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Abstract

Automatic de-identification of case narratives from
spontaneous reports in VigiBase

Jakob Sahlström

The use of patient data is essential in research but it is on the other hand confidential
and can only be used after acquiring approval from an Ethical Board and informed
consent from the individual patient. A large amount of patient data is therefore
difficult to obtain if sensitive information, such as names, id numbers and contact
details, are not removed from the data, by so called de-identification. Uppsala
Monitoring Centre maintains the world's larges database of individual case reports of
any suspected adverse drug reaction. There exists, of today, no method for efficiently
de-identifying the narrative text included in these which causes countries like the
United States of America reports to exclude the narratives in the reports.

The aim of this thesis is to develop and evaluate a method for automatic
de-identification of case narratives in reports from the WHO Global Individual Case
Safety Report Database System, VigiBase. This report compares three different
models, namely Regular Expressions, used for text pattern matching, and the
statistical models Support Vector Machine (SVM) and Conditional Random Fields
(CRF). Performance, advantages and disadvantages are discussed as well as how
identified sensitive information is handled to maintain readability of the narrative text.
The models developed in this thesis are also compared to existing solutions to the
de-identification problem.

The 400 reports extracted from VigiBase were already well de-identified in terms of
names, ID numbers and contact details, making it difficult to train statistical models on
these categories. The reports did however, contain plenty of dates and ages. For
these categories Regular Expression would be sufficient to achieve a good
performance. To identify entities in other categories more advanced methods such as
the SVM and CRF are needed and will require more data. This was prominent when
applying the models on the more information rich i2b2 de-identification challenge
benchmark data set where the statistical models developed in this thesis performed at
a competing level with existing models in the literature.
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1 INTRODUCTION

1 Introduction

Using patient data in research is crucial to get new relevant insights into how humans
are affected by their environment and to develop methods for prevention of diseases and
disorders. Diversity and complexity of the human body makes it impossible to gener-
ate synthetic data that is representative to some population in general. Patient data,
however, can be difficult to collect since typically, an Ethical Board has to approve the
use of the medical record as well as obtain informed consent from the individual patient.
However, if the data is de-identified then these requirements do not necessarily apply.

Uppsala Monitoring Centre (UMC) is an independent foundation with the primary goal
of improving patient safety and the safety and effectiveness of medicine usage in all
corners of the world. UMC maintains and analyzes the world’s largest data base of indi-
vidual case reports of any suspected unintentional effects from drugs, so called Adverse
Drug Reaction (ADR). The data base is named VigiBase [1]. These reports contain both
structured non-sensitive information such as patient’s year of birth and suspected ADRs,
as well as free text narratives that may contain sensitive information that can identify
an individual patient. Reports of suspected ADRs from countries like the United States
of America do not include the narrative text since UMC cannot, at the moment, guaran-
tee the narratives being de-identified. A method for automatic de-identification before
storing the free text in VigiBase would make it possible for countries like the U.S. to
send complete reports and not exclude the narratives. Reports coming from the U.S.
cover about 50% of all spontaneous reports retrieved by UMC. Obtaining the narrative
information from these reports containing limited information would provide valuable
data for the research and signal detection team at UMC to improve the safety of drug
usage. Narrative information in addition to the structured fields is of great importance to
not make incorrect interpretations of the reports which could result in wrong regulatory
decisions [2].

According to the United States Health Insurance Portability and Accountability Act
(HIPAA) [3] there are 18 data elements, called Protected Health Information (PHI),
that have to be removed from a clinical record for it to be considered de-identified, see
Figure 1.

One essential variable in the causality assessment of a suspected ADR is the time in-
terval between medical treatments and the onset of an adverse event. In the narratives
this information is often stated as dates when a medical treatment was initialized. Spe-
cific dates are, on the other hand, sensitive information according to HIPAA and must
therefore be removed in the de-identification process. This issue can be solved by re-
placing the dates with time intervals from a reference point or add a document-specific
random offset to all dates. In this way the specific dates are removed and the time in-
tervals are preserved. The same methodology can be applied to other sensitive elements
such as names and locations. The effect of de-identifying a text is illustrated in the
example below.

1



1 INTRODUCTION

1. Names
2. All geographic subdivisions smaller than

a State, including street address, city,
county, precinct, zip code or equivalents
except for the initial three digits of a zip
code if the corresponding area contains
more than 20.000 people.

3. All elements of dates (except year) for
dates directly related to an individual,
including birth date, admission date,
discharge date, date of death and all ages
over 89 and all elements of dates indica-
tive of such age

4. Telephone numbers
5. Fax numbers
6. Electronic mail addresses
7. Social security numbers

8. Medical record numbers
9. Health plan beneficiary numbers

10. Account numbers
11. Certificate/license numbers
12. Vehicle identifiers and serial numbers,

including license plate numbers
13. Device identifiers and serial numbers
14. Web Universal Resource Locators

(URLs)
15. Internet Protocol (IP) address numbers
16. Biometric identifiers, including finger

and voice prints
17. Full face photographic images and any

comparable images
18. Any other unique identifying number,

characteristic, or code

Figure 1: Protected Health Information (PHI) to be removed from a text to be classified as
de-identified (as defined by United States Health Insurance Portability and Account-
ability Act (HIPAA)).

Original Text:

Mr. Smith visited Uppsala Hospital at May 1 2014. Mr. Smith later experienced
symptoms on May 16 2014.

De-identified text:

[PERSON] visited [LOCATION] at [14 September 2012]. [PERSON] later experi-
enced symptoms on [29 September 2014].

The objective of this study is to compare models with different complexity and evalu-
ate their performance on de-identifying narrative information in VigiBase reports. The
process of de-identification can be divided into two parts:

1. Identify sensitive information

2. Reduce information loss by replacing identified entities with informative substi-
tutes.

On one hand, when de-identifying a report it is crucial that all sensitive entities are
found. A missed date, for example, could help re-identifying other masked dates in the
text. On the other hand, to reduce the loss of information of a de-identified report, high
precision and informative substitutions are needed to ensures that no unnecessary text
is removed and that the text maintains its readability even though sensitive elements are
removed.

Words, numbers and punctuations, in this report collectively named as tokens, can have
different meaning depending on the context they occur in and the same goes for sensi-
tivity of a sequence of tokens. A disease, such as Parkinson’s disease, could in specific
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2 RELATED WORK

contexts be interpreted as a name of a person. To get a computer to distinguish between
sensitive and non-sensitive entities in a text is not a trivial task and requires detailed
analysis to achieve good performance.

2 Related Work

A common task in Natural Language Processing (NLP) is to predict the Part-of-Speech
(POS) tag [4] for each token in a sentence. Publicly available corpora containing a large
amount of text that have been manually annotated with POS tags are often used to train
these taggers. One of the biggest corpora is the Penn Treebank [5] corpus which consists
of over 4.5 million manually annotated words from the American English language and
is often used as a benchmark. State-of-the-art POS taggers typically have an accuracy
of around 97% when trained and evaluated on the Penn Treebank Wall Street Journal
corpus [6].

For a statistical model to be able to find patterns in the data we need to describe the
data in a way that is suitable for the model. This is done by defining so called features
which in some way describes a data point. An example of what kind of features are often
used in the area of NLP is presented by Toutanova et al. [7, 8] at Stanford, authors
of a widely used POS tagger. Their POS tagger uses features generated directly from
the token itself, such as the current token, next token, suffixes and prefixes as well as
boolean features telling if the current token contains a number, hyphen or uppercase
characters. These features can be seen as local since they concern the target token and
its immediate surroundings. Other features may include lookups in external resources,
such as dictionaries, and features based on characteristics of the bigger context in which
the target token exist, also referred to as non-local features, e.g. number of tokens in the
sentence and position in document [9].

Another task in NLP is Named-Entity Recognition (NER) where the goal is to label
elements of a text with pre-defined categories, e.g. names of persons, location or orga-
nizations. NER can be seen as two tasks: detecting entities, and classifying the entities
detected. Entity detection is often referred to as chunking and is usually solved by com-
bining tokens to phrases using a model based on the tokens and their POS tags. [10, 11]

There are mainly two approaches to a NER problem. One is to include linguistic
grammar-based techniques, requiring extensive manual work from linguists. The other
is to use statistical models which usually reduce the need of linguistic knowledge but
require a vast amount of manually annotated data [12]. A statistical NER model often
uses the POS tag, from applying a pre-trained POS tagger, as a feature. Using POS
tags as features result in one indication function per POS tag specifying if the token
represents a verb, noun, etc. In addition to the POS tag, features like the ones described
in [7, 8] are also included. The process of de-identifying medical records can be seen as a
NER task since the goal is to identify elements of the text that belong to the Protected
Health Information (PHI) categories defined by HIPAA.

The words anonymization and de-identification are often used as equivalents, though
there exists an important distinction between the two terms. Clete A. Kushida et al.
[13] state that de-identification of medical records is the act of removing or replacing
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personal identifiers, making it difficult to restore the connection between the individual
and his or her data. However, de-identified data sets are allowed to contain encrypted
identifiers where only authorized individuals have access to the encryption key. The
existence of a key makes it possible to reestablish a link between individual and data
for an individual with correct authorization. The data set must not contain any data
that would allow unauthorized individuals to reestablish this link. Anonymization on the
other hand, is referred to as irreversibly removing all links between data and individual to
the extent that it is virtually impossible to restore the connection between the individual
and his or her medical record.

Meystre et al. [14] review systems for automatic de-identification of narrative text in
electronic health records. The paper brings up 18 different methods used in the area of
text de-identification, some mainly based on pattern matching and/or rule-based tech-
niques and some mainly based on machine learning techniques. For each method, the
authors make a detailed analysis in terms of the architecture used, the PHI categories
detected, what external sources were used and the type of clinical documents targeted
by the method. Meystre et al. found that the majority of these methods relied only on
pattern matching, rules and dictionaries.

Informatics for Integrating Biology and the Bedside (i2b2) [15] is a center for Biomedical
Computing based at Partners HealthCare System. They have repeatedly provided NLP
challenges in the area of clinical research where participants received fully de-identified
documents and an objective. The i2b2 challenge in 2006 focused on de-identification
[16] and is now frequently used as a benchmark when comparing models for the de-
identification task. The i2b2 data set for the de-identification challenge will be discussed
in detail in Section 5.2.2. Other challenges include extracting medications, identifying
obesity and identifying risk factors for heart diseases.

Aramaki et al. participated in the i2b2 de-identification challenge and developed a sys-
tem which not only uses local features (e.g. target and surrounding tokens) but also
takes external sources into account (such as dictionaries) as well as non-local features
(e.g. sentence length and position within the document) [9]. The use of non-local fea-
tures was based on the insights that sentences including PHI occurred at the beginning or
end of a document and were in general shorter in length compared to sentences not con-
taining PHI elements. The system was based on a statistical machine learning technique
called Conditional Random Fields (CRF) which takes the context of a token into account.

Ferrández et al. [17] present a solution to the task of de-identifying medical records
by using a two step process after first pre-processing the data.

