The Human Y chromosome and its role in the developing male nervous system

MARTIN M. JOHANSSON
Dissertation presented at Uppsala University to be publicly examined in Zootissalen (EBC 01.01006), Evolutionsbiologiskt centrum, EBC, Villavägen 9, Uppsala, Friday, 23 October 2015 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: David Skuse (University College London Behavioural Sciences Unit).

Abstract

Recent research demonstrated that besides a role in sex determination and male fertility, the Y chromosome is involved in additional functions including prostate cancer, sex-specific effects on the brain and behaviour, graft-versus-host disease, nociception, aggression and autoimmune diseases. The results presented in this thesis include an analysis of sex-biased genes encoded on the X and Y chromosomes of rodents. Expression data from six different somatic tissues was analyzed and we found that the X chromosome is enriched in female biased genes and depleted of male biased ones. The second study described copy number variation (CNV) patterns in a world-wide collection of human Y chromosome samples. Contrary to expectations, duplications and not deletions were the most frequent variations. We also discovered novel CNV patterns of which some were significantly overrepresented in specific haplogroups. A substantial part of the thesis focuses on analysis of spatial expression of two Y-encoded brain-specific genes, namely PCDH11Y and NLGN4Y. The perhaps most surprising discovery was the observation that X and Y transcripts of both gene pairs are mostly expressed in different cells in human spinal cord and medulla oblongata. Also, we detected spatial expression differences for the PCDH11X gene in spinal cord. The main focus of the spatial investigations was to uncover genetically coded sexual differences in expression during early development of human central nervous system (CNS). Also, investigations of the expression profiles for 13 X and Y homolog gene pairs in human CNS, adult brain, testes and still-born chimpanzee brain samples were included. Contrary to previous studies, we found only three X-encoded genes from the 13 X/Y homologous gene pairs studied that exhibit female-bias. We also describe six novel non-coding RNAs encoded in the human MSY, some of which are polyadenylated and with conserved expression in chimpanzee brain. The description of dimorphic cellular expression patterns of X- and Y-linked genes should boost the interest in the human specific gene PCDH11Y, and draw attention to other Y-encoded genes expressed in the brain during development. This may help to elucidate the role of the Y chromosome in sex differences during early CNS development in humans.

Keywords: MSY, sex differences, CNV, SNP, palindrome, palindromes, gr/gr duplication, gr/gr deletion, b2/b3 deletion, b2/b3 duplication, blue-grey duplication, blue-grey like duplication, IR2, U3, STS, AZFa, AZFb, AZFc, Olivary nucleus, Medulla oblongata, spinal cord, white matter, Affymetrix 6.0, embryo, embryonal, haplogroup, haplogroups, R1a, R1b, R-M207, E-M96, I-M170, J-M304, G-M201, Ashkenazi, Bolivian, Chinese, SNP array, padlock probing, AMY-tree

Martin M. Johansson, Department of Organismal Biology, Norbyv 18 A, Uppsala University, SE-75236 Uppsala, Sweden.

© Martin M. Johansson 2015

ISSN 1651-6214
ISBN 978-91-554-9331-8
urn:nbn:se:uu:diva-261789 (http://urn.kb.se/resolve?urn=nbn:se:uu:diva-261789)
To our ancestors

“Be humble for you are made of earth.
Be noble for you are made of stars.”

Serbian Proverb
Cover:
Probe intensity values for the AZFb/c region displaying the “Blue-grey like duplication pattern”.
This thesis is based on the following papers and manuscripts, which are referred to in the text by their Roman numerals.

Reprints were made with permission from the respective publishers.
Contents

Introduction .. 9
Background .. 11
 Why study the Y chromosome .. 11
 Evolution of mammalian sex chromosomes .. 12
Selected genes located in MSY .. 13
Genetic structure of the Y chromosome .. 16
 MSY sequence .. 17
 Palindromes .. 17
 Mechanisms generating genomic rearrangements .. 17
The sexual differentiation of the human brain ... 18
Biological implications of Y chromosome abnormalities ... 19
 Y chromosome and male fertility .. 19
 Y chromosome specific regions involved in male infertility 20
 Mutational causes .. 22
 Aneuploidy states in male infertility .. 23
PAR1 PAR2 related diseases .. 23
 Aneuploidy states ... 23
 Male biased diseases ... 25
Cancer .. 25
Psychiatric diseases .. 25
Chromosome abnormalities ... 27
Gene abnormalities .. 27
The Aims of the studies ... 29
 Paper I ... 29
 Paper II .. 29
 Manuscript III ... 29
 Manuscript IV ... 29
Results and discussion .. 30
 Paper I ... 30
 Paper II .. 32
 Manuscript III ... 37
 Manuscript IV ... 41
Conclusions .. 44
Summary in Swedish ... 46
 Sammanfattning .. 46
Acknowledgements ... 48
References ... 50
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSY</td>
<td>Male specific region</td>
</tr>
<tr>
<td>SNP</td>
<td>Single nucleotide polymorphism</td>
</tr>
<tr>
<td>CN</td>
<td>Copy number</td>
</tr>
<tr>
<td>SNP/CN Probes</td>
<td>Single nucleotide polymorphism and copy number probes</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>qPCR</td>
<td>Quantitative polymerase chain reaction</td>
</tr>
<tr>
<td>HG</td>
<td>Haplogroup</td>
</tr>
<tr>
<td>RNaseq</td>
<td>RNA sequencing</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
</tr>
<tr>
<td>DRG</td>
<td>Dorsal root ganglion</td>
</tr>
<tr>
<td>WM</td>
<td>White matter</td>
</tr>
<tr>
<td>ON</td>
<td>Olivary nucleus</td>
</tr>
<tr>
<td>STS</td>
<td>Sequence tagged site</td>
</tr>
<tr>
<td>AID</td>
<td>Autoimmune disease</td>
</tr>
<tr>
<td>SLE</td>
<td>Systemic lupus erythematosus</td>
</tr>
<tr>
<td>HCC</td>
<td>Hepatocellular carcinoma</td>
</tr>
<tr>
<td>LCR</td>
<td>Low copy repeats</td>
</tr>
<tr>
<td>NAHR</td>
<td>Non-allelic homologous recombination</td>
</tr>
<tr>
<td>NHEJ</td>
<td>Non-homologous end joining</td>
</tr>
<tr>
<td>MMBIR</td>
<td>Microhomology-mediated break induced replication</td>
</tr>
<tr>
<td>EAE</td>
<td>Experimental autoimmune encephalomyelitis</td>
</tr>
<tr>
<td>GWAS</td>
<td>Genome-wide association study</td>
</tr>
<tr>
<td>BPD</td>
<td>Bipolar disorder</td>
</tr>
</tbody>
</table>
Introduction

The strikingly different human sex chromosomes evolved from an ordinary pair of autosomes \(^1\). The loss of gene content on the Y chromosome during evolution made it to appear like a dwarf in comparison with its homologous chromosome X. Some scientists predicted future extinction of the Y chromosome \(^2\), which indeed has occurred during evolution in some species \(^3\). However, recent studies show that the human Y chromosome is here to stay \(^4\). In comparison, the human X chromosome contains more than twenty times the amount of genes than the Y, of which many are involved in neurodevelopmental processes \(^5\). A substantial amount of research has focused towards the X chromosome and several reviews documented the results achieved \(^6,7\). Although this thesis contains a part about X-linked genes, the main focus is directed towards the Y chromosome.

The Y chromosome was not only subjected to loss of genes but also acquisition of autosomal genes occurred throughout its evolution. Recent research showed that export of ancestral X and Y encoded genes by transposition has taken place as well \(^8\). Those evolutionary events resulted in functional specialization of the Y chromosome mainly in sex determination, male fertility, but also to some extent in functions related to proliferation and connectivity of the central nervous system \(^9-11\). The Y chromosome affects not only the male developmental pattern of the organism but its presence contributes to several other characteristics including nociception, experimental autoimmune encephalomyelitis (EAE) and density of vasopressin fibers in the lateral septum in adult mice \(^12\). It is therefore important to further understand the function of Y encoded genes in males.

Humans and mice share a limited amount of orthologous Y genes, resulting in limited possibilities to study non-shared human Y-encoded genes such as \(PCDH11Y\) and \(NLGN4Y\). For human Y-linked genes without homologs in rodents, research is limited to human blood cell expression data, genetic structure analysis, investigation of germ cells of human origin, and analysis of various cell cultures and post mortem tissues \(^13\). There is a substantial knowledge about Y chromosome gene expression in adult gonads and in the central nervous system, but nothing is known about how these genes affect the development of human embryonic central nervous system at early stages, when the only known genetic differences between males and females are the differently expressed genes encoded on the sex chromosomes \(^14\). It is therefore of general scientific interest to investigate the possible contribution of
X- and Y-encoded genes to pregonadal sex differences in the developing central nervous system (CNS).
Background

Why study the Y chromosome

While I was asking the Director of a sequencing facility at a symposium about the costs and possibilities for sequencing human Y chromosome samples, I was met by laughter and a question regarding who managed to trick me into studying the Y chromosome. Yes, it’s tiny in size, it contains few genes compared to other chromosomes and it appears rather uninteresting when compared with its ancestral autosomal fellow X chromosome. Nevertheless, there are several reasons to study it. The first one is that very few research teams focus their attention to the Y chromosome, and there is therefore plenty of room for new discoveries. Another reason is that it is known that the Y chromosome orchestrates the male developmental pattern and the abbreviations in it structure or ploidity state lead to congenital developmental disorders of the reproductive system \(^{15} \). Very recent research show that reduced presence of Y chromosome in some white blood cells, termed as mosaicism, might act as a lifespan predictor in human male populations but the mechanism affecting aging is not yet known \(^{16} \). Copy number variations (CNV) in the azoospermia factor (AZF) regions might affect the carrier negatively in terms of reproductive success and a substantial effort was spent on elucidating the actual contribution of CNVs to male infertility. However, the causative genes are not yet clearly established \(^{17} \). Studies of the mutation rates and patterns of mutation throughout the male-specific region of the Y chromosome (MSY) have helped to understand human evolution and will assist to uncover the routs used by early modern humans during their expansion on earth.

Even if the genes that survived gene loss caused by lack of recombination with the ancestral X chromosome are few in numbers, some of the survivors are known to have important functions related to human health. For example, recent data suggests that at least two of them \(UTY \) and \(PRKY \) has protective roles in coronary artery disease \(^{18} \). Effects on behavior are also known. For example, studies in rats showed that switching Y chromosomes between different animal lines had behavioral outcomes in terms of aggression \(^{19} \). Further understanding of Y encoded gene function, together with studies on the function of their homologs on the X chromosome, will help to uncover mechanisms of male and female biased diseases. Finally, due to the complicated structural nature of the Y chromosome, and the high sequence similari-
ty between the X and Y homologs, not much is known about the specific spatial and temporal expression of the Y genes at the cellular level. Also of concern, until very recently, the sex chromosomes and foremost the Y chromosome, has been left out of many genome wide studies. This has resulted in a vast amount of data that has not been surveyed and analyzed in different contexts, and awareness about this situation has recently surfaced at research meetings focusing on studies of sex differences.

