
UPTEC X 15 024

Deviating time-to-onset in predictive models 
-detecting new adverse effects from medicines 

Caroline Wärn

Examensarbete 30 hp
Juni 2015





Degree Project in Bioinformatics 

Master’s Programme in Molecular Biotechnology Engineering, 
Uppsala University School of Engineering

UPTEC X 15 024  Date of issue: 2015-06 
Author 

Caroline Wärn

Title Deviating time-to-onset in predictive models 
- detecting new adverse effects from medicines

Abstract 

Identifying previously unknown adverse drug reactions becomes more important as the number 
of drugs and the extent of their use increases. The aim of this Master’s thesis project was to 
evaluate the performance of a novel approach for highlighting potential adverse drug reactions, 
also known as signal detection. The approach was based on deviating time-to-onset patterns and 
was implemented as a two-sample Kolmogorov-Smirnov test for non-vaccine data in the safety 
report database, VigiBase. The method was outperformed by both disproportionality analysis and 
the multivariate predictive model vigiRank. Performance estimates indicate that deviating time-
to-onset patterns is not a suitable approach for signal detection for non-vaccine data in VigiBase. 

Keywords 

Data mining, Kolmogorov-Smirnov test, predictive model, signal detection, time-to-onset 

Supervisors 
Ola Caster 

Uppsala Monitoring Centre 

Scientific reviewer 
Mats Gustafsson 
Uppsala University 

Project name 
- 

Sponsors 
- 

Language 
English 

Security 
- 

ISSN 1401-2138
Classification

- 

Supplementary bibliographical information 
- 

  Pages 
54 

Biology Education Centre      Biomedical Center       Husargatan 3, Uppsala 
Box 592, S-751 24 Uppsala              Tel +46 (0)18 4710000      Fax +46 (0)18 471 4687 





Deviating time-to-onset in predictive models 
- detecting new adverse effects from medicines

Caroline Wärn 

Populärvetenskaplig sammanfattning 

Effektiva läkemedel kommer sällan utan biverkningar. Under de senaste decennierna 
har antalet läkemedel och omfattningen av deras användning ökat, något som har 
förbättrat livskvalitén och förlängt livslängden hos befolkningen. I samma takt har 
biverkningar blivit vanligare och är idag en av de tio främsta orsakerna till ohälsa, 
sjukdom och dödsfall i de industrialiserade länderna. För att kunna utföra en korrekt 
avvägning mellan fördelar och nackdelar med en läkemedelsbehandling innan 
läkemedlet sätts in så måste risken för eventuella biverkningar vara känd. Detta har 
föranlett utvecklingen av metoder som genom ett stort antal biverkningsrapporter 
identifierar potentiella biverkningar så tidigt som möjligt.  

Det här examensarbetet syftar till att utvärdera en ny metod för identifiering av 
läkemedelsbiverkningar hos icke-vacciner då metoden tidigare har givit lovande 
resultat för vacciner. Principen är att identifiera avvikelser i tidsperioden mellan det 
tillfälle då ett läkemedel administreras till dess att en biverkning uppstår. Metodens 
prediktiva förmåga testades separat, men även tillsammans med den multivariata 
prediktiva modellen vigiRank. Prestandan hos den nya metoden visade sig inte vara 
tillräckligt hög för att inkluderas i vigiRank och gav inte heller tillräcklig prediktiv 
förmåga för att användas som ett fristående verktyg. Därmed anses den vara av 
begränsat värde för prediktering av biverkningar från icke-vacciner. 

Examensarbete 30 hp 
Civilingenjörsprogrammet Molekylär bioteknik, 

inriktning Bioinformatik 

Uppsala universitet, juni 2015 
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Introduction 

1 INTRODUCTION 

Today’s extensive use of medicines also brings with it the risk of adverse drug 
reactions. In the developed world, adverse drug reactions are ranked as one of the top 
10 causes of illness and death [1], costing almost $180 billion annually only in the 
United States [2]. Approximately 80% of the American adults use at least one 
medication and 25% use five or more [3]. Both the usage and the number of 
medications increases with age. This is of great concern since the human population 
is growing older each and every year. Furthermore, the prescription rate has increased 
to the point where 64% of all visits to a doctor result in prescriptions [4]. However, 
the development of new drugs has led to a healthier and longer living population, 
showing the need to decrease the risk of adverse drug reactions when possible and 
increase the capability of performing an accurate benefit-to-harm assessment. 

One major step in this process is detecting new adverse drug reactions as early as 
possible to limit the harm caused by them. To do this, multiple tools and methods 
have been developed for analysis of individual case safety reports. The most widely 
used is disproportionality analysis, but lately, other alternatives have been shown to 
complement [5] or even outperform [6] this type of analysis.  

A novel approach to signal detection for vaccines was presented by Van Holle et al. 
[5]. The concept was to identify vaccine-event pairs that deviated in their reported 
time from vaccine administration to event onset compared to other vaccines or 
events. This approach has shown promising results for vaccines, but has not yet been 
tested for non-vaccine drugs. Another approach has been proposed by Caster et al. [6] 
where a predictive model including five different variables was used in the signal 
detection process for drugs. If the two approaches complement each other it could 
possibly lead to synergistic effects, improving the overall efficacy of signal detection. 
However, to test whether this is the case, the predictive power of deviating time-to-
onsets must first be evaluated for non-vaccines. This is the objective of this project.  

1.1 Background 

1.1.1 Pharmacovigilance 

Effective medical therapies usually come with additional unintended effects. These 
are the major concerns of pharmacovigilance. Pharmacovigilance is defined by the 
WHO as “the science and activities relating to the detection, assessment, 
understanding and prevention of adverse effects or any other possible drug-related 
problems” [7]. In addition, pharmacovigilance has also come to include herbals, 
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traditional and complementary medicines, vaccines, biologicals, blood products and 
medical devices.  

Drugs are monitored during both premarketing development and postmarketing, 
making sure that possible adverse drug reactions (ADRs) can be detected throughout 
the duration of their use [8]. It is widely known that the main focus of clinical trials is 
on the efficacy of the drug rather than on the safety profile [9]. Moreover, most 
clinical trials only test the drug during a short period of time on a small group of 
homogenous patients, excluding those with the greatest risk of experiencing problems 
(e.g. children and elderly) [10]. The small number of patients makes it impossible to 
detect serious ADRs occurring at low frequencies. If an adverse reaction for a drug 
occurs with a 1:20 000 frequency, the drug would need to be exposed to 
approximately 60 000 patients to be 95% certain that the ADR would occur at least 
once. Most clinical trials do not include more than 5 000 patients, while the market 
may consist of several millions. Rare ADRs will therefore only become known after 
the drug has entered the market, making postmarketing surveillance a necessity. 

Postmarketing surveillance has its own limitations because of missing data and 
underreporting. The underreporting occurs in two steps, firstly, the patients fail to 
report adverse reactions to their doctors, and secondly, doctors fail to report adverse 
reactions to national authorities. The median underreporting rate of ADRs has been 
shown to be as high as 94% [11]. However, more severe ADRs are normally reported 
more frequently by general practitioners, resulting in a median underreporting rate of 
80%. 

Lack of data gives both the health practitioner and the patient a false sense of security 
about the drugs that are prescribed and used. The main concern in the science of 
pharmacovigilance is to, as early as possible, detect previously unknown ADRs. 
However, it is also used to detect inappropriate prescription and administration as 
well as getting further insight into the pharmacological mechanisms that cause the 
adverse reactions [8]. These activities lead to a better understanding and assessment 
of the benefit-to-harm balance, helping doctors and patients to select the most 
appropriate medicine as well as helping regulatory agencies to decide whether the 
medicine should be discontinued or not. 

1.1.2 The Uppsala Monitoring Centre 

The World Health Organization (WHO) recognized the need for drug safety 
monitoring in 1962, six months after the thalidomide disaster [12]. Thalidomide was 
initially prescribed as a sedative but later promoted for use by pregnant women as a 
treatment for morning sickness and nausea. Four years after its introduction on the 
European market, thousands of infants had been born with abnormalities such as 
phocomelia and micromelia (malformed and shortened limbs) and the drug was 
withdrawn from sale. 

The thalidomide incident resulted in multiple actions taken by both physicians and 
health authorities, and the WHO was requested to take on the leading role for 
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international drug safety surveillance [12]. A pilot project started in Alexandria, 
Virginia, USA, in 1968 with the purpose of developing an international system for 
detection of previously unknown adverse effects of medicines. Three years later it 
moved to the WHO headquarter in Geneva, Switzerland, to what came to be known as 
the “WHO Research Centre for International Monitoring for Adverse Reactions to 
Drugs”. The project was initially financed by the Government of the USA, but in 
1978 the financial responsibility was taken over by the Swedish government. This led 
to the establishment of the centre now called the Uppsala Monitoring Centre (UMC), 
a WHO collaborating centre for drug monitoring. However, the financial support 
ended in 2001 when the UMC was able to generate its own income by selling a drug 
dictionary among other products and services.  

Today, the UMC is the WHO collaborating centre for international drug monitoring 
with the main aim to identify pharmacovigilance signals as early as possible. The 
UMC develops and maintains the world’s largest database, VigiBase®, containing 
more than 11 million individual case safety reports (ICSRs) from 122 countries as of 
June 2015. It was developed in the mid-1990s and is updated continuously [13]. The 
ICSRs are received from national centers around the world, which in turn are 
provided with reports from pharmaceutical companies, health professionals and, in 
some countries, patients [14]. When an ADR is found by the UMC, it is 
communicated to the pharmaceutical company responsible for the medical product 
and to national centers. The regulators in each country then have the power to take 
firm action, e.g. adding the adverse reaction to the label of the medical product or 
issuing a warning. 

1.1.3 Disproportionality analysis 

One approach for detecting new ADRs is by looking at variations in the rates of 
events. Some events might be more frequently reported than what would be expected 
overall or in specific time periods, regions, age groups etc. Disproportionality analysis 
is one tool to measure the deviations of reporting frequencies of a drug-event 
combination from the baseline behavior. This type of analysis overcomes one of the 
major limitations of ICSR data, that is, the lack of reliable estimates of the exposed 
population. It has therefore long been the accepted standard for highlighting possible 
ADRs for in-depth clinical assessment [15].  

Disproportionate reporting can be measured in various ways. One approach is by 
comparing the observed number of reports for a specific drug-event combination with 
the expected number of reports for that combination, something that is called the 
observed to expected (OE) ratio [16]. When the differences between the two groups 
are large, the association between the drug and the event tends to be of importance. 
The algorithm for disproportionality analysis by the OE ratio is outlined below.  

Let the following contingency table show the frequencies of reports containing a 
specific drug (x) and/or a specific event (y).  
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y not y 

x a b 

not x c d 

The OE ratio for the pairwise association can then be calculated as the ratio of f (y | x), 
i.e. the relative frequency of the event on reports where the drug is present, to f (y),
the marginal relative frequency of the event. This can be formulated as follows:

𝑓𝑓(𝑦𝑦 | 𝑥𝑥)
𝑓𝑓 (𝑦𝑦)

= 𝑎𝑎 / (𝑎𝑎 + 𝑏𝑏)
(𝑎𝑎 + 𝑐𝑐) / (𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑)

( 1 ) 

By reordering the factors, the expression below is obtained. Here, the observed 
number of events is given by the numerator and the expected number of events is 
given by the denominator.  

