes. The
typical Big Data applications are to crunch really big log-files and perform
business intelligence queries on those, tasks that have little in common with
the pipelines implemented in this thesis. The pipelines implemented in this
thesis have used files of up to 100 megabytes of data, several orders of mag-
nitude smaller than what is generally considered as Big Data. Instead of the
rather uncomplicated log-files, the pharmaceutical problems have molecule
data which requires the CDK library or similar software to just be able to
read the data and generate descriptors. Overall, these properties makes these
pipelines a lot more compute intensive than the general Big Data applica-
tions, which typically would push users towards HPC-environments to solve
their problems.

37

8. Conclusions

Spark has been found to provide good means for the generation of pipelines
for pharmaceutical purposes. The pipelines generated in this work have
shown how implementation can be done in a straightforward way, program-
matically very similar to the corresponding flowcharts. These pipelines can
be expanded with further components and all components can be used in a
plug-and-play fashion, letting the type system make sure that non-matching
components are not linked to each other. A pipeline can also be considered
as a pipeline-stage by itself and be reused in bigger pipelines, making it easy
to compose bigger pipelines and reuse components.

Spark provides a good foundation to build on top of, as it has libraries for
both machine learning and machine learning pipelines. These libraries are
likely to be extended in the future as Spark has a big community of developers
and open source supporters. The Spark ML pipeline is a promising feature
that might be worth looking further into, it does not support the creation of
the complete PTP pipeline developed in this thesis, but it might be useful to
have as a sub-pipeline for handling the machine learning parts. The benefits
of including ML pipelines would be the built in support for cross-validation,
parameter grid searches and added testing that the open source community
provides.

Finally, Spark might not be the optimal solution when only looking at
the runtime, but it has many great advantages in other areas. The Spark
framework simplifies the code writing as the programmer do not need to
think about the scheduling and sending of data between processes, these
issues are handled completely by the framework. Furthermore, Spark can
be used as the 'complete’ tool for creating the entire workflow, instead of
mixing several different tools to automate things. As the goal for the project
was to evaluate the use of Spark in creating pharmaceutical pipelines, the
result has been that Spark do provide the means necessary to create pipelines
and it does so with a good scaling in a distributed environment. Execution
time also seams to beat the previous implementation that the group had for
the PTP pipeline, which was a HPC-implementation using Luigi as workflow
manager.

38

Acknowledgements

First I would like to thank my supervisor Ola Spjuth for the opportunity
to do this highly educational master’s thesis at the FarmBio institution.
The project has not only provided insights into Spark and pharmaceutical
bioinformatics, but also taught me important concepts used in development
of software and in research, concepts that will be important in the rest of my
career.

I also wish to thank my family and my girlfriend Ellen for supporting
me during all these years, trying to combine full time studies with a cycling
career. This time has not been easy on any of us, but you have made it
possible for me to accomplish this.

39

References

[1] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. “Spark: Cluster Computing with Working Sets”. In:
Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud
Computing. HotCloud’10. Boston, MA: USENIX Association, 2010,
pp- 10-10.

[2] Rajendra Kumar Shukla, Pooja Pandey, and Vinod Kumar. “Big Data
Frameworks: At a Glance”. In: International Journal of Innovations €
Advancement in Computer Science 4.1 (2015).

[3] Ola Spjuth, Tobias Helmus, Egon Willighagen, Stefan Kuhn, Martin
Eklund, Johannes Wagener, Peter Murray-Rust, Christoph Steinbeck,
and Jarl Wikberg. “Bioclipse: an open source workbench for chemo-
and bioinformatics”. In: BMC' Bioinformatics 8.1 (2007), p. 59. ISSN:
1471-2105.

[4] Ola Spjuth, Jonathan Alvarsson, Arvid Berg, Martin Eklund, Ste-
fan Kuhn, Carl Masak, Gilleain Torrance, Johannes Wagener, Egon
Willighagen, Christoph Steinbeck, and Jarl Wikberg. “Bioclipse 2: A
scriptable integration platform for the life sciences”. In: BMC Bioin-
formatics 10.1 (2009), p. 397. 1SSN: 1471-2105.

[5] Narendra Nyola, G Jeyablan, M Kumawat, Rajesh Sharma, Gurpreet
Singh, and N Kalra. “Pharmacoinformatics: A Tool for Drug Discov-
ery”. In: Am. J. PharmTech Res. 2.3 (2012). 1SSN: 2249-3387.

[6] Corwin Hansch. “Quantitative approach to biochemical structure-activity
relationships”. In: Accounts of Chemical Research 2.8 (1969), pp. 232
239.

[7] Jarl Wikberg, Martin Eklund, Egon Willighagen, Ola Spjuth, Maris
Lapins, Ola Engkvist, and Jonathan Alvarsson. Introduction to phar-
maceutical bioinformatics. Oakleaf Academic, 2010.

[8] Jonathan Alvarsson, Martin Eklund, Ola Engkvist, Ola Spjuth, Lars
Carlsson, Jarl ES Wikberg, and Tobias Noeske. “Ligand-based target

prediction with signature fingerprints”. In: Journal of chemical infor-
mation and modeling 54.10 (2014), pp. 2647-2653.