Evolution of mammalian sex chromosomes

Prior to the evolution of sex chromosomes in eutherians, sex determination was most likely regulated by environmental factors such as temperature, similar to the sex determination control system operating in some reptilians and fish today. Sex chromosome differentiation in mammals was initiated by the emergence of a sex-determining region on one in a pair of two ancestral autosomes, approximately 180-320 million years ago. Mutational events in the ancestor of the autosomal gene pair \(\text{SOX3} \) led to the acquisition of the sex determining region we know of today as the sex-determining region Y (SRY). The \(\text{SRY} \) gene encodes a transcription factor which activates a downstream cascade of genes and eventually hormones, which altogether direct the organism towards the male developmental pathway. After the emergence of the sex determining region, an inversion on the \(\text{SRY} \) bearing chromosome, resulted in suppressed recombination between the emerging sex chromosomes in that particular stratum. This event led to a depletion of genes on the Y chromosome due to accumulation of point mutations, insertions, deletions and repetitive sequences. Meanwhile, loss of recombination allowed for accumulation and grouping of sex specific alleles responsible for male fitness. Three additional inversion events took place during the evolution of the mammalian sex chromosomes leading to further reduction of genetic content on the Y chromosome. During these evolutionary stratification events, the human Y chromosome lost 97% of its ancestral gene content to reach the actual composition of 27 genes, while only 2% of the original genes were lost on its X homolog.

In total, 17 of the ancestral genes survived the degeneration of the human Y chromosome sequence and are listed below. From the first strata that formed 180 million of years (Myr) ago, only four gene pairs were retained on the sex chromosomes. \(\text{SRY}/\text{SOX3} \) together with \(\text{RMBX}/\text{Y} \), \(\text{RPS4X}/\text{Y} \) and \(\text{HSFX}/\text{Y} \) genes, were all located at the most distal q-arm of the ancient sex chromosomes. The second strata according to the physical order on the present human chromosome retained 10 gene pairs: \(\text{KDM5C}/\text{D} \), \(\text{TSPX}/\text{TSPY} \), \(\text{UTX}/\text{UTY} \), \(\text{DDX3X}/\text{Y} \), \(\text{USP9X}/\text{Y} \), \(\text{ZFX}/\text{Y} \), \(\text{IEF1AX}/\text{Y} \), \(\text{TXLNGX}/\text{Y} \), \(\text{TMSB4X}/\text{Y} \) and \(\text{AMELX}/\text{Y} \). The third strata along the X chromosome towards the p-arm retained only two genes: \(\text{TBL1X}/\text{Y} \) and
NLGN4X/Y. The fourth and last strata that inverted 30 Myr ago during the divergence between old world monkey and hominoids, contains only one functional gene pair, namely PRKX/Y.

As a result of the gene loss on the ancestral pair of sex chromosomes, the male cells ended up with a singular X chromosome and Y chromosome (XY). Female cells on the other hand, contained two X chromosomes (XX). The monosomy state in male cells led to development of a dosage compensation mechanism which restored balanced expression between the X and the autosomal chromosomes by overexpression of X-linked genes in mammals. This mechanism not only resulted in balance between autosomes and X but also in balanced expression between males and females. In female cells (XX), the overexpression of X was suppressed resulting in the evolution of the X-chromosome inactivation (XCI) mechanism, which acts epigenetically by inactivating the one X chromosome.

At the same time, evolution took an opposite turn in the avian lineage. In birds, the females contain an heterogametic sex chromosome composition (ZW) while the males are homogametic, displaying two Z chromosomes (ZZ). Interestingly, in birds, sex determination is not directed by a dominant factor like SRY, but is instead based on dosage of a Z-linked gene called Dmart1. Similar to the evolutionary processes that affected Y chromosome in mammals, the W chromosome in birds has been subjected to decay of genetic content.

Selected genes located in MSY

It would be fair to present a description of all the protein coding genes located in the MSY. Nevertheless, due to limitations of space in this thesis I will only mention a couple of genes that I find interesting and worth knowing of in the perspective of neural development.

SRY - Sex determining region Y. Beside the sex differentiation pathway activation, the SRY transcription factor have also been found to be expressed in liver, heart, kidney and brain. Brain regions exhibiting SRY expression are medial rostral hypothalamus, frontal and temporal cortex.

PCDH11Y - Protocadherin 11Y. This gene belongs to the protocadherin family which is a subfamily of the cadherin superfamily. The protein consists of extracellular domain that contains variable number of cadherin repeats, a transmembrane domain and a tail residing in the cytoplasm that is variable in length. PCDH11Y is involved in cell to cell recognition during development of central nervous system. PCDH11Y is unique to humans while its homolog PCDH11X is present in our closest relatives, the chimpanzees. This gene arrived from X chromosome (Xq21.3) by a duplicative
translocation and is currently located on the p-arm in one of the two X-transposed regions (Figure 1, Table 1). Expression has been documented in fetal neocortex, ganglionic eminences, cerebellum and inferior olive37.

NLGN4Y - Neuroligin 4Y. This gene is a member of the neuroligin family which has beside the X homolog NLGN4X, three additional gene variants in humans; NLGN1, 2 and 3. This family of genes is involved in cell adhesion and the protein for NLGN4Y is expressed at the postsynaptic cleft. It’s role is essential for formation of synapses but also their maturation38.

UTY - Ubiquitous TPR motif Y. (Histone Demethylase UTY). This gene encodes a protein which is involved in protein-protein interactions. It has also been described as a histocompatibility antigen which may induce graft rejection of male stem cell grafts39. UTY is also important during embryonic development of the mice since TALEN mediated editing showed that no pups survived editing of both Utx and Uty, but male pups with intact Uty survived in approximately 50\% of the cases40.

TSPY1 - Testis specific protein Y. TSPY gene array consists of 20-40 tandem repeated units in the proximal region of Yp11.2. Each of these units is 20.4kb in length harbors one copy of CYorf16 pseudogene. TSPY is predominantly expressed in testis and is involved in male fertility41.
Table 1. Genes and transcription units residing on the MSY part of the Y chromosome.

<table>
<thead>
<tr>
<th>Sequence class</th>
<th>Gene symbol</th>
<th>Gene name</th>
<th>Alternative name</th>
<th>Nr of copies</th>
<th>Tissue expression</th>
<th>X-linked homologue</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-transposed</td>
<td>TGIF2LY</td>
<td>TGF-β-induced transcription factor 2-like Y</td>
<td></td>
<td>1</td>
<td>Testis</td>
<td>TGIF2LX</td>
</tr>
<tr>
<td></td>
<td>PCDH11Y</td>
<td>Protocadherin 11 Y</td>
<td>PCDH22</td>
<td>1</td>
<td>Fetal brain, brain, spinal cord</td>
<td>PCDH11X</td>
</tr>
<tr>
<td>X-degenerate</td>
<td>SRY</td>
<td>Sex determining region Y</td>
<td>TDF</td>
<td>1</td>
<td>Predominantly testis</td>
<td>SOX3</td>
</tr>
<tr>
<td></td>
<td>RPS4Y1</td>
<td>Ribosomal protein S4 Y</td>
<td></td>
<td>1</td>
<td>Ubiquitous</td>
<td>RPS4X</td>
</tr>
<tr>
<td></td>
<td>ZFY</td>
<td>Zinc finger Y</td>
<td></td>
<td>1</td>
<td>Ubiquitous</td>
<td>ZFY</td>
</tr>
<tr>
<td></td>
<td>AMELY</td>
<td>Amelogenin Y</td>
<td>AMGL</td>
<td>1</td>
<td>Teeth</td>
<td>AMEUX</td>
</tr>
<tr>
<td></td>
<td>TBL1Y</td>
<td>Transducin β-like 1</td>
<td></td>
<td>1</td>
<td>Fetal brain, prostate</td>
<td>TBL1X</td>
</tr>
<tr>
<td></td>
<td>PRKY</td>
<td>Protein kinase Y</td>
<td></td>
<td>1</td>
<td>Ubiquitous</td>
<td>PRKX</td>
</tr>
<tr>
<td></td>
<td>USP9Y</td>
<td>Ubiquitin-specific protease 9 Y</td>
<td></td>
<td>1</td>
<td>Ubiquitous</td>
<td>USP9X</td>
</tr>
<tr>
<td></td>
<td>DDX3Y</td>
<td>Dead box protein 3 Y</td>
<td></td>
<td>1</td>
<td>Ubiquitous</td>
<td>DDX3X</td>
</tr>
<tr>
<td></td>
<td>UTY</td>
<td>Ubiquitous TPR motif Y</td>
<td>KDM6C</td>
<td>1</td>
<td>Ubiquitous</td>
<td>UTX</td>
</tr>
<tr>
<td></td>
<td>TMSB4Y</td>
<td>Thymosin β-4 Y</td>
<td></td>
<td>1</td>
<td>Ubiquitous</td>
<td>TMSB4X</td>
</tr>
<tr>
<td></td>
<td>NLGN4Y</td>
<td>Neuralin 4 Y</td>
<td></td>
<td>1</td>
<td>Brain, prostate, testis, spinal cord</td>
<td>NLGN4X</td>
</tr>
<tr>
<td></td>
<td>Cyorf15A</td>
<td>Chromosome Y open reading frame 15A</td>
<td>TXLNGY</td>
<td>1</td>
<td>Ubiquitous</td>
<td>Cyorf15Y</td>
</tr>
<tr>
<td></td>
<td>Cyorf15B</td>
<td>Chromosome Y open reading frame 15B</td>
<td>TXLNGY</td>
<td>1</td>
<td>Ubiquitous</td>
<td>Cyorf15B</td>
</tr>
<tr>
<td></td>
<td>SMCY</td>
<td>SMC (mouse) homologue Y</td>
<td>KDM5D, JARID1D</td>
<td>1</td>
<td>Ubiquitous</td>
<td>SMCH</td>
</tr>
<tr>
<td></td>
<td>EIF1AY</td>
<td>Translation initiation factor 1A Y</td>
<td></td>
<td>1</td>
<td>Ubiquitous</td>
<td>EIF1AX</td>
</tr>
<tr>
<td></td>
<td>RPS4Y2</td>
<td>Ribosomal protein S4 Y isoform 2</td>
<td></td>
<td>1</td>
<td>Ubiquitous</td>
<td>RPS4X</td>
</tr>
<tr>
<td>Ampliconic</td>
<td>TSPY</td>
<td>Testis-specific protein Y</td>
<td>~35</td>
<td>Testis</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VCY</td>
<td>Variable charge Y</td>
<td>BPY1</td>
<td>2</td>
<td>Testis</td>
<td>VCY</td>
</tr>
<tr>
<td></td>
<td>XXYR</td>
<td>XX related Y</td>
<td></td>
<td>2</td>
<td>Testis</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CDY</td>
<td>Chromodomain Y</td>
<td></td>
<td>4</td>
<td>Testis</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>HSFY</td>
<td>Heat shock transcription factor Y</td>
<td></td>
<td>2</td>
<td>Testis</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RBMY</td>
<td>RNA-binding motif Y</td>
<td></td>
<td>6</td>
<td>Testis</td>
<td>RBMX</td>
</tr>
<tr>
<td></td>
<td>PRY</td>
<td>PTP-BL related Y</td>
<td>PTPN13-like Y</td>
<td>2</td>
<td>Testis</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>BPY2</td>
<td>Basic protein Y 2</td>
<td></td>
<td>3</td>
<td>Testis</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>DAZ</td>
<td>Deleted in azoospermia</td>
<td>SPGY</td>
<td>4</td>
<td>Testis</td>
<td>-</td>
</tr>
</tbody>
</table>
Genetic structure of the Y chromosome

The human Y chromosome contains pseudoautosomal regions, meaning regions that are present in both X and Y chromosomes, and a region that is Y specific MSY. The human pseudoautosomal region (PAR) consists of two regions, PAR1 which is located at the terminal region of the short arms of the X and Y chromosomes, and PAR2 which is located at the distal end of the q-arms of sex chromosomes (Figure 1) 42. PAR1 (2.6Mb) contains 24 genes while PAR2 (0.32Mb) harbors only four 43,44. Genes within the PAR regions undergo recombination during meiosis. This implies that recombination occurs according to classical Mendelian rules of inheritance, contrasting with the MSY region that does not follow these rules. Recombination rate in the PAR regions is higher in males compared to females and exceeds the recombination rate for autosomal chromosomes by 17 times 45-47. The recombination frequencies for PAR1 and PAR2 differ as well, with the PAR2 having a lower rate by more than one order of magnitude 48. Interestingly, a new hypothesis postulating recombination between the X-transposed region (XTR) on the Y chromosome and the X locus from which it originated (Xq21.3) has been proposed by Veerappa et al. 49. This novel hypothesis is based on findings discovered by applying SNP array technology, and it will be interesting to find out whether next generation sequencing technologies will be able to confirm the hypothesis or reject it.

