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1. Introduction

The focus of this thesis is twofold: we consider both partial differential equa-
tions (PDE) where the solution varies on several different scales, multiscale
problems, and PDEs with uncertain data, uncertainty quantification. Model-
ing and simulation of this type of problems are very challenging and appear
in most areas of science and engineering. A prominent example is flow in a
porous medium. To apply standard one scale numerical methods and Monte
Carlo (MC) simulation for multiscale and uncertainty quantification problems
is in many cases intractable and in other cases impossible due to the immense
cost. We will discuss how to address the difficulties in multiscale and uncer-
tainty quantification problems separately.

Standard (one scale) numerical methods applied to multiscale problems fail
to perform when the data is rough or the finest scale features of the data are
not resolved by the underlying mesh. We will consider both when the co-
efficients and the computational domain have multiscale features. The main
challenge in constructing numerical methods for multiscale problems is to re-
duce the computational complexity and still remain accurate. We propose a
multiscale method where the coarse basis functions spanning the trial and/or
test spaces are corrected using fine scale computations. Using a corrected ba-
sis the multiscale method has the same order of accuracy as a standard one
scale method for smooth problems. The corrector problems are global, how-
ever the correctors decay exponentially away from the support of the coarse
basis and the computation can be localized to patches. The size of the patches
is chosen such that the accuracy is not affected. The corrector problems can be
computed independently of each other, which makes them perfectly suited for
parallel computation. The correctors can also be reused in e.g. time stepping
and nonlinear iterations. For further discussion regarding numerical methods
for multiscale problems see Section 3.

We consider applications where the model parameters are uncertain and
random. We want to compute statistical properties of a quantity of interest of
the solution of the PDE, in particular p-quantiles and failure probability. Fail-
ure probability is defined as the probability that a given functional or quantity
of interest of the model solution is below some predetermined value. The es-
timation of p-quantiles is the inverse problem, i.e., determine the value such
that a given functional of the solution is below that value with the predeter-
mined probability p. Since we are interested in problems with high stochastic
dimension, we consider sample based methods. When considering this type
of problems we have two error sources: the numerical discretization of the
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model and the stochastic sampling. To efficiently estimate p-quantiles or fail-
ure probability the two error sources need to be balanced. In this thesis we
use spatial a posteriori error estimates within variance reductions techniques
to reduce the computational cost and to balance the two error sources. For
further discussion regarding failure probability see Section 4.

The main results of this thesis are the following:
• Adaptivity and convergence analysis for a Discontinuous Galerkin mul-

tiscale method.
• Multiscale methods in Petrov-Galerkin formulation.
• Extension of multiscale analysis to complex geometries.
• Improvment of Monte Carlo methods for p-quantiles and multilevel Monte

Carlo method for failure probability, using selective refinement.
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2. Model problem

In this chapter we present some notations, a model problem, and give a short
introduction to the finite element method (FEM) and discontinuous Galerkin
(DG) method.

2.1 The Poisson equation
We consider the boundary value problem

−∇ ·A∇u = f in D,

u = 0 on ∂D,
(2.1)

where D is a spatial domain with boundary ∂D, f is an external forcing, and A
is a diffusion matrix. For multiscale problems A, ∂D, and f varies over several
different scales that are not necessarily resolved by the computational mesh.
For uncertainty quantification A = A(ω) and f = f (ω) are realizations from
a given sample space Ω. In subsurface flow the physical interpretation of A is
permability, illustrated in Figure 2.1.

Figure 2.1. Examples of the permability in subsurface flow simulations.

Two function spaces which will be frequently used are L2(D) and H1(D).
Both of the spaces are Hilbert spaces [2], i.e., both are complete inner product
spaces with their inner products defined as

(u,v)L2(D) =
∫

D
uvdx and (u,v)H1(D) = (∇u,∇v)L2(D)+(u,v)L2(D), (2.2)

respectively. We will denote

‖v‖L2(D) =
√
(v,v)L2(D) and ‖v‖H1(D) =

√
(v,v)H1(D), (2.3)
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the L2(D) and H1(D) norms induced by their inner products. Let us consider
the function space V0 = {v ∈ H1(D) | v|∂D = 0}, i.e., all functions in H1(D)
that vanishes on the boundary ∂D. The weak form of (2.1) reads: find u ∈V0
such that

a(u,v) :=
∫

D
A∇u ·∇vdx =

∫
D

f vdx =: F(v) for all v ∈V0. (2.4)

By the Lax-Milgram lemma, there exists a unique solution u ∈ V0 to (2.4) if
the bilinear form a(·, ·) is coercive and continuous and the forcing function
F(·) is a bounded linear functional. For a bilinear form to be coercive and
continuous it has to fulfill

a(v,v)≥C1‖v‖2
H1(D), and |a(v,w)| ≤C2‖v‖H1(D)‖w‖H1(D), (2.5)

for all v,w ∈V0.