𝑂𝑂
𝐸𝐸

= 𝑎𝑎
(𝑎𝑎 + 𝑏𝑏) (𝑎𝑎 + 𝑐𝑐) / (𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑) ( 2 ) 

The above definition of disproportionate reporting has one important limitation, the 
marginal frequency of the event is the determining factor for which values the OE 
ratio can take on. The OE ratio cannot exceed 1 / f (y), which implies that if the event 
is reported with a high marginal frequency, the obtained OE ratio would always be 
low. This definition is therefore only useful when the event is rare, which is usually 
the case in VigiBase. However, when the expected number of events is low, the OE 
ratio becomes very volatile, changing values drastically even for very small 
alterations in the expected number of events. This is a major drawback for drug safety 
data, since rare events may be of great importance.  

To handle this behavior, the OE ratio can be subjected to statistical shrinkage. This is 
done purely for the purpose of reducing the effects of sampling variation and stabilize 
the OE ratio when the expected number of events is low. A simple form of shrinkage 
transformation, as proposed by Norén et al. [16], is outlined below. If the observed 
number of events is denoted O and the expected number of events is denoted E, then 
the expression for the shrinkage transformation can be formulated as follows, when 
conditioned on E: 

𝑂𝑂 + ∝1
𝐸𝐸 + ∝2

 ( 3 ) 

In practice, the impact of the shrinkage would be equal to adding ∝1 observed events 
and ∝2 expected events, driving the OE ratio towards ∝1 / ∝2. When ∝1= ∝2, the OE 
ratio is biased towards one, indicating proportionate reporting, i.e. no differences in 
the observed and expected number of reported events. The risk of highlighting 
inaccurate associations is thereby decreased. If prior knowledge of the specific 
association exists, the ∝1 / ∝2 ratio may be adjusted accordingly to provide shrinkage 
in one direction or the other. The impact of the shrinkage is determined by the number 
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of observed and expected events. When the number of events is large, the impact of 
the shrinkage will be small, leading to reduction in variation only when needed. Based 
on the data in VigiBase, the values have been set to ∝1= ∝2= 0.5 for the 
implementation currently in use at the UMC to bias the ratio towards the baseline 
value one, while limiting the impact of the shrinkage. The base 2 logarithm is then 
applied to the OE ratio with shrinkage to obtain the final measure, giving both 
direction and strength of the association. This measure is called the Information 
Component (IC) [6].  

𝐼𝐼𝐼𝐼 =  𝑙𝑙𝑙𝑙𝑙𝑙2
𝑂𝑂 + 0.5
𝐸𝐸 + 0.5

( 4 ) 

1.1.4 vigiRank 

Even though disproportionality analysis is the most common method for finding new 
ADRs from ICSRs, it is limited to what it measures. It is solely based on the number 
of reports and does not take report quality and content into consideration. This was 
the main reason for why the UMC decided to develop vigiRank [6], a predictive tool 
based on lasso logistic regression which is currently used as the standard at the UMC 
today.  

vigiRank was developed using 13 different variables to capture different aspects of 
the reports and reporting patterns. These variables were selected by Caster et al. [6] 
through consensus with pharmacovigilance experts. The proposed variables were 
Disproportional reporting, Informative reports, Narrative, Dechallenge, Rechallenge, 
Causality assessment (including two separate variables), Solely reported, Multiple 
reporting elements, Recent reporting, Geographic spread and Time trend. The final 
variable going into the lasso logistic regression was Time-to-onset. This variable 
measured the number of reports within a reasonable time span (in this case, 90 days) 
between drug administration and ADR onset. However, the implementation of the 
time-to-onset variable was only a crude attempt to capture this type of information, as 
noted in the article.   

The 13 variables went into a lasso logistic regression model, fitted based on 5 544 
samples of which 264 were positive controls, i.e. emerging safety signals. Variables 
which were not binary, underwent a transformation while binary variables remained 
as they were. A logistic regression model is generally formulated as: 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃 (𝑦𝑦 | 𝑥𝑥)

1 − 𝑃𝑃 (𝑦𝑦 | 𝑥𝑥)
= 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + ⋯ + 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝 ( 5 ) 

In this formula, βi  can be seen as the log odds ratio of the predictor variable xi while p 
denotes the number of variables. It can be reformulated by solving for P (y | x): 
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𝑃𝑃 (𝑦𝑦 | 𝑥𝑥) =
𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + ⋯ + 𝛽𝛽𝑝𝑝 𝑥𝑥𝑝𝑝�

1 + 𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + ⋯ + 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝�
( 6 ) 

The logistic regression was regularized by constraining the coefficients using an L1 
constraint and creating a lasso logistic regression. By using the lasso method, 
excessive predictor variables are penalized and might be discarded from the equation, 
resulting in a less complex model [17]. Elimination of predictor variables occur when 
the variable coefficient is estimated to zero. The constraint imposed by using the lasso 
method can be formulated as follows: 

�|𝛽𝑖𝑖| ≤ 𝑡𝑡
𝑝𝑝

𝑖𝑖=1
( 7 ) 

Here, the amount of shrinkage and the size of the model is determined by the tuning 
parameter t. This parameter was set so that the chosen model was the largest possible 
model without negative coefficients since these were assumed to suggest overfitting.  

The model used by the UMC is based on five variables including Informative reports, 
i.e. a measure of the completeness of a report [18] and Narrative, indicating whether
the report has any free text information. It also includes Disproportional reporting (as
described in 1.1.3 Disproportionality analysis, with extensions to local patterns [19]),
Recent reporting and Geographic spread. Estimations of model performance
indicated that vigiRank can outperform disproportionality analysis alone [6].

1.1.5 Deviations in time-to-onset 

Another approach for signal detection, specifically for vaccines, has been presented 
by Van Holle et al. [5]. They recognized that some events usually occur within a 
specific time window post-vaccination. They concluded that the distribution of time-
to-onsets might differ for a specific combination compared to others. In their study, 
they used the two-sample Kolmogorov-Smirnov (KS) test (see 3.2 The Kolmogorov-
Smirnov test) to analyze time-to-onset (TTO) data for vaccine-event pairs. TTO was 
defined as the number of days from vaccine administration to event onset. The 
purpose of using the KS test was to compare the shapes of two distributions of data. If 
they were significantly different, the adverse event was defined as a statistical signal. 
The underlying assumption was that most vaccine-event pairs in safety report 
databases are not causally related and because of this, one of the two distributions 
should be dominated by reporting biases and noise, defining the overall shape of the 
distribution. 

Van Holle et al. [5] implemented two versions of the test; “between events” and 
“between vaccines”. When performing the “between events” test, a specific vaccine-
event pair was compared to combinations including the same vaccine with all other 
reported events. To the contrary, when performing the “between vaccines” test, the 
specific vaccine-event pair was compared to combinations including the same event, 
but reported after administration of other vaccines. Eight different vaccines were 
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used, which corresponded to a diverse set of indications. Taken together, these made 
up more than half of the reports in their database. The events for the positive controls 
were taken from the summary of product characteristics for each vaccine, i.e. the 
associations between the vaccines and their respective events were established.  

The studies performed by Van Holle et al. [5, 20-21] involved careful evaluations of 
the impact of different TTO windows (30, 60 and 90 days) and different significance 
levels (0.01, 0.05, 0.10, 0.20, 0.50 and 0.99). The two-sample KS test was used as 
implemented in the statistical software SAS® after appropriate filtering of the data. 
Their results were highly promising, indicating that the test could be used as a 
complement to the standard disproportionality analysis.  

Van Holle et al. [5] presents a new way of using TTO data in large datasets. However, 
the studies were performed on vaccine data only, raising the question whether the 
results would be transferable to non-vaccines. If this method would work for non-
vaccines as well, it could be a good replacement for the crude estimate of TTO 
patterns used in the original implementation of vigiRank and possibly increase its 
performance.  

1.2 Aims and objectives 

The aim of this Master’s thesis project is to test the performance of a predictor based 
on deviating time-to-onset patterns for predictions of adverse drug reactions from 
non-vaccines. The performance is compared with that of disproportionality analysis 
and vigiRank. Furthermore, the predictor is added to vigiRank to investigate whether 
it gives sufficiently independent predictive power to be included as a component of 
the model. 
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Methods and Implementation 

2 METHODS AND IMPLEMENTATION

2.1 Data extraction 

Two datasets were used for evaluation of the KS test. The first dataset came from 
Alvarez et al. [22] and contained emerging safety signals while the other contained 
established safety signals. The first dataset was initially filtered to correspond to the 
dataset used for the original fitting of vigiRank. However, some additional filtering 
had to be done, resulting in a much lower number of combinations used for the 
evaluation of the KS test compared to those used for the original fitting of vigiRank. 
Identical filtering was applied to both datasets for comparative purposes. 

2.1.1 Reference set with emerging signals 

To evaluate the predictive power of the KS test, the outcome of the ingoing data must 
be known and assumed to be correct. Furthermore, the controls must include both 
combinations with a confirmed association (i.e. positive controls) and combinations 
where no such association has been seen (i.e. negative controls). By doing this, one 
can obtain objective indications to whether the predictor is expected to be effective on 
similar data or not.  

The importance and relevance of distinguishing emerging safety signals from 
established casual associations has previously been thoroughly investigated [23]. 
When an ADR for a drug has become established, the number of reports for that 
association tends to increase. In addition, the TTO might be reported as the expected 
TTO in cases when the reporter is uncertain of the actual time period, giving a bias 
towards the expected TTO rather than the actual for that combination.  

To circumvent this issue, emerging safety signals were used as controls. The controls 
were taken from a dataset compiled by Alvarez et al. [22]. It contained 532 historical 
safety signals from September 2003 to March 2007 for 267 centrally authorized 
products (CAPs) from the European Medicine Agency. Combinations including 
vaccines were excluded from the controls due to their very different nature. 
Furthermore, only combinations reported from at least two different countries were 
considered in the reference set. 

From the original 532 safety signals, 264 signals from 65 CAPs were left as positive 
controls. The negative controls were randomly selected from the original 267 CAPs 
where the event was not included in the 2012 European summary of product 
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characteristics (SPC) for that drug. The number of negative controls was selected at a 
20:1 ratio to the positive controls, resulting in 5 280 combinations.  

Reports containing either the drug or the ADR from the 5 544 selected controls were 
extracted from a version of VigiBase backdated to 31 December 2004, when most of 
the signals were still emerging. Reports where the drug was listed as concomitant 
were excluded while reports containing drugs listed as suspected or interacting were 
kept. Furthermore, suspected duplicated reports were also removed. Duplicates may 
be present due to multiple reporting of the same event by different sources or due to 
erroneous linking between events and follow-up reports of these events [14]. The 
dataset thereby included the exact same data as was used for the original fitting of 
vigiRank [6].  

2.1.2 Additional data filtering for emerging signals 

To prepare the dataset for the KS test, some additional filtering had to be done. First, 
all reports missing either one of the two dates necessary to compute a TTO value were 
defined as missing data and were not used in the KS test. This meant excluding 59% 
of the dataset. In addition, reports containing incomplete dates were also excluded 
since the TTO values were given at a precision of days. TTO values were then 
calculated for each reported combination. The TTO was defined as the number of 
days between drug administration and event onset including these two dates. Three 
different variations of the dataset were created using different time windows. These 
variations included reports containing TTO values within the intervals 0-30, 0-60 and 
0-90 days respectively. The intervals were chosen to correspond to the study made by
Van Holle et al. [21] for easy comparison.