Figure 1. Schematic representation of human Y chromosome. Upper part of image show distribution of gene content throughout the MSY and definition of AZF regions. P- and q-arm is colored in pale yellow; PAR regions in green and the centromere in orange. Lower part of the image represents MSY region and the identity of different regions within. Pink color marks X-transposed, yellow for X-degenerate, orange for centromere, blue for ampliconic and gray for other sequences.
MSY sequence
The MSY region is composed of three different classes of genomic sequences. X-transposed region shares 99% identity to Xq21 from which it was transposed 3-4 million years ago. Within this region two genes are to be found, *PCDH11Y* and *TGIF2LY* both of which have X homologs.

Second sequence class is made up of X-degenerate segments which harbor 16 single-copy genes and several pseudogenes. The sequence homology of these MSY genes and their X homologs reach 96% similarity at most.

The third class, the ampliconic region, is made up of long repeat units which share as much as 99.9% identity with each other. Another frequently used term for those scattered repeats is Amplicons, which exhibit the most gene dense regions of the MSY. Many multicopy genes and genes involved in male fertility are located within the ampliconic sequences.²⁷

Palindromes
Within the regions of ampliconic sequences, eight palindromes are to be found. A palindrome is a sequence which encodes the same order of genetic or alphabetic code independently of readout direction. Each palindrome has a linker sequence at its center which varies in length (2-170kb) and does not share any sequence similarity with the arms of palindromes. Six of eight palindromes carry genes which are expressed specifically in testes, and the very fundamental function of this specific genetic arrangement is to protect and preserve genetic sequences from decay.²⁷,⁵⁰

Mechanisms generating genomic rearrangements
Genetic rearrangements can occur sporadically, so called de novo, or can arise repeatedly and even be transferred to the offspring through the germ line. Certain copy number variations are arising at the same genetic locus and do not vary in length or gene content, these variations are said to be recurrent. Variations that differ in length, locus and gene content are defined as non-recurrent.

For the majority of genetic rearrangements, certain genomic architectures are required. The recurrent rearrangements have breakpoints that cluster at regions enriched for low copy repeats (LCR) that flank the CNV region.⁵¹ Non-recurrent rearrangements lack the clustering of their breakpoints but LCRs are frequently found close to one end of these rearrangements.⁵² Short interspersed nuclear elements SINEs and Long interspersed nuclear elements LINEs are often observed at breakpoints of deletions.⁵³

There are three major genetic mechanisms that are able to generate copy number alterations in the genome. Non allelic homologous recombination (NAHR) is responsible for generation of deletions, duplications and inver-
sions. The LCRs such as SINEs or LINEs need to be arranged in the same direction and exhibit at least 97% similarity with each other, in order to act as a substrate for the alteration. Non-homologous end joining (NEHJ) is often generating non-recurrent rearrangements where no microhomology is seen at the flanking breakpoints. Instead, small deletions or insertions of bases are associated at the breakpoint regions. A third mechanism capable of generating deletions, duplications, inversions and complex rearrangements is microhomology-mediated break induced replication (MMBIR). During the replication of the genome, a collapse of the replication fork generates one ended double-stranded DNA with the 3’ end exposed. The broken end of the DNA can anneal to another replication fork resulting in new DNA synthesis leading to generation of new genomic rearrangements.

In de novo NAHR mediated recurrent rearrangements the deletions on autosomal loci occur at a rate of 2:1, while the Y chromosome seem to exhibit a rate of 4.11:1 at the AZFa-HERV region. It should be noted that this rate is not an average of all observed NAHR mediated rearrangements on Y chromosome.

The sexual differentiation of the human brain

The male and female human brains do not only differ in terms of morphology but also in terms of behavioral phenotypes produced. During early male fetal development the brain starts to differentiate in “organizational” manner due to hormonal changes that are initiated by the expression of the Y encoded gene SRY. This differentiation route starts around week 7 to 12 post gestation in humans. The SRY protein which acts as a transcription factor, initiates a downstream cascade of gene expression among which SOX9 is a key player which activates the development of the primordial gonads into testes. At this stage, Leydig cells in the developing gonads start to secrete testosterone which is spread throughout the embryo.

Testosterone is converted to estradiol by the enzyme P450 aromatase, and binds to nuclear oestrogen receptors in brain cells. Upon binding to its ligands, the receptors act as transcription factors which influence gene expression as well as DNA methylation of CpG islands. These hormone induced “organizational” events masculinize the developing male brain which is further differentiated from the female brain pattern, by surges of androgen hormones at the pubertal age. Female embryos which lack the SRY gene are not directed towards the above described path but instead express WNT4 and other genes which influence the primordial gonads to develop into ovaries.

The sexual dimorphism of the brain is not only dependent on hormonal surges during the development. Indeed, early studies in rats observed that male embryos were in average heavier than female rat embryos before any
hormonal differentiation had been initiated \(^6^3\). Also, other studies found evidence of sex differences in tyrosine hydroxylase-immunoreactive cells (TH), with tyrosine hydroxylase levels elevated in female rat brains prior to gonadal hormone release \(^6^4\). These observations clearly suggested that other factors influenced pregonadal sex differences, and the presence of X and Y chromosomes are the obvious candidates.

Due to difficulties in obtaining early human developing CNS samples, no controlled study has yet been carried out with the aim of discovering pregonadal sex differences in the human brain. Several recent studies included a few samples from early developing embryos, but none of them could match sex, tissue and age in an appropriate way \(^6^5-^6^7\).

Biological implications of Y chromosome abnormalities

Y chromosome and male fertility

Inability to conceive or produce an offspring after one year of unprotected intercourse is defined as infertility \(^6^8\). Approximately 10-15% of couples are affected and males are responsible for infertility in 50% of the cases \(^6^9\). Female factors explain 50% of infertility causes, male factors contribute by 20-30% and the remaining 20-30% might be explained by interaction of male and female factors. Approximate total worldwide number of infertile men is between 30.625.000-30.641.000 based on self-reported cases. Global percentage of male infertility ranges from 2.5% to 12% varying between the continental regions with largest frequency in Central and Eastern Europe \(^7^0\).

Male fertility can be affected by pre-testicular factors such as smoking, alcohol consumption, excessive bicycle riding and complications such as hernia and orchiopexy (undescended testis) \(^7^1,^7^2\). Post-testicular factors affecting fertility are age, seminoma, varicocele, mumps, chromosomal aneuploidy and microdeletions on the Y chromosome \(^7^3,^7^4\).

Different levels of male infertility that directly corresponds to the semen quality are described as Oligozoospermia which implies that the spermatozoa in semen are below 15 million/mL and Azoospermia when there is a total absence of sperm cells in semen. Oligozoospermia is then subdivided into three categories ranging from mild (10-15 million/mL), moderate (5-10 million/mL) to severe (<5 million/mL) \(^7^5\).

If the Y chromosome alone was responsible for genetic factors resulting in inability to produce viable spermatids, it would then be easy to find the genes responsible for male infertility. Unfortunately, estimations points towards 2300 genes being involved in rodent male fertility, suggesting a similar amount of genes to be involved in human male fertility \(^7^6\).
Y chromosome specific regions involved in male infertility

Several Y chromosome regions have been associated with infertility of which the most commonly described are summarized below. The first investigations concerning deletions on q-arm of the Y chromosome linked three regions to the infertility phenotype\(^7\). These regions were denoted azoo-spermia factor (AZF) a, b and c, each being made up of different structure and containing different set up of genes\(^8\). AZFa, at Yp11.21, spans 792kb and harbors two genes, \textit{USP9Y} and \textit{DDX3Y}\(^7\). AZFb is located at Yq11, spans 6.23Mb and contains five single copy genes: \textit{SMCY (KDM5D)} \textit{EIF1AY}, \textit{RPS4Y2}, \textit{CYorf15A}, \textit{CYorf15B}, and 7 multicopy genes: \textit{XKRY}, \textit{HSFY}, \textit{RMBY1A1}, \textit{PRY}, \textit{CDY}, \textit{BPY2} and \textit{DAZ}\(^27,80\). Several different limits for the AZFb regions have been suggested, but I will use the definition proposed by Repping et al. 2002, where the AZFb interval spans into the proximal part of the AZFc region (Figure 1). AZFc is located at the very distal end of the MSY region of Yp11.23 and is a highly complex segment constituted by amplicons arranged in a stretch of 3.5Mb. As mentioned previously, the AZFb and AZFc regions overlap partly, sharing the \textit{BPY2}, \textit{CDY} and \textit{DAZ} genes. Within the AZFc region, many transcription units are found, such as non-coding \textit{TTTY3} and \textit{TTTY4}. Beside these genes, an extensive array of pseudogenes, homologous to several AZFb and AZFc located genes, reside in the region\(^81\).

Copy number variations within AZF regions have been observed in infertile men, which led to closer investigations of these domains in order to resolve which genes therein are playing a role in male infertility. The results have been intriguing with varying phenotypical outcomes linked to the same copy number variants.

The most proximal of the AZF regions and perhaps the only deletion pattern that results in total lack of germ cells in the testis is the AZFa deletion\(^82\). This variant is very rare and constitutes 5% of all AZF deletions on the Y chromosome. Interestingly, AZFa duplications are four times more frequent than the deletions\(^79\). These duplications have no negative impact on fertility since several cases of duplication transfer between fathers and sons have been reported\(^83\).

Most of the AZFb deletions are called from palindrome 5 to proximal palindrome 1, and they affect no less than 19 genes in a region of 6.2Mb\(^81\). These deletions are mediated by NAHR but the other variations in this region such as deletion of palindrome 4 appears to be caused by other mechanisms\(^84\). Interestingly, no reports of AZFb duplications have been published until our recent work described in this thesis\(^85,86\).

A complete AZFc deletion ranges from amplicon b2 to b4 and removes 3.5Mb of the genome, eliminating completely all \textit{DAZ} and \textit{BPY2} genes and reducing the \textit{CDY} gene copies. Hence, it’s designated b2/b4 deletion (Table 2). In contrast with complete AZFa and AZFb deletions, this variant is com-
patible with production of functional gametes, although it leads to decreased sperm production, usually below 1 million/mL. AZFc deletions are the most common of the AZF variants and occur at a frequency of 10-20% in infertile men in different populations.

<table>
<thead>
<tr>
<th>Table 2 Copy number of genes and transcript families in reference sequence and different CNV variants.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene or transcript family</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>RBMY</td>
</tr>
<tr>
<td>BPY2</td>
</tr>
<tr>
<td>DAZ</td>
</tr>
<tr>
<td>CDY1</td>
</tr>
<tr>
<td>PRY</td>
</tr>
<tr>
<td>CSPG4LY</td>
</tr>
<tr>
<td>GOLGA2LY</td>
</tr>
<tr>
<td>TTTY3</td>
</tr>
<tr>
<td>TTTY4</td>
</tr>
<tr>
<td>TTTY5</td>
</tr>
<tr>
<td>TTTY6</td>
</tr>
<tr>
<td>TTTY17</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Due to large amount of different ampliconic sequences in the AZFc region, several different rearrangements are possible. These variants affect a fraction of the complete AZFc interval and are designated according to the substrate amplicons used during the rearrangement. As described below, the phenotypic outcomes are extremely variable.