2.2 The finite element method
Since there typically is no closed form solution to (2.4) it needs to be approx-
imated by a numerical method. A powerful numerical method is the FEM
which has a strong mathematical foundation from functional analysis, that can
be used to derive analytic error estimates/bounds [6].

The FEM seeks the solution in a finite dimensional subset Vh ⊂ V of con-
tinuous piecewise polynomials defined on a mesh Th covering the computa-
tional domain. The mesh typically consists of triangles/quadrilaterals in 2D
and tetrahedras/prisms in 3D. Let h : Ω→ R be a mesh-size function defined
elementwise as h|T = diam(T ), i.e., the diameter of smallest circle containing
T . The FEM approximation reads: find uh ∈Vh such that

a(uh,v) = F(v) for all v ∈Vh. (2.6)

For the solution uh to be a good approximation of u, the space Vh needs to
resolve the variation in A. For many realistic problems this assumption is very
computationally demanding to fulfill.

There are two main classes of error estimates or bounds for the FEM, a
priori and a posteriori. The a priori error bound depends on the data and
smoothness of the exact solution u, i.e.,

|||u−uh||| := ‖A1/2
∇(u−uh)‖L2(D) ≤Chs−1|u|Hs(D), (2.7)

where h = maxT∈Th h|T and Hs(D) is a function space containing all functions
with bounded weak derivatives of total degree s in L2(D). To achieve linear
convergence the smoothness constraint u ∈ H2(D) must be fulfilled. Higher
order convergence can be obtain if both higher order polynomials are used and
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the exact solution is smoother, s > 2. However even if u ∈ H2(D), |u|H2(D)
depends on the variation of the coefficient A and there is a pre-asymptotic
regime where no convergence occur until the variations are resolved. The a
posteriori error bound depends on the data and the numerical solution. Hence,
a posteriori error bounds can be used in an adaptive algorithm to improve the
numerical solution iteratively. For the standard FEM the a posteriori error
bounds have the form

|||u−uh|||2 ≤C ∑
T∈Th

(
h|2K‖ f +∇ ·A∇uh‖2

L2(T )

+h|K‖ν · [A∇U ]‖2
L2(∂T )

)
,

(2.8)

where [·] is the jump in function value and ν is a unit normal on ∂T .

2.3 The discontinuous Galerkin method
An interesting alternative to the standard (conforming) FEM is the DG method.
In DG methods there is no continuity constraint imposed on the approximation
spaces. Instead the continuity is imposed weakly in the bilinear form, i.e., the
DG method allows for jumps in the numerical solution between different ele-
ments in the mesh. The first DG method was introduced in [34] for numerical
approximations of first order hyperbolic problems and analyzed in [26, 24].
For some early work for DG method for elliptic problems see [38, 8, 3]. See
also [30] for some preliminary work and [18, 33, 35] for a literature review.

We will use the same notation for the bilinear form, energy norm, and for
the discrete function spaces for the DG method as for the FEM, however, with
different definitions. The approximation space for the DG method, Vh, is the
space of piecewise polynomials, i.e., DG methods uses a non-conforming
ansatz Vh 6⊂ V . The DG method has a higher number of degrees of free-
dom than the standard (conforming) FEM, but has the advantages that non-
conforming meshes can be used and that it does not suffer from stability is-
sues for first order or convection dominated PDEs. Also, the DG method is
perfectly suited for hp-adaptivity, where both the mesh size and the order of
the polynomial’s degree can vary over the domain, see e.g. [21]. Since the DG
method seeks the solution in a space which consists of piecewise polynomials
without any continuity constraints, a modified bilinear form has to be used.
In the bilinear form the continuity is imposed weakly, i.e., there is a penalty
which forces the jump in the approximate solution to decrease when the mesh-
size decreases. Let Th be a given mesh and Eh be the skeleton of the mesh,
i.e., the set of all edges of the elements in Th. For two elements T+ and T−