1. High sensitivity extraction including dictionary lookups, pattern matching and the
prediction from a CRF model to determine the most probable PHI category for a
token.

2. PHI candidates identified in the previous step were used to train individual binary
classifiers for each PHI category using a machine learning technique called Sup-
port Vector Machines (SVM). The target variable was to predict if the resulting
annotations from previous step were correct or not.
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3 AIM

In this way Ferrández et al. managed to reduce the number of elements incorrectly clas-
sified as sensitive while keeping a high confidence in the classification.

The time between drug exposure and the occurrence of a medical event is one of the
most important aspects when determining the likelihood of the event being caused by
the drug or not. However, certain dates are, according to HIPAA, categorized as PHI
and should be removed. Thus it is important to retain as much information as possible.
One solution to not lose date information in de-identified reports is applied by the De-ID
system developed by University of Pitsburgh and evaluated by D. Gupta [18]. De-ID
offers the functionality of adding the same random date offset to all dates in a report.
In this way the actual dates are modified and the interval and granularity of a date are
retained.

3 Aim

The main objective of this report is to develop and evaluate a method for automatic
de-identification of case narratives in reports from the WHO Global Individual Case
Safety Report Database System, VigiBase. The de-identified narratives should maintain
readability by replacing as much sensitive information as possible with informative sub-
stitutes. This report compares three different methods with varying complexity to find
out which approach is the most suitable to fulfill this objective. The methods, listed in
order of increasing complexity, are Regular Expressions, Support Vector Machines and
Conditional Random Fields. Furthermore, we want to obtain an answer to the question
How does our model compare to existing models?

Grammar and sentence structure differs a lot between languages, so to develop a multilin-
gual algorithm requires deep knowledge in linguistics in addition to scientific computing
and machine learning. Combining this with UMC’s goal of retrieving the missing narra-
tives of the U.S. reports, this thesis is limited to English narratives only.

5



4 BACKGROUND

4 Background

In this chapter we explain the main principles and methods that are used in this thesis.
We will bring up the basic Regular Expressions used for text pattern matching, the
statistical models Support Vector Machines and Conditional Random Fields, as well as
how the statistical models are trained to extract entities of interest from a text.

4.1 Regular Expressions

A Regular Expression (RegEx) [19] is a combination of characters describing a span of
text that follows a certain pattern. RegEx are used in many of the search and replace
functions encountered in most popular text editors. A simple example is the task of find-
ing all entries of a word that can have different spellings, such as the Swedish surname
Jönsson, which could be spelled as Jönsson, Jonsson or Joensson depending on the situa-
tion. Instead of searching a text for each variant separately the RegEx J(ö|oe?)nsson
will match all three spellings. This example covers three of the basic concepts of regular
expressions:

OR operator The vertical bar separates alternatives, e.g. gray|grey matches gray
and grey.

Grouping Parentheses are used to define a scope for the operators within the paren-
theses, e.g. gr(a|e)y is equivalent to gray|grey

Quantification Quantifiers specify how many repetitions a pattern is allowed. A quan-
tifier can be applied to a single character or a group. The following are the most
common quantifiers:

? : Question mark indicates that the preceding element occurs zero or one time,
e.g. honou?r matches both honor and honour.

* : Asterix indicates that the preceding element occurs zero or more times, e.g.
39*5 matches 35, 395, 3995 etc.

+ : Plus sign indicates that the preceding element occurs one or more times, e.g.
39+5 matches 395, 3995, 39995 etc. Note that 35 is not matched.

{,} : It is possible to set at specific number of repetitions by specifying an interval
inside curly brackets, e.g. 39{2,4}5 matches 3995, 39995 and 399995
only.

Predefined character groups are often used to simplify a regular expression and make it
more readable. Appendix A lists common groups used in regular expressions. Using the
basic concepts of RegEx explained here, patterns can be used to identify entities that
are known to follow a certain pattern, such as dates. In Section 5.5 we explain what a
RegEx for dates and ages can look like.

4.2 Support Vector Machines

Classification is the process of assigning a category, or class, to a new observation from
a predefined set of classes. When talking about binary classification the set of classes
constist only of two classes. Mathematically speaking, binary classification is the task of

6



4 BACKGROUND 4.2 Support Vector Machines

Figure 2: The binary classification task is to find w and b for the hyperplane that separates
the two classes (crosses and dots). Here, two features are used.

finding a function, f(x), that separates two classes, denoted by y ∈ {−1,+1}. Assuming
the classes are linearly separable, this function is represented by a hyperplane

f(x) = wTx + b, (1)

where w is the weight vector, b is a bias and x is a point in the feature space to be
assigned a class. In a 2-dimensional space a hyperplane corresponds to a straight line
where w is the slope and b is the point where the line crosses the y-axis. This is illus-
trated in Figure 2.

Assuming the two classes are linearly separable we seek to find a hyperplane such that
for all observations, xi, for i = 1, . . . , N .

wTxi + b ≥ 0 for yi = +1 (2)

wTxi + b < 0 for yi = −1 (3)

For a multi-class problem the one-vs-the-rest procedure can be applied where a single
binary classifier per class is trained using the class as positive label and all observations
not in that class as negative label. The final label is decided by the model with highest
confidence. Multi-class classification is illustrated in Figure 3 where the dotted lines
represent each classifier trained on one class versus the rest and the filled areas denote
the decision boundary. [20]

7



4 BACKGROUND 4.2 Support Vector Machines

Figure 3: Multi-class classification where the filled areas denote the decision boundary and the
dotted lines denote each one-vs-the-rest classifier. Here three classes (triangles, dots
and crosses) are separated using two features.

As briefly mentioned in Section 2, Support Vector Machines (SVM) [21] are models for
binary classification widely used for both linearly separable and non-separable classes.
The objective of an SVM is to find a hyperplane that maximizes the margin between
the two classes. There is not a single optimal hyperplane since scaling of w and b yields
infinite solutions. By convention pick the so called canonical hyperplane

|wTx + b| = 1 (4)

where x is the training data closest to the separating hyperplane, known as support
vectors, see Figure 4. For the case of linearly separable classes, finding a separating
hyperplane can now be posed as the constrained problem of finding w such that

wTxi + b ≥ +1 for yi = +1 ∀i (5)

wTxi + b ≤ −1 for yi = −1 ∀i (6)

which can be combined into the equivalent expression

yi(w
Txi + b) ≥ 1 ∀i (7)

The margin, M , is twice the distance from the separating hyperplane to one support
vector and can be expressed, using (4), as

M = 2
|wTx + b|
‖w‖2

=
2

‖w‖2
. (8)

Maximizing the margin can be formulated as a constrained minimization problem

min
w

1

2
‖w‖22

subject to yi(w
Txi + b) ≥ 1,∀i

(9)

8



4 BACKGROUND 4.3 Conditional Random Fields

Figure 4: Illustration of SVM’s margin maximization approach to the binary classification prob-
lem separating two classes (crosses and dots). Circled points denote support vectors.

where yi is the label for sample xi. Equation (9) can be rewritten as an unconstrained
minimization problem using Lagrangian multipliers as

w∗ = arg min
w

1

n

n∑
i=1

max (0, 1− yi(wTxi + b)) +
λ

2
‖w‖22. (10)

where λ is a tuning parameter. This problem can be solved using, for example, a quasi-
Newton method which is discussed more in detail in Section 4.5. For non-separable data
an additional error term based on the distance from the separating hyperplane is added
to the objective function and constraints.

4.3 Conditional Random Fields

A regular classifier, such as an SVM, classifies each token separately, i.e. assuming the
tokens are independent of each other. However, in the natural language the meaning of
a word or a sequence of words can differ depending on in what context they are used.
For example, Charles Bonnet could be either a person’s name or a syndrome, which is
a kind of visual hallucinations experienced by a person suffering from partial or severe
blindness. It is often obvious from the context. Hence, a way of modeling this context
relation is motivated to improve the performance of a classification task.

One way to take the context into account for a specific token is to incorporate the
labels of nearby tokens, i.e. taking the class of neighboring tokens into account when
classifying the targeted token. This is the concept of Conditional Random Fields (CRF)
introduced by Lafferty et al. [22] and briefly mentioned in Section 2. To define a CRF we
need a set of real-valued feature functions, fk. Generally, arguments of a feature function
are a sentence, x, the position, t, of a token in x, the label, yt, of the target token and
the labels, yj 6=t, of any of the tokens in the sentence.

9



4 BACKGROUND 4.4 Finding the optimal path

A feature function describes one aspect of the context of the target word. For exam-
ple, a feature function could indicate that, given that the previous token is "Dr.", the
target word should be labeled as a person.

To describe the general form of a CRF we introduce the concept of sequences and states
where, in this report, a sentence can be seen a sequence of tokens. Each token can be in
a certain state corresponding to the PHI category of the token.

Incorporating the labels from arbitrary tokens in a sequence will lead to a complex
and computationally heavy model. By instead taking only the previous label, yt−1, into
account, we are using the special case of a linear-chain CRF. This property of assum-
ing that the current state only depends on the previous state is known as the Markov
property. Below follows the general definition of a linear-chain CRF.

Definition 1. For k = 1, . . . ,K, let λ = λk be a parameter vector and {fk(yt, yt−1,xt)}Kk=1

be a set of real-valued feature functions where K is the total number of feature functions.
Then the linear-chain CRF is defined as

p(y|x) =
1

Z(x)
exp

{
T∑
t=1

K∑
k=1

λkfk(yt, yt−1,xt, t)

}
(11)

where xt is the token at position t in a sequence x = x1, . . . , xT with corresponding label
yt. Here it is assumed that xt contains all components needed from the sequence x to
compute features at time t, hence the vector notation. For example, if the next token
xt+1 is used as a feature, xt is assumed to include the identity of word xt+1. Z(x) is a
normalization function specific for a sequence, x, defined as

Z(x) =
∑
y

exp

{
T∑
t=1

K∑
k=1

λkfk(yt, yt−1,xt, t)

}
. (12)

A CRF is a powerful tool for sequential labeling because it can take arbitrary real-valued
feature functions that can use any of the tokens, xt, in the sequence, x. Each feature
function, fk, is associated with a weight, λk, which can be interpreted as how much the
feature function contributes to a certain label. Compared to an SVM, a CRF classifies a
whole sentence while an SVM classifies each token in a sentence separately.

4.4 Finding the optimal path

When labeling unseen data the objective is to find the single best sequence of states,
y = y1, . . . , yT , for a given sequence of observations, x = x1, . . . , xT , and the model
parameters λ, i.e. maximize p(y|x, λ) which is equivalent to maximizing p(y,x|λ). This
can be done efficiently by using the Viterbi algorithm [20].