When multiple prescriptions of the same drug were reported together, the one with the 
shortest TTO was selected for the KS test since this was how the UMC had handled 
the situation before. These multiple prescriptions may e.g. occur when a drug is 
administered as a bolus intravenously to quickly raise the concentration of the drug in 
the blood while then afterwards continuing with oral administration at a lower dosage. 
The products are different but mapped to the same substances in VigiBase, causing 
multiple prescriptions for identical instances of combinations.  

Some national center systems autocomplete incomplete dates. When only the month is 
given, some systems automatically fill in the 1st or the 15th of that month. When only 
the year is given, the systems might autocomplete the dates to the first of January or to 
the middle of June. The majority of reports being autocompleted to the first day of the 
month came from the USA who reported ten times more instances on the first day 
compared to every other day in a month. Similar patterns, although not as prominent, 
could be seen for France, who had submitted three times more reports containing 
dates including the 15th of a month compared to other days. This issue necessitated a 
structured way of handling the data.  

When calculating TTO, the UMC has earlier changed all first days in a month into the 
15th of that month, limiting the deviating number of days to 15 instead of 31. 
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However, this was not an obvious solution for this application since a greater 
precision was desired. To find the best solution for this application, three different 
variations of the dataset were created. The first variation contained all original data, 
including dates as they were entered into the system. This meant that most of the dates 
including the first day in a month would be wrong and possibly disturbing further 
analysis. In the second variation, all first days in each month were excluded to avoid 
incorrect dates. However, this meant that some correct dates were also excluded, 
making the number of reports used for the KS test smaller than necessary. The last 
variation handled the first days as the UMC had previously handled them, including 
the reports but adjusting the dates to the middle of the month. A total of nine 
variations of the dataset were created, containing all combinations of time windows 
and date handlings.  

2.1.3 Established signals 

For comparative purposes, a reference set based on established safety signals was also 
generated. This dataset had previously been used by the UMC [23] and contained a 
total of 31 414 combinations. 16 091 of these were defined as positive controls, where 
the events were taken from the SPC for CAPs in Europe. The other 15 323 
combinations were defined as negative controls, including ADR terms not listed in the 
drug’s SPC in Europe as of 2012. Exclusion of combinations for the KS test was 
performed in the same manner as described above, i.e. only non-vaccines and 
combinations being reported from at least two different countries were considered.  

The data filtering procedure was similar to the one performed for emerging signals. 
Reports containing drugs listed as concomitants were excluded as well as suspected 
duplicated reports. 53% of the reports were defined as missing data since they lacked 
at least one of the two dates necessary for calculation of the TTO value. Furthermore, 
incomplete days were also excluded. Only reports with dates not containing the first 
day of a month and only events occurring within the first 60 days were included. 
Finally, multiple prescriptions were handled by selecting the one with the shortest 
TTO value as described above. 

2.1.4 Implementation of data extraction and filtering 

The data extraction and filtering was implemented as a stored procedure in SQL 
(Appendix A). It was designed to extract data from VigiBase and prepare it for the KS 
test as previously described. The time window determining which reports to include 
was given as a user-defined input parameter as well as how to handle the first day in 
each month. The output table contained all entries in VigiBase encompassing 
combinations including either the drug or the ADR from the reference set and their 
calculated TTO values.  
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2.2 The Kolmogorov-Smirnov test 

The two-sample Kolmogorov-Smirnov test is a nonparametric hypothesis test 
developed in the 1930’s by Kolmogorov [24] and Smirnov [25]. One of its biggest 
advantages over similar tests is that it makes no assumptions about the underlying 
distribution of data. This makes it an appropriate choice when the distributions are 
not known and/or the data cannot be guaranteed to be normally distributed (Fig. 1a). 
The test is generally used for detection of differences in distributions, taking medians, 
variances, shifts, kurtosis and overall shapes into account [26]. However, it is well 
known that the test is more sensitive to these deviations in the central parts of the 
distributions rather than at the tails.  

Two conditions must be fulfilled for the test result to be valid; the data must be drawn 
from a continuous population and the two samples must be based on independent 
variables [27]. In such cases, the two-sample KS test can be used to determine 
whether the data in two samples are drawn from the same probability distribution 
(null hypothesis, H0) or from two different distributions (H1). This can be written as 
below where F(x) is the distribution function describing population 1 of size n, 
containing the random observations  (X1, X2, …, Xn) and where G(x) is the 
distribution function describing population 2, of size m, containing the random 
observations (Y1, Y2, …, Ym). 

� 𝐻𝐻0:  𝐹𝐹 (𝑥𝑥) = 𝐺𝐺(𝑥𝑥)     𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑥𝑥      
𝐻𝐻1:  𝐹𝐹 (𝑥𝑥) ≠ 𝐺𝐺(𝑥𝑥)     𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥  

2.2.1 Procedure 

The first step in the KS test is to compute the empirical cumulative distribution 
functions (CDFs) of the two samples, here denoted S(t). Given n observations of the 
random variable X, ordered in ascending order as X1 ≤ X2 ≤ … ≤ Xn, the empirical 
CDF is defined as the fraction of observed X’s to the left of the number t, for every 
real number t. This can be formulated as follows: 

𝑆𝑆(𝑡𝑡) = 1
𝑛𝑛

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜  𝑜𝑜𝑜𝑜𝑜𝑜. 𝑋𝑋′𝑠𝑠 ≤ 𝑡𝑡) = 1
𝑛𝑛 � 𝐼𝐼(𝑥𝑥𝑖𝑖 ≤ 𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
( 8 ) 

The empirical CDF is a step function which is constant between consecutive x values 
and increases at each data point with the fraction 1 / n. Every CDF starts at zero and 
ends at one, but varies in between these endpoints. This variation distinguishes one 
cumulative distribution function from another and can be measured in multiple ways. 
The two-sample KS test measures the divergence between two empirical CDFs as the 
supremum value of the absolute difference between each data point (Fig. 1b), defined 
as the KS test statistic D [28]. 
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𝐷𝐷 = sup
−∞<𝑥𝑥<∞

|𝑆𝑆1(𝑥𝑥) − 𝑆𝑆2(𝑥𝑥)| ( 9 ) 

Figure 1. Probability distributions. a. Two different probability distributions comprising a gamma 
distribution (blue) and a normal distribution (light blue). b. Two empirical cumulative distribution 
functions generated by 20 random samples from the given gamma distribution (blue) and 30 random 
samples from the given normal distribution (light blue). The sample points are plotted along the x axis 
below the graph. The D-value is defined as the supremum vertical absolute distance between the two 
curves.  

One approach for evaluating the null hypothesis is to compare the obtained D-value 
with the critical d-value, i.e. the D-value of the test when the null hypothesis cannot 
be rejected [29]. The critical d-value can be approximated with the Smirnov 
approximation [25], (formula 10-11). If the obtained D-value is greater than the 
critical d-value, the null hypothesis can be rejected. 

The probability that the computed D-value is greater than the critical d-value under 
the null hypothesis is defined as the p-value of the test. The exact p-value includes 
complex and involved calculations and is therefore often replaced with an asymptotic 
value which becomes more accurate as samples grow larger. There have been a 
multitude of suggestions of how to best approximate the p-value, but no consensus 
has been reached. Simard and L’Ecuyer [30] make a thorough investigation of 
possible approximations, discussing their respective strengths and weaknesses. They 
conclude that multiple approximations should be used in various regions of the (n, x) 
space. Furthermore, they note that all of the tested approximations perform very 
poorly on small sample sizes, where tabularized exact values may be used instead. 
What follows is a description of one implementation of the p-value approximation. 
Two other implementations can be viewed in Appendix D. The approximation is 
based on the effective number of values, N, where N1 is the number of values in the 
first sample and N2 is the number of values in the second sample. 

𝑁𝑁 =
𝑁𝑁1𝑁𝑁2

𝑁𝑁1 + 𝑁𝑁2
( 10 ) 

The following approximation is based on formulas presented by Smirnov [25] and is 
implemented by the statistical software R [31] as the function ks.test() (package dgof) 
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[32] as well as by SAS® as the procedure npar1way() [33]. In R, the approximation is
used when specified or when the product of the two sample sizes is greater than
10 000. Otherwise, an exact method is provided. Although giving the option of using
an exact method for calculation of the p-value, this implementation has been criticized
[30]. The approximation has been shown to be inaccurate even for fairly large
samples sizes, while the exact method is too slow to be useful. When performing the
calculations, the KS test statistic is first standardized to obtain the critical d-value
under the null hypothesis (λ) which converges to the Kolmogorov distribution for
large sample sizes. This asymptotic distribution was originally derived by Smirnov in
1939 [25]. The value is then used in the approximation of the p-value. The
complement of the cumulative distribution function of the KS distribution enters into
the approximation of the p-value and is defined by the series in equation (12).

𝜆𝜆 = 𝐷𝐷√𝑁𝑁 ( 11 ) 

𝑃𝑃 (𝐷𝐷 > 𝑑𝑑) = 2 �(−1)𝑗𝑗−1𝑒𝑒−2𝑗𝑗2𝜆𝜆2
∞

𝑗𝑗=1
( 12 ) 

The p-value is used to determine if the difference between the distributions is 
significant enough to reject the null hypothesis, based on a specified significance level 
α. If the p-value is less than α, the null hypothesis can be rejected and vice versa.  

The calculated p-values tend to be conservative, i.e. the p-values are strongly biased 
upward. Most approximations estimate the parameters from the data rather than from 
the sample, something that is known to cause conservative p-values [34]. 
Furthermore, using discrete values instead of continuous as well as performing the test 
on tied data contributes to a possibly misleading result. As earlier mentioned, the 
approximations do not perform well on small sample sizes, adding to the issue. This 
means that even if an exact method is used, the p-value might still be erroneous due to 
the composition of the underlying data.  

Another important notice to make is about the relative sizes of the two samples being 
compared. It has been shown that if one sample is very large while the other is 
relatively small, the performance will not be improved by adding more observations 
to the larger group [35]. Paradoxically, the opposite is true. The additional 
information contained in a larger sample will not give any benefits, instead the added 
information will decrease the power of the KS test. It has also been suggested to use 
tables with exact values when the samples are strongly imbalanced since the 
approximations will be poor for this scenario [29]. However, no tables do yet exist for 
the extreme imbalance present in VigiBase.  

2.2.2 Implementation of the Kolmogorov-Smirnov test 

The two-sample KS test was implemented as a stored procedure in SQL (Appendix 
B). The possibility to select which type of test to perform (i.e. between drugs or 
between events) was implemented as an input parameter, as well as the possibility to 
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specify a significance level. Which equations to use for approximation of the p-value 
could easily be changed in the code (see 2.2.1 Procedure). The output table contained 
the drug-ADR pair together with their calculated KS statistic D, the approximated p-
value and a hypothesis based on the given significance level. Furthermore, cautionary 
notes were given for combinations that did not fulfill predefined criteria regarding the 
number of reports in each sample. This criteria made sure that the two sample groups 
contained a minimum number of reports. The output from the KS test procedure was 
then used in another stored procedure (Appendix C) to obtain performance measures, 
i.e. sensitivity and specificity (see 2.4 ROC curve analysis).

2.3 vigiRank 

The KS test result was also integrated into the fitting process of vigiRank. This was 
done by retrieving the data for all 13 original variables, excluding TTO 90 days (see 
1.1.4 vigiRank). These data were based on the complete dataset of emerging signals 
without additional filtering (see 2.1.2 Additional data filtering for emerging signals). 
The variable TTO 90 days was replaced with the test result from the KS test. This 
result was based on reports where the ADR onset occurred within the first 60 days and 
where all reports containing the first day of a month were excluded. All other reports 
were classified as missing data. This variation of the dataset contained 3 826 
combinations. However, when setting the criteria of only including combinations 
where the KS test result had been based on two samples containing at least two 
reports each, only 2 416 combinations were left including 162 positive controls and 
2 254 negative controls. For comparative purposes, the complete dataset of 5 544 
combinations was also used for refitting of vigiRank by setting the test result to 0 for 
all combinations with missing values.  