sharing a common edge, e := T+∩T−, the jump and average on e are defined
as

{v}= 1
2
(v|T+ + v|T−) and [v] = v|T+− v|T− (2.9)
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in the interior and as {v} = [v] = vT on the boundary. We let νe be the unit
normal pointing from T+ to T− and σe be an edge-wise constant depending
on A. The bilinear form for the DG method is defined as

a(u,v) = ∑
T∈Th

∫
T

A∇u ·∇vdx

− ∑
e∈Eh

∫
e

(
νe · {A∇u}[v]+νe · {A∇v}[u]− σe

h
[u][v]

)
ds.

(2.10)

where σe is chosen large enough to make the bilinear form coercive in the
standard DG energy norm, which is defined as

|||v|||2 =

(
∑

T∈Th

‖A1/2
∇v‖2

L2(T )+ ∑
E∈Eh

σe

h
‖[v]‖2

L2(e)

)1/2

. (2.11)

The DG method reads: find uh ∈Vh such that

a(uh,v) = F(v) for all v ∈Vh. (2.12)

Discontinuous Galerkin methods, as well as conforming finite element meth-
ods, perform badly when the smallest length scale of the data is not resolved.
However, DG methods have the advantage in treating discontinuous coeffi-
cients, convection dominated problems, mass conservation, and flexibility of
the underling mesh, all which are crucial issues in many multiscale problems,
including e.g. porous media flow.
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3. Multiscale problems

For multiscale problems standard numerical techniques fail to perform when
the data is not resolved by the computational mesh [4]. A remedy for this,
when the roughness is local in space, is adaptive techniques [37]. However,
this is not the case for many multiscale problems. We will consider both when
there are multiscale features in the coefficients and in the computational do-
main. In particular we consider multiscale diffusion, domains with cracks, and
rough boundaries.

In the last two decades there have been a lot of research on multiscale meth-
ods treating some of these difficulties, see e.g. [20, 19, 13, 12, 9, 10, 11, 22,
23, 25, 27, 28]. Common for this these approaches is that local problems are
solved on subgrid patches which resolves the data variation. The solutions to
the subproblems are then used to modify a coarse scale space or equation.

We consider the local orthogonal decomposition method (LOD) first pre-
sented in [28]. See [25, 27, 23] for some preliminary work and [14, 15, 29, 32]
for further development. In the LOD method the test and trial space are de-
composed into coarse and fine scale subspaces using a quasi-interpolation op-
erator. The coarse space is then corrected using fine scale information such
that the corrected basis takes the fine scale behavior of the data into account.
The corrected basis is constructed to be orthogonal to the kernel of the quasi-
interpolation operator in the scalar product induced by the bilinear form.

3.1 Multiscale methods
In this section we will not explicitly define the function spaces and bilinear
form, instead we use an abstract formulation that fits both the FEM and the
DG method. We let VH and Vh, where H,h are mesh-size functions, be the
finite dimensional spaces where VH does not and Vh does resolve the data. We
assume that VH ⊂ Vh and H > h. The space Vh is referred to as the reference
space and the reference solution uh solves: find uh ∈Vh such that

a(uh,v) = F(v) for all v ∈Vh. (3.1)

We assume uh to be a sufficiently good approximation of u. We split the refer-
ence space Vh into a coarse and a fine scale contribution. Let IH : L2(Ω)→VH
be a quasi-interpolation operator onto the coarse space VH with range(IH) =
VH , i.e., VH = IHVh. To simplify the analysis, we will only consider when
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IH is a projection, I 2
H = IH . The interpolation operator needs to satisfy the

following local approximation and stability estimate. For any K ∈ TH and
v ∈Vh

‖A1/2H−1(v−IHv)‖L2(K) +‖A1/2∇IHv‖L2(K) ≤C|||v|||ωK
, (3.2)

holds, where ωK = int{S ∈ TH | S∩K �= 0} and |||·|||ωK
is the energy norm

restricted to ωK . We define a fine correction space to be the kernel of the
interpolation operator

V f = (1−IH)Vh = {v ∈Vh |IHv = 0}. (3.3)