The Viterbi algorithm is easier to understand if we represent the model as a lattice.
Figure 5 shows a lattice of states and time steps where the solid blue line represents the
global optimal path through the sequence, the dashed lines represents the optimal path in
each state and the grayed out lines represents sub-optimal paths not saved in the Viterbi
algorithm. At a specific time step, t ∈ {1, . . . , T}, and state, s ∈ S, there are many paths
arriving to the corresponding state. However, we only need to save the previous state

10



4 BACKGROUND 4.4 Finding the optimal path

of the path with highest probability so far (dashed and solid colored lines). This means
that, at each time step, t, we only need to store a total of |S| paths, one for each state.
At the final time step, T , the probabilities are compared. The final state with highest
probability corresponds to the path with the overall highest probability (solid line). By
simply backtracking that path, we obtain all labels in the sequence [20].

Figure 5: A lattice, representing the possible states as rows and the tokens as columns, illus-
trating the Viterbi algorithm.

Before presenting the formal definition of the Viterbi algorithm, we will first reformulate
the definition of the CRF to be consistent with the literature. Definition 1 can be
rewritten as

p(y|x) =
1

Z(x)

T∏
t=1

Ψt(yt, yt−1,xt), (13)

where Ψt(yt, yt−1,xt) is the transition probability from state yt−1 to yt for an observation
xt and is defined as

Ψt(yt, yt−1,xt) = exp
{ K∑
k=1

λkfk(yt, yt−1,xt, t)
}

(14)

We also need to define an expression for the most probable path for a partial sequence
of observations

δt(i) = max
y1,y2,...,yt−1

p(y1, y2, . . . , yt = si, x1, x2, . . . , xt|λ) (15)

where si is the last state of the partial sequence x1, . . . , xt. In [23] the Viterbi algorithm
is explained by dividing the procedure into the four steps stated below:
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1. Initialization: Initialize the most probable path for each state at the first token.

δ1(i) = Ψ1(yi, y0,x1), 1 ≤ i ≤ N (16)
ϕ1(i) = 0. (17)

2. Recursion: For each token, find the path arriving in state i with highest probabil-
ity, δt(j). Also, save the previous state, ϕt(j), of this path for future reference when
backtracking the optimal path.

δt(j) = max
1≤i≤N

{
Ψt(yj , yi,xt)δt−1(i)

}
, 2 ≤ t ≤ T 1 ≤ j ≤ N (18)

ϕt(j) = arg max
1≤i≤N

{
Ψt(yj , yi,xt)δt−1(i)

}
, 2 ≤ t ≤ T 1 ≤ j ≤ N. (19)

3. Termination: At the final token in the sequence the path determine the state with
highest probability. The saved path leading to this state is the optimum.

p∗ = max
1≤i≤N

{
δT (i)

}
, (20)

y∗t = arg max
1≤i≤N

{
δT (i)

}
. (21)

4. Path backtracking: Backtrack through the saved states of the optimal path to retrieve
the states for each token.

y∗t = ϕt+1(y
∗
t+1), t = T − 1, T − 2, . . . , 1. (22)

In the following section we discuss how the weights associated with each feature can be
found.

4.5 Optimization Algorithm

Finding the optimal weights for the separating hyperplane is stated as an optimization
problem where we want to minimize the cost with respect to some constraints. The
optimization algorithm used in this report is the Limited-memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) algorithm [24]. It is a widely used optimization algorithm
to numerically find local maxima or minima of an objective function.

Recall from from basic calculus that both first and second derivatives are needed to
determine the characteristics of an extreme value. L-BFGS is a member of the quasi-
Newton methods family which are methods for finding extrema when the Jacobian (first
derivative) or Hessian (second derivative) is unavailable or too expensive to compute.
The L-BFGS algorithm approximates the inverse Hessian just like its parent, the BFGS
method, but does not store the approximation as a dense n×n matrix in memory, where
n is the number of variables. To explain why L-BFGS requires less memory we start by
introducing the general quasi-Newton algorithm.

Let xk be an approximate solution at iteration k, f(x) be the objective function we
want to minimize and ∇f(xk) its gradient. Furthermore, define

sk ≡ xk+1 − xk and yk ≡ ∇f(xk+1)−∇f(xk) (23)

12



4 BACKGROUND 4.5 Optimization Algorithm

Also, let Hk = B−1k be the inverse Hessian at time iteration k. The BFGS algorithm
takes the following form.

Algorithm 1 Quasi-Newton algorithm
1: Specify initial guess of the solution x0 and initial inverse Hessian approximation H0.
2: for k=0,1, . . . do
3: if |∇f(xk)| < ε then
4: Optimization converged. Stop!
5: end if
6: Compute search direction pk = −Hk∇f(xk)
7: Use line search to determine xk+1 = xk + αkpk
8: Compute

sk = xk+1 − xk
yk = ∇f(xk+1)−∇f(xk)

9: Update the inverse Hessian Hk+1 = Hk + . . .
10: end for

Depending on what type of quasi-Newton method is used the inverse Hessian is updated
differently. For the BFGS algorithm the Hessian is updated according to

Bk+1 = Bk −
(Bksk)(Bksk)

T

sTkBksk
+
yky

T
k

ytksk
. (24)

The Hessian update formula for Bk has an associated formula for updating the inverse
Hessian, used in line 9 in Algorithm 1. The inverse Hessian update formula for BFGS is

Hk+1 =
[
I −

sky
T
k

yTk sk

]
Hk

[
I −

yks
T
k

yTk sk

]
+
sks

T
k

yTk sk
(25)

= Hk −
sk(Hkyk)

T + (Hkyk)s
T
k

yTk sk
+
yTk sk + yTkHkyk

(yTk sk)
2

(sks
T
k ). (26)

Observing that yTkHkyk and yTk sk are scalars, this expression can efficiently be computed
without storing temporal matrices in memory. The L-BFGS method also exploits the
fact that the next search direction pk+1 = −Hk+1∇f(xk+1) can be computed by directly
applying the inverse Hessian update formula:

pk+1 = −Hk+1∇f(xk+1) (27)

=
[
I −

sky
T
k

yTk sk

]
Hk

[
I −

yks
T
k

yTk sk

]
∇f(xk+1) +

sks
T
k

yTk sk
∇f(xk+1) (28)

and instead of storing Hk it can be defined by once again using the update formula in
terms of yk−1, sk−1 and Hk−1. Hk−1 can then be defined in terms of yk−2, sk−2 andHk−2.
The update formula can recursively be expanded r times which requires Hk+1−r to be
initialized. Usually, Hk+1−r is set to be the identity matrix, I. Following this procedure
one only need to store the sequences sk and yk in memory resulting in 2× r×n elements
instead of n× n. [24]
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4 BACKGROUND 4.6 Regularization

4.6 Regularization

According to [20], when a statistical model is unnecessarily complex, such as using too
many features for the number of observations, the problem of overfitting often occurs.
Rather than learning the general pattern the model memorizes the data points presented
to it. An overfitted model fails to describe the underlying pattern in the data and instead
models the noise. The model’s performance on the training set will be promising but
when applied to new data it will show a poor performance.

Regularization is a powerful way to reduce overfitting by eliminating unimportant fea-
tures and emphasizing the ones with information. Applying regularization is done by
adding the norm of the weight vector to the objective function. This results in weights
that tend to be as small as possible, reducing the complexity of the model. The norm of
a vector can be represented in different ways. This report takes use of L1 (29) and L2

(30) regularization using the following norms:

L1 : ‖w‖1 =
∑
i

|wi| (29)

L2 :
1

2
‖w‖22 =

1

2

∑
i

w2
i . (30)

Using a linear combination of these two norms is called Elastic net regularization [25].
Applying regularization is as simple as adding a regularization term to the objective
function we want to minimize:

w∗ = arg min
w

1

n

n∑
i=1

f(yi,w
Txi) + C ·R(w) (31)

R(w) = λ1‖w‖1 +
λ2
2
‖w‖22 (32)

wherew∗ denotes the optimal set ofw∗, f(yi,w
Txi) is a model specific objective function,

R(w) is a regularization term with elastic net regularization, and C is the regularization
strength. Usually λ1 = α and λ2 = 1 − α where α is referred to as the L1 ratio. When
α = 1 the a full L1 regularization is obtained, and the more commonly used L2 regular-
ization is obtained when α = 0.

As seen in the contour plots in Figure 6, the elastic net has characteristics of both
L1 and L2 penalties. The contour of the elastic net regularization has singularities in the
vertices, just like the L1 regularization, and is also strictly convex, like the L2 regulariza-
tion. Note also that L1 regularization is convex but not strictly convex. The implications
of L1 regularization are that it yields a sparse solution where some coefficients are pushed
down to exactly 0 while for L2 regularization, the coefficients are pushed towards 0 but
never reach it. A property of L1 regularization is that because of its sparse solution it will
serve as an automatic feature selector. This can be highly desirable when dealing with
a large feature space. L2 regularization has a grouping effect because of being strictly
convex which makes highly correlated features vary their coefficients together in contrast
to L1 regularization which would select one of the correlated features and push the rest
to 0. [25]
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5 METHOD AND MATERIALS

Figure 6: Contour plot for L1, L2 and Elastic net regularization.

5 Method and Materials

The solutions brought up in this report are assembled using a combination of pattern
matching, dictionary lookups and machine learning techniques. UMC uses the Java-
based Apache UIMA (Unstructured Information Management Architecture) framework
for computational tasks in the area of Natural Language Processing (NLP), see Section
5.1. UIMA provides helpful tools for annotating text documents and accessing annota-
tions in a convenient way. This framework is one of the main tools used when developing
the de-identification algorithm.

The first step is to obtain a data set to use for training and evaluation. The data sets
used in this report are described 5.2. The process for de-identifying narratives is outlined
in Figure 7 and described in more detail in the following sections. The process can be
divided into a training phase and a evaluation phase. The training phase starts with
training documents getting pre-processed before features used by the statistical models
are extracted. The extracted features are written to file which a model can read and use
for training. Finally, the trained model is packaged to a convenient format.

The evaluation phase follows the same procedure as the training phase but rather than
saving the features to a file the features are fed to the model just trained which outputs
new annotations. Lastly, the evaluation documents are post-processed where sensitive
entities are masked or modified.
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5 METHOD AND MATERIALS5.1 Unstructured Information Management Architecture

Figure 7: Outline of the process for de-identifying case narratives.

5.1 Unstructured Information Management Architecture

Narratives in case reports handled by the UMC contain a lot of unstructured information.
An application for de-identifying narrative text would be required to analyze large vol-
umes of unstructured information. The Apache Unstructured Information Management
Architecture (UIMA) [26] framework is developed just for this task and is used in this
thesis. In addition to unstructured text, UIMA can also be used to analyze unstructured
information such as audio or video.

Figure 8: UIMA high-level architecture, as described in [26].

UIMA is a Java-based architecture which provides component interfaces, data represen-
tation and design patterns and enables a modular approach to help analyze unstructured
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5 METHOD AND MATERIALS5.1 Unstructured Information Management Architecture

Figure 9: Conceptual view of building a analysis pipeline in UIMA.

data. The framework provides tools not only for processing local text documents but
also for building semantic search engines, web services and cluster management for large
scale computations. A high-level overview of UIMA’s architecture is illustrated in Figure
8.