The most common among AZFc variants is the gr/gr deletion, found in both fertile and infertile men, with average frequency of 5.0% in controls vs 6.1% in cases, based on 24 fertility studies. Interestingly, the frequencies vary greatly between populations, and when the data from a Japanese population study was removed from analysis, the frequencies changed to 3.6% vs 6.2% respectively, increasing the difference between fertile and infertile men. In several studies, the CNV pattern of gr/gr deletion was associated with infertility, (Repping et al. 2003, Ferlin et al. 2005, Navarro-Costa et al. 2007, Yang et al. 2008 and Rosen et al. 2012). On the other hand, other studies reported lack of association (Machev et al. 2004, Hucklebroich et al. 2005, de Carvalho et al. 2006, Zhang et al. 2006, Wu et al. 2007 and Imken et al 2007).

Presence of gr/gr deletion in both father and offspring indicate that this variant is compatible with fertility. Nevertheless, if gr/gr deletion was selectively neutral, then its presence should reach a frequency of 40% within male population according to population genetic theory. Therefore, this variant
has some functional effect on male phenotypes that remains to be clarified. For example, it has been suggested that these varying effects of gr/gr deletion on male fertility are dependent on some other Y chromosome derived factors or the ancestral forms of genes involved, namely DAZL on chromosome 3 and CDYL on chromosome 6. Duplications of gr/gr appear in some studies at the same rate in control as in cases, 2.6% vs 3.8% respectively, while other studies find duplications significantly overrepresented in cases (0.9% in controls vs 7.0% in cases).

Another CNV pattern frequently detected within the AZFc region is the b2/b3 deletion. This variant does not affect the RMBY gene copies but has reducing effect on the copy number of BPY, DAZ, and CDY among others. Initial studies did not provide any link between the b2/b3 deletion and infertility. Instead, this variant was described as a fixed CNV within haplogroup N. However, subsequent studies with larger sample sizes identified associations between b2/b3 deletions and infertility, mainly in men bearing Y chromosomes outside of the haplogroup N. Furthermore, investigations of b2/b3 duplications in Han Chinese in China and Taiwan have found an association between the duplication variant and impaired spermatogenesis. The main outcome from b2/b3 duplication observations is that DAZ and BPY2 seem to be the prominent players in spermatogenesis. These recent findings expand the focus in male infertility research from being mainly directed to the effects of deletions, to also include analysis of duplications.

Aside from the AZF regions on the Yq, there is an array of TSPY genes located at the distal Yp in proximity to the centromere. The array exhibits variation in amount of the 20.4kb repeats ranging from 18 to 64 copies. Risk of low sperm production and infertility has been associated with both low copy number (below 21) and high copy number (above 55) of TSPY repeats in men. Variation in TSPY array content has also been described in different haplogroups, for example haplogroup P*(xR1a) exhibits significantly lower copy number compared to haplogroups J and DE. In a study surveying the infertility in Chinese men, the authors suggested that the TSPY array might be an independent factor that significantly affects the phenotypic expression of AZFc deletions in spermatogenesis.

Mutational causes

In contrast with the traditional approach of associating CNVs on the Y chromosome with male infertility, Sato et al., directed their study into investigations of SNPs associated with the phenotype. From a relatively large sample (n=917) of azoospermic, oligospermic and controls, four loci were identified in the autosomal chromosomes 6, 9, 13 and 15.
Aneuploidy states in male infertility

Several pieces of indirect evidence suggest that the Y chromosome may be involved in sex reversal phenotypes but research in this area is not clear. For example, Ross et al. 108 claimed that XYY males had normal spermatogenesis compared with XXY individuals which suffered from testicular failure. This statement contradicts recent results suggesting that duplication and not deletions are responsible for infertility in men from Yi population in China 109. One possibility to explain these opposing results might be that the balance of factors between X and Y chromosomes is relevant for functional spermatogenesis.

In a study investigating the impact of CNVs of Y chromosomal multi-copy genes on parent-of-origin effects on autoimmune disease in female offspring, the group found evidence for differential microRNA packaging in sperm between two consomic strains and a B6 mouse strain 110. This finding opens up for another area of research that should be taken into consideration upon investigation of causes of male infertility.

PAR1 PAR2 related diseases

There are several associations between different diseases or phenotypes to the genes located in PAR1 and PAR2. Since this thesis focuses on the MSY, I will just mention briefly four of these genes. The first gene that attracted attention was the Short stature homeobox (SHOX) gene located in PAR1. Copy number variation and mutations within exon 6 of SHOX are foremost associated with short stature as well as Léri-Weill dyschondrosteosis which is a bone growth disorder 111-113. Another gene within PAR1 that has been linked to familial pulmonary alveolar proteinosis is the colony stimulating factor 2 receptor alpha CSF2RA, with both deletions and point mutations as causative agents 114. The Xg blood group antigen XG is localized at the distal border of PAR1 and the MSY region and has been associated with both autism and bipolar affective disorder (BPD) in GWAS studies 115,116. Interestingly, the VAMP7 on the PAR2 has been associated with BPD 117,118 and duplications of this gene are involved in disruption of male urogenital development 119.

Aneuploidy states

In men, the most frequent sex chromosome aneuploidy states are 47, XXY Klinefelter’s Syndrome and 47, XYY Syndrome. These syndromes occur at rates of 1:500 to 1:1000 and 1:1000 live male births respectively 120,121. Male with Klinefelter’s genetic setup are in most cases infertile 122 and have smaller testes 123 among other phenotypical characteristics. Interestingly, Klinefelter males show delayed development of speech as well as reading
difficulties124. For this thesis, a more interesting genetic setup is the XYY Syndrome which has a subtle, or no obvious phenotypical trait, suggesting that dosage of the Y chromosome is of minor importance compared to X125. In general, no congenital anomalies are observed in XYY bearing boys. However, birth weight, height and head circumference have been observed to be above average. Also, mild hypertelorism and broad nasal bridge are seen in XYY children126. Tall stature has been commonly observed and it has been related to \textit{SHOX} gene121,127. On the behavioral side, attention deficit has been shown in 82% of XYY boys and depressive reactions to stressful events were found to be more frequent in patients vs. controls124,128. In contradiction to above mentioned elevated head circumference, one case has been reported where early infantile microcephaly has been described in a boy with XYY Syndrome129.

The first triple-Y syndrome 48,XYYY was described in 1965 by Townes, Ziegler and Lenhard130. Case descriptions of XYYY individuals note upper-respiratory infections, delayed development milestones such as rolling over, walking, speech delay and mild retardation131,132. In additional cases, problem with erection and small testicular size have been described as well as atrophic seminiferous tubules without any spermatogenesis133,134. Even though the mice Y chromosome differs from the human Y in terms of arrangement, size and gene content, studies on mice aneuploidy can be used for comparisons with humans. Indeed, infertility has been reported in rodents with aneuploidy states of the Y chromosome135.

The absence of “the second X” (or Y chromosome) in humans is denoted as 45, X karyotype and was first described by Henry Turner and named Turner’s syndrome136. This aneuploidy state is more interesting in studies focusing on the role of X chromosome, but deserves to be mentioned here since it can give valuable perspectives on effects of Y chromosome loss.

This sex chromosome imbalance has often detrimental impact on the survival of the fetus. Only 1% of conceptions with 45, X genetic setup survive through term137. The mosaicism of entire or partial secondary X is often found in the Turner’s diagnosed individuals, affecting the severity of the phenotype138. Mosaicism for Y chromosome has been detected in Turner patients as well. One indication of possible mosaicism for Y chromosome sequences is virilization139. The mosaicism of Y derived sequences in Turner individuals has been detected in 2-30% of the cases140. The presence of partial Y chromosome sequences as well as entire Y chromosome has also been described141,142. Even if these types of mosaicism cases are extremely rare, there are several types described, including both 45,X/46,XY and 45,X/47,XYY. Presence of Y chromosome sequences in Turner individuals is associated with risk of developing gonadoblastoma and prophylactic gonadectomy is usually recommended139.

Aneuploidy of X and Y chromosome is found to be associated with depressed verbal IQ scores. Interestingly, the Y-aneuploidy as opposed to the
X-aneuploidy, is associated with lower pragmatic versus structural language scores143. Taken together, these results suggest that the balance of Y chromosome expression has implications on language, social functioning and autism spectrum disorders (ASD)144.

Male biased diseases

The genetic composition of the chromosome Y might have protective functions or opposite effects in certain diseases. It’s only during the course of recent years that more focus has been directed towards gender differences in diseases. Here I will briefly mention some diseases that exhibit overrepresentation in males.

During the course of several studies, it has been shown that men exhibit prevalence for hypertension compared to females, regardless of ethnicity145,146. Also, cardiovascular diseases (coronary death, myocardial infarction and stroke) are overrepresented in males147. In a comparison of ischemic stroke between male patients and controls, seven Y-linked genes showed differential expression. Five of these are PAR genes (\textit{VAMP7, CSF2RA, SPRY3, DHR5X and PLDXD}) and two MSY genes (\textit{EIF1AY} and \textit{DDX3Y}). The MSY-linked genes were up-regulated in cases affected by ischemic stroke and the most interesting results from this study indicated that the X homolog \textit{EIF1AX} expression level was not changed while \textit{DDX3X} was up-regulated only at 24h after stroke. This suggests that X and Y homologs of \textit{EIF1A} might differ in their biological functions148.

Autoimmune diseases (AID) are affecting females more frequently than males, but when affected, the males show a more severe phenotype149. Rheumathological autoimmune diseases are despite the huge variation between countries, more prone to affect males in all geographical locations150,151. Prevalence of Crohn’s disease in males and females is not considered as a sex biased disease in many countries, with the exception of overrepresentation in the Japanese male population152. In cases where males are less prone to certain AIDs it’s intriguing to investigate whether the XY complement is protecting the male or if the insulating effect is a result of different hormonal setup. An hypothesis by Moorthy et al. stated that low prevalence of systemic lupus erythematosus (SLE) in males might be caused by negative selection of male fetuses carrying genetic risk factors for SLE153. This hypothesis was later confirmed by Affarwal et al. where an excess of fetal male loss was observed in SLE families compared to controls154.

Cancer

In a large study focusing on cancer mortality in the United States between 1977 and 2006, Cook et al. concluded that 32 out of 36 cancer types showed male preference155. We know that men are more sensitive to X-linked dis-
eases, since men only carry one copy of X chromosome. At the same time, it is probable that ectopic or unbalanced expression of the Y-linked genes might act as disease causing agent.

Recently, a study used data from the Utah Population Database where the authors investigated 257,252 males diagnosed with prostate cancer and high resolution pedigree records available. The outcome of this large study was that specific Y chromosome subtypes were associated with increased risk for prostate cancer. Even if no specific haplogroups were named, the investigation points out certain Y chromosome configurations which are predisposed towards the disease. Whether it is the Y chromosome itself, or loci on the autosomes associated with a certain Y chromosome subtypes, that are responsible for the association is not yet clear. It would be interesting to extract information about “protective associations” from the study. In other words, it would be informative to investigate which copy number variants of Y-linked genes are associated with low risk for prostate cancer.

Early studies suggested that loss of Y chromosome was frequent in prostate cancer. However, a recent study presents opposite results, indicating that loss of Y chromosome is a rare event in prostate cancer. In fact, only 12 of 2053 observed samples showed loss of Y chromosome. Interestingly, a human prostate cancer cell line named PC-3 that did not contain the Y chromosome, was modified by incorporation of an exogenous Y and thereafter injected into athymic nude mice. The presence of the Y chromosome in the cancer cell line led to suppression of tumor growth in the nude mice, suggesting that a gene(s) in the Y chromosome has protective function. However, loss of Y chromosome is described in other cancer forms including head and neck tumors (69% loss), hepatocellular cancer (90% loss), male breast cancer (63% loss) and esophageal squamous cell carcinoma (100% loss).