The results up to this point had indicated a higher predictive power using the D-value 
of the KS test compared to using the p-value. In addition, uncertainties in the 
calculation of the critical d-value and in the p-value approximation existed as 
previously discussed. Because of this, the raw D-values were used as the test result in 
the refitting process. 

To investigate whether the KS test measured the same feature as some other variable 
in vigiRank, a correlation test was performed between the D-value and all original 13 
variables. It was implemented using the R cor() function and the Pearson product-
moment correlation coefficient. The correlation coefficient can take on values 
between and including -1 and 1. When two variables are independent of each other, 
the correlation coefficient is 0, when there is a total positive correlation or a total 
negative correlation, the coefficient will be 1 and -1 respectively.  

2.4 ROC curve analysis 

When comparing a model’s prediction with the true outcome, measures of sensitivity 
and specificity can be obtained. These are calculated from the number of 
combinations where the events are correctly identified as ADRs (true positives, TP), 
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where they are incorrectly identified as ADRs (false positives, FP), where they are 
correctly rejected as ADRs (true negatives, TN) and where the events are incorrectly 
rejected as ADRs (false negatives, FN). Sensitivity is the true positive rate, i.e. the 
fraction of ADRs which are identified as such. To the contrary, the specificity is 
defined as the true negative rate, i.e. the fraction of events which are not ADRs and 
rejected by the predictor. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 ( 13 ) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 ( 14 ) 

The measures are dependent on the threshold value determining predictor outcome, 
e.g. the p-value of a statistical test (Fig. 2a). For a more thorough evaluation of the
performance, the sensitivity and specificity can be calculated for every possible value
of the threshold. This will provide a foundation for comparing different predictors
with each other as well as to support the selection of an appropriate threshold [36]. To
do this, sensitivity is plotted against 1-specificity, resulting in a so called receiver
operating characteristic (ROC) curve (Fig. 2b). The diagonal of this graph (where
sensitivity + specificity = 1) corresponds to a completely uninformative test, i.e. a
predictive power equal to random chance. To the contrary, a test with perfect
discrimination will result in a ROC curve passing through the upper left corner.

Figure 2. Concept of ROC curves. a. The two distributions describe the positive and negative 
combinations. The threshold determines at which point the combinations should be separated leading to 
different proportions of true positives (TP), false positives (FP), true negatives (TN) and false negatives 
(FN). b. A receiver operating characteristic curve describing the tradeoff between sensitivity and 
specificity. 

Another way of describing the performance is in terms of the area under the ROC 
curve (AUC). The AUC value corresponds to the probability that a randomly chosen 
positive combination has a higher probability of being positive than a randomly 
chosen negative combination. A random predictor would have an AUC value of 0.5, 
meaning that a random positive combination and a random negative combination 
would have the same probability of being classified as positive, while a perfect 
predictor would have an AUC of 1.0, i.e. only the positive combinations will be 
predicted as such.  
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2.4.1 Implementation and comparisons 

ROC curve analysis was performed for the KS test results (both D-value and p-value) 
of all nine variations of the dataset containing emerging signals. The variations 
contained all combinations of the time windows (30, 60 and 90 days) and the handling 
of the first days in each month (keeping, excluding and changing). ROC curves were 
also generated for the dataset with established signals for the time window 60 days 
where the reports containing the first day in a month were excluded. Finally, ROC 
curves were generated for the refitted vigiRank (described in 2.3 vigiRank) as well as 
for the IC025 (the lower limit of the 95% credibility interval of the information 
component) and the raw number of reports for each combination. The last two 
methods were based on all reports without the additional filtering. All ROC curves 
were compared visually and by their AUC values. 

2.5 Development environments 

The two-sample KS test was implemented in Microsoft SQL server 2014. Since the 
UMC uses the 2012 version, it was made to be backward compatible to that version 
but not any further. The SQL server is a relational database management system 
developed by Microsoft using Transact-SQL as the main query language. This system 
is used to store and manage the databases at the UMC, including the ICSR database. 
Due to convenience, the test was implemented in the same environment to avoid 
unnecessary transfers of large datasets.  

The refitting of vigiRank was performed in R (version 3.1.2) since this was the 
environment of the original vigiRank implementation. R is an open source software 
used for statistical computing and plotting and is currently developed by the R 
Development Core Team. One of the main strengths of R is the user-created packages 
which rapidly extends the capabilities of the software. However, in addition to R, both 
SAS (University Edition) and MATLAB (R2015a, version 8.5) were used for 
validation purposes, making sure that the implementations of their respective 
approaches for approximating the p-values were correct. MATLAB was also used for 
the ROC curve analyses and plotting. 
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3 RESULTS AND ANALYSIS 

3.1 Handling of the first day of the month 

Receiver operating characteristic curves were generated for the three variations of 
first day handlings for the dataset containing emerging signals (Fig. 3). These were all 
based on the KS test statistic D as the determining variable. The curves correspond to 
variations where all the first days of a month were kept as they were entered into the 
system (including 2 770 combinations with 179 positive controls and 2 591 negative 
controls), where they were excluded (2 416 combinations, 162 positive and 2 254 
negative controls) and where they were changed to the 15th of the same month (2 796 
combinations, 180 positive and 2 616 negative controls). The time window for all 
three variations was set to 60 days.  

The performances of the predictors for the different variations were very similar, 
however, the AUC value was slightly better for the variation where all first days were 
excluded (AUC = 0.624) compared to the variations where the first days were kept 
(AUC = 0.617) and where they were changed (AUC = 0.613). This might indicate that 
the removal of incorrect data increases performance more than a smaller dataset 
decreases it. Furthermore, excluding potentially incorrect dates makes more logical 
sense since the KS test should be sensitive to small variations in the distributions of 
TTO values.  

Figure 3. Handlings of the first day in a month. Receiver operating characteristic curves for three 
different handlings of autocompleted dates. These include keeping all the first days in each month as 
they were entered, excluding all the first days in each month and changing the first days to the middle 
of the month. 
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3.2 Length of TTO time window 

Three different time windows for the emerging signals were selected to investigate 
their impact on performance (Fig. 4). The curves were based on the KS test statistic D 
for combinations represented by reports where the first day of each month was not 
present. The curve for the 30 days time window was based on 2 160 combinations, 
where 142 were positive controls and 2 018 were negative controls. The curve for the 
60 days time window was based on 2 416 combinations whereof 162 were positive 
controls and 2 254 were negative controls while the result for the 90 days time 
window was based on 2 563 combinations, where 170 were positive controls and 2 
393 were negative controls. The curves were very similar with a slightly higher AUC 
value for the 60 days dataset (AUC = 0.624) compared to 30 days (AUC = 0.619) and 
90 days (AUC = 0.615).  

Figure 4. Time windows. ROC curves for variations of three different time windows (30, 60 and 90 
days) where all the first days in each month had been excluded.  

3.3 P-value approximation 

When considering the performance of the p-value approximation, the dataset with 
emerging signals was used in the variation where all first days in each month had 
been excluded and where the events occurred within the first 60 days. This resulted in 
2 416 combinations, where 162 were positive controls and 2 254 were negative 
controls. The approximation of the p-value gave a performance close to random 
chance (Fig. 5) with an AUC of 0.518 and is therefore not a good predictor for this 
type of data. 

When the significance level was set to 0.05, 24 true positives were obtained for this 
variation of the dataset, i.e. their distributions were significantly different. The 
empirical distributions of TTO values for two of these true positives were plotted for 
visual evaluation (Fig.6). The combination Aripiprazole and Hypertension had an 
approximated p-value of 0.0005, while the vigiRank value was 0.087 for the same 
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combination. Eptifbatide together with Pulmonary haemorrhage had an approximated 
p-value of 0.0071 while the vigiRank value was 0.074. Based on the vigiRank values
alone, these combinations would likely not be highlighted as potential signals for
further in-depth clinical assessment. Furthermore, the first combination had a negative
IC value of -1.478, meaning that it probably would not have been highlighted by
disproportionality analysis either. However, the p-values are much lower than 0.05 for
both combinations, suggesting that the associations might be of interest.

Figure 5. p-value approximation. ROC curves for the KS test result based on the D-value and the p-
value of the dataset containing emerging signals. All first days in each month had been excluded and 
only reports containing events which occurred within the first 60 days were considered. 

Figure 6. Distributions of true positives. Distribution plots describing two true positive combinations 
when the significance level was set to 0.05 for the dataset with emerging signals. a. Distribution of 
TTO values for Aripiprazole and Hypertension. b. Distribution of TTO values for Eptifbatide and 
Pulmonary haemorrhage. 
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3.4 vigiRank 

When the KS test result was included among the variables for the refitting of 
vigiRank, the D-values from the dataset containing emerging signals were used. The 
D-values were based on reports where the first days of each month were excluded
and where the events occurred within the first 60 days. However, this filtration was
not performed for the other 12 variables. Only combinations for which a D-value
existed were included in the model fitting process, excluding almost half of the
combinations used for creating the original model. The performance was plotted in a
ROC curve (Fig. 7). The coefficient for the D-value variable was estimated to zero
during the lasso logistic regression, meaning that the variable was not included in the
final model. Instead, the model was based on the same five variables as when
vigiRank was first implemented. When including all 5 544 combinations in the
refitting process by setting the missing D-values to zero, the result was similar.

The refitted vigiRank model had the highest predictive power with an AUC of 0.787 
followed by the IC025 (AUC = 0.741), the number of reports within the specified time 
window (AUC = 0.708) and the KS test when used alone (AUC = 0.624). No 
additional filtration had been performed for the IC025 and the number of reports 
variables. Furthermore, the D-value did not correlate strongly with any of the 13 
variables used in the original implementation of vigiRank.  

Figure 7. Comparison of predictors. ROC curves for the refitted vigiRank, IC025, the number of 
reports and the D-value used alone as a predictor. The D-value did not contribute with enough 
predictive power to be included in the vigiRank model.  

3.5 Prediction of established signals 

Established signals were tested for comparative purposes (Fig. 8). The dataset 
contained signals with TTO values within the 60 days range and where all first days 
in each month were excluded. Of the original 31 414 combinations, 16 570 could be 
used for evaluation of the performance. Of these combinations, 11 551 were positive 
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controls and 5 019 were negative controls. Both the D-value (AUC = 0.644) and the 
p-value (AUC = 0.622) turned out to be better predictors for established signals than
for emerging signals. Furthermore, both predictors performed better than
disproportionality analysis (AUC = 0.608), but much worse than the raw number of
reports for each combination (AUC = 0.711). By setting the significance level to 0.01
for the p-value predictor, a sensitivity of 0.945 and a specificity of 0.206 was
obtained.

Figure 8. Established signals. ROC curves for the D-values and the p-values of the KS test, as well as 
for disproportionality analysis and the raw number of reports based on established signals. The dataset 
consisted of TTO values within the first 60 days where all first days in each month were excluded. The 
green circle indicates the threshold value 0.01. 
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4 DISCUSSION AND CONCLUSIONS  

Identifying adverse drug reactions has become more important as the number of drugs 
and the extent of their use increases. Multiple methods have been implemented for 
this purpose, some more widely used than others. One method based on deviating 
TTO patterns has shown promising results when used on vaccine data, however, this 
report shows that these results might not be directly transferable to non-vaccines.  