In this thesis, focus has mostly been on building components in the Unstructured In-
formation Analysis area (top right part of Figure 8, marked in orange) that are com-
bined into a pipeline, also called a Collection Process Engine. Components operate on
a data structure called Common Analysis Structure (CAS) where objects and relations
are stored. Objects labeling a text span in the CAS are called Annotations and can, for
example, represent a token or an entity, e.g. a location or date. All annotations includes
at least two features, namely begin and end, which for text documents refer to integer
offsets in the document representing a span of text. UIMA provides tools to create user
defined annotations for entities of interest where additional attributes can be added to
the annotations. The components can be divided into three main categories:

• Collection Readers - Components that read from a data source and initiate the
CAS.

• Analysis Engines - Components that modify existing or add new annotations or
relations to the CAS.

• CAS Consumers - Final processing of the CAS, e.g. building a search index or
populating a database.

An analysis engine may contain a single annotator (Primitive AE ) or it may be com-
posed of multiple annotators (Aggregate AE ). Figure 9 shows a conceptual overview of
how these components are combined. [26]

UIMA also provides a tool for visualizing annotations and manually annotating text
documents and is useful when generating the gold standard data set.

There are several applications and libraries that use the UIMA architecture. One is
the open-source toolkit ClearTK [27] which is used for developing statistical NLP com-
ponents in the UIMA framework. The toolkit provides useful interfaces for evaluating
models using cross validation and common measurement calculations. ClearTK also
contains wrappers for different statistical models such as Conditional Random Fields,
Support Vector Machines and Maximum Entropy. For the CRF an implementation by
Naoaki Okazaki, CRFsuite [28], was used. The LIBLINEAR package by Rong-En Fan
et. al [29] was used as the implementation of the SVM. Both provide a fast and scalable
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Figure 10: Illustration of K-fold cross validation.

implementation with highly customizable training settings.

Apache clinical Text Analysis and Knowledge Extraction System (cTAKES) [30] is built
upon the UIMA architecture and is focused on information extraction from electronic
health records. cTAKES provides multiple components, such as sentence detection, tok-
enization and POS tagging, trained and adapted for clinical documents. It also includes
named-entity recognition of medications, diseases, symptoms, anatomical sites and pro-
cedures based on dictionary lookup in the Unified Medical Language System (UMLS)
dictionaries SNOMED CTr [31] and RxNorm [32]. Some of cTAKES’s components use
the statistical tools provided by ClearTK.

5.2 Data sets

A manually annotated data set had to be created for training and evaluation, a so
called Gold Standard. This included extraction of reports from VigiBase and manually
annotating the sensitive information of the reports. Manual annotation can be a tedious
task because each token needs to be assigned a class and requires human verification since
the meaning of the word can differ depending on context. A high variety of documents
are desired to get a model as general as possible and to reduce overfitting. Increasing
the number of documents in the data set quickly leads to a vast amount of tokens to
manually annotate. A K-fold cross validation is a way of using all data for both training
and testing where each observation is used for testing only once. By dividing the data
set into K folds it is possible to train K different models using K-1 folds as training set
and test on the remaining fold as illustrated in Figure 10. The final performance is the
average over all folds. The purpose of using K-fold cross validation is to estimate the
performance of a model when a test set is not available. As most of the articles described
in [14] the performance is measured using precision, recall and F-measure. A 5-fold cross
validation was applied to the training set when developing the features, patterns and
parameters used by the models.

5.2.1 VigiBase

The initial data set consisted of 100 randomly selected reports from UMC’s case report
database VigiBase. A medical doctor in pharmacovigilance at the UMC assisted in de-
termining what should be included and excluded in the different categories of sensitive
information. The reports were manually annotated in the UIMA CAS Editor which al-
lows a user to select spans of a text document and tag the spans with an annotation.
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Figure 11: The graphical interface used to visualize annotation and manually annotate case
reports. Names, dates and ages have been altered to protect the identity of the
patient.

Figure 11 shows the graphical user interface of the CAS Editor. Tokens not tagged with
any of the sensitive categories are interpreted as Outside tokens. When it was concluded
that the 100 reports contained too few instances of some categories, the data set was ex-
tended to include 300 reports. In addition, an evaluation set of 100 reports was manually
annotated.

The reports are not restricted to a specific country as long as the text is in English,
in order to get a data set representing the current situation at the UMC. Figure 12
shows the most frequent countries reporting in English where it is obvious that the ma-
jority of reports comes from the U.S. followed by India. English is widely used in the
Indian education system and is necessary for working with medicine [33]. Problems orig-
inating from English not being the native language are therefore unlikely to be a major
issue.
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Figure 12: Distribution of reports over the most frequent countries for train and evaluation set.

The distribution of the final data set for training and evaluation can be seen in Table
1. As seen, there are plenty of data for dates and ages but the amount of names and
organizations are small. With that amount of observations it is difficult to find a general
pattern for names and organizations.

Table 1: Training (300 reports) and evaluation (100 reports) set distribution of gold standard
annotations.

Category Training Evaluation
Date 553 185
Age 109 30
Location 25 9
Organization 5 2
Person 4 0
Total 696 226

In addition to obvious date references, e.g. "24 September 2014", less direct dates are
also included in the Date category, such as common holidays (Thanksgiving, Christmas,
etc.) and expressions like "first week of graduate school" since they refer to a small in-
terval or a specific point in time. These expressions are included since a sentence like
"Delays because of Thanksgiving traffic resulted in death of the patient." would implicitly
specify the date of death which is counted as sensitive information. It should be noted
that this sort of expression rarely occurs in the VigiBase reports. Entities of relative time
references like "two weeks later" were not annotated since without the reference point it
is impossible to identify the actual date.
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The four entities found in the category Person consist of one initial, one patient first
name and two doctor names, where one of the doctor names had a typo making the
name and a location being put together. This is an example of a common issue in these
reports. Often the narratives are written in the form of a note with incorrect gram-
mar, typos and abbreviations which can be troublesome for tokenizers and POS taggers
trained on properly written documents.

Organizations consist mainly of specific hospitals that could be linked to a specific loca-
tion. These entities were included since specific hospitals can pinpoint a certain location
connected to the patient. Other organizations, e.g. pharmaceutical companies, are not
included since they are not related to the individual.

In some reports ID numbers were found but not related to the individual. The num-
bers mainly referred to already encrypted identifiers from other reports or studies, and
batch numbers of drugs related to the production of the medicine. These were therefore
excluded from the Id Number category.

5.2.2 i2b2 as benchmark

The i2b2 data set consists of a training and test set containing 669 and 220 documents
respectively. The training data set was reduced to 100 training documents to reduce the
execution time of the procedure of finding optimal regularization strength. The category
distribution is shown in Table 2.

Table 2: Distribution over categories for the full training (669 reports) and evaluation (220
reports) set of the i2b2 data set as well as reduced version of the sets.

Category Training Test Reduced train
Date 5167 1931 717
ID 3666 1143 550
Person 3365 1315 522
Organization 1724 676 268
Phone 174 58 25
Location 144 119 15
Age 13 3 3
Total 14253 5245 2100

Important to note here is that even though the i2b2 data set comes from the area of
medicine, the i2b2 reports do not have the same format nor follows the same annotation
procedure as the VigiBase reports. In the i2b2 data set, Dates consist only of days and
months, this is in contrast to the VigiBase data set where both full dates and years
only where marked as dates. Furthermore, the i2b2 Age category contains only ages
when they exceed 89 years and all forms of ID Numbers are annotated. For consistency
with the VigiBase annotations, Doctors and Patients were mapped to the more general
Person category. Literature about automatic de-identification frequently use the i2b2
de-identification challenge data set to train and evaluate models [14]. For our purposes,
it can provide a benchmark and show how our model compares to others and perhaps
more importantly more data to be used in combination with VigiBase data.
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5.3 Evaluation measures

Each token is assigned a class indicating if it is sensitive or not. Because there are usually
more words that are not sensitive, this leads to an imbalanced class distribution. The
conventional accuracy, defined as the fraction of all observations correctly classified, is
not well suited for this situation. A simple example is shown in 5.1. [34].

Example 5.1. Suppose we have a data set containing observations from two different
classes with the proportion 99% majority class and 1% minority class. Using accuracy
on this data set and classifying all majority class observations correctly and all minority
class observations incorrectly will give an accuracy of 99%. This is easily deceived as a
really good performance. But if the goal was to predict the minority as well as possible
this classification is worthless.

Another way to measure performance that takes class imbalance into account is precision,
recall and F1-score where precision and recall is calculated from the confusion matrix,

Actual
label

Predicted label

− +

−
True
Negative
(TN)

False
Positive
(FP)

+

False
Negative
(FN)

True
Positive
(TP)

precision =
TP

TP + FP
(33)

recall =
TP

TP + FN
(34)

accuracy =
TP + TN

TP + TN + FP + FN
. (35)

The F1-score is a special case of the Fβ-score, with β = 1, where the Fβ-score is the
weighted harmonic mean of precision and recall defined as

Fβ = (1 + β2)
precision · recall

β2 · precision + recall
(36)

For Example 5.1 we would have a recall of 0 resulting in an F1-score of 0 which is a more
adequate measure than the accuracy of 99%.

A text span is represented by a start and an end offset in the document. To count a
classification of a token as correct we can require that both the span and the category
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Figure 13: Illustration of the difference between the evaluation methods.

match the gold standard. However, the models make a classification of a single token
and will be dependent on the tokenization of a sentence. If the predicted annotation
includes a punctuation that is not present in the gold standard, the prediction will be
counted as incorrect, even though the span covers the full gold span. To resolve this
issue we introduce a more relaxed criterion where, as before, the category has to match,
but the gold standard span only needs to be fully covered by the predicted span. This
criterion will measure a model’s ability to identify named entities and be certain that
the whole gold span is covered. These criteria will be referred to as Covering criteria.
Relaxing the covering criteria a little further by only requiring the spans to have any
kind of overlap, we get an indication of how well the model can identify approximate
locations of entities. We will refer to these criteria as Overlapping criteria. Figure 13
and Example 5.2 illustrate the differences of strict, covering and overlapping criteria.

Example 5.2.

Gold Standard
Gold: Patient has been sore since the age of [91 years]gold, when she tripped and fell.

Strict Criteria
Hit: Patient has been sore since the age of [91 years]pred, when she tripped and fell.
Miss: Patient has been sore since the age of [91 years,]pred when she tripped and fell.

Covering Criteria
Hit: Patient has been sore since the [age of 91 years,]pred when she tripped and fell.
Miss: Patient has been sore since the age of [91]pred years, when she tripped and fell.

Overlapping Criteria
Hit: Patient has been sore since the [age of 91]pred years when she tripped and fell.
Miss: Patient has been sore since the [age of]pred 91 years, when she tripped and fell.
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5.4 Pre-processing

Table 3: IOB2 format example.

Words IOB2-tag
John B-PERSON
Smith I-PERSON
experienced O
symptoms O
January B-DATE
20th I-DATE

In this thesis, the IOB2 format [9] is used to de-
fine the available states of a sequence. All tokens
outside a PHI element are labeled with O. The to-
ken that begins a PHI element are labeled with B-
k where k is the PHI category and the succeed-
ing tokens are labeled I-k, being inside the PHI
element. A concrete example is shown in Table
3.