As previously mentioned in this thesis, Turner females are mosaics for Y-specific sequences that confer risk for gonadoblastoma. Early investigations pointed towards a gonadoblastoma locus Y (GBY) located close to the centromere. Although the responsible gene(s) has not yet been found, evidence suggests genes in the proximity of the centromere. TSPY at the p-arm prior to the centromere and USP9Y, DDX3Y, UTY at the q-arm are the strongest candidates.

Loss of Y chromosome (LOY) in peripheral blood has been observed to occur in elderly males, and a study by Forsberg et al. found that LOY was significantly associated with higher risk of nonhematological cancers and shorter cancer survival in aged men.

The suggested gene candidate TSPY has been frequently found in other cancer types such as liver cancer, melanoma and prostate cancer. In the case of prostate cancer, TSPY expression was found more frequently expressed in clinical prostate cancer specimens (78%) as compared to latent prostate cancer (57%) and non-cancer prostate tissues (50%). Another Y-
encoded gene implicated in cancer, namely RBMY, is involved in splicing of testis-specific transcripts and it has been shown to be involved in failure of meiosis upon deletion. This gene presented abnormal expression levels in 36% of male cases with hepatocellular carcinoma (HCC).

Finally, and somewhat intriguing, it seems that fetal cell microchimerism (FCM) for Y-specific sequences has been associated with disease. FCM is defined as presence of fetal cells in maternal organs, and it has been reported to occur in both rodents and human. Studies surveying the FCM from male fetuses have found that the presence of Y-specific sequences have a protective role in Alzheimer’s disease (AD) and papillary thyroid cancer. For other diseases such as autoimmune disease, there is still diverging data on whether FCM has a detrimental effect on the phenotype or not.

Psychiatric diseases

Besides a role in male biased diseases and several cancer forms, the Y chromosome has also been implicated in several psychiatric diseases. Most of the evidence regarding contribution of the Y chromosome indicates genes located in the PAR regions. Most information available is found in case descriptions included in medical reports or investigation of cases with aberrations in sex chromosome ratios.

Chromosome abnormalities

Overrepresentation of autism spectrum disorder (ASD) in males has indicated that sex chromosomes may be involved in the disease. Indeed, the prevalence of ASD in males is 4 times higher than in women. Studies of monozygotic and dizygotic twins found that 60% of the MZ twins were concordant for autism while the DZ twins showed no concordance at all. These early results clearly suggested that there is a main genetic factor contributing to development of autism. Also, early observations of duplications of Y chromosomes or presence of isodicentric Y chromosomes were found in autistic children. Autism has also been described in males with 47, XYY syndrome and XYY Klinefelter’s, but the prevalence of the disorder is more common in XYY than in XXY carriers (50% vs 12%). This suggests that an extra copy of the Y chromosome may have higher impact on the probability to develop autism.

Gene abnormalities

In an attempt to associate a Y chromosome haplogroup with autism, Jamain et al. investigated 111 autism cases and 140 controls in males from France, Sweden and Norway. None of the 12 defined haplogroups could be significantly associated to the disease. Another attempt of haplotype association
was done in 2009 by Serajee et al. using 126 autistic patients and 102 controls. This time, two haplotypes were overrepresented in autistic males. In total, 9 haplotypes could be assigned in this study after genotyping 12 SNPs on the MSY region. There were no significant differences in frequencies of individual SNPs between controls and patients, but haplotypes 3 and 4 were significantly overrepresented in the autistic males. Unfortunately, the haplotypes have not been converted to haplogroups as defined by the Y chromosome consortium. A hint of which MSY genes might be involved in autism came from association of mutations in $NLNG3$ and $NLNG4X$. These findings led to focus on the $NLGN4Y$ and one missense variant in the gene (p.I679V) was detected in one case out of 290 autistic males. Interestingly, the father of the proband carried the same mutation and exhibited learning disabilities. Nevertheless, the limitation with this finding is that the observed mutation is extremely rare and its possible contribution to autism is very limited. Another approach to study the possible influence of $NLGN4Y$ on the autism-related behaviors was done by measuring expression levels of $NLGN4Y$ and $RPS4Y$ in XYY males and XY controls. The autism-related phenotype correlated with increased expression levels of $NLGN4Y$ but not $RPS4Y$, suggesting that further investigations of $NLGN4Y$ should be done to establish whether it is a risk gene in XYY males.
The Aims of the studies

Paper I
Abundance of female-biased and paucity of male-biased somatically expressed genes on the mouse X-chromosome.
- To identify X chromosome genes sex-biased in somatic mouse tissues.
- To investigate whether the X chromosome is masculinized or feminized in terms of X-linked gene expression in somatic tissues.

Paper II
Microarray Analysis of Copy Number Variants on the Human Y Chromosome Reveals Novel and Frequent Duplications Overrepresented in Specific Haplogroups
- To investigate whether CNVs on the human Y chromosome can be efficiently detected by the Genome-wide human SNP array 6.0 (Affymetrix).
- To test if any of the detected CNVs are associated in males diagnosed with schizophrenia or bipolar disorder.

Manuscript III
Cellular sexual dimorphism of X and Y homolog gene expression in human central nervous system during early male development
- To study spatial expression of PCDH11X/Y and NLGN4X/Y homologs in human developing central nervous system.

Manuscript IV
Sex differences in expression of X and Y genes during development of the human and chimpanzee central nervous system
- To study sex-biased expression in male and female developing CNS
- To investigate not previously described transcriptionally active regions in MSY
Results and discussion

Paper I

Abundance of female-biased and paucity of male-biased somatically expressed genes on the mouse X-chromosome.

Setting
The mammalian sex chromosomes spend different amounts of time in males and females. The X chromosome evolved during 2/3 of the evolutionary time in females while only 1/3 in males. It’s therefore expected that female-beneficial dominant genes would be enriched on the X chromosome. Simultaneously, since the X is present in a single copy in male cells, any recessive alleles that result in reproductive advantage for males would be directly available for positive selection. Since the presence of two copies of X exists in female cells, both beneficial and deleterious recessive alleles would be masked from sex-specific selection. The considerations explained above generated a hypothesis stating that the X chromosome should be enriched with male-biased genes. Observations in Drosophila melanogaster indicated opposite results, with underrepresentation of male-biased genes on the X chromosome. Also, studies in mice were performed on reproductive tissues and suggested both masculinization and feminization of the X chromosome. Previously, several studies concentrated on expression of X-linked genes in reproductive tissues of males and females, but no equally extensive study of sex-biased expression in somatic tissue had been done when we initiated our investigations. Since sex-biased physiology and sex-biased gene expression occur also outside of gonadal tissues, we decided to investigate X-chromosome-wide sex-biased gene expression in non-reproductive tissues of the Mus musculus.

Main results and significance
The main outcome of our investigation was that female-biased genes were abundant on the X chromosome while the male-biased genes were underrepresented on the X chromosome. De-masculinization or in other words, feminization of the X chromosome has occurred during evolution in non-reproductive tissues. Among the six tissues included, kidney and liver were most enriched for sex-biased X-linked genes. We also observed a vast amount of genes with tissue specific sex bias. This could mean that we found
many novel tissue specific escapee genes or it could be interpreted as the sex-biased X-gene expression is a product of female-skewed gene-regulatory mechanisms. In situ hybridization experiments confirmed one novel escape candidate, *Tmem29* in mouse fibroblast cells. The bi-allelic rate of expression for *Tmem29* was found to be 7%, and confirmed the high sensitivity of our microarray analysis. Finally, we found that novel female-biased non-coding transcripts were located in a cluster close to the well-known escapee gene *Kdm5c*.

Study description and discussion

Many of the differentially expressed genes between male and female mice showed small fold differences (generally below 1.2 fold)\(^{193}\). To increase the statistical power and therefore allow for the detection of sex-biased genes with small fold changes, the amount of samples studied must increase substantially. Therefore, we initiated collaboration with a group at the University of Tennessee, USA. This partnership provided us with microarray hybridization data obtained from 728 animals in which six different tissues were studied: kidney, liver, lung, striatum, eye and hippocampus. Sex-biased genes were identified in all of the tissues (Table 1, Paper I). The amount of sex-biased genes between the tissues varied for autosomal and X-linked genes while the Y-linked genes were biased at a constant rate. The two most dimorphic tissues were kidney and liver but also striatum showed a large number of sex-biased genes (Table 1, Paper I) which confirmed previous observations\(^{194}\). Besides the expected X-linked gene *Xist*, many of the differentially expressed X genes showed small fold changes compared with the sexually dimorphic autosomal genes (Figure 1, Paper I). This difference might be explained by an evolutionary constraint on sexual expression bias of X-linked genes or by evolutionary restriction on mechanisms that regulate X-linked expression differences.

To be able to scrutinize the hypothesis of both feminization and masculinization of the X chromosome, we compared the frequencies of sex-biased genes between X chromosome and the autosomes. In this comparison, we found the most interesting observation of this study. Namely, male biased genes exhibited a significant underrepresentation on chromosome X (Figure 3, Paper I). Female-biased genes were, on the contrary, significantly overrepresented on the chromosome X in comparison with autosomes. These results might be interpreted as follows: a process of de-masculinization and opposing feminization of the X chromosome took place during evolution within non-reproductive tissues. But a valid question of to what extent were these results affected by the known X escapee genes, needs to be asked?

In order to understand the effect of known X inactivation escapee genes on the observed results, we subtracted those from the observed female-biased genes. Despite the subtraction, the overall amount of female-biased genes did not change dramatically, which indicates that many novel genes
were present in our list (Figure 3a and b, Paper I) or that an unknown sex-skewed gene-regulatory mechanism orchestrated the remaining female-skewed set of genes on the chromosome X.

We also wanted also know whether the sex-biased genes showed any clustering tendency on the X chromosome. Therefore, we studied the distribution of differentially expressed genes (Figure 2, Paper I). As the figure indicates, we could not find any clustering that diverged from the overall gene density on X. On the other hand, we found that four non-coding RNAs were expressed in the downstream proximity of the known escapee gene Kdm5c.

To verify that the sex-biased genes actually escape from inactivation mechanism, we performed RNA in-situ hybridization experiments in mouse fibroblast cell cultures derived from female embryonic skin. Our analysis confirmed that one of these genes, Tmem29 exhibits expression from both X chromosomes at a frequency of 7% in the cultured fibroblasts. This modest proportion of bi-allelic expression for Tmem29 indicates that many escapee genes might operate under rather subtle expression levels as compared to the known ones. Unfortunately, none of the four non-coding RNAs detected in the Kdm5c cluster were confirmed by in situ hybridization. However, it is still possible that these genes, in fact escape inactivation in other cell types.

Several female-biased genes on the X chromosome showed significant expression throughout the six tissues. Interestingly, none of male-biased genes exhibited a significant differential expression across all tissue types, indicating perhaps a tissue specialized/directed male-sex bias of expression (Table 2, Paper I).

Paper II

Microarray Analysis of Copy Number Variants on the Human Y Chromosome Reveals Novel and Frequent Duplications Overrepresented in Specific Haplogroups

Setting

Most frequently, the Y chromosome has been studied in order to elucidate its effect on male infertility. In other studies, the PAR regions of the Y chromosome have been investigated with the aim to find loci responsible for short stature and mental retardation. Structural variants in MSY have also been applied in forensics in order to tie and untie suspects to crime. The field of anthropology and population genetics has used the possibilities of sequence classifications that the non-recombining MSY has to offer in terms of accumulated mutations and variants. Several different deletion and duplication patterns in the AZF regions have been described and some have been linked to reduced male infertility. Mostly due to technical limitations, many studies focused on certain regions of the MSY leaving the majority of the
chromosome out of the analysis. To circumvent this, we decided to investi-
gate whether the Affymetrix 6.0 array was solid enough for reliable CNV
detection within the MSY. Another aim of our investigation was to test
whether any detected pattern could be associated to differences in brain
morphology. As far as we are informed, no other studies have yet tried to
investigate a connection between CNVs in the MSY and possible effects on
the male brain.