[9] Ovidiu Ivanciuc. “Drug design with machine learning”. In: Encyclope-
dia of Complexity and Systems Science. Springer, 2009, pp. 2159-2196.

40

Vladimir V Zernov, Konstantin V Balakin, Andrey A Ivaschenko, Niko-
lay P Savchuk, and Igor V Pletnev. “Drug discovery using support vec-
tor machines. The case studies of drug-likeness, agrochemical-likeness,
and enzyme inhibition predictions”. In: Journal of chemical informa-
tion and computer sciences 43.6 (2003), pp. 2048-2056.

Robert Burbidge, Matthew Trotter, B Buxton, and S Holden. “Drug
design by machine learning: support vector machines for pharmaceu-

tical data analysis”. In: Computers & chemistry 26.1 (2001), pp. 5—
14.

Payam Refaeilzadeh, Lei Tang, and Huan Liu. “Cross-validation”. In:
Encyclopedia of database systems. Springer, 2009, pp. 532-538.

Apache Spark. URL: https://spark.apache.org/.

Holden Karau, Andy Konwinski, Patrick Wendell, and Zaharia Matei.
Learning Spark. First. O’Reilly Media, Feb. 2015.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and
Ion Stoica. “Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing”. In: Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation. USENIX
Association. 2012, pp. 2-2.

A Kala Karun and K Chitharanjan. “A review on hadoop—HDFS in-
frastructure extensions”. In: Information & Communication Technolo-
gies (ICT), 2013 IEEE Conference on. IEEE. 2013, pp. 132-137.

Tevfik Kosar. “A new paradigm in data intensive computing: Stork and
the data-aware schedulers”. In: Genome 40 (2006), p. 50.

Tevfik Kosar and Mehmet Balman. “A new paradigm: Data-aware
scheduling in grid computing”. In: Future Generation Computer Sys-
tems 25.4 (2009), pp. 406-413.

Amazon Elastic Compute Cloud (Amazon EC2). URL: http://aws.
amazon.com/ec2/.

Andre Luckow, Mark Santcroos, Ashley Zebrowski, and Shantenu Jha.
“Pilot-data: an abstraction for distributed data”. In: Journal of Parallel
and Distributed Computing (2014).

Spark Machine Learning Library (MLIlib) Guide. URL: https://spark.
apache.org/docs/1.3.1/mllib-guide.html.

41

https://spark.apache.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
https://spark.apache.org/docs/1.3.1/mllib-guide.html
https://spark.apache.org/docs/1.3.1/mllib-guide.html

22]

[30]

Chieh-Yen Lin, Cheng-Hao Tsai, Ching-Pei Lee, and Chih-Jen Lin.
“Large-scale logistic regression and linear support vector machines us-
ing Spark”. In: Big Data (Big Data), 2014 IEEE International Confer-
ence on. IEEE. 2014, pp. 519-528.

Spark ML Programming Guide. URL: https://spark.apache. org/
docs/1.3.1/ml-guide.html.

Spark Asynchronous RDD Actions API. URL: https://spark.apache.
org/docs/1.3.1/api/scala/index.html#org.apache.spark.rdd.
AsyncRDDActions.

Apache Hadoop. URL: http://hadoop.apache.org/.

The Chemistry Development Kit. Dec. 2014. URL: http://sourceforge.
net/projects/cdk/.

Uppsala Multidisciplinary Center for Advanced Computational Science.
URL: http://www.uppmax.uu.se/.

Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. “Open-
Stack: toward an open-source solution for cloud computing”. In: Inter-
national Journal of Computer Applications 55.3 (2012), pp. 38-42.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark

Davies, Anne Hersey, Yvonne Light, Shaun McGlinchey, David Michalovich,

Bissan Al-Lazikani, et al. “ChEMBL: a large-scale bioactivity database
for drug discovery”. In: Nucleic acids research 40.D1 (2012), pp. D1100—
D1107.

A Patr’cia Bento, Anna Gaulton, Anne Hersey, Louisa J Bellis, Jon
Chambers, Mark Davies, Felix A Kriiger, Yvonne Light, Lora Mak,
Shaun McGlinchey, et al. “The ChEMBL bioactivity database: an up-
date”. In: Nucleic acids research 42.D1 (2014), pp. D1083-D1090.

FreeMarker template engine. URL: http://freemarker.org/.
Apache Maven. URL: https://maven.apache.org/.

Ampcamp 5 - big data bootcamp. Nov. 2014. URL: http://ampcamp .
berkeley.edu/5/.

Amplab UC Berkeley. URL: https://amplab.cs.berkeley.edu/.

Scala Documentation; Futures and Promises. URL: http://docs .
scala-lang.org/overviews/core/futures.html.

Apache Flink. URL: http://flink.apache.org/.
Apache Crunch. URL: https://crunch.apache.org/.