The models used in this thesis are based on classify-
ing each token in a sentence. For that to be possible
one first needs to identify sentences in a text seg-
ment and individual tokens in sentences. This is normally not as trivial as saying that
a dot finishes a sentence or a whitespace separates tokens. Decimal numbers, hyphens,
parenthesis and typos are some special cases that can complicate the task of defining
sentences and tokens.

cTAKES [30] provides a sentence detector and tokenizer trained on a variety of doc-
uments. Before applying these on the text some simple cleanup is made which includes
removal of contiguous whitespace and replacement of characters like &, > and < to their
word representation. A POS tagger is then applied to the text that adds a POS attribute
to each token and with a chunker, noun and verb phrases are identified. These chunks
are used in a dictionary lookup to the UMLS (SNOMED CT and RxNorm) dictionaries
that contains clinical terminology and normalized names for clinical drugs respectively.
The identified entities are later used as features to the classifiers.

5.5 Feature Engineering

In this chapter we describe how the regular expressions were chosen and lists the different
expressions used. Additionally, we show and explain the features used for the statistical
models.

5.5.1 Patterns for RegEx model

Visual 
Inspection 

Add pattern 
Evaluate 

performance 

Figure 14: The process of construct-
ing regular expressions.

Regular expressions for the RegEx model has
been constructed by the cyclic process illus-
trated in Figure 14. By visual inspection of
the training data, certain age and date pat-
terns were prominent. After creating a regu-
lar expression to cover the patterns, the model
was applied on the training data to obtain the
new performance. Visual inspection was then
applied again to see what occurrences of ages
and dates that were missed. This was repeated
until the performance was satisfiable and the
most frequent patterns were covered. Outliers,
such as entities containing typos, were not covered by regular expressions. A complete
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list of the regular expressions used, as well as examples for each pattern, is shown in
Table 4-7.

Table 4: Date RegEx patterns

Variable Name RegEx pattern

MONTH_STR (jan(uary)?|feb(ruary)?|mar(ch)?|apr(il)?
|may|june?|july?|aug(ust)?|sep(t|tember)?
|oct(ober)?|nov(ember)?|dec(ember)?)

MONTH_2_DIG (0[1-9]|1[0-2])

MONTH_1OR2_DIG (0?[1-9]|1[0-2])

YEAR_2TO4_DIG ((19|20)?\d{2})

YEAR_4_DIG (((19)|(20))\d{2})

DAY_2_DIG (([0-2]\d)|(3[01]))

DAY_1OR2_DIG (((0?|[12])\d)|(3[01]))

Table 5: Date RegEx patterns combined

RegEx pattern Example

{DAY_1OR2_DIG}\W?{MONTH_STR}\W?{YEAR_2TO4_DIG} 12Jan2014, 1-december-15

\b{DAY_2_DIG}\W?{MONTH_2_DIG}\W?{YEAR_2TO4_DIG}\b 12012014, 31-12-15

\b{DAY_1OR2_DIGs}\W{MONTH_1OR2_DIG}\W{YEAR_2TO4_DIG}\b 12/1/2014, 6/12/15

\b{YEAR_2TO4_DIG}\W?{MONTH_2_DIG}\W?{DAY_2_DIG}\b 2014-01-12

{MONTH_STR}\W?{DAY_1OR2_DIG}\W\W?{YEAR_2TO4_DIG} January 24, 2014

\b{MONTH_2_DIG}\W?{DAY_2_DIG}\W?{YEAR_2TO4_DIG}\b 01/12/14 (American format)

\b{MONTH_1OR2_DIG}\W{DAY_1OR2_DIG}\W{YEAR_2TO4_DIG}\b 1/8/14 (American format)

{MONTH_STR}\W?{YEAR_2TO4_DIG} jan2014, december 2015

{YEAR_4_DIG}\W?{MONTH_STR} 2014 oct

\b{MONTH_2_DIG}\W{YEAR_2TO4_DIG}\b 01/14

\b{YEAR_4_DIG}\b 2004
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Table 6: Age RegEx patterns

Variable Name RegEx pattern

TIME_UNIT (years?|months?|weeks?)

VALUE (\d{1,2}(\d|(\W\d))?)

VALUE_STR (zero|one|two|three|...|twenty)

Table 7: Age RegEx patterns combined

RegEx pattern Example

({VALUE}|{VALUE_STR}).(y\.?o\.?|{TIME_UNIT}.?(old)) eleven months old, 9 y.o.

(aged?( of)?|a\.?o\.?).{VALUE} aged 32, age of 41, a.o. 85

These regular expressions cover most of the patterns observed in the training set where
the entities missed in the training set consist of typos and abnormalities and was not taken
into account for in the expressions developed. Trying to cover all typos and abnormalities
would lead to overfitted regular expressions since we are describing the noise instead of
the underlying pattern.

5.5.2 Features for statistical models

Aramaki et al. [9] found that PHI elements often occur at the beginning or end of a
document. To determine if this is the case for VigiBase data a feature function was
developed to measure the position of a token in a narrative text. The position is a value
in the interval [0, 1] where 0 is the first token of the text and 1 is the last. Figure 15 is
a box plot showing how the token position varies between categories. One can see that
ages have a tendency to occur at the beginning of documents while dates are distributed
more uniformly. Additionally, Figure 16 shows the distribution of a token’s position in
a sentence; note that ages appears more often in the first half of a sentence than in the
second half.

Due to the small amount of observations of locations, organizations and persons it is
not possible to draw a general conclusion regarding these categories. Figure 15 & 16 in-
dicate, however, that these uncommon categories are found in the beginning of a report
where persons are often positioned in the beginning of a sentence and locations are found
at the end of a sentence.
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Figure 15: Box plot of the positions of tokens in a narrative divided by category.
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Figure 16: Box plot of the positions of tokens in a narrative divided by category.

With the insight that the token position could help in determining a token’s category it
would make sense to use the token position as a feature in our models.

In this thesis, we use local features, non-local features and dictionary lookups from ex-
ternal sources. Before the features are generated, narratives are annotated by lookup of
tokens and phrases in external sources. The external sources are the UMLS dictionaries
for medical terms and drugs, RxNorm and SNOMED CT. A binary feature is generated if
the token is part of an annotation generated by an external source. A complete collection
of feature is listed in Table 8. Below follows a description of the non-obvious features:

Capital Type describes the capitalization of a token. In practice, the feature function
produces one out of four possible binary variable which indicates the capitalization
type of a token: ALL_UPPERCASE, ALL_LOWER_CASE, INITIAL_UPPERCASE or
MIXED_CASE.

27



5 METHOD AND MATERIALS 5.6 Regularization

Numerical Type indicates if a token contains digits and if so tries to describe
in what setup they occur. Just like for the capital type, this feature function
creates a binary feature for a suitable numerical type. The possible numerical
types a token can have are ALL_DIGITS, YEAR_DIGIT (4 digits starting with
1, 20 or 21), ALPHANUMERIC, SOME_DIGITS (Some digits and non-letters) and
ROMAN_NUMERAL.

N-gram suffix of a token is the last N characters of the token. For the experiments
2-gram and 3-gram suffixes are used.

Character Pattern describes the pattern based on the Unicode General categories
[35] of each character in a token. A complete list of character types is listed in
Appendix B. A simplified pattern is used where consecutive character types are
merged to one instance of that type, e.g. the text Ab01 with character pattern
LuLlNdNd would be reduced to LuLlNd.

Lists of countries, common holidays, stopwords, weekdays and months are stored in text
files. Sign/Symptoms, Disease/Disorder, Medication, Anatomical Site and Laboratory
procedures annotations are generated by cTAKES dictionary lookup to UMLS. Person
title annotations are created using the regular expression
\b((Dr|Mr|Mrs|Ms|Sr|Jr)\.?|Miss|Phd)\b.

Table 8: Features used by both CRF and SVM.

Local features External sources Non-local features
Target Token (TT) Countries Token position in Sentence
TT in lowercase Common Holidays Token position in Document
Capital Type of TT Stopwords Sentence position in Document
Numeric Type of TT Weekday
TT contains hyphen Month
TT 2 & 3 gram suffix Person titles
TT Character Pat-
tern

Sign/Symptom

POS Tag of TT Disease/Disorder
TT text length Medication
TT contains X,Y or
Z?

Anatomical Site

Laboratory proce-
dure

Above features for 3 preceding and following tokens

5.6 Regularization

In the training procedure of a statistical model a regularization strength, C, has to be de-
termined. By using a 5-fold cross validation with the training documents as data set and
with multiple values of C the optimal regularization strength is found. When optimal C
is determined, all training documents are used to train the model and the performance
is measured by applying the model on the evaluation set.
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Just like the regularization strength constant C affects the performance, finding an opti-
mal L1-ratio, α, can also improve the results. Using the optimal C found from previous
cross validation and once again applying 5-fold cross validation on the training set with
varying α we get the F1-score, precision and recall as a function of α. After picking the
optimal α all training documents are used to train the statistical model which is then
evaluated on the evaluation set.

5.7 Varying amount of medical records

We would like to know if 300 documents are enough to get a desirable performance or
if adding more data would improve the result. Therefore, an experiment was set up to
show the performance of the classifiers when increasing amount of available data. The
model was trained repeatedly by randomly selecting a proportion of the 300 available
training documents, using the regularization strength C found as described in Section
5.6. Starting at 30 documents (10%) and incrementing with 30 documents, after 100
repetitions we can calculate the average and spread of the score. The procedure is
outlined in Algorithm 2.

Algorithm 2 Varying number of available documents
1: Let D be all 300 documents available for training
2: Let E be all 100 documents available for evaluation
3: Let p be a proportion of training documents to keep for training
4: Let r = 100 be the number of repetitions for each p
5: for each p = 0.1, 0.2, . . . , 1.0 do
6: for r times do
7: Let Dp ⊂ D be a random proportion p of D
8: Let M be a model trained on Dp

9: Apply M to E and evaluate by computing and storing F1-score, Precision and Recall
10: end for
11: Calculate average score, F̄p, P̄p, R̄p and standard deviation, σF

p , σ
P
p , σ

R
p

12: end for
13: Plot score and deviation as a function of p

5.8 Post-processing

After identifying sensitive entities the final step of de-identifying a narrative text is to
replace the entities found with an informative substitute that differs depending on the
category of the entity. The logic for each category was implemented in what is here re-
ferred to as a masker. If multiple models are applied there may be multiple annotations
overlapping for the same entity, hence a way of choosing which annotation to mask needs
to developed.

For the case when annotations are overlapping the annotation coming from the model
with highest covering precision was used since it is the most probable option to cover
all sensitive information. Applying all three models evaluated in this report the decision
order would be

1. RegEx

2. CRF
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5 METHOD AND MATERIALS 5.8 Post-processing

3. SVM

If desired, this decision order could be made category-specific. This could make a small
improvement but would increase the complexity of the process making it more difficult
to maintain.