Any function vh ∈Vh can be decomposed into a coarse contribution, vH ∈VH ,
and fine scale remainder, vf ∈ V f, i.e., vh = vH + vf where vH = IHvH and
vf = (1−IH)vh. Choosing VH as the coarse space the fine scale remainder vf

is large and oscillatory and does not decay until the variations in the data are
resolved. A remedy is to correct the space VH such that the coarse basis takes
the fine scale into account. We define the corrected space by V ms

H = (1+Q)VH
where Q : VH →V f is defined as: given vH ∈VH find Q(vH) ∈V f such that

a(Q(vH),w) =−a(vH ,w) for all w ∈V f. (3.4)

We can write the reference space as the direct sum Vh =V ms
H ⊕V f. By correct-

ing the basis functions spanning the space VH = span{ϕi}we can write the cor-
rected space as the span of corrected basis function V ms

H = span{ϕi +Q(ϕi)}.
To compute the correctors is a global computation which is as expensive as
solving the original reference problem. Instead, each of the correctors of the
basis ϕi are computed on localized patches

ω0
i := int(∪(T̄ ∈TH | T̄ ∩{x} �= /0))∩Ω,

ω�
i := int

(
∪(T̄ ∈TH | T̄ ∩ ω̄�−1

T �= /0)
)
∩Ω, for �= 1, . . . ,L.

(3.5)

See Figure 3.1 for a graphical illustration of a localized patch. Let us define

Figure 3.1. An example of 0, 1, and 2 level patches, i.e., ω0
i , ω0

i , and ω2
i .

the localized corrected space by V ms,L
H = span{ϕi +QL(ϕi)} where QL solves:

given φi find Q(φi) ∈V f(ωL
i ) = {v ∈V f(ωL

i ) | v|D\ωL
i =0} such that

a(QL(φi),w) =−a(φi,w) for all v ∈V f(ωL
i ). (3.6)
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The multiscale method posed in V ms,L
H reads: find ums,L

H ∈V ms,L
H such that

a(ums
H ,v) = F(v) for all v ∈V ms,L

H . (3.7)

The solution ums,L
H fulfills the a priori error estimate

|||u−ums
H ||| ≤ |||u−uh|||+CH, (3.8)

choosing L = O(log(H−1)), where H is the coarse mesh size and C is a con-
stant independent of the mesh sizes h,H and the variations in A. We have that
diam(ωL

i ) =O(H log(H−1)). See Paper II and IV for a more elaborate discus-
sion and Paper III for a generalization toward convection-diffusion problems.

3.2 Continuous and discontinuous Galerkin method
The difference between the continuous and discontinuous Galerkin multiscale
method is the choice of reference space Vh, bilinear form a(·, ·), and quasi-
interpolation IH . The choices we make for the reference space and bilinear
form are given in Section 2.2 for the FEM (continuous Galerkin) and in Sec-
tion 2.3 for the DG multiscale method. The choice for the quasi-interpolation
is not unique and different operators can be chosen depending on the applica-
tion. Let TH be the coarse mesh on which VH is defined and N be the set of
all vertices in TH .

For the continuous Galerkin method we choose I cG
H : L2(D)→ VH to be

defined by
I cG

H v = ∑
x∈N

(Pxv)(x)ϕx (3.9)

where Pxu ∈VH |ω0
x

solves

(Pxu,v)L2(ω0
x )
= (u,v)L2(ω0

x )
for all v ∈VH |ω0

x
. (3.10)

The space VH |ω0
x

is the restriction of VH to the patch ω0
x . See Paper V for a

more elaborate discussion and Paper IV for an other choice of quasi-interpolation
operator.

For the discontinuous Galerkin method we choose an elementwise L2-projection
I dG

H : L2(D)→VH defined by

I dG
H v = ∑

T∈TH

ΠT v (3.11)

where ΠT u ∈VH |T solves

(ΠT u,v)L2(T ) = (u,v)L2(T ) for all v ∈VH |T . (3.12)

See Paper II for a more elaborate discussion.
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3.3 Complex domain
So far most of the work in multiscale community has been focused for treating
multiscale coefficients and less on treating complex domains. However, many
multiscale applications involve voids, cracks, and rough interfaces. We extend
the analysis for multiscale methods when there are multiscale features in the
domain that are not resolved by the mesh. For simplicity we consider the
case A = 1 in a complex domain. Then it is only necessary to compute the
corrector problems close to the complex boundary and not in the entire domain
D, see Figure 3.2. In Figure 3.2 the domain boundary cuts some of the coarse
elements, however this does not affect the convergence and conditioning of
the multiscale method. The condition number κ of the linear system obtained

Figure 3.2. Example of complex domain embedded in a coarse mesh. The fine scale
correctors only needs to be computed in the gray area. The dark Gray elements mark
a 1-layer and the light gray a 2-layer patch of element round the complex boundary.

from (3.7) scales like
κ ≤CH−2, (3.13)

in the coarse mesh size H where C is a constant independent on the mesh-size
and how the elements are cut by the domain boundary. See Paper V for a more
elaborate discussion.