42

https://spark.apache.org/docs/1.3.1/ml-guide.html
https://spark.apache.org/docs/1.3.1/ml-guide.html
https://spark.apache.org/docs/1.3.1/api/scala/index.html#org.apache.spark.rdd.AsyncRDDActions
https://spark.apache.org/docs/1.3.1/api/scala/index.html#org.apache.spark.rdd.AsyncRDDActions
https://spark.apache.org/docs/1.3.1/api/scala/index.html#org.apache.spark.rdd.AsyncRDDActions
http://hadoop.apache.org/
http://sourceforge.net/projects/cdk/
http://sourceforge.net/projects/cdk/
http://www.uppmax.uu.se/
http://freemarker.org/
https://maven.apache.org/
http://ampcamp.berkeley.edu/5/
http://ampcamp.berkeley.edu/5/
https://amplab.cs.berkeley.edu/
http://docs.scala-lang.org/overviews/core/futures.html
http://docs.scala-lang.org/overviews/core/futures.html
http://flink.apache.org/
https://crunch.apache.org/

Jack Galilee. A STUDY ON IMPLEMENTING ITERATIVE ALGO-
RITHMS USING BIGDATA FRAMEWORKS. URL: http://sydney.

edu.au/engineering/it/research/conversazione-2014/Galilee-
Jack.pdf.

Luigy pipelining tool for batch jobs. URL: https ://github . com/
spotify/luigi.
Nextflow - Data-diven computational pipelines. URL: http: //www .
nextflow.io/.

Hsinchun Chen, Roger HL Chiang, and Veda C Storey. “Business Intel-
ligence and Analytics: From Big Data to Big Impact.” In: MIS quarterly
36.4 (2012), pp. 1165-1188.

43

http://sydney.edu.au/engineering/it/research/conversazione-2014/Galilee-Jack.pdf
http://sydney.edu.au/engineering/it/research/conversazione-2014/Galilee-Jack.pdf
http://sydney.edu.au/engineering/it/research/conversazione-2014/Galilee-Jack.pdf
https://github.com/spotify/luigi
https://github.com/spotify/luigi
http://www.nextflow.io/
http://www.nextflow.io/

Appendices

44

A. Flowchart symbols

Here is a brief overview of the symbols used in the flowchart diagrams in
the thesis, see fig. 15, which is a subset of the standard flowchart symbols.
Colours are added for making it easier to read the charts and they are not
general for all flowcharts.

external data
External
process

Figure 15: Symbol lookup for the flowcharts in this thesis. The blue
symbol is typically associated with databases, but used here for symbolising data
stored on some file system before execution of the pipeline. The red rectangle,
labeled ’Decision’, is a point were the flow is guided between different directions
depending on the input. The gray rectangle symbolises input and output data
from processes. The green rectangle symbolises processes that do manipulations
on the data in the system. The purple rectangle is the end process, external to
the pipeline, that gets the final results.

45

B. Implementation of Pipeline-
Splitter

Fig. 16 presents an implementation of the PipelineSplit type defined in the
PipelineAPI in fig. 3. This type only needs to be implemented once in your
project, the type parameters of the class will take care of all potential input
types you might want to throw at it. Using the PiplineSplitter can be
done in the same fashion as in fig. 9, where the two branches are defined and
then given as parameters to the construction of a new PipelineSplitter
instance. Other implementations of the PipelineSplit type may give other
possibilities depending on personal preference.

class PipelineSplitter[T,S](left: (T=>Any), right: (S=>Any))
extends PipelineSplit[T,S] {

def apply(in: Either[T,S]): Any = {
in match {
case Right(input) => return right(input);
case Left (input) => return left (input);

}

}

Figure 16: Implementation of the PipelineSplitter. This is an implemen-
tation of the PipelineSplit in the PipelineAPI defined in fig. 3. This class only
needs to be implemented once, and the type parameters T and S will be inferred
once instantiated in an object; new PipelineSplitter(left,right) should be
sufficient for creating a splitting event. Note that this is only an example imple-
mentation and it can be implemented differently.

46

	Abbreviations
	Introduction
	Background
	Descriptor generation
	Machine learning
	Pipeline

	Spark Framework
	Spark Basics
	Spark application overview
	Memory model - RDDs

	Spark input flexibility
	Spark compared to High Performance Computing
	Spark Machine Learning
	Spark ML Pipelines

	Spark Drawbacks

	Materials and Methods
	Spark & Hadoop
	Chemistry Development Kit
	Openstack cluster
	ChEMBL
	FreeMarker
	Programming environment

	Implementation
	Pipeline API
	Parameter Selection pipeline
	Protein Target Prediction pipeline
	The structure
	Implementation
	Improving performance - concurrent programming
	Reporting statistics as HTML

	Results
	Parameter Selection pipeline
	Protein Target Prediction pipeline
	Concurrent execution to improve performance

	Discussion
	Modularity
	Alternative frameworks
	Spark in non-Big Data applications

	Conclusions
	Acknowledgements
	References
	Appendices
	Flowchart symbols
	Implementation of PipelineSplitter