Recall that we want to de-identify dates by adding a random offset, but to be able
to add an offset to a date, we must first identify what components (day, month, year) of
a date are present. Since there is no unified date format in the narratives this task can be
complicated. The approach used in this thesis is the following. Each date annotation is
mapped to one or several date formats defined by the RegEx patterns mentioned in 5.5.1.
For a document, the formats can be sorted by frequency, with ambiguous dates parsed
using the most frequent format. The procedure is illustrated in Table 9. Successfully
parsed dates will have a document-specific random offset, from an administrator config-
urable interval, added and presented in the de-identified narrative in an unambiguous
format with the same resolution as in the original text.

Table 9: Illustration of the process of selecting date formats.

Available formats Dates found Possible formats Format frequency Final format

A : MM-dd-YYYY 03-04-2014 [A,B] B : 2 B

B : dd-MM-YYYY 16-05-2014 [B] A : 1 B

C : MMM-YYYY Jan 2014 [C] C : 1 C

Age annotations are first scanned for consecutive digits and if found are converted to an
integer. The unit of the integer is assumed to be in years if no sign of day, week or month
is present. If the integer is greater than a user specified threshold the whole annotation
will be replaced with [AGE > {THRESHOLD}].

For categories with unimplemented maskers the substitute is [{CATEGORY}]. Enti-
ties that can not be parsed to a specific format are replaced by a substitute like the
one from an unimplemented masker. This ensures that as much sensitive information
as possible is removed from the narrative. After de-identification, the same narrative as
shown in Figure 11 looks like the following:

Aortic valve endocarditis, dental infection. [PERSON] reported the case of a 41-year-
old male patient, who developed an aortic valve endocarditis under Enbrel-therapy. Enbrel
was initiated in [FEBRUARY 2005] and discontinued in [APRIL 2005] due to an anklejoint
arthrodesis surgery. The therapy was restarted in [MAY 2005] but again pauseddue to a
dental infection. The physician reported that the patient got 6 doses total s.c. from [MAY
2005] to [AUGUST 2005]. In [AUGUST 2005] the aortic valve endocarditis was diagnosed
via transesophageal echocardiography. Patient was hospitalized on [13 AUGUST 2005]
and treated with Teicoplanin i.v. and discharged on [21 AUGUST 2005]. The antibiotic
therapy (Zyvoxid, Ciproxin) was continued ambulant for 3 weeks. "English summary (full
translation upon request)".
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6 Result

We describe the result in terms of precision, recall and F − 1-score, both the overall
performance of all categories as well as each category individually. With the result we
can compare our models and determine what model is suitable under what circumstances.

6.1 Regular Expressions versus Statistical Models

First, the regularization strength, C, had to be picked. This was done by using a 5-fold
cross validation. Most important is to find all sensitive information, which is why C was
picked with respect to optimizing recall. Figure 17 shows how the recall varies with C.
Best performance was obtained when CCRF = 10−4 and CSVM = 10−1 for CRF and
SVM respectively. A CRF and SVM were then trained on the full training set using
optimal C. The classification performance on the evaluation set over all categories is
displayed in Table 10-12.
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Figure 17: Recall when varying the regularization factor C.
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Table 10: Performance using RegEx patterns on the evaluation set containing 100 reports.

Strict Covering Overlapping Category
P R F1 P R F1 P R F1

0,925 0,876 0,900 0,930 0,881 0,905 0,949 0,898 0,923 OVERALL
0,923 0,800 0,857 0,923 0,800 0,857 1,000 0,867 0,929 Age
0,930 0,941 0,935 0,936 0,946 0,941 0,947 0,957 0,952 Date
1,000 0,000 0,000 1,000 0,000 0,000 1,000 0,000 0,000 Location
1,000 0,000 0,000 1,000 0,000 0,000 1,000 0,000 0,000 Organization

Table 11: Performance using CRF on the evaluation set containing 100 reports.

Strict Covering Overlapping Category
P R F1 P R F1 P R F1

0,850 0,774 0,810 0,859 0,783 0,819 0,942 0,858 0,898 OVERALL
1,000 0,833 0,909 1,000 0,833 0,909 1,000 0,833 0,909 Age
0,829 0,811 0,820 0,840 0,822 0,831 0,934 0,914 0,923 Date
1,000 0,000 0,000 1,000 0,000 0,000 1,000 0,000 0,000 Location
1,000 0,000 0,000 1,000 0,000 0,000 1,000 0,000 0,000 Organization

Table 12: Performance using SVM on the evaluation set containing 100 reports.

Strict Covering Overlapping Category
P R F1 P R F1 P R F1

0,901 0,885 0,893 0,905 0,889 0,897 0,923 0,907 0,915 OVERALL
1,000 0,933 0,966 1,000 0,933 0,966 1,000 0,933 0,966 Age
0,885 0,919 0,902 0,891 0,924 0,907 0,911 0,946 0,928 Date
1,000 0,222 0,364 1,000 0,222 0,364 1,000 0,222 0,364 Location
1,000 0,000 0,000 1,000 0,000 0,000 1,000 0,000 0,000 Organization
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Comparing Table 10-12 we see that RegEx patterns has a superior overall F1 perfor-
mance using all three evaluation criteria. However, the SVM is in the same range with
less than 1 percentage point in F1 score below RegEx for all criteria. Looking at the
categories separately, we see that SVM has a superior performance for Ages but lacks in
performance for Dates compared to RegEx.

Another finding is the 8 percentage point jump in overall F1 score for the CRF going
from covering to overlapping criteria. This is the result of having problems classifying
the inside tokens of an entity but success in finding the first token.

We can look at the missed or incorrectly classified entities individually to dig deeper
into the reason for the unsuccessful classification. One concrete example is the following
text from one report.

... history hepatitis.XXOn 19-Jul- 2011, the patient started ...

Because of the whitespace after the hyphen in the date, this entity is not found with the
RegEx rule but was found using either the CRF or SVM.

RegEx produces false positives for numbers that have the same format as a date, like
the example below which was identified by the RegEx patterns as a date but not by the
statistical models:

... related to rotigotine.XXAssociated linked case no: 050368

Furthermore, the RegEx patterns used does not handle intervals, like in the following
case:

... cases occurred on October-November 2013. Viogen has stopped ...

In this case the RegEx pattern annotates November 2013, while for both statistical models
the whole interval is annotated.

6.2 Varying amount of medical records

Figure 18 shows how the F1-score, precision and recall over all categories vary with in-
creasing number of training documents for both CRF and SVM. It can be seen that
the SVM outperforms the CRF because of SVM’s superior recall. It is, however, worth
noticing that the CRF has a better precision on average than the SVM for a low number
of reports.

The SVM is more robust compared to the CRF because of its small standard devia-
tion, though it should be noted that there exists a bias in the deviations. Since there is
a limit of 300 reports in the training simple combinatorics says that there are more ways
to pick 30 reports than 270 out of a total of 300 reports. With an increasing number of
reports it is more likely that the same report is used for training in several repetitions,
reducing the deviation of performance.

Looking at the trends in overall covering recall, Figure 18b, one can not tell if they
have reached a plateau yet. It is not obvious if more data would increase the perfor-
mance or not. The result of each category separately can be found in Appendix C.
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(a) Overall F1-score, covering criteria.
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(b) Overall recall, covering criteria.
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(c) Overall precision, covering criteria.

Figure 18: Results when varying amount of available records.
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Figure 19: F1 performance of CRF and SVM on a reduced I2B2 data set as a function of
regularization strength, C.

6.3 i2b2 challenge as benchmark

Regularization strength was determined by applying a 5-fold cross validation to the
reduced i2b2 training set for varying C. The result is shown in Figure 19 where the
optimal values can be found to be CCRF = 10−4 and CSVM = 10−1. With these values
of C a CRF and a SVM model are trained on all documents in the full training set and
applied to the full evaluation set. The final performance is presented in Table 13 and 14.
Because of the difference in format and annotation procedure between i2b2 and VigiBase
data the regular expressions developed for the VigiBase data is not applicable to the i2b2
data and is therefore left out in this section.

Table 13: Performance using CRF on the i2b2 evaluation set, where regularization strength,
C = 10−4

Strict Covering Overlapping Category
P R F1 P R F1 P R F1

0.950 0.877 0.912 0.953 0.880 0.915 0.960 0.887 0.922 OVERALL
1.000 0.333 0.500 1.000 0.333 0.500 1.000 0.333 0.500 Age
0.926 0.969 0.947 0.928 0.972 0.949 0.929 0.972 0.950 Date
0.960 0.993 0.976 0.961 0.994 0.977 0.962 0.995 0.978 IdNumber
0.857 0.151 0.257 0.857 0.151 0.257 1.000 0.176 0.300 Location
0.988 0.503 0.667 0.988 0.503 0.667 1.000 0.509 0.675 Organization
0.969 0.918 0.943 0.976 0.924 0.949 0.997 0.944 0.970 Person
0.968 0.517 0.674 0.968 0.517 0.674 1.000 0.534 0.697 Phone
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Table 14: Performance using SVM on the i2b2 evaluation set, where regularization strength,
C = 10−1

Strict Covering Overlapping Category
P R F1 P R F1 P R F1

0.918 0.915 0.917 0.921 0.918 0.920 0.970 0.967 0.968 OVERALL
1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 Age
0.962 0.964 0.963 0.963 0.965 0.964 0.983 0.985 0.984 Date
0.988 0.992 0.990 0.988 0.992 0.990 0.991 0.996 0.993 IdNumber
0.493 0.303 0.375 0.493 0.303 0.375 0.863 0.529 0.656 Location
0.704 0.750 0.726 0.714 0.760 0.736 0.886 0.944 0.914 Organization
0.938 0.925 0.931 0.944 0.931 0.938 0.985 0.971 0.978 Person
0.818 0.776 0.796 0.818 0.776 0.796 0.964 0.914 0.938 Phone

The results presented here, especially for the SVM, are comparable with the proposed
machine learning methods in the 2006 i2b2 de-identification challenge [14]. The proposed
models had an overall strict precision, recall and F1-score all in the range 0.86-0.96 which
both the CRF and SVM presented here also lie within. The models participating in the
challenge had a superior performance in the categories with a low amount of data, such
as locations, ages and phones.

The SVM achieves a good performance for organizations, which was not the case using
VigiBase data. Both for i2b2 and VigiBase the organization category mainly contains
entities of hospitals. We could therefore use a model trained on i2b2 data to classify
organizations in VigiBase data. Applying the SVM model trained on i2b2 data to the
VigiBase evaluation set the two existing organization entities was identified with over-
lapping criteria, though at the price of nine false positives.

The VigiBase data set had all its age entities annotated with the intent of identifying
the specific age in the post-processing, masking only the ones above a threshold. With
the same reasoning as above a VigiBase model could help identifying ages in the i2b2
data set. Using the VigiBase-trained SVM from Section 6.1 and applying it to the i2b2
evaluation set two out of three ages over 90 are found with covering criteria. However,
most of the other ages are found as well resulting in a huge amount of false positives. The
high amount of false positives would be drastically reduced by removing age annotations
with an age below 90.