3.4 Petrov-Galerkin formulation
It is also possible to use a Petrov-Galerkin (P-G) formulation of the proposed
multiscale method, i.e., using different test and trial spaces. The P-G formula-
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tion reads: find ums,L
H ∈V ms,L

H such that

a(ums
H ,v) = F(v) for all v ∈VH . (3.14)

The P-G formulation still has the same convergence rate as the standard sym-
metric formulation. If global patches are used for the fine scale computations
the two version are identical up to a perturbation of the right hand side,

a(ums
H ,v) = a(ums

H ,v+QL(v)) (3.15)

for v ∈VH . However, the P-G formulation can reduce the computational com-
plexity since no communication between the correctors is needed when as-
sembling the matrices for the corrected coarse problem, i.e., the assembling is
a(ϕi +QL(ϕi),ϕ j) for the P-G formulation and a(ϕi +QL(ϕi),ϕ j +QL(ϕ j))
for the standard symmetric formulation. See Paper IV for a more elaborate
discussion.

3.5 Adaptivity for discontinuous Galerkin multiscale
method.

For porous media flow problems the permeability in the ground can vary with
several orders of magnitudes over the entire domain. This motivates the use
of an adaptive multiscale method to tune the method parameters in order to
obtain an efficient and reliable solution. For adaptive multiscale methods, see
e.g. [25, 31, 17, 1]. Given a uniform or possibly an adaptive coarse mesh
TH , the adaptive discontinuous Galerkin multiscale method balances the error
caused by truncation of the patches and the fine scale discretization error. The
a posteriori error bound takes the form

|||u−ums
H ||| ≤C1

(
∑

S∈Th

ρ
2
S (u

ms
H )

)1/2

+C2

(
∑

T∈TH

ρ
2
ωT

(ums
H )

)1/2

, (3.16)

where ρ2
S and ρ2

ωT
are error indicators which measure the effect of the fine

scale mesh size and of the truncated patches, respectively. Since using general
nonconforming meshes is allowed using DG, it is easy to construct a global
reference grid for the localized fine scale computations. This takes advantage
of the error cancellation between different fine scale patches. See Paper I for
a more elaborate discussion.
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4. Uncertainty quantification

We consider PDEs with uncertain data which have high stochastic dimension.
More specifically, we consider the estimation of failure probability and p-
quantiles. Given some physical model

M (ω,u) = 0 (4.1)

where ω is a random parameter, let X = X(u) be a quantity of interest of the
model solution u= u(ω), i.e., X : ω→R. The estimation of failure probability
reads: given y ∈ R find p ∈ [0,1] such that

p = Pr(X ≤ y) (4.2)

holds. The estimation of p-quantiles is the inverse problem: given p ∈ [0,1]
find y ∈ R such that (4.2) holds. For simplicity we will only consider failure
probabilitiy here, for p-quantiles see Paper VI. Because of the high stochas-
tic dimension we consider MC approaches using different variance reduction
techniques. The curse of dimensionality does not effected MC based meth-
ods. This is a consequence of the central limit theorem which states that mean
value of a sequence consisting of independent and identically distributed ran-
dom variables with size n, where the random variables have mean value µ and
variance σ2, tends to the normal distribution with mean µ and variance σ2/n,
independent of the stochastic dimension [36].

The key idea is to use a posteriori error estimates/bounds to improve ex-
isting MC methods and variance reduction techniques for MC methods. We
will consider the MC method and multilevel Monte Carlo method (MLMC)
[16, 5, 7].