Main results and significance
By taking into account intensity values from both male and female data we
could conclude that 8170 probes out of 8179 on the Genome-wide human
SNP array 6.0 (Affymetrix) were reliable for both duplication and deletion
detection. By locating known sequence-tagged site (STS) marker positions,
or previously described palindromic start and stop locations, we could de-
termine which probes on the array represent ampliconic sequences. Further
on, detected patterns could be classified according to the descriptions by
Repping et al. 2006 196, and part of them were confirmed by molecular meth-
ods. Most surprisingly, our results showed that duplications are more com-
mon than deletions at a rate of 2:1. Also, in total, we could classify 25 vari-
a tion patterns of which 10 were significantly overrepresented in one or more
haplogroups.Aside of confirming previous observations of b2/b3 deletion
(c35) being fixed in haplogroup N, and gr/gr deletion (c8) being overrepre-
sented in males belonging to haplogroup D, we found that palindromes 4 and
5 were subjected to both deletions and duplications while palindrome 6 devi-
ated only in terms of duplication. Finally, we observed a novel b2/b3 derived
pattern which we denoted as “Blue-grey duplication like” based on its close
resemblance to previously described Blue-grey duplication (c449) 196. Our
study demonstrates the importance of controlling the male subjects for hap-
logroup identity in future genome-wide investigations of Y chromosomal
effects, in order to avoid stratification bias. Also, the results can work as a
guide as to which CNV patterns are expected to be found in specific haplog-
roups.

Study description and discussion
Until recently, most of the studies investigating Y chromosomal CNVs fo-
cused mainly on AZF regions and they applied classical PCR amplification
methods utilizing at best two dozens of STS markers to investigate the 22.5
Mb region of MSY 27. To circumvent the limitations of such approach, we
decided to use a Genome-wide human SNP array 6.0 (Affymetrix) to inves-
tigate CNVs at high resolution throughout the entire Y chromosome. This
approach allowed us to survey the MSY region at 8279 positions with an
average distance of 3.2kb, assessing deletions and duplications simultane-
ously. Our study was initiated by an analysis of 271 Norwegian males which
were participating in a study surveying brain morphology in patients with
schizophrenia and bipolar disorder. The initial results in our study indicated presence of both deletions and duplications within two regions on MSY, namely AZFc and palindrome 6. These observations were confirmed by PCR amplification of STS markers residing within the deleted regions and qPCR for STS markers residing within palindrome 6. Based on STS marker amplification results, and visual patterns displayed by the probe intensity values, we could conclude that distinctive types of deletions were observed, namely gr/gr deletion (c8), and b2/b3 deletion (c35) (supplementary Figure 1, Paper II). By carefully mapping known STS marker positions to the genomic regions on the array, we could identify and define which probes represented specific ampliconic sequences (Figure 2, Paper II). At that point, we could correlate observed probe patterns in the AZFc region to the known and predicted rearrangements described by Repping et al. 2006, supplementary figure 2. Unfortunately, not all ampliconic sequences in the MSY are represented by probes. For amplicons b1, b2, g1, r1-r3 and g2, there are no probes on the array, and their status must be inferred from the response of the probes representing the same type of amplicon. The manufacturer claims that each probe within the amplicons is specific for that ampliconic region only, but if so, then why do we always detect the same effects on the probes representing regions Y1.1 and Y1.2? These two amplicons exhibit always the same variation pattern clearly suggesting that the probes in these regions can’t discriminate between Y1 and Y2. Because of these array properties it is difficult to tell which of these two amplicons is actually affected in certain CNV patterns, unless qPCR method is used.

The most common CNV pattern in the Norwegian cohort was surprisingly the b2/b3 deletion (c35), which according to other sources is generally found at low frequency in comparison to gr/gr deletion (c8). This initial contradicting observation made me suspicious that we in fact might have a population bias in the Norwegian cohort. After all, b2/b3 deletion is known to be fixed in haplogroup N. Could the Norwegian cohort in fact represent a bias in Y chromosomes belonging to haplogroup N? Since the array beside the CN probes also contain 288 SNPs we could, together with our collaborators, use the AMY-tree algorithm to classify the Y chromosome sequences into various haplogroups. The analysis assigned haplogroups at subclade resolution level, but since only 91 out of 246 SNPs that we could genotype were informative; we decided to merge the subclades into the main haplogroups. In this way, we could be more confident when we observed overrepresentation of certain CNVs in specific haplogroups.

At that stage, in order to increase the potential of this developed methodological approach, I expanded the amount of samples by acquiring data from publicly available datasets. This extended the study from 271 to 1718 males improving not only the statistical power but also including several distinct populations. The expansion of the samples resulted in discovery of addition-
al patterns that were not observed in the Norwegian cohort. For example, the very interesting duplication of regions “prior to P4 post P5”, palindrome 4 duplications, inverted repeat 2 duplications and finally the “Blue-grey like” duplications (Supplementary Figure 1f, h, i, j and p, Paper II).

Most important, the observed overrepresentation of duplications vs. deletions in our data was somewhat surprising. Other studies have reported contrary results. This discrepancy might be explained by the fact that only limited genomic regions were surveyed, or that other array platforms were used which only investigate exon specific probes 57,109. What might be the reason that we discovered more duplications than deletions? Could it be that duplications of MSY genes might have less severe impact on fitness than deletions? That might actually be the case, since the overrepresentation ratio is 2.1:1. As always, there might be some exceptions. The fact that we only observed palindrome 6 duplications and no deletions among 1718 Y chromosomes, suggests that this variant might be deleterious to the carrier. It should also be noted that this variant was only observed in haplogroups NO-M214(xM175) and R-M207 suggesting that it arose later during human evolution.

Unfortunately, we can’t say what effect the observed CNVs have on the reproduction fitness since we don’t have access to the fertility status for the included men. My hope is that data accumulated by this study will work as an indication of which variants and frequencies are to be expected in certain haplogroups and that these observations might help in the design of future infertility studies.

Interestingly, recent reports of Chinese Han population point towards the possibility that duplications and not deletions are the main risk factor for male infertility in Asian men 95,109. In our data the AZFc spanning duplications (b2/b4 deletion duplication (c6), b2/b4 duplication (c21), b2/b4 duplication (c56) and gr/gr duplication (c9) did not show any overrepresentation in any haplogroup, suggesting that these variants are present throughout the entire spectra of the Y chromosome haplogroups. It should be noted that the gr/gr duplication (c9) is the most frequent of the AZFc duplications, reaching a frequency of 2.52%. Interestingly, gr/gr duplication + distal duplication which include duplication of a region after last gr amplicon occur at significant level only within haplogroup J. This could be interpreted as the Y chromosomes in the HG J lineage possess a specific sequence which acts as a substrate for this duplication and that the observed gr/gr duplication + distal duplication might be a potential risk factor for infertility in men from haplogroup J. A re-analysis of our data in which the gr/gr duplications (c9) and gr/gr duplication + distal duplications are merged should be performed in order to assess if the gr/gr duplications will be still overrepresented in haplogroup J.
Another novel observation in our study was that certain CNVs can occur simultaneously. For example, some Y chromosomes exhibited both duplication of palindrome 6 and deletion of AZFc (Figure 2). This observation might be useful in studies that will further investigate certain CNVs and their contribution to infertility. This especially, as it has been shown that not all men with gr/gr deletion (c8) are infertile, so the duplications, deletions or other regions in the MSY might act as an additional factor that determines the outcome of the gr/gr deletion (c8) [96]. It should also be noted that this array contains probes on the X chromosome which should be investigated in the light of MSY detected variants.

Figure 2. Duplication and deletion CNVs in MSY. X axis represents genomic position on the Y chromosome, Y axis represents the Log 2 intensity values. Each dot represents one CN or SNP probe. PAR1, centromere and PAR2 are not represented by probes. Palindrome 6 duplication is indicated by the arrow, probes at the distal end exhibit a b2/b3 deletion (c35) pattern in a Norwegian male.

Finally, I would like to mention our initial aim for this study, namely to investigate whether MSY specific CNVs have any potential effect on male brain morphology. In the statistical analysis of the CNV carriers versus non-CNV males (both cases and controls) we did not detect any significant differences in the 282 brain regions measured. Neither did we find any significant differences when CNV males with diagnosis were compared against non-CNV males with diagnosis. Nevertheless, for regions of Sub Cortical Left Ventral DC and Cortical Area ctx rhentorhinal the p-values were approaching 0.001 even after correction for multiple testing. We know from our results that approximately 11.4% of the Norwegian cohort males carry a CNV on their Y chromosome. By increasing a study size to above 877 samples of males with access to their brain morphology data, one could expect to find approximately 100 males with various CNV patterns. This would dramatically improve the power of the statistical analysis and be hopefully enough for detection of significant differences. Since brain morphology has
been shown to be significantly affected in both schizophrenia and bipolar disorder, it would be necessary to perform such study in control males only. One could argue that AZF_c encoded genes are not expressed in the brain and variation within the AZF_c region can therefore not have any effect on brain morphology. On the other hand, AZF_c variants reduce or overexpress the AZF_c encoded genes in the male testes, which might have indirect hormonal effects on the brain. After all, Sertoli cell-only syndrome has been linked to reduced levels of testosterone as well as microdeletions in Yq11 region including AZF_c ^{200,201}.

Manuscript III

Cellular sexual dimorphism of X and Y homolog gene expression in human central nervous system during early male development

Setting

Recovering after millennia of gene loss and decades of being mostly ignored by the scientific community, the Y chromosome slowly regains attention in sex difference research and in the neurobiology field. Two studies have shown the contribution of the Y chromosome in early development of male fetal brain ²⁰². Beside these, spatial and temporal investigations of Y-linked genes have been described in human CNS, ranging from second trimester to adult stages ⁶⁵, but yet nothing could be said about the differential expression of X and Y-linked homologues at a cell specific level. The main reason for this, is the extremely high sequence identity between X and Y-linked genes which can reach up to 99.1% between selected isoforms, rendering it difficult to design probes capable of discriminating between X and Y transcripts. Early investigations of Y-linked genes highlighted two genes, namely PCDH_{11X} and NLGN_{4Y}, which were believed to be involved in cerebral asymmetry, autism and speech delay respectively ^{37,187,203}. By applying modern technology based on *in situ* Padlock Probing hybridization, we were able to map the expression of PCDH_{11X/Y} and NLGN_{4X/Y} in embryonic tissues from Medulla Oblongata and spinal cord. Special care was taken to obtain CNS tissues of males and females from early developmental stages to minimize hormonal influences which might blurry the genetic contribution of gene expression to pre-gonadal sex differences of the human brain.

Experimental considerations

Experiments in this paper were performed on human tissue from aborted embryos that were collected at the Uppsala University Hospital after written consent was obtained from the donors. Ethical permission for this study was granted by the Regional Ethics Committee in Uppsala (number 2011/329).
To distinguish transcripts with sequence identity as high as of 99.1%, we had to abandon the traditional *in situ* detection approach, which requires dissimilarities in X and Y transcripts of at least 150-200 base pairs, and we therefore looked for novel detection methods. The *in situ* Padlock Probing strategy is designed to discriminate RNA molecules based on a single base pair difference. Since several variations between exons of *PCDH11X/Y* and *NLGN4X/Y* were to be found, we could choose which exons to detect by designing specific cocktails of probes. Also, to confirm the *in situ* padlock probing detection results by an alternative method, we sequenced total RNA and polyA enriched RNAs from both medulla oblongata and midbrain of male and female embryos at equivalent ages.