This report presents the results from an implementation of the two-sample 
Kolmogorov-Smirnov test in VigiBase. When the test was performed on emerging 
signals, the KS test statistic D did have some predictive power, while the p-value had 
a predictive power close to random chance. The different variations of the dataset did 
not affect the predictions significantly, suggesting that the overall pattern of the 
underlying data is a more important factor for the performance. Even though a weak 
predictive power could be observed using the D-value, the performance was 
significantly lower than that of vigiRank and disproportionality analysis. When 
performing the KS test on established signals, the performance of the predictor based 
on the D-value was only slightly better than the one obtained for emerging signals. 
However, the p-value had a predictive power significantly higher than random 
chance. This might be due to the larger number of reports used in the KS test for 
established signals compared to the much smaller number of reports used when 
evaluating emerging signals. The p-value approximation does not perform well when 
sample sizes are small, which was the case for the dataset containing emerging 
signals. In addition, the larger number of reports available for established signals 
makes the data more balanced, and hence, makes the p-value approximation more 
accurate.  

By adding the KS test result for emerging signals to the set of variables used for the 
refitting of vigiRank, possible synergistic effects could be evaluated. However, the 
KS test result did not contribute to enough predictive power for it to be included in the 
final model, and did not seem to affect the selection of other variables. Nevertheless, 
the D-value was not strongly correlated with any other variable, implying that it does 
measure a feature not covered in the current implementation of vigiRank. Because of 
the weak predictive power, the KS test might not be the most appropriate approach of 
extracting information from TTO data of non-vaccines in VigiBase. 

One important limitation of the KS test when used on ICSR data is the preselection of 
reports having a higher level of completeness. This is a result of excluding reports 
lacking TTO data from the calculation of the KS test statistic. The exclusion will 
indirectly affect which combinations that will be evaluated, which in this case will be 
combinations with a higher general level of completeness. Since incomplete reports 
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are common in ICSR databases, and since the completeness does have predictive 
power on its own, this must be taken into account when evaluating the method. 
However, this is an intrinsic limitation of the method since TTO information is 
needed to perform the test, making it useless for reports lacking TTO data.  

An additional limitation of the results presented here is the number of reports needed 
for constructing an accurate distribution. The results are based on combinations 
represented by at least two reports. However, two reports might be too few to obtain 
reliable results. To avoid this issue, the lower limit for the required number of reports 
may be raised. However, setting a lower limit is not possible in reality and would 
therefore give a misleading result. Furthermore, the number of combinations fulfilling 
the criteria would be decreasing rapidly as the lower limit increases which leads to a 
greater uncertainty in the final results. This also means that raising the lower limit will 
not be a solution for the heavily imbalanced data in VigiBase. Most combinations in 
VigiBase are only represented by a few number of reports with TTO data. However, 
the number of reports containing only a specific drug is usually significantly higher. 
This leads to imbalanced data which is known to decrease the performance of the test, 
showing an additional limitation caused by the underlying data alone.  

Earlier studies have shown positive results when applying the KS test to vaccine data, 
suggesting that the KS test may work as a complement to disproportionality analysis 
[5]. However, no studies have yet been published on the performance of the KS test 
on non-vaccine data. This report presents an implementation of the KS test on non-
vaccines in VigiBase and also investigates performance based on the KS test statistic, 
the D-value, something that has not been considered earlier.  

The results for established signals presented here are in line with the results presented 
by Van Holle et al. [5]. Based on established signals, the KS test performs better than 
disproportionality analysis for both vaccines and non-vaccines. However, when the 
raw number of reports is used as a comparative predictor, it outperforms the KS test. 
The same effects has been shown earlier by Norén et al. [23] and indicate that the 
results cannot be trusted. Instead, emerging signals should be used for more reliable 
results. The predictive power of the KS test is significantly lower than that of 
disproportionality analysis and vigiRank when evaluated on emerging signals, 
indicating that the KS test is not an appropriate predictor of ADRs for non-vaccine 
drugs. However, the impact of established signals vs. emerging signals on this type of 
statistical test should be further explored, e.g. by performing the KS test on vaccines 
using emerging signals to investigate the consistency of the results presented here.  

Another suggestion for future studies is to investigate the differences between 
vaccines and non-vaccines. It is not obvious that the results for vaccines are directly 
transferable to non-vaccines because of intrinsic effects (e.g. immunological effects) 
and different reporting patterns. Furthermore, most vaccines are only given once or 
twice, making sure that the event onset is not the cause of drug accumulation during a 
longer period of time. To the contrary, non-vaccines are usually given during some 
period, which could result in a delayed TTO, possibly related to dosage. The dosage 
might not be the same during the whole treatment period and even if it was, the 
concentration of the drug at the site of action might vary depending on disease 
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progress. These factors among others, could result in less distinct TTO patterns for 
non-vaccines. 

In conclusion, the two-sample Kolmogorov-Smirnov test did not perform to a 
satisfactory level when used alone on non-vaccine drugs. Furthermore, it did not 
outperform any of the currently implemented methods, i.e. disproportionality analysis 
and vigiRank. The test result did not give sufficiently independent predictive power to 
be included as a variable in the predictive model vigiRank, hindering any possible 
synergistic effects to take place. The two-sample Kolmogorov-Smirnov test does 
therefore not seem to be an appropriate method for extracting information from the 
TTO data for non-vaccine drugs in VigiBase. 

32 



Acknowledgements 

5 ACKNOWLEDGEMENTS 

First, I would like to give a special thanks to my supervisor Ola Caster for the 
opportunity to do this Master’s thesis project at the UMC and for his support 
throughout the course of the project. I would also like to thank Kristina Juhlin for all 
of the help and knowledge shared regarding the databases at the UMC. Thirdly, I 
would like to thank Lionel Van Holle for sharing his thoughts about various aspects of 
the implementation and results. Finally, a big thank to everyone at the UMC, 
especially to the research section, for sharing ideas and suggestions about how to 
move forward and what to think about when dealing with various issues that have 
arisen during the course of the project.  

 

 

 

33 



References 

6 REFERENCES 

 

[1]  Lazarou J, Pomeranz BH, and Corey PN, “Incidence of adverse drug 
reactions in hospitalized patients: A meta-analysis of prospective studies,” 
JAMA, vol. 279, no. 15, pp. 1200–1205, Apr. 1998. 

[2]  F. R. Ernst and A. J. Grizzle, “Drug-related morbidity and mortality: updating 
the cost-of-illness model,” J. Am. Pharm. Assoc. WashingtonDC 1996, vol. 
41, no. 2, pp. 192–199, Apr. 2001. 

[3]  D. W. Kaufman, J. P. Kelly, L. Rosenberg, T. E. Anderson, and A. A. 
Mitchell, “Recent patterns of medication use in the ambulatory adult 
population of the United States: the Slone survey,” JAMA, vol. 287, no. 3, pp. 
337–344, Jan. 2002. 

[4]  S. M. Schappert and C. W. Burt, “Ambulatory care visits to physician offices, 
hospital outpatient departments, and emergency departments: United States, 
2001-02,” Vital Health Stat. 13., no. 159, pp. 1–66, Feb. 2006. 

[5]  L. Van Holle, Z. Zeinoun, V. Bauchau, and T. Verstraeten, “Using time-to-
onset for detecting safety signals in spontaneous reports of adverse events 
following immunization: a proof of concept study,” Pharmacoepidemiol. 
Drug Saf., vol. 21, no. 6, pp. 603–610, 2012. 

[6]  O. Caster, K. Juhlin, S. Watson, and G. N. Norén, “Improved statistical signal 
detection in pharmacovigilance by combining multiple strength-of-evidence 
aspects in vigiRank,” Drug Saf., vol. 37, no. 8, pp. 617–628, Aug. 2014. 

[7]  World Health Organization, The Importance of Pharmacovigilance - Safety 
Monitoring of Medicinal Products. World Health Organization, 2002. 

[8]  J. Talbot and J. K. Aronson, Eds., Stephens’ Detection and Evaluation of 
Adverse Drug Reactions: Principles and Practice, 6 edition. Chichester, West 
Sussex, UK: Wiley-Blackwell, 2011. 

[9]  J. Lexchin, “Why are there deadly drugs?,” BMC Med., vol. 13, no. 1, p. 27, 
Feb. 2015. 

[10] P. Waller, An Introduction to Pharmacovigilance, 1st ed. Hoboken: Wiley, 
2009. 

[11] L. Hazell and S. A. W. Shakir, “Under-reporting of adverse drug reactions : a 
systematic review,” Drug Saf., vol. 29, no. 5, pp. 385–396, 2006. 

34 



References 

[12] J. Venulet and M. Helling-Borda, “WHO’s International Drug Monitoring - 
The Formative Years, 1968–1975: Preparatory, Pilot and Early Operational 
Phases,” Drug Saf., vol. 33, no. 7, pp. e1–e23, Jul. 2010. 

[13] M. Lindquist, “VigiBase, the WHO Global ICSR Database System: Basic 
Facts,” Drug Inf. J., vol. 42, no. 5, pp. 409–419, Sep. 2008. 

[14] G. N. Norén, R. Orre, A. Bate, and I. R. Edwards, “Duplicate detection in 
adverse drug reaction surveillance,” Data Min. Knowl. Discov., vol. 14, no. 3, 
pp. 305–328, Feb. 2007. 

[15] A. Bate, M. Lindquist, I. R. Edwards, S. Olsson, R. Orre, A. Lansner, and R. 
M. De Freitas, “A Bayesian neural network method for adverse drug reaction 
signal generation,” Eur. J. Clin. Pharmacol., vol. 54, no. 4, pp. 315–321, Jun. 
1998. 

[16] G. N. Norén, J. Hopstadius, and A. Bate, “Shrinkage observed-to-expected 
ratios for robust and transparent large-scale pattern discovery,” Stat. Methods 
Med. Res., vol. 22, no. 1, pp. 57–69, Feb. 2013. 

[17] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” J. R. Stat. 
Soc. Ser. B Methodol., vol. 58, no. 1, pp. 267–288, Jan. 1996. 

[18] T. Bergvall, G. N. Norén, and M. Lindquist, “vigiGrade: A Tool to Identify 
Well-Documented Individual Case Reports and Highlight Systematic Data 
Quality Issues,” Drug Saf., vol. 37, no. 1, pp. 65–77, Dec. 2013. 

[19] J. Hopstadius and G. N. Norén, “Robust Discovery of Local Patterns: Subsets 
and Stratification in Adverse Drug Reaction Surveillance,” in Proceedings of 
the 2Nd ACM SIGHIT International Health Informatics Symposium, New 
York, NY, USA, 2012, pp. 265–274. 

[20] L. Van Holle and V. Bauchau, “Use of Logistic Regression to Combine Two 
Causality Criteria for Signal Detection in Vaccine Spontaneous Report Data,” 
Drug Saf., vol. 37, no. 12, pp. 1047–1057, Nov. 2014. 

[21] L. van Holle and V. Bauchau, “Signal detection on spontaneous reports of 
adverse events following immunisation: a comparison of the performance of a 
disproportionality-based algorithm and a time-to-onset-based algorithm,” 
Pharmacoepidemiol. Drug Saf., vol. 23, no. 2, pp. 178–185, Feb. 2014. 

[22] Y. Alvarez, A. Hidalgo, F. Maignen, and J. Slattery, “Validation of statistical 
signal detection procedures in eudravigilance post-authorization data: a 
retrospective evaluation of the potential for earlier signalling,” Drug Saf., vol. 
33, no. 6, pp. 475–487, Jun. 2010. 