4.1 Selective refinement
We want to estimate the probability that a quantity of interest X is below a
critical value y. Let us define Q = 1(X ≤ y) where 1(true) = 1 and 1(false) =
0. Then the failure probability can be expressed as the expected value of Q,
i.e., p = E [Q]. Since the quantity of interest X is a functional of the model
solution it needs to be approximated using some numerical method. We will
make the following assumption on the numerical approximation X` of X . Let
X` satisfy

|X−X`| ≤
(

1
2

)`

or |X−X`| ≤ |X`− y|, (4.3)
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for all `. The approximation of Q reads

Q` = 1(X` ≤ y). (4.4)

The Monte Carlo estimator using selective refinement reads

Q̂MC =
1
N

N

∑
i=1

QL(ωi) (4.5)

where ωi is a realization of the model data and L is fixed. Compared to a
standard Monte Carlo estimator where all samples are solved to the same tol-
erance, the selective refinement estimator only refines samples, to the finest
tolerance level, that are close to the failure, see Figure 4.1. This can sig-
nificantly reduce the cost since most samples are computed on coarse model
resolution and hence at smaller cost than for the standard Monte Carlo estima-
tor. See Paper VI for a discussion towards estimating p-quantiles and Paper
VII for more elaborate discussion towards failure probability.

y

(1
2

)`
X`

Error, |X−X`|

|X−X`| ≤
(1

2

)`
|X−X`|< |X`− y|

Figure 4.1. Illustration of the selective refinement condition (4.3). The numerical
error is allowed to be larger far away from y.

4.2 Multilevel Monte Carlo with selective refinement
The MLMC method is a variance reduction technique that splits the estimator
into different levels. On low levels many samples are used where the sam-
ples are cheap to compute and on high levels few samples are used where the
samples are more expensive. The multilevel Monte Carlo estimator reads

Q̂ML =
L

∑
`=1

1
N`

N`

∑
i=1

(Q`(ωi)−Q`−1(ωi)) , (4.6)
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where Q0(ω) = 0. Note that

E[Q̂ML] =
L

∑
`=1

1
N`

N`

∑
i=1

(E[Q`(ωi)]−E[Q`−1(ωi)]) =E[QL(ωi)] (4.7)

because of the telescopic sum. The variance of the multilevel Monte Carlo
estimator is

V[Q̂ML] =
L

∑
`=1

1
N`
V[Q`(ωi)−Q`−1(ωi)]. (4.8)

The level dependent approximation Q` of the random variable Q satisfy

|E[Q`−Q]| ≤C1

(
1
2

)`

,

V[Q`−Q`−1]≤C2

(
1
2

)`
(4.9)

if (4.3) holds. For the root mean square error to satisfy

e(Q̂ML) =
(
V[Q̂ML]+ (E[Q̂ML−Q])2

)1/2
≤ ε, (4.10)

for some tolerance ε , the total cost required to compute the MLMC estimator
with selective refinement is

Cost
(

Q̂ML
)
≤C

{
N q < 2,
Cost(QL) q > 2.

(4.11)

where C is a generic constant independent of ε and q. The constant q typically
depends on the dimension of the problem, convergence rate of the numerical
approximation, and the linear solvers. This is a huge improvement compared
to the standard Monte Carlo estimator which has the cost N ·Cost(QL), i.e.,
the computational complexity for the MLMC estimator is either solving all
problems att cost 1 or one problem at the highest cost. See Paper VII for a
more elaborate discussion.
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5. Future works

There is a rapid development in numerical techniques for both multiscale and
uncertainty quantification problems. Some natural extension of the work con-
sidered in this thesis is the following.
• Combine the multiscale and uncertainty quantification algorithms. Many

uncertainty quantification problems has multiscale structure.
• Use the selective refinement to create a multilevel subset simulation for

rare event estimation, i.e., a small failure probabilities.
• Apply and extend the analysis to more realistic engineering problems.