Main results and significance

Our data showed that all four genes (*PCDH11X/Y* and *NLGN4X/Y*) were expressed in the gray matter of spinal cord and Medulla Oblongata at an early stage of development (8-11 weeks post gestation). It appeared that there were three categories of cells expressing these homologs. We found cells expressing only the X-linked homolog, only the Y-linked homolog and cells expressing both of them. Also, the statistical analysis showed that “cells expressing the X-linked or Y-linked homolog tended to cluster together to a further extent compared to cells expressing both”. Finally, there was a significant gradient for *PCDH11X* expression in the spinal cord. Indeed, despite the fact that there were less cell bodies in the ventral region compared to the dorsal, we found a significant overrepresentation of *PCDH11X* expressing cells in the ventral region.

Discussion

In this section I will concentrate on the discussion of a main statement in the abstract of the manuscript: “The most striking result was that the Y encoded genes are expressed in specific and heterogeneous cellular neural subpopulations that rarely express the X homologs”. First of all, the term rarely is too vague and here I will present the actual numbers for X and Y containing cells given from two different perspectives that I wish to discuss.

In the first scenario, the signal detection system we used is robust and all the existing transcripts within the cells are detected. If this is the case, the data under such assumption is represented in (Figure 3a and b). When all signal containing cells are counted, the percentages of cells exhibiting both X and Y-linked signals for *PCDH11Y* simultaneously reaches a frequency of 5.7%, which corresponds to the proportion described as “rare” in the manuscript.

In the second scenario, limitations of the *in situ* padlock probing technology do not allow for a complete detection of all existing transcripts due to low sensitivity of the method. Indeed, it has been estimated that no more than 30% of transcripts are detected in fixed tissue. Under such condi-
tions, many cells that exhibit only one X- or Y-linked signal might in reality contain a second transcript of either the same or the opposite homolog. In other words, cells with singular X or Y-linked expression are actually cells expressing either XX, YY or XY homologs of *PCDH11*. We should here bear in mind that *PCDH11X/Y* is expressed at low levels compared to many other Y-linked genes (data not shown). In such case, if the analysis would be performed on cells exhibiting only two or more signals, the confidence of the observations would increase and represent to a better extent the actual expression profiles. To do this, a much larger population of tissue samples than the one we used in the manuscript should be included.

Data from the analysis using the second assumption is presented in (Figure 3c) where the XY expressing cells comprise 38.8% of all cells with signals. Such approach of data analysis does not reject the previously cited conclusions, but decreases the amount of cells that might form a male specific network in the brain. To get past the raised concern, a series of experiments in tissues of later developmental stages should be used, since it is known that *PCDH11X/Y* expression is elevated during fetal brain development and slowly drops throughout adult life. Or in other words, signal detection in cells that produce a high number of transcripts should remove any doubts that might be raised in the current data set. Also, it would be of interest to include other X and Y-linked genes that are expressed at higher levels, to investigate whether the trend of sex chromosome specific expression applies for all X and Y homologous genes or if it is only utilized by the two neuro-specific genes on the chromosome Y, *PCDH11Y* and *NLGN4Y*.

Figure 3. **Proportions of cells exhibiting X, Y, XY, XX, or YY signals.** Class of XX, YY and XY might contain two or more signals. **A** All cells with detected transcripts are presented in separate classes. **B** Cells with XX and YY transcripts are merged into the X and Y class. **C** Only cells exhibiting two or more transcripts are included. All single X and Y cells are excluded.

Regardless of which approach is used for data interpretation, the observation of existing CNS cells expressing only X or Y-linked transcripts of *PCDH11X/Y* holds true. This novel observation is followed by differences in spatial expression of *PCDH11X/Y* in the spinal cord. Indeed, in spite a higher density of cell nuclei in the dorsal horns, the amount of cells expressing *PCDH11X* is significantly higher in the ventral part of the spinal cord (Fig-
ure 2 g, h, i and figure 6 a, b, e, f, Manuscript III). It’s difficult to distinguish whether this enrichment in the ventral part of the gray matter of spinal cord is caused by specific developmental organization processes in the gray matter, or if it is a result of enrichment in X-specific networks. On the other hand, *PCDH11Y* presents an even distribution of transcripts. These observations opens up to a question as to whether *PCDH11X* might be higher expressed in interneurons that wire the efferent system (somatic motor system), while the *PCDH11Y* is biased towards the afferent system (somatic sensory and visceral sensory). Even if not yet quantified, the immunostaining experiments done by our group show that both *PCDH11X/Y* are expressed in some Islet-1 motorneuron progenitor cells.

Interestingly, signal randomization tests showed that *NLGN4X* is confined to certain regions in Medulla Oblongata, while *NLGN4Y* is, as the case with *PCDH11Y* more homogeneously expressed throughout the tissue (Figure 7 a-c, Manuscript III). No graphical representation of the expression patterns in midbrain tissue was included in the manuscript, but visual inspection of midbrain samples indicated a gradient in *PCDH11X*, being more dominant in the inner part of the tissue while *PCDH11Y* is predominantly detected in the outer parts of the midbrain (Figure 4a).

![Image](image.png)

Figure 4. Spatial distribution of PCDH11X/Y and NLGN4X/Y signals in male midbrain. Figure shows overview of signal distribution in male midbrain tissue. A. Combined expression of PCDH11X/Y signals and separate enhanced expression of PCDH11Y and PCDH11X. B. Combined expression of NLGN4X/Y and separate enhanced expression of NLGN4Y and NLGN4X in consecutive section of midbrain.

The hypothesis of male specific networks including expression of *PCDH11Y* can be questioned. For example, it is not clear whether *PCDH11Y* cells would have a different phenotype than *PCDH11X* containing cells, since the
X and Y homologs display high sequence similarity. Despite the high sequence identity, PCDH11Y has accumulated 7 non-synonymous amino acid changes in the ectodomain and 10 in the cyto-domain compared to PCDH11X.36 Beside the non-synonymous substitutions, there is a difference between the homologs of PCDH11 at the exon composition level. According to the exon definition by Ahn et al, 2009, exon 2 is PCDH11Y specific while exons 8, 9 and 10 are only to be found in PCDH11X. This setup of different exon usage might have different effects between the transcripts even if those exons were not defined as functional by the investigators. However, the different exons of PCDH11X/Y transcripts isoforms might have effects on human male and female brains, especially as some transcripts appear to dominate certain CNS regions. For example, PCDH11X isoform 3 appears predominantly in adult brain while PCDH11Y isoform 1 transcripts were abundant in fetal brain.206 Corpus callosum, a region which is known for its contribution to sexual dimorphism of the brain, was found to be enriched for PCDH11X isoform 5.207 It should also be noted that the 13 bp deletion in exon 5 of PCDH11Y causes a shift in translation start site leading to N-terminal region with different number of extracellular cadherin domains.206

Finally, one observation that may decrease the importance of the function of PCDH11Y should be mentioned: 4 males with complete deletion of PCDH11Y have been previously described and these males did not display any phenotypic deviations, suggesting that the presence of PCDH11Y lacks functional significance.208 Nevertheless, it should be noted that the mentioned study did not assess the psychological traits of the males with deletions, nor their CNS morphology.

Current findings and technology applied in this study open up for future investigations even at isoform discriminating level of expression of PCDH11X/Y in CNS. Since null mutant studies of PCDH11Y are not biologically possible in humans (except for rare case descriptions of deletion or duplication events) future functional studies should be performed in human male cells of neuronal origin.203

Manuscript IV

Sex differences in expression of X and Y genes during development of the human and chimpanzee central nervous system

Setting
In mouse, the neural tube closure occurs at embryonic day 9.5 while sex hormones start to be produced at around gestation day 11.5.209,210 In humans, the respective embryonic stages are about week 4 for the closure of the neural tube and weeks 8-10 for the initiation of synthesis of oestrogens or androgens and the maturation of sex organs.211,210 These observations imply
that, in mammals, there is a window of very active CNS development that is not affected by gonadal hormones. During this sex-hormone-independent timeframe, any gender bias in development that is genetically controlled should be the result of the action of genes encoded in the X and Y chromosomes. Early studies demonstrated that in mice, several genes encoded on the sex chromosomes are expressed in a sex-biased manner before sexual maturation of the gonads. In a more recent study, we used a very large database of more than 700 microarray expression analysis in mouse brain, and we demonstrated that only about a dozen of genes on the mouse X chromosome, together with about a dozen genes in the Y chromosome present significant expression bias between the sexes. To investigate the sex biased expression in human developing CNS we employed high-resolution RNA sequencing combined with a nested qPCR approach on embryonic tissues ranging between 8 to 10 weeks post gestation.

Main results and significance

It was surprising that our strategy only detected *XIST* among female-biased X-encoded genes. In a more detailed investigation of all 992 X-linked genes, only 7 presented significant differences between females and males, including *PAGE4, MAGEC3, CAPN6, ZFX, VGLL1* and *GYG2* (Supplementary Table 2, Manuscript IV). Among the Y-encoded genes 17 were significantly higher expressed in males (Supplementary Table 3, Manuscript IV). Of 13 pairs of genes known to exist in gametolog pairs, including *KDM5D/C, DDX3X/Y, EIF1AX/Y, PRKX/Y, TXLNG/P2, NLGN4X/Y, RPS4X/Y1, TMSB4X/Y, ZFX/Y, USP9X/Y, UTX(KDM6A)/Y, TBL1X/Y and PCDH11X/Y*, only *ZFX* was detected as significantly biased in females. Also, we discovered five long RNAs encoded on the Y chromosome that are expressed in developing human CNS. Of these, five are expressed in new born Chimpanzee brain. None of the long RNAs found in our study was described in macaque cortex studies by He et al. suggesting that all of them are only conserved among higher primates.

Study description and discussion

To study sex differences in gene expression prior to gonadal differentiation, we collected and RNA sequenced human embryonic CNS samples including medulla oblongata and midbrain. After initial statistical analyses of the differentially expressed genes, we decided to look for novel expression regions that were not previously annotated. Indeed, in close proximity to certain genes, the sequence tracks from males showed accumulation of sequence reads of various amounts. To remove sequences of poor quality and to avoid possibility that the reads map to more than one region, we only counted reads with quality score 30 or more. Thereafter, a design of qPCR primers specific for selected Y chromosome regions was conducted and primers with minimal mismatches to the chimpanzee Y chromosome were selected. For
confirmation of XY human homologs, we designed a strategy where the X primers were shown not to amplify Y specific sequences (Manuscript 4, Methods). Amplification data for the long RNA coding regions exhibited a clear pattern of expression in four out of five regions. Of the five investigated regions, TTTY15/intergenic exhibited highest expression in both human and chimpanzee males. For all five regions, the male adult brain samples presented lower expression compared to the embryonic and fetal samples indicating that those long RNAs are transcriptionally more active during development. However, the amplification of ARSEP1 primers resulted in clear amplification in the female chimp sample but not in human female sample. Upon blast of the primer sequences against the chimpanzee genome, we noted that these primers only have one mismatch each compared with a 143bp region located 20491bp at the 5’ side of the Arylsulfatase D gene on the X chromosome, which most probably explains the cross-amplification observed.

Four of six of the newly found long RNAs are poly-adenylated suggesting that they may be precursors for micro RNAs (miR). If this is the case, this could change the current view that only the X chromosome and not the Y contain miR genes220. To further characterize these novel RNA expressing regions, another set of primers must be designed in order to localize the start and stop position of these transcriptionally active regions. Thereafter, investigations of sequence comparison to other known RNA coding sequences and secondary structure formation predictions must be performed before any categorization of these novel Y-encoded RNAs can be done.