[23] G. N. Norén, O. Caster, K. Juhlin, and M. Lindquist, “Zoo or savannah? 
Choice of training ground for evidence-based pharmacovigilance,” Drug Saf., 
vol. 37, no. 9, pp. 655–659, Sep. 2014. 

[24] A. N. Kolmogorov, “Sulla determinazione empirica di una legge di 
distribuzione,” G. DellInstituto Ital. Degli Attuari, vol. 4, pp. 83–91, 1933. 

[25] N. V. Smirnov, “Estimate of deviation between empirical distribution 
functions in two independent samples,” Mosc. Univ. Math. Bull., vol. 2, no. 2, 
pp. 3–16, 1939. 

35 



References 

[26] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical 
Procedures, 3rd ed. Chapman and Hall/CRC, 2003. 

[27] G. W. Corder and D. I. Foreman, Nonparametric Statistics: A Step-By-Step 
Approach, 2nd ed. John Wiley & Sons, 2014. 

[28] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 
Numerical Recipes: The Art of Scientific Computing, 3rd ed. Cambridge 
University Press, 2007. 

[29] G. L. Tietjen, D. K. Kahaner, R. J. Beckman, W. J. Kennedy, and H. A. 
David, Selected tables in mathematical statistics, vol. 5. American 
Mathematical Soc., 1977. 

[30] R. Simard and P. L’Ecuyer, “Computing the Two-Sided Kolmogorov-
Smirnov Distribution,” J. Stat. Softw., vol. 39, no. 11, Mar. 2011. 

[31] R Core Team, R: A language and environment for statistical computing. 
Vienna, Austria: R Foundation for Statistical Computing. 

[32] T. A. Arnold and J. W. Emerson, “Nonparametric Goodness-of-Fit Tests for 
Discrete Null Distributions,” R J., vol. 3, no. 2, pp. 34–39, 2011. 

[33] SAS Institute Inc, “The NPAR1WAY procedure,” in SAS/STAT® 13.2 User’s 
Guide, Cary, North Carolina, 2014. 

[34] D. J. Steinskog, D. B. Tjøstheim, and N. G. Kvamstø, “A Cautionary Note on 
the Use of the Kolmogorov–Smirnov Test for Normality,” Mon. Weather 
Rev., vol. 135, no. 3, pp. 1151–1157, Mar. 2007. 

[35] L. B. K. Alexander Y. Gordon, “On a paradoxical property of the 
Kolmogorov–Smirnov two-sample test,” in Nonparametrics and Robustness 
in Modern Statistical Inference and Time Series Analysis: A Festschrift in 
honor of Professor Jana Jurečková, Beachwood, Ohio, USA, 2010, pp. 70–
74. 

[36] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., vol. 
27, no. 8, pp. 861–874, Jun. 2006. 

 

 

36 



Appendices 

7 APPENDICES 

  

37 



Appendices 

Appendix A 

 
-- ==================================================================== 
-- Name:    KS_DataExtraction 
-- Author:   Caroline Wärn 
-- Create date:  2015-03-09 
-- 
-- Description:  Extracts data from VigiSearch2012 and prepares  
--      it for the stored procedure KS_test. 
-- 
--      For a set of drug-ADR pairs, reports containing  
--      either the drug or ADR is extracted. Dates for  
--      administration and ADR onset is then retrieved,  
--      while removing drugs listed as concomitants as well  
--      as incomplete and invalid dates. Suspected  
--      duplicates are also removed. 
-- 
--      The first day in each month can be handled in  
--      three different ways. They can be kept as entered  
--      into the database system, they can be removed and  
--      they can be changed to the 15th of the same month.  
--      When this decision has been made, time-to-onset is  
--      computed as the number of days between and  
--      including the start and onset date.  
--      
--      When multiple prescriptions for the same  
--      combination is present on the same report, only  
--      the one with the shortest calculated TTO value is  
--      kept. The resultset is then returned. 
-- 
-- Input:    - Table containing two columns, one for Drug ID and  
--        and one for ADR ID.  
--        Type: KS_COMBINATION 
--      - Parameter describing the size of the time  
--        window in which reports are retained. 
--        Type: INT 
--      - A keyword describing how the first day in a month 
--        is treated. 'keep01' keeps all first days, 
--        'remove01' removes all first days and 'change01' 
--        changes all first days to the 15th of the same  
--        month.  
--        Type: NVARCHAR 
-- 
-- Output:   - Table containing columns for Drug ID, ADR ID and 
--        calculated TTO. 
-- 
-- ==================================================================== 
 
CREATE PROCEDURE carolinew.KS_DataExtraction 
( 
 @Combinations  AS CAROLINEW.KS_COMBINATION READONLY, 
 @TimeWindow  AS INT, 
 @FirstDay    AS NVARCHAR(10) 
) 
 
AS 
BEGIN 
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SET NOCOUNT ON; 
 SET ANSI_WARNINGS OFF; 
 
 
 -- Select all combinations including either the drug or the ADR from  
 --   the set of combinations 
 SELECT DISTINCT  
  AD.VmDrug_Id,  
  AD.VmAdrTerm_Id,  
  AD.Report_Id 
 INTO  
  #CombinationsData 
 FROM  
  VM_NewTriages_2.VmDrugAdr AD 
 WHERE  
  Ad.VmAdrTerm_Id IN (SELECT AdrTerm_Id FROM @Combinations) OR 
  Ad.VmDrug_Id IN (SELECT Drug_Id FROM @Combinations); 
 
     
 -- Retrieve DateStart and DateOnset from reports listed as suspected  
 --   or interacting (Basis = 1,3) and which are not suspected  

--   duplicates (Stratum_Id = 2) 
 SELECT DISTINCT  
  T.VmDrug_Id,  
  T.VmAdrTerm_Id,  
  T.Report_Id,  
  D.DateStart,  
  A.DateOnset 
 INTO  
  #RawData 
 FROM  
  #CombinationsData T 
  INNER JOIN VigiSearch2012.VS_2.Patient         P 
   ON P.Report_Id = T.Report_Id 
  INNER JOIN VigiMineDDA.VM_NewTriages_2.VmAdrTermAdrMapping_link AL 
   ON AL.VmAdrTerm_Id = T.VmAdrTerm_Id 
  INNER JOIN VigiSearch2012.VS_2.MappedReportedTerm      MT 
   ON AL.AdrMapping_Id = MT.AdrMapping_ID 
  INNER JOIN VigiSearch2012.VS_2.ADR          A 
   ON MT.MappedReportedTermID = A.MappedReportedTermID AND 

   A.Patient_Id = P.Patient_Id 
 
  INNER JOIN VigiMineDDA.VM_NewTriages_2.VmDrugMedProd_link     DL 
   ON DL.VmDrug_Id = T.VmDrug_Id 
  INNER JOIN VigiSearch2012.VS_2.MappedReportedDrug       MD 
   ON DL.MedicinalProd_Id = MD.MedicinalProductID 
  INNER JOIN VigiSearch2012.VS_2.Drug          D 
   ON D.MappedReportedDrugID = Md.MappedReportedDrugID AND  

   D.Patient_Id = P.Patient_Id AND D.Basis IN ('1','3') 
   
  INNER JOIN VigiMineDDA.VM_NewTriages_2.VmReportsStrata    RS 
   ON T.Report_Id = RS.Report_Id 
 WHERE  
  (RS.Stratum_Id = 2); 
 
 
 -- Select only complete and valid dates 
 SELECT * 
 INTO  
  #ValidDates 
 FROM  
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  #RawData 
 WHERE  
  (LEN(DateStart) = 8 AND LEN(DateOnset) = 8) AND 
  (ISDATE(DateStart) = 1 AND ISDATE(DateOnset) = 1); 
 
 
 -- Handle the first day in a month 
 CREATE TABLE #TTORawData 
 ( 
  VmDrug_Id  INT, 
  VmAdrTerm_Id SMALLINT, 
  Report_Id  INT, 
  DateStart  DATE, 
  DateOnset  DATE 
 ) 
 IF @FirstDay = 'keep01' 
  BEGIN 
   INSERT INTO 
    #TTORawData 
    SELECT       
     VmDrug_Id,  
     VmAdrTerm_Id,  
     Report_Id,  
     CAST(DateStart AS DATE) AS DateStart,  
     CAST(DateOnset AS DATE) AS DateOnset 
    FROM #ValidDates 
  END 
 ELSE IF @FirstDay = 'remove01' 
  BEGIN 
   INSERT INTO 
    #TTORawData 
    SELECT  
     VmDrug_Id,  
     VmAdrTerm_Id,  
     Report_Id,  
     CAST(DateStart AS DATE) AS DateStart,  
     CAST(DateOnset AS DATE) AS DateOnset 
    FROM #ValidDates 
    WHERE  
     RIGHT(DateStart,2) <> '01'  
     AND RIGHT(DateOnset,2) <> '01' 
  END 
 ELSE IF @FirstDay = 'change01' 
  BEGIN 
   INSERT INTO 
    #TTORawData 
    SELECT  
     VmDrug_Id,  
     VmAdrTerm_Id,  
     Report_Id,  
     CAST(DateStart AS DATE) AS DateStart,  
     CAST(DateOnset AS DATE) AS DateOnset 
    FROM #ValidDates 
    WHERE  
     RIGHT(DateStart,2) <> '01' AND  
     RIGHT(DateOnset,2) <> '01' 
    UNION ALL 
    SELECT  
     VmDrug_Id,  
     VmAdrTerm_Id,  
     Report_Id,  
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     CAST(DATEADD(DAY, 14, DateStart) AS DATE) AS DateStart,  
     CAST(DateOnset AS DATE) AS DateOnset 
    FROM #ValidDates 
    WHERE  
     RIGHT(DateStart,2) = '01' AND  
     RIGHT(DateOnset,2) <> '01' 
    UNION ALL 
    SELECT  
     VmDrug_Id,  
     VmAdrTerm_Id,  
     Report_Id,  
     CAST(DateStart AS DATE),  
     CAST(DATEADD(DAY, 14, DateOnset) AS DATE) AS DateOnset 
    FROM #ValidDates 
    WHERE  
     RIGHT(DateStart,2) <> '01' AND  
     RIGHT(DateOnset,2) = '01' 
    UNION ALL 
    SELECT  
     VmDrug_Id,  
     VmAdrTerm_Id,  
     Report_Id,  
     CAST(DATEADD(DAY, 14, DateStart) AS DATE) AS DateStart,  
     CAST(DATEADD(DAY, 14, DateOnset) AS DATE) AS DateOnset 
    FROM #ValidDates 
    WHERE  
     RIGHT(DateStart,2) = '01' AND  
     RIGHT(DateOnset,2) = '01' 
  END; 
 
 
 -- Compute TTO and select reports within specified time window 
 SELECT  
  VmDrug_Id, 
  VmAdrTerm_Id,  
  Report_Id,  
  DateStart,  
  DateOnset,  
  DATEDIFF(DAY, DateStart, DateOnset) AS TTO 
 INTO  
  #TTOFinalData 
 FROM  
  #TTORawData 
 WHERE  
  DATEDIFF(DAY, DateStart, DateOnset) BETWEEN 0 AND @TimeWindow; 
 