6.4 Regularized CRF training

Using the optimal regularization strength, C, found in Section 6.1 and applying 5-fold
cross validation on the training set with varying α we get the F1-score, precision and
recall as a function of α, shown in Figure 20. Optimal L1-ratio for the covering criteria
is obtained at α∗ = 0.13 when CCRF = 10−4. Applying the model, trained with α∗,
to the evaluation set we get the result presented in Table 15. Comparing this with the
CRF’s result in Table 11, Section 6.1 we see a major increase in performance, especially
for strict and covering evaluation criteria where the overall F1-score has increased with
just over 7 percentage points. Comparing the results with the SVM, Table 11, Section
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(a) F1 performance for CRF with varying L1-ratio.
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(b) Recall performance for CRF with varying L1-ratio.
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(c) Precision performance for CRF with varying L1-ratio.

Figure 20: Overall performance of the CRF with varying α. CCRF = 10−4.
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6.1, we see that CRF with elastic net regularization is at a competing performance. The
difference is that the SVM has a slightly higher recall than the CRF, while the CRF has
slightly higher precision, making the final F1-score almost equal.

Table 15: Performance on evaluation set using an L1-ratio, α∗ = 0.13 and CCRF = 10−4.

Strict Covering Overlapping Category
P R F1 P R F1 P R F1

0,903 0,863 0,882 0,912 0,872 0,891 0,935 0,894 0,914 OVERALL
1,000 0,933 0,966 1,000 0,933 0,966 1,000 0,933 0,966 Age
0,888 0,903 0,895 0,899 0,914 0,906 0,926 0,941 0,933 Date
1,000 0,000 0,000 1,000 0,000 0,000 1,000 0,000 0,000 Location
1,000 0,000 0,000 1,000 0,000 0,000 1,000 0,000 0,000 Organization

6.5 Feature ranking

The coefficient of a feature can be interpreted as the feature’s importance in deciding
the class of a token. With a positive coefficient, an increasing feature value increases the
likelihood of a token being of the targeted class. With a negative coefficient value, an
increasing feature decreases the likelihood.

The features describing the annotation position, inspired by Aramaki et al [9], were
proven to be successful for the VigiBase data as well. Both the CRF and the SVM
had the feature AnnotationPosition_BaseToken_Sentence with a negative co-
efficient in the top 10 of classifying the first token of an Age. It means that a token is less
likely to be the start of an Age entity if it is located at the end of a sentence. Otherwise,
the top features for the Age category included, not surprisingly, features derived from
the surrounding tokens being the words "years" or "old" or an hyphen. For Dates the
most prominent features involved tokens containing numbers, a slash (’/’) or ended with
er, as in November or September. Also, if the preceding token was in or on it was a
good indication of the current token being the beginning of a Date entity.

For the i2b2 data set, looking at the coefficients of the models for the Person cate-
gory the features with the highest absolute value are the Character Pattern LuPo
(with a positive value) and Medication (with a negative value). The character pattern
indicates that a token all in upper case and ending with a dot is likely to be a name while
if the token is part of a medication entity it is unlikely to be a person’s name.

A complete list of top features of all categories and data sets for both CRF and SVM can
be found in Appendix D. The features are picked from the optimal model setup found in
the experiments of this report.
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7 Discussion

In the following sections we discuss the results obtained in the previous sections. We will
compare the performance and discuss advantages and disadvantages of each model.

7.1 Regular Expressions versus Statistical Models

The result in 6.1 show that the RegEx had a better overall performance than the statis-
tical models but that the SVM was superior for the Age category. With this information
it would be possible to get the best out of two worlds by applying different models on
different categories: SVM for ages and RegEx for dates.

We also saw clear examples of the disadvantages of RegEx where typos resulted in a
missed entity and where a number had the same format as a date. The same examples
showed the advantages of the statistical models. Because of the CRF and SVM being
context aware, they did not classify this number as a date.

Most of the date and age entities missed by the RegEx patterns in the evaluation set
could, with not too much effort, be covered by adding a few more patterns. Why these
were not covered from the beginning is because the new patterns were not prominent
in the training set and therefore not thought of when constructing the patterns. While
RegEx patterns are often quick to implement and easy to test, a major drawback is that
it will only find what is already known and will not contribute to any further under-
standing in how patterns emerge. While writing a pattern to find a date format might
be trivial it is not obvious how to distinguish a person’s name from a drug using RegEx.
Statistical models on the other hand, can adapt when new data is presented and is more
accepting to deviations in the usual patterns. Nevertheless, statistical models can re-
quire a vast amount of data, it takes time to train them and they can be more difficult
to communicate to an audience without proper mathematical background. A summary
of the pros and cons of regular expressions and statistical models are listed in Table 16.

Table 16: A summary of pros and cons for regular expressions and statistical models.

RegEx Statistical Models

Pros Cons Pros Cons

Quick and simple
to implement

Does not adapt to
new data

Robust, can handle
typos

The need of data

No training needed Need to know all
patterns in before-
hand

Can adapt to new
data

Can be complex
and difficult to
communicate

Easy to communi-
cate

Can only find what
is already known

Can find new in-
sights

Training takes time

7.2 Varying amount of medical records

From the results of these experiments the low amount of data is an issue for not obtaining
good performance. There are several ways to handle this issue where the most obvious
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one is to get more data. Since the process of manually annotating text is time con-
suming one can try to find already annotated data from external sources with a format
similar to VigiBase data. This was one of the reasons why the i2b2 data set was obtained.

Other ways to handle the issue of limited data is to assign class weights to each category
to make an incorrect classification more costly or using over/under sampling techniques.
Incorrectly classifying a token from a minority class would yield a greater impact on the
change of coefficients in the training procedure than incorrectly classifying a token from
a common class. Oversampling the minority classes, using a technique such as SMOTE
[36], would create synthetic data points for the classes with low amount of observations
reducing the class imbalance. This could help avoiding an overfitted model. One can
also do more extensive feature engineering, developing hand crafted, informative features,
specific for the data set. This typically requires thorough analysis and deep knowledge
of the origin of the data.

7.3 i2b2 as benchmark

As seen in Section 6.3 the models developed in this report are performing at a level not
far from the state of the art solutions. When applying a model trained on i2b2 data
to the VigiBase evaluation set we managed to find, with overlapping criteria, the two
Organizations which usually were missed when training on VigiBase data. And when
doing it vice versa, applying VigiBase model on i2b2 data, we identify two out of three
ages above 90 that were missed when the models where trained on i2b2 data only. This
finding shows that data obtained from external sources could be used to improve the
performance on the data set in focus.

7.4 Regularized CRF training

The improvement in performance comes from the feature selection in the L1 property.
There exist plenty of unnecessary and highly correlated features that are completely
removed, resulting in a reduced feature space. Originally, almost 86000 features are
active. Using elastic net regularization reduces this feature space to just over 8200
features, a reduction of more than 90%. In Figure 20 it is interesting that the recall
increases with increasing α and reaches its peak at α = 0.9 for covering criteria. The
precision, however, is extremely low for increasing α. This could be an effect of adjusting
the regularization strength C for the new L1-ratio. This would require further analysis
with an exhaustive search for each combination of α and C.
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8 Conclusions

In this thesis, focus has been on the narrative field in the case reports handled at the
UMC. First of all it can be stated that the narratives from VigiBase already are well
de-identified for all categories except dates and ages compared to reports presented in the
publicly available i2b2 de-identification data set. Because of the small amount of data,
it was difficult to provide a statistical model for entities in uncommon categories. It was,
however, possible to develop a statistical model for ages and dates that performed at
the same rate or better compared to hand crafted regular expressions. The expressions
could, however, easily be extended to achieve top performance for both ages and dates
for the VigiBase reports. For the task of identifying ages and dates regular expressions
would be sufficient, but to identify entities from categories like persons, organizations
and locations more advanced methods, such as SVM and CRF, are required.

With optimal parameters the covering F1 performance of the CRF (0.891) is very close
to the SVM (0.897). The difference is that the CRF performs at a higher precision but
lower recall than the SVM, i.e. SVM identifies more of the sensitive entities to the cost
of more false positives. Finding all entities of sensitive character is crucial to completely
de-identify a narrative text. Therefore the SVM is preferable over the CRF with the
assumption that the training and evaluation samples are representative to all English
reports in VigiBase.

The disadvantage of regular expressions was emphasized when switching from the Vi-
giBase data set to i2b2. Because of the different formatting and manual annotation
procedure the regular expressions developed for VigiBase data was of no use. New ex-
pressions would have to be created to match the patterns in the new data in contrast to
the statistical models that could use the same feature functions for the new data. This
shows the flexibility of statistical models.

From the experiments performed in this thesis we see that the CRF requires more data
than the SVM to perform at the same level. The CRF is designed to handle structures
in the data, i.e. the order of tokens in a sentence matters in the classification of the
sentence. Narrative text in VigiBase reports contains a mix of medical notes without
grammatical structure as well as grammatically correct written text. This may lead to
inconsistency in the CRF training resulting in a decreased performance.

Some medications or diseases, such as Parkinson’s disease, could easily be interpreted
as a person’s name (which Parkinson’s disease actually originates from). Even though
medications and diseases are not sensitive information, identifying them can help the
statistical model to not classifying these type of entities as names.

It is also worth mentioning that parameter selection plays an important part in opti-
mizing performance which can be seen from the experiments when varying the regular-
ization strength parameter, C. and L1-ratio, α. Additional parameter configuration to
the L-BFGS method could improve the performance, such as tuning of stopping criteria,
line search parameters and number of times to apply the Hessian approximation.
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9 Future Work

In addition to narrative information the VigiBase reports also include structured infor-
mation. Two subsections in the structural part lists suspected and concomitant drugs
and potentially the start and stop dates of these drugs. De-identified narratives will have
original dates replaced by a date with a random offset and the narratives often describe
the different events of a treatment, such as when a drug was given or withdrawn. Because
of this, the structured information causes a risk of re-identifying processed documents
by matching drugs and dates from the structured fields with corresponding context in
the narrative. Doing this it may be possible to derive the offset for all date and thereby
convert all de-identified dates back to the originals.

One potential way of solving this problem is to apply more extensive analysis in the
form of semantic role labeling where dates would be linked to medications and events.
These events could then be extracted from the narrative and presented as structured
information where only the time interval of the event is mentioned. If all critical infor-
mation in the narrative could be extracted to a structured format, there is no need to
present the original narrative. By not presenting the narratives the risk of distributing
sensitive information would be reduced to a minimum.

With the i2b2 data being more dense of sensitive entities it would be possible to train
statistical models using a data set mixed with VigiBase and i2b2 data. Just like when
finding the L1-ratio we could define a parameter indicating the proportion of i2b2 docu-
ments to include with the VigiBase reports and analyze how introducing i2b2 data affects
the performance.