In conclusion, the newly discovered long RNAs have several characteristics that suggest that they might be functional, including tissue specificity, temporal restriction, polyA adenylation and conservation of expression during primate evolution221. Functional studies will determine in the future their relevance for the male CNS during development.
Conclusions

This thesis presents my studies concerning the human Y chromosome in two contexts: the structure in terms of copy number variations in several male populations and the expression of X and Y homologs in human embryos, at tissue- and cell-specific levels. The results of my studies provide descriptions of novel CNVs in the MSY and insight into specific patterns of expression from sex chromosomes, according to which not all CNS cells express X and Y homologs simultaneously.

In the first study, I showed that in somatic tissues of rodents, X chromosome expression is enriched for female-biased genes and at the same time, depleted from male-biased genes. In other words, the X chromosome has been feminized and de-masculinized throughout evolution.

In the second study, I showed that Affymetrix Genome-Wide Human SNP Array 6.0 can be successfully used for detection of CNVs on the Y chromosome. I also showed that duplications and not deletions are more frequent in the male population. Beside this, I described novel CNV patterns related to the b2/b3 deletion and Blue-grey duplication variants. This novel variation was denoted “Blue-grey duplication like” and is only detected in haplogroup NO-M214(xM175). I also showed that both deletion and duplication can occur in the same individual at two separate loci in the MSY.

One of the more important findings of my thesis was included in my third study, and brings a novel understanding of how the X and Y homologs are expressed at the cellular level in the CNS. Together with colleagues, I showed that PCDH11X and PCDH11Y are to large extent expressed in different cells throughout the human spinal cord and medulla oblongata. We showed that neurons (marked by NeuN antibody), oligodendrocyte precursor cells (Sox10) and motoneurons (Islet-1) express PCDH11X/Y. This is the first time that a description of PCDH11Y specific expression has been possible to perform, mainly due to the padlock probing and rolling circle amplification strategy applied. It should also be mentioned that the data presented in this study is acquired from prenatal CNS at a developmental stage where the gonadal hormones synthesis is just about to be initiated.

In the last study, I investigated the differential expression between male and female embryonal CNS. Beside few autosomal genes, the list of significantly sex-biased genes was dominated by the Y-encoded transcripts. I also showed that X encoded homologs in three out of 13 XY homologous gene pairs, exhibit escape from X inactivation. The most novel finding in this
study was the existence of novel non-coding RNAs located on the Y chromosome.

Future efforts should concentrate on long-read genome sequencing of the Y chromosome, which will allow for de novo assembly of AZF region diversities throughout a plethora of haplogroups. This approach will omit the limitation of variant discovery based on the currently used reference sequence approach, and it will allow for more detailed structure descriptions of the Y chromosomes in different haplogroups, especially the more ancient ones. To study the potential contribution of different CNVs to male infertility, future investigations should not only focus on the Y-linked genes variation in different CNV patterns, but also their X and autosomal homologs. It would also be of interest to investigate the epigenetic status of the Y chromosome in males with different fertility status.

Regarding Y-linked expression levels, it would be of interest to extend the expression studies described in this thesis to include CNS tissues from later developmental and postnatal stages. This with the aim to find out whether the observed patterns of spatial expression are affected by hormonal surges which occur during early fetal development and in adult life. It is time not only to distinguish PCDH11Y from PCDH11X, but also to discriminate between expression patterns of different isoforms of these genes. Studies of co-localization of other protocadherins with PCDH11Y or neureligins with NLGN4Y in the human cortex will contribute to further understanding and mapping of the herein suggested male specific network in the male brain.

The results presented in my thesis suggest that, despite the limited size and gene content of the Y chromosome, a large amount of research remains to be done to further understand the role of Y chromosome genes in male fertility and in the connectome of the brain.
Denna avhandling redogör för studier av hur Y kromosomen varierar i strukturförhållande hos män. Den beskriver även hur uttryck av hur X och Y homologer uttrycks på vävnads och cell specifika nivåer. Resultaten från mina studier presenterar nya beskrivningar av olika strukturvarianter och visar att X och Y specifika gener inte alltid uttrycks samtidigt i samma cell.

Inom ramen för första studien visar jag att X kromosomen i somatiska vävnader uppvisar en överrepresentation av gener med högre uttryck i honor. Med andra ord kan man säga att X kromosomen har blivit feminiserad eller avmaskuliniserad under evolutionens gång. Resultaten visar också att X kromosomala gener som uppvisar tydliga könsskillnader i uttrycksnivåer är evolutionärt sett gamla gener, med en ålder som ofta överstiger 100 miljoner år.

I den andra studien visar jag att Affymetrix Genome-Wide Human SNP Array 6.0 kan användas för detektering av strukturvarianter på Y kromosomen. Resultaten visar att duplicationer till skillnad från deletioner är främst förekommande hos män. Jag beskriver också en ny strukturvariant som är relaterad till b2/b3 deletionen (c35) och Blue-grey duplikationen (e499). Varianten benämns som ”Blue-grey like duplication” och den påvisades endast i Y kromosomer tillhörande haplogrupp NO-M214(xM175) som är vanliga förekommande i Finland och norra Sibirien. Datan i studien visar också att två variationer kan uppstå oberoende av varandra längs Y kromosomen.

En av de viktigaste upptäckterna gjordes inom ramen för den tredje studien och visar för första gången hur två neurospecifika Y kromosom gener uttrycks på cellnivå. Tillsammans med samarbetsparten beskriver vi för första gången genuttrycket för $PCDH11X$ och $PCDH11Y$ i human hjärnvävnad och påvisar samtidigt att genera till största delen uttrycks oberoende av varandra i olika celler. Vi lokaliserar uttrycket av dessa gener till neuroner, oligodendrocyter och motoneuroner. Studien genomfördes i embryonal hjärnvävnad från tidigt utvecklingsstadium för att därigenom kunna studera Y kromosomens bidrag till könsskillanden innan könshormon bildas och startar könsdifferentieringen av hjärnan.

I den sista studien undersöker jag könsskillander i hjärnan med avseende på genuttryck mellan foster av manligt och kvinnligt kön. Vididan av ett
fåtal autosomala gener, domineras skillnaderna i uttryck av Y kromosomala gener. Jag visar också att endast tre av 13 XY homologa genpar uppritar eskapism från X inaktivering för X varianten av genen. Den främst banbrytande upptäckten i denna studie är att Y kromosomen till skillnad från vad tidigare var känt, rymmer 5 ickekodande RNA molekyler vilka främst uttrycks i hjärnan hos män under fetal utveckling.

Framtida studier borde koncentreras på ”long-read” genom sekvensering av Y kromosomen vilket kommer resultera i de novo sammansättning av Y kromosomens DNA sekvens. Genom detta tillvägagångssätt kommer man undkomma snedvridningen av kopieantal detektering som uppkommer pga. att en och samma referenssekvens används vid de flesta av dagens undersökningar. Detta kommer leda till mer korrekta beskrivningar av olika variationsmönster främst i de evolutionärt äldre haplogrupper. Framtida studier av Y kromosomens inverkan på fertilitet borde inte bara fokusera på MSY regionen utan även inkludera variationer på X kromosomen samt de ancestrala generna varifrån dagens Y länkade gener härstammar. Det vore även av intresse att inkludera Y kromomens epigenetiska status i framtida fertilitetsundersökningar.

När det gäller uttrycksstudier av X och Y homologer så vore det intressant att utöka forskningen till fler och bättre definierade hjärnvävnader som speglar utvecklingsstadier från den embryonala perioden till födseln. Detta för att observera om uppkomna könsskillnader i uttryckmönster annuleras eller förstärks av den hormonproduktion som sker under olika faser av utvecklingen.

Det är äntligen dags att inte bara skilja uttrycket mellan PCDH11Y och PCDH11X på gennivå, utan även beskriva hur generna skiljer sig åt i uttryck på isoformnivå. För att vidare förstå rollen som PCDH11Y verkar ha på bildandet av för mannen specifika nätverk i hjärnan är det viktigt att studera genen tillsammans med andra gener i protocadherin familjen.

I denna avhandling presenterade resultat visar att trots kromosomens ringa storlek och knappa genantal så finns det mycket utrymme för vidare undersökningar av Y kromosomens bidragande roll i mannens fertilitet och utformningen av manspecifika neuronala nätverk i hjärnan.
Acknowledgements

I would like to start by acknowledging all the tax payers in Sweden by which their financial contributions made these studies possible. First, big thanks to Björn Reinius for initiating me into research at BMC/EBC and patiently helping me out with technical and theoretical issues throughout my studies. Secondly, I would like to thank Eir Löfgren for help and enthusiasm during initial CNV investigations. Carly Schott, thank you for help with confirmation analyses. Jon Jakobsson, thank you for help with investigating the CN/SNP probe variations. Simon Eckerström Liedholm, thank you for help with the tedious work of PCR verification and dissection of the ampliconic sequences in AZFc. Anneleen Van Geystelen and Maarten Larmuseau, thank you joining the CNV project and haplogrouping the Y chromosomes. Ingrid Agartz, Srdajan Djurovic, and Lavinia Athanasiu, thank you for sharing and helping out with SNP data and DNA. Bryn Farnsworth, thank you for discussions regarding statistical analyses and introduction to SPSS. Thank you Reza Mirzazadeh, for initiating the Padlock probing experiments and transferring the knowledge of the method. Elin Lundin, thank you for a great cooperation and patience in stressed situations and tedious work of signal readout. Mats Nilsson, thank you for all your technical support and statistical discussions during the interpretations of the data. Xiaoyan Qian, thank you for the great heat maps and density plots of our experiments. Elisabeth Darj, thank you for your cooperation, without your contribution this thesis would not be possible. Jonathan Halvardson, thank you for the statistical analyses and figures from the RNAseq data. Ammar Zaghlool and Mitra Etemadikhah, thank you for help with RNA and tissue preparations. Lars Feuk, thank you for the collaboration and support regarding the RNAseq. Katarzyna Radomska, thank you for initial help with tissue collection and immuno experiments. Sophie Sanchez, thanks for the help with the EndNote. Daniel Snitting, thanks for interesting discussions about the cosmos. Qingming Qu, thanks for being such an inspiring researcher and colleague. Helena Malmikumpu, thank you for help with ordering and advices regarding tissue preparations. Rose-Marie Löfberg, thank you for help with practical and administrative issues. Lina Emilsson, thank you for being my secondary supervisor and showing your support. Professor Per Ahlberg, thank you for taking your time to discuss the history of the Scandinavian runestones. Professor Reinald Fundele, thank you for introducing me to the sport of archery. Professor David
Skuse, thank you coming all the way to Uppsala for my dissertation. Professor Art Arnold, thank you for making my stay in Mount Pinos unforgettable. Thank you my dear wife, Marzieh Farzamfar, for supporting, cheering me up and pushing me to work hard during those years. Thank you also for all help with initial Y chromosome plots. An important gratitude goes to my Grandmother, Mother and Stepfather who encouraged me to pursue the path of knowledge and cheered me to do the very best in every situation. Finally, and most importantly I would like to thank Professor Elena Jazin. Thank you for accepting me as your student and teaching me how to find the hidden details in the data. Also, thank you for all the support with scientific writing and manuscript preparation.
References

Acta Universitatis Upsaliensis

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1285

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and Technology, Uppsala University, is usually a summary of a number of papers. A few copies of the complete dissertation are kept at major Swedish research libraries, while the summary alone is distributed internationally through the series Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology. (Prior to January, 2005, the series was published under the title “Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-261789