  
 -- When multiple instances are present, select the one with  
 --   shortest TTO 
 SELECT T1.* 
 INTO  
  #TTODataMod 
 FROM 
 ( 
  SELECT  
   VmDrug_Id,  
   VmAdrTerm_Id,  
   Report_Id,  
   MIN(TTO) AS MinTTO 
  FROM  
   #TTOFinalData 
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  GROUP BY  
   Report_Id,  
   VmDrug_Id,  
   VmAdrTerm_Id 
 ) AS T2 
 INNER JOIN #TTOFinalData T1 
  ON  
  T2.Report_Id = T1.Report_Id AND  
  T2.MinTTO = T1.TTO AND  
  T2.VmDrug_Id = T1.VmDrug_Id AND  
  T2.VmAdrTerm_ID = T1.VmAdrTerm_Id; 
 
 
 -- Return result set 
 SELECT  
  VmDrug_Id,  
  VmAdrTerm_Id,  
  TTO 
 FROM  
  #TTODataMod; 
 
 
 -- Clean up temporary tables 
 DROP TABLE #CombinationsData; 
 DROP TABLE #RawData; 
 DROP TABLE #ValidDates; 
 DROP TABLE #TTORawData; 
 DROP TABLE #TTOFinalData; 
 DROP TABLE #TTODataMod; 
 
 
END 
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Appendix B 
 
-- ==================================================================== 
-- Name:   KS_Test 
-- Author:  Caroline Wärn 
-- Create date: 2015-02-20 
-- Description: Performs a two-sample Kolmogorov-Smirnov test.  
--     Computes the KS test statistic D, p-value and  
--     hypothesis based on significance level. The null 
--     hypothesis (H0) is that the two sample sets originate 
--     from the same distribution. 
-- 
-- Input:   - Table containing instances of specified Drug ID and ADR 
--       ID as well as their computed time-to-onsets 
--       Type: KS_TTODATA 
--     - Table containing combinations to be tested. 
--       Type: KS_COMBINATION 
--     - Significance level. If no significance level is 
--       specified, the default level 0.05 is used. 
--       Type: DECIMAL 
--     - Type of test. Specified by the string 'Between  
--       Events' or 'Between Drugs'. 
--       Type: NVARCHAR 
-- 
-- Output:  - Result set containing combinations, D-values, 
--       p-values, hypotheses and information about the  
--       number of reports in each sample group. 
--       (1 = reject H0, 0 = cannot reject H0) 
-- 
-- ==================================================================== 
CREATE PROCEDURE carolinew.KS_Test 
( 
 @TTOData   AS CAROLINEW.KS_TTODATA  READONLY, 

@Combinations  AS CAROLINEW.KS_COMBINATION READONLY, 
 @Alpha    AS DECIMAL(18,4) = 0.05, 
 @TestType   AS NVARCHAR(15) 
) 
 
AS 
BEGIN 
 
 SET NOCOUNT ON; 
 SET ANSI_WARNINGS OFF; 
 
 
 DECLARE  
  @RowCounter  INT = 1; 
 
 

-- Generate values 1-101 for approximation of null hypothesis 
--   distribution 

 SELECT TOP (101) j = ROW_NUMBER() OVER (ORDER BY [object_id])  
INTO #J  
FROM sys.all_objects  
ORDER BY j; 

 
 
 -- Create table to hold resulting test statistics  
 CREATE TABLE #TestStatistics  
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 ( 
  RowCounter  INT IDENTITY(1,1),  
  Drug_Id   INT,  
  AdrTerm_Id  SMALLINT,  
  KSstatistic  DECIMAL(18,4),  
  Pvalue    DECIMAL(18,4),  
  Hypothesis  BIT, 
  TooFewReports  VARCHAR(30), 
  NoCompDist  VARCHAR(30), 
  NumInDist   INT, 
  NumInCompDist  INT 
 ); 
 
 
 -- Insert all unique combinations to test 
 INSERT INTO #TestStatistics  
 ( 
  Drug_Id,  
  AdrTerm_Id 
 ) 
 SELECT DISTINCT  
  Drug_Id,  
  AdrTerm_Id 
 FROM  
  @Combinations; 
 
 
 -- Loop through all unique combinations 
 WHILE ((SELECT MAX(RowCounter) FROM #TestStatistics) >= @RowCounter) 
 BEGIN 
 
  DECLARE  
   @Drug_Id    INT, 
   @AdrTerm_Id   SMALLINT, 
   @N1      DECIMAL(18,4), 
   @N2      DECIMAL(18,4), 
   @N      DECIMAL(18,4), 
   @KSstatistic   DECIMAL(18,4), 
   @Lambda    DECIMAL(18,4), 
   @Pvalue    DECIMAL(18,4), 
   @Hypothesis   BIT, 
   @ErrorTooFew   VARCHAR(30) = NULL, 
   @ErrorNoCompDist  VARCHAR(30) = NULL, 
   @NumInDist   INT, 
   @NumInCompDist  INT; 
 
 
  -- Store current drug and ADR term ID 
  SELECT 
   @Drug_Id = T.Drug_Id, 
   @AdrTerm_Id = T.AdrTerm_Id 
  FROM  
   #TestStatistics T 
  WHERE  
   T.RowCounter = @RowCounter; 
 
 
  -- Compute empirical frequencies and cumulative sums 
  WITH Frequency  
  ( 
   TTO,  
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   [Frequency 1],  
   [Frequency 2] 
  )  
  AS 
  ( 
   SELECT  
    TTO,  
    SUM(CASE WHEN Drug_Id = @Drug_Id AND AdrTerm_Id = @AdrTerm_Id  

THEN 1 END) AS [Frequency 1], 
    CASE   
     WHEN @TestType = 'Between Events'  
      THEN  
      (SELECT SUM(CASE WHEN  

Drug_Id = @Drug_Id AND  
     AdrTerm_Id <> @AdrTerm_Id  

 THEN 1  
  END)) 

     WHEN @TestType = 'Between Drugs'  
      THEN 
      (SELECT SUM(CASE WHEN  

Drug_Id <> @Drug_Id AND  
AdrTerm_Id = @AdrTerm_Id  

 THEN 1  
  END)) 

    END AS [Frequency 2] 
   FROM @TTOData 
   GROUP BY TTO 
  ) 
  SELECT  
   TTO, 
   [Frequency 1], 
   SUM([Frequency 1]) OVER (ORDER BY TTO ROWS UNBOUNDED PRECEDING)  

AS [CumulativeSum 1], 
   [Frequency 2],  
   SUM([Frequency 2]) OVER (ORDER BY TTO ROWS UNBOUNDED PRECEDING)  

AS [CumulativeSum 2] 
  INTO #CumulativeSums 
  FROM Frequency 
  ORDER BY TTO; 
 
 
  -- Store the number of samples in each distribution 
  SELECT 
   @N1 = CAST(MAX([CumulativeSum 1]) AS DECIMAL(18,4)), 
   @N2 = CAST(MAX([CumulativeSum 2]) AS DECIMAL(18,4)) 
  FROM 
   #CumulativeSums; 
  SET @N = (SELECT (@N1 * @N2) / (@N1 + @N2)); 
 
 
  -- Divide the cumulative sums by the number of samples in each  

--   distribution 
  SELECT 
   [CumulativeSum 1] / @N1 AS [CDF 1], 
   [CumulativeSum 2] / @N2 AS [CDF 2] 
  INTO #CDF 
  FROM #CumulativeSums; 
 
 
  -- Convert NULL to 0 for upcoming subtraction 
  UPDATE #CDF  
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  SET  
   [CDF 1] = ISNULL([CDF 1], 0),  
   [CDF 2] = ISNULL([CDF 2], 0); 
 
 
  -- Compute 2-sided test statistic: D = max|F1(x) - F2(x)| 
  SET @KSstatistic =  
   (SELECT MAX (ABS ([CDF 1] - [CDF 2]))  
    FROM #CDF); 
 
 
  -- MATLAB’s p-value approximation 
  /* 
  -- Compute approximation of the distribution for null hypothesis 
  SET @Lambda =  
   (SELECT (SQRT (@N) + 0.12 + 0.11 / SQRT (@N)) * @KSstatistic); 
  -- Compute the asymptotic distribution (Q-function) to approximate  

--   the 2-sided p-value 
  SET @Pvalue =  
   (SELECT 2 * SUM (POWER ((-1), j-1) * EXP ((-2) *  

 POWER(@Lambda, 2) * POWER(j, 2))) FROM #J); 
  */ 
 
 
  -- SAS’s p-value approximation 
  SET @Lambda =  
   (SELECT (SQRT (@N)) * @KSstatistic); 
  -- Compute the asymptotic distribution (Q-function) to approximate  

--   the 2-sided p-value 
  SET @Pvalue =  
   (SELECT 2 * SUM (POWER ((-1), j-1) * EXP ((-2) *  

 POWER(@Lambda, 2) * POWER(j, 2))) FROM #J); 
 
 
  -- Nonparametric Statistics: A Step-by-Step Approach, 2nd Edition 
  -- (p-value approximation)  
  /* 
  SET @Lambda =  
   (SELECT (SQRT (@N)) * @KSstatistic); 
 
  -- Compute the asymptotic distribution (Q-function) to approximate  

--   the 2-sided p-value 
  DECLARE @Q DECIMAL(18,4); 
 
  IF (0 <= @Lambda) AND (@Lambda < 0.27) 
   BEGIN 
    SET @Pvalue = 1; 
   END 
  ELSE IF (0.27 <= @Lambda) AND (@Lambda < 1) 
   BEGIN 
    SET @Q = EXP ((-1.233701) * POWER (@Lambda, (-2))) 
    SET @Pvalue = 1 - (2.506628 / @Lambda) * (@Q + POWER (@Q, 9)  

 + POWER (@Q, 25)); 
   END 
  ELSE IF (1 <= @Lambda) AND (@Lambda < 3.1) 
   BEGIN 
    SET @Q = EXP ((-2) * POWER (@Lambda, 2)) 
    SET @Pvalue = 2 * (@Q - POWER (@Q, 4) + POWER (@Q, 9)  

 - POWER (@Q, 16)); 
   END 
  ELSE IF (3.1 <= @Lambda) 
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   BEGIN 
    SET @Pvalue = 0; 
   END 
  */ 
 
 
  -- Determine if hypothesis holds 
  IF @Alpha >= @Pvalue 
   SET @Hypothesis = 1 
  ELSE 
   SET @Hypothesis = 0; 
 
 
  -- Error Information:  
  -- Find combinations that do not occur frequently enough to reject  

--   null hypothesis 
  IF NOT EXISTS  
  ( 
   SELECT Drug_Id, AdrTerm_Id 
   FROM @TTOData 
   WHERE AdrTerm_Id = @AdrTerm_Id AND Drug_Id = @Drug_Id 
   GROUP BY Drug_Id, AdrTerm_Id 
   HAVING COUNT(*) > 1  
  ) 
   BEGIN 
    SET @ErrorTooFew = 'Too few reports' 
   END; 
 
 
  -- Error Information: 
  -- Find combinations that have nothing to compare with 
  IF @TestType = 'Between Drugs' AND NOT EXISTS 
  ( 
   SELECT AdrTerm_Id 
   FROM @TTOData 
   WHERE AdrTerm_Id = @AdrTerm_Id AND Drug_Id <> @Drug_Id 
   GROUP BY AdrTerm_Id 
   HAVING COUNT(*) > 1  
  ) 
   BEGIN 
    SET @ErrorNoCompDist = 'No comparative distribution' 
   END 
  ELSE IF @TestType = 'Between Events' AND NOT EXISTS 
  ( 
   SELECT Drug_Id 
   FROM @TTOData 
   WHERE Drug_Id = @Drug_Id AND AdrTerm_Id <> @AdrTerm_Id 
   GROUP BY Drug_Id 
   HAVING COUNT(*) > 1  
  ) 
   BEGIN 
    SET @ErrorNoCompDist = 'No comparative distribution' 
   END;   
 