Combining VigiBase and i2b2 data would increase the amount of text processed resulting
in longer execution times. Instead of using L-BFGS as the optimization algorithm one
can use Stochastic Gradient Descent (SGD) [37] which allows online learning. In contrast
to batch learning, like L-BFGS, SGD approximate the gradient of the objective function
by considering a single element or a small batch at a time. The drawback is that there
are more configuration parameters that need to be set.

Medication identification proved helpful when determining person names for the i2b2
data. Instead of using dictionary lookups to UMLS this could be replaced by the UMC
Drug Dictionary which has been developed using VigiBase data and would be more accu-
rate finding entities of drugs and medications, which could further help when identifying
person names.

Some symptoms or diseases are more common in different seasons, such as the flu which
occurs in the cold season of the year. When masking dates a random offset is added
to each successfully parsed date without respect of season. We can instead add three
random offsets, one for day, month and year respectively, where the interval of the ran-
dom numbers is reduced to a small interval. This will modify the date but keep the
approximate time of year, making the narrative less confusing.
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A COMMON GROUPS IN REGULAR EXPRESSIONS

A Common groups in Regular Expressions

Table 17: Commonly used predefined groups of regular expressions.

RegEx
syntax

ASCII chars Description

\w [A-Za-z0-9_] Alphanumeric characters plus "_"

\W [ˆA-Za-z0-9_] Non-word characters

\d [0-9] Digits

\D [ˆ0-9] Non-digits

\s [ \t\r\n\v\f] Whitespace character

\S [ˆ \t\r\n\v\f] Non-whitespace character

\b (?<=\W)(?=\w)|(?<=\w)(?=\W) Word boundary
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B UNICODE CHARACTER TYPE

B Unicode Character Type

Table 18: Character types according to the Unicode General Category

Short Code Description
Lu Letter, uppercase
Ll Letter, lowercase
Lt Letter, titlecase
Lm Letter, modifier
Lo Letter, other
Mn Mark, nonspacing
Mc Mark, spacing combining
Me Mark, enclosing
Nd Number, decimal digit
Nl Number, letter
No Number, other
Pc Punctuation, connector
Pd Punctuation, dash
Ps Punctuation, open
Pe Punctuation, close
Pi Punctuation, initial quote (may behave like Ps or Pe depending on usage)
Pf Punctuation, final quote (may behave like Ps or Pe depending on usage)
Po Punctuation, other
Sm Symbol, math
Sc Symbol, currency
Sk Symbol, modifier
So Symbol, other
Zs Separator, space
Zl Separator, line
Zp Separator, paragraph
Cc Other, control
Cf Other, format
Cs Other, surrogate
Co Other, private use
Cn Other, not assigned (including noncharacters)
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C Varying Number of Documents
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(c) Date precision, covering criteria.

Figure 21: Results when varying amount of available records
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(a) Age F1-score, covering criteria.
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(c) Age precision, covering criteria.

Figure 22: Results when varying amount of available records
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(a) Location F1-score, covering criteria.

0 50 100 150 200 250 300
Nr of Documents

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

LocationAnnotation

RegEx

CRF

SVM

(b) Location recall, covering criteria.
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(c) Location precision, covering criteria.

Figure 23: Results when varying amount of available records

50



D
F
E
A
T
U
R
E

R
A
N
K
IN

G

D Feature Ranking

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Coefficient absolute value

Following_0_3_0_NGram_Right_0_2_2_rs

Preceding_0_3_2_TypePath(PartOfSpeech)_NN

Preceding_0_3_1_NGram_Right_0_3_3_ale

Following_0_3_2_NGram_Right_0_2_2_on

Preceding_0_3_0_IncludesAnnotationType(StopwordAnnotation)

Preceding_0_3_0_LowerCase_a

Following_0_3_1_LowerCase_old

Preceding_0_3_0_NGram_Right_0_3_3_ged

Preceding_0_3_0_aged

Preceding_0_3_0_LowerCase_aged

Following_0_3_2_NGram_Right_0_3_3_ion

Following_0_3_0_years

Preceding_0_3_0_TypePath(PartOfSpeech)_DT

AnnotationPosition_BaseToken_Sentence

Following_0_3_0_NGram_Right_0_3_3_ars

Following_0_3_0_LowerCase_years

CharPatternRepeatsMerged_Nd

Following_0_3_0_ContainsXYZ

NumericType_DIGITS

TypePath(PartOfSpeech)_CD

Fe
a
tu

re

Positive

Negative

Amount of weights shown: 15 %

CRF | VIGIBASE | B-AGE

Figure 24: Top 20 features using CRF on the VigiBase data set for
category B-Age

0.00 0.05 0.10 0.15 0.20 0.25
Coefficient absolute value

Following_0_3_1_year

Following_0_3_1_LowerCase_year

Following_0_3_1_NGram_Right_0_2_2_ar

Following_0_3_1_NGram_Right_0_3_3_ear

Following_0_3_0_LowerCase_year

AnnotationPosition_BaseToken_Segment

Following_0_3_1_old

Following_0_3_1_NGram_Right_0_3_3_old

Following_0_3_1_NGram_Right_0_2_2_ld

Following_0_3_1_NGram_Right_0_2_2_th

TypePath(PartOfSpeech)_CD

Preceding_0_3_0_TypePath(PartOfSpeech)_DT

CharPatternRepeatsMerged_Ll

Following_0_3_0_NGram_Right_0_2_2_rs

Following_0_3_1_LowerCase_old

Following_0_3_0_years

Following_0_3_0_ContainsXYZ

AnnotationPosition_BaseToken_Sentence

Following_0_3_0_NGram_Right_0_3_3_ars

Following_0_3_0_LowerCase_years

Fe
a
tu

re

Positive

Negative

Amount of weights shown: 6 %

SVM | VIGIBASE | B-AGE

Figure 25: Top 20 features using SVM on the VigiBase data set for
category B-Age
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Figure 26: Top 20 features using CRF on the VigiBase data set for
category I-Age
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Figure 27: Top 20 features using SVM on the VigiBase data set for
category I-Age
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Figure 28: Top 20 features using CRF on the VigiBase data set for
category B-Date
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Figure 29: Top 20 features using SVM on the VigiBase data set for
category B-Date
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Figure 30: Top 20 features using CRF on the VigiBase data set for
category I-Date
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Figure 31: Top 20 features using SVM on the VigiBase data set for
category I-Date
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Figure 32: Top 20 features using CRF on the VigiBase data set for
category B-Location
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Figure 33: Top 20 features using SVM on the VigiBase data set for
category B-Location
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Figure 34: Top 20 features using CRF on the VigiBase data set for
category I-Location
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Figure 35: Top 20 features using SVM on the VigiBase data set for
category I-Location
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Figure 36: Top 20 features using CRF on the VigiBase data set for
category B-Organization
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Figure 37: Top 20 features using SVM on the VigiBase data set for
category B-Organization
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Figure 38: Top 20 features using CRF on the VigiBase data set for
category I-Organization
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Figure 39: Top 20 features using SVM on the VigiBase data set for
category I-Organization
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Figure 40: Top 20 features using CRF on the VigiBase data set for
category B-Person
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Figure 41: Top 20 features using SVM on the VigiBase data set for
category B-Person
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Figure 42: Top 20 features using CRF on the VigiBase data set for
category I-Person
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Figure 43: Top 20 features using SVM on the VigiBase data set for
category I-Person
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Figure 44: Top 20 features using CRF on the i2b2 data set for category
B-Age
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Figure 45: Top 20 features using SVM on the i2b2 data set for category
B-Age
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Figure 46: Top 20 features using CRF on the i2b2 data set for category
I-Age
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Figure 47: Top 20 features using SVM on the i2b2 data set for category
I-Age
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Figure 48: Top 20 features using CRF on the i2b2 data set for category
B-Date
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Figure 49: Top 20 features using SVM on the i2b2 data set for category
B-Date
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Figure 50: Top 20 features using CRF on the i2b2 data set for category
I-Date
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Figure 51: Top 20 features using SVM on the i2b2 data set for category
I-Date
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Figure 52: Top 20 features using CRF on the i2b2 data set for category
B-Location
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Figure 53: Top 20 features using SVM on the i2b2 data set for category
B-Location
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Figure 54: Top 20 features using CRF on the i2b2 data set for category
I-Location
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Figure 55: Top 20 features using SVM on the i2b2 data set for category
I-Location
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Figure 56: Top 20 features using CRF on the i2b2 data set for category
B-Organization
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Figure 57: Top 20 features using SVM on the i2b2 data set for category
B-Organization
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Figure 58: Top 20 features using CRF on the i2b2 data set for category
I-Organization
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Figure 59: Top 20 features using SVM on the i2b2 data set for category
I-Organization
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Figure 60: Top 20 features using CRF on the i2b2 data set for category
B-Person
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Figure 61: Top 20 features using SVM on the i2b2 data set for category
B-Person
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Figure 62: Top 20 features using CRF on the i2b2 data set for category
I-Person
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Figure 63: Top 20 features using SVM on the i2b2 data set for category
I-Person
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Figure 64: Top 20 features using CRF on the i2b2 data set for category
B-IdNumber
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Figure 65: Top 20 features using SVM on the i2b2 data set for category
B-IdNumber
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Figure 66: Top 20 features using CRF on the i2b2 data set for category
I-IdNumber
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Figure 67: Top 20 features using SVM on the i2b2 data set for category
I-IdNumber
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Figure 68: Top 20 features using CRF on the i2b2 data set for category
B-Phone
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Figure 69: Top 20 features using SVM on the i2b2 data set for category
B-Phone
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Figure 70: Top 20 features using CRF on the i2b2 data set for category
I-Phone
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Figure 71: Top 20 features using SVM on the i2b2 data set for category
I-Phone

74



D
F
E
A
T
U
R
E

R
A
N
K
IN

G

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Coefficient absolute value

Preceding_0_3_0_TypePath(PartOfSpeech)_.

NGram_Right_0_2_2_05

Preceding_0_3_0_.

Preceding_0_3_0_LowerCase_.

Following_0_3_1_NumericType_DIGITS

LowerCase_old

.

LowerCase_.

Following_0_3_0_%U000D%U000A

Following_0_3_0_LowerCase_%U000D%U000A

Following_0_3_0_NGram_Right_0_2_2_%U000D%U000A

Following_0_3_0_CharPatternRepeatsMerged_CC

TypePath(PartOfSpeech)_.

IncludesAnnotationType(StopwordAnnotation)

TypePath(PartOfSpeech)_NNP

CharPatternRepeatsMerged_Nd

CharPatternRepeatsMerged_Po

NumericType_ALPHANUMERIC

NumericType_YEAR_DIGITS

IncludesAnnotationType(CountryAnnotation)

Fe
a
tu

re

Positive

Negative

Amount of weights shown: 4 %

CRF | VIGIBASE | OUTSIDE

Figure 72: Top 20 features using CRF on the VigiBase data set for
category Outside
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Figure 73: Top 20 features using SVM on the VigiBase data set for
category Outside
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Figure 74: Top 20 features using CRF on the i2b2 data set for category
Outside
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Figure 75: Top 20 features using SVM on the i2b2 data set for category
Outside
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