The numerical experiments in this thesis are based on model problems.
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6. Summary of papers

6.1 Paper I
D. Elfverson, E. H. Georgoulis and A. Målqvist. An Adaptive Discontinuous
Galerkin Multiscale Method for Elliptic Problems. Multiscale Model. Simul.
11(3), 747–765 (2013).
In this paper we present an adaptive discontinuous Galerkin multiscale method
driven by an energy norm a posteriori error bound. In the multiscale method
the problem is split into a coarse and fine scale, Vh = V ms

H ⊕V f . Localized
fine scale problems to correct the coarse basis are solved on truncated patches
of the domain and are used to construct the coarse space, V ms

H . The coarse
space has considerably less degrees of freedom than the fine scale reference
problem. The a posteriori error bound is used within an adaptive algorithm to
tune the critical parameters,

|||u−ums
H ||| ≤C1

(
∑

S∈Th

ρ
2
h (u

ms
H )

)1/2

+C2

(
∑

T∈TH

ρ
2
ωT

(ums
H )

)1/2

, (6.1)

i.e., the error indicator of the refinement level ρ2
h and of the patch sizes ρ2

ωT
on

which the truncated fine scale problems are solved. The fine scale computa-
tions are completely parallelizable, since no communication between different
processors is required when computing the basis for the multiscale space.

Contribution: The author of this thesis was main responsible for the analysis,
writing, and performed all the numerical experiment. The idea was developed
in close collaboration between the authors.

6.2 Paper II
D. Elfverson, E. H. Georgoulis, A. Målqvist, and D. Peterseim. Conver-
gence of a Discontinuous Galerkin Multiscale Method. SIAM J. Numer. Anal.
51(6), 3351–3372 (2013).

In this paper we derive a convergence result for a discontinuous Galerkin mul-
tiscale method for second order elliptic problems. We consider a heteroge-
neous and highly varying diffusion matrix in L∞(Ω,Rd×d

sym ) with uniform spec-
tral bounds without any assumption on scale separation or periodicity. The
multiscale method uses a space V ms

H spanned by corrected basis that is con-
structed by correcting a coarse basis on truncated patches. The error, due to
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truncation of the corrected basis, decreases exponentially with the size of the
patches. Hence, we achieve the linear convergence rate

|||u−ums
H ||| ≤ H, (6.2)

in energy norm of the multiscale solution on a uniform mesh with mesh size
H, by choosing the patch sizes to be O(H| logH|). Improved convergence rate
can be achieved depending on the piecewise regularity of the forcing function.
Also, quadratic convergence

||u−ums
H ||L2(D) ≤ H2, (6.3)

in the L2-norm is obtained for arbitrary forcing function in L2.

Contribution: The author of this thesis was main responsible for the analysis,
writing, and performed all the numerical experiment. The idea was developed
in close collaboration between the authors.

6.3 Paper III
D. Elfverson. A Discontinuous Galerkin Multiscale Method for Convection-
Diffusion Problems. Available as arXiv:1509.03523 e-print (submitted).

In this paper we consider convection-diffusion problems with rough, hetero-
geneous, and highly varying coefficients. We propose a generalization of the
discontinuous Galerkin multiscale method presented Paper II to convection-
diffusion problems. The properties of the multiscale method and the dis-
continuous Galerkin method allow us to better cope with multiscale features
as well as interior/boundary layers in the solution. The coarse trial and test
spaces are corrected using fine scale computation on localized patches of size
O(H log(H−1)), where H is the mesh size. For convection-diffusion it is better
to have directed patches, i.e., increase them in the direction of the convection.
Linear convergence in energy norm,

|||u−ums
H ||| ≤ H, (6.4)

is obtain under the assumption that the ratio between the size of the convection
and diffusion coefficients scales like

O

(
‖Hb‖L∞(Ω)

‖A−1‖L∞(Ω)

)
≤ 1, (6.5)

where b is the convection and A is the diffusion coefficient. However the
convergence rates are independent of the variation in the coefficients.

Contribution: The author of this thesis is the sole author.
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6.4 Paper IV
D. Elfverson, V. Ginting, and P. Henning. On Multiscale Methods in Petrov-
Galerkin Formulation, Numer. Math. (2015).

In this work we investigate the advantages of multiscale methods in P-G for-
mulation in a general framework which both fit multiscale methods based on
the continuous and discontinuous Galerkin method. The framework splits the
high dimensional reference space into a low dimensional corrected coarse
space and high dimensional corrector space. The high dimensional correc-
tor space only contains negligible fine scale information. The corrected coarse
space V ms

H can then be used to obtain accurate Galerkin approximations in P-G
formulation: find ums

H ∈V ms
H such hat

a(ums
H ,v) = F(v) for all v ∈VH . (6.6)

Thus a Petrov-Galerkin formulation preservs the convergence rate,

|||u−ums
H ||| ≤ H, (6.7)

with only a slightly lager constant compared to original symmetric multiscale
method. However, P-G method can decrease the computational complexity
significantly, allowing for more efficient solution algorithms. This makes the
P-G method more preferable compared to the symmetric method. We prove
inf-sup stability of a P-G continuous and a discontinuous Galerkin multi-
scale method. As another application of the framework, we show how the
Petrov-Galerkin framework can be used to construct a locally mass conserva-
tive solver for two-phase flow simulation that employs the Buckley-Leverett
equation. To achieve this, we couple a Petrov-Galekin discontinuous Galerkin
finite element method with an upwind scheme for a hyperbolic conservation
law.