 
  -- Number in distribution 
  SET @NumInDist = (SELECT COUNT(Drug_Id)  
           FROM @TTOData 
           WHERE AdrTerm_Id = @AdrTerm_Id AND  

 Drug_Id = @Drug_Id 
          GROUP BY Drug_Id, AdrTerm_Id) 
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  -- Number in Comparative distribution 
  IF @TestType = 'Between Drugs' 
   BEGIN 
    SET @NumInCompDist = (SELECT COUNT(AdrTerm_Id) 
             FROM @TTOData 
             WHERE AdrTerm_Id = @AdrTerm_Id AND  

 Drug_Id <> @Drug_Id 
             GROUP BY AdrTerm_Id) 
   END 
  ELSE IF @TestType = 'Between Events' 
   BEGIN 
    SET @NumInCompDist = (SELECT COUNT(Drug_Id) 
              FROM @TTOData 
             WHERE AdrTerm_Id <> @AdrTerm_Id AND  

 Drug_Id = @Drug_Id 
             GROUP BY Drug_Id) 
   END 
 
 
  -- Collect test statistics 
  UPDATE T 
  SET  
   T.Hypothesis = @Hypothesis,  
   T.Pvalue = @Pvalue,  
   T.KSstatistic = @KSstatistic, 
   T.TooFewReports = @ErrorTooFew, 
   T.NoCompDist = @ErrorNoCompDist, 
   T.NumInDist = @NumInDist, 
   T.NumInCompDist = @NumInCompDist  
  FROM #TestStatistics AS T 
  WHERE  
   T.Drug_Id = @Drug_Id AND  
   T.AdrTerm_Id = @AdrTerm_Id; 
 
 
  -- Update loop counter 
  SET @RowCounter = @RowCounter + 1; 
 
 
  -- Drop tables 
  DROP TABLE #CumulativeSums; 
  DROP TABLE #CDF; 
 
 
 END -- End while-loop 
 
 
 -- Return test statistics 
 SELECT  
  Drug_Id,  
  AdrTerm_Id,  
  KSstatistic,  
  Pvalue,  
  Hypothesis,  
  TooFewReports, 
  NoCompDist, 
  NumInDist,  
  NumInCompDist 
 FROM  
  #TestStatistics; 
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 -- Clean up temporary tables 
 DROP TABLE #J; 
 DROP TABLE #TestStatistics; 
 
 
END 
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Appendix C 
 
-- ==================================================================== 
-- Name:   KS_Performance 
-- Author:  Caroline Wärn 
-- Create date: 2015-02-20 
-- Description: Computes Specificity and Sensitivity for the result 
--     set from the KS_test procedure. 
-- 
-- Input:   - Table containing result set from KS_Test.  
--       Type: KS_HYPOTHESIS 
--     - Table containing unique positive controls. 
--       Type: KS_COMBINATION 
--     - Table containing unique negative controls.  
--       Type: KS_COMBINATION 
-- 
-- Output:  - Table containing performance measures. 
-- 
-- ==================================================================== 
CREATE PROCEDURE carolinew.KS_Performance 
( 
 @CombinationHypothesis AS CAROLINEW.KS_HYPOTHESIS  READONLY, 
 @PositiveCombinations AS CAROLINEW.KS_COMBINATION READONLY, 
 @NegativeCombinations AS CAROLINEW.KS_COMBINATION READONLY 
) 
AS 
BEGIN 
 
 SET NOCOUNT ON; 
 
 
 -- Create table to hold results 
 CREATE TABLE #PerformanceData  
 ( 
  Drug_Id   INT    NOT NULL, 
  AdrTerm_Id  INT    NOT NULL, 
  KSstatistic  DECIMAL(18,4) NULL, 
  Pvalue   DECIMAL(18,4) NULL, 
  Hypothesis  BIT    NULL, 
  TrueOutcome  BIT    NULL, 
  ErrorType  SMALLINT  NULL, 
  TooFewReports VARCHAR(30)  NULL, 
  NoCompDist  VARCHAR(30)  NULL, 
  NumInDist  INT    NULL, 
  NumInCompDist INT    NULL 
 ); 
 
 
 -- Populate table with initial values 
 INSERT INTO #PerformanceData  
 ( 
  Drug_Id,  
  AdrTerm_Id,  
  KSstatistic, 
  Pvalue, 
  Hypothesis, 
  TooFewReports, 
  NoCompDist, 
  NumInDist, 
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  NumInCompDist 
 ) 
 SELECT  
  Drug_Id,  
  AdrTerm_Id, 
  KSstatistic, 
  Pvalue,  
  Hypothesis, 
  TooFewReports, 
  NoCompDist, 
  NumInDist, 
  NumInCompDist 
 FROM  
  @CombinationHypothesis 
 
 
 -- Add true outcomes in table PerformanceData 
 UPDATE PD 
  SET PD.TrueOutcome = 1 
  FROM  
   #PerformanceData AS PD 
  INNER JOIN  
   @PositiveCombinations AS PC 
   ON PD.Drug_Id = PC.Drug_Id  
   AND PD.AdrTerm_Id = PC.AdrTerm_Id 
  WHERE  
   PD.Drug_Id = PC.Drug_Id  
   AND PD.AdrTerm_Id = PC.AdrTerm_Id; 
 
 UPDATE PD 
  SET PD.TrueOutcome = 0 
  FROM  
   #PerformanceData AS PD 
  INNER JOIN  
   @NegativeCombinations AS NC 
   ON PD.Drug_Id = NC.Drug_Id  
   AND PD.AdrTerm_Id = NC.AdrTerm_Id 
  WHERE  
   PD.Drug_Id = NC.Drug_Id  
   AND PD.AdrTerm_Id = NC.AdrTerm_Id; 
 
 
 -- Set type of error 
 --   1 = True Positive 
 --   2 = True Negative 
 --   3 = False Positive 
 --   4 = False Negative 
 UPDATE #PerformanceData 
 SET #PerformanceData.ErrorType = 
  ( 
   CASE 
    WHEN (PD.Hypothesis = 1 AND PD.TrueOutcome = 1) THEN 1 
    WHEN (PD.Hypothesis = 0 AND PD.TrueOutcome = 0) THEN 2 
    WHEN (PD.Hypothesis = 1 AND PD.TrueOutcome = 0) THEN 3 
    WHEN (PD.Hypothesis = 0 AND PD.TrueOutcome = 1) THEN 4 
   END 
  ) 
 FROM #PerformanceData AS PD; 
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-- Compute and return performance measures (sensitivity and   
     specificity) 

 WITH  Performance 
 ( 
  [# Data Points], 
  [True Positives], 
  [True Negatives], 
  [False Positives], 
  [False Negatives] 
 ) 
 AS 
 ( 
  SELECT  
   COUNT (CASE WHEN TrueOutcome IS NOT NULL THEN 1.0 END)  

AS [# Data Points],  
   COUNT (CASE WHEN ErrorType = 1 THEN 1.0 END)  

AS [True Positives], 
   COUNT (CASE WHEN ErrorType = 2 THEN 1.0 END)  

AS [True Negatives], 
   COUNT (CASE WHEN ErrorType = 3 THEN 1.0 END)  

AS [False Positives], 
   COUNT (CASE WHEN ErrorType = 4 THEN 1.0 END)  

AS [False Negatives] 
  FROM  
   #PerformanceData 
 ) 
 SELECT 
  [# Data Points], 
  [True Positives], 
  [True Negatives], 
  [False Positives], 
  [False Negatives], 
  CASE  
   WHEN (([True Negatives] + [False Positives]) <> 0 AND  

      ([True Negatives] + [False Positives]) IS NOT NULL)  
    THEN  
    CAST((CAST ([True Negatives] AS DECIMAL(18,4)) /  

     ([True Negatives] + [False Positives])) AS VARCHAR(20)) 
   ELSE 'Division by zero' 
  END AS Specificity, 
  CASE 
   WHEN (([True Positives] + [False Negatives]) <> 0 AND  

      ([True Positives] + [False Negatives]) IS NOT NULL) 
    THEN 
    CAST((CAST ([True Positives] AS DECIMAL(18,4)) /  

     ([True Positives] + [False Negatives])) AS VARCHAR(20)) 
   ELSE 'Division by zero' 
  END AS Sensitivity 
 FROM  
  Performance 
 
 
 -- Return performance estimates 
 SELECT * 
 FROM  
  #PerformanceData 
 WHERE  
  TrueOutcome IS NOT NULL AND 
  TooFewReports IS NOT NULL AND 
  NoCompDist IS NOT NULL; 
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 -- Clean up temporary tables 
 DROP TABLE #PerformanceData; 
 
 
END 
GO 
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Appendix D 

The p-value of the two-sample Kolmogorov-Smirnov test can be approximated in multiple 
ways. Here, two additional approximations are presented.  

The MATLAB function kstest2() uses an approximation which is based on the algorithm 
described in the book Numerical Recipes [28] and can be viewed below. The calculations 
are based on the effective number of values, N, where N1 is the number of values in the first 
sample and N2 is the number of values in the second sample. 

 𝑁𝑁 =
𝑁𝑁1𝑁𝑁2

𝑁𝑁1 + 𝑁𝑁2
    

The asymptotic distribution under the null hypothesis (the critical d-value) is first 
approximated (λ) and then used in the calculation of the p-value. The documentation of the 
function claims that the result is reasonably accurate for samples such as N ≥ 4. However, it 
also states that the conclusion based on the p-value approximation will not necessarily agree 
with the conclusion based on the KS test statistic D. Their implementation has been 
criticized for being inaccurate and for not providing an exact calculation for small samples 
sizes [30]. However, they use an approximation of the asymptotic distribution which is 
adjusted for faster convergence towards the true distribution.  

 𝜆𝜆 = √𝑁𝑁 + 0.12 + 0.11
√𝑁𝑁

∗ 𝐷𝐷   

 𝑃𝑃 (𝐷𝐷 > 𝑑𝑑) = 2 �(−1)𝑗𝑗−1𝑒𝑒−2𝑗𝑗2𝜆𝜆2
∞

𝑗𝑗=1
  

The second approach presented here is of a more complex type [27]. It approximates the p-
value differently based on the value of λ, which is calculated as above. If 0 ≤ λ < 0.27, then 
the p-value is set to 1. If 0.27 ≤ λ < 1, then the p-value is approximated as below: 

 𝑝𝑝 = 1 − 2.506628
𝜆𝜆 �𝑄𝑄 + 𝑄𝑄9 + 𝑄𝑄25�,   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑄𝑄 = 𝑒𝑒−1.233701𝜆𝜆−2

  

If 1 ≤ λ < 3.1, then the p-value is approximated as: 

 𝑝𝑝 = 2�𝑄𝑄 − 𝑄𝑄4 + 𝑄𝑄9 − 𝑄𝑄16�,   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑄𝑄 = 𝑒𝑒−2𝜆𝜆2
 ( 16 ) 

And lastly, if λ ≥ 3.1, then the p-value is set to 0.  

The different approximations give very similar results on the dataset with emerging signals. 
This indicates that the slight changes made to the original Smirnov approximation [25] does 
not affect the end result significantly when used on this type of data. Furthermore, this 
means that focus can be put on other aspects of the KS test without the need to compare the 
results using multiple approximations.  
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