Contribution: The author of this thesis was main responsible for the analysis,
writing, numerical experiments regarding the discontinuous Galerkin part of
the multiscale method.

6.5 Paper V
D. Elfverson, M. G. Larson, and A. Målqvist. Multiscale Methods for Prob-
lems with Complex Geometry. Available as arXiv:1509.03991 e-print (submit-
ted).

In this paper we extend the analysis for the LOD to problems on complex
domains, i.e., domains with voids, cracks, and complicated boundaries. The
multiscale method uses a corrected test and trial space V ms

H , where correctors
for the basis function are computed on truncated patches. The correctors do
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only need to be computed close to the boundary. We achieve linear conver-
gence rate

|||u−ums
H ||| ≤ H, (6.8)

in energy norm for the multiscale solution, even if the computational mesh
does not resolve the fine features of the domain D. The conditioning of the
multiscale method is not affected by how the domain boundary cuts the ele-
ments in the mesh.

Contribution: The author of this thesis was main responsible for the analysis,
writing, and performed all the numerical experiments. The idea was developed
in close collaboration between the authors.

6.6 Paper VI
D. Elfverson, D. J. Estep, F. Hellman, and A. Målqvist. Uncertainty Quan-
tification for Approximate p-Quantiles for Physical Models with Stochastic
Inputs. SIAM/ASA J. Uncertainty Quantification, 2(1), 826–850 (2014).

In this paper we consider the estimation of p-quantiles for a given functional
evaluated on numerical solutions of a deterministic model in which model
input is subject to stochastic variation. We derive upper and lower bounding
estimators of the p-quantile, i.e., given p and 0< β < 1 find the computational
bounds y− and y+ such that

Pr(y ∈ [y−,y+])> 1−β . (6.9)

The main idea is to perform an a posteriori error analysis for the p-quantile
estimators that takes into account the effects of both the stochastic sampling
error and the deterministic numerical solution error. We propose a selective re-
finement algorithm for computing an estimate of the p-quantile with a desired
accuracy in a computationally efficient fashion. In the selective refinement
only samples that can effect the p-quantile are refined, i.e., different samples
are solved to different accuracy. Only a relatively small subset of samples sig-
nificantly affects the accuracy of a p-quantile estimator and need to be solved
to full accuracy. The algorithm leads to significant computational gain. For
instance, if the numerical model is a first order discretization of a partial dif-
ferential equation with spatial dimension greater than one, the reduction in
computational work (compared to standard Monte Carlo using n samples) is
asymptotically proportional to n1/2.

Contribution: The author of this thesis did the writing and performed the nu-
merical experiment in close collaboration with the third author. The analysis
was done in close collaboration with the author of this thesis, the third, and
the fourth author. The idea was developed in close collaboration between all
the authors.
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6.7 Paper VII
D. Elfverson, F. Hellman, and A. Målqvist. A Multilevel Monte Carlo method
for Computing Failure Probabilities. Available as arXiv:1408.6856 e-print
(submitted).

In this paper we propose and analyze a method for computing failure probabil-
ities of systems modeled as numerical deterministic models (e.g., PDEs) with
uncertain input data. Failure probability is defined as the probability that a
functional of the solution to the model is below some critical value, i.e., given
y find p such that

p = Pr(X < y) (6.10)

where X is a quantity of interest. By combining selective refinement with a
multilevel Monte Carlo method we develop a method which reduces computa-
tional cost without loss of accuracy compared to the standard multilevel Monte
Carlo method. We prove how the computational cost of the method relates
to the root mean square error of the failure probability and is asymptotically
proportional to solving a single accurate realization of the numerical model
(independent of the number of samples) or a standard Monte Carlo method
where all samples have cost 1 (independent of the numerical cost) which is the
optimal rate.

Contribution: The author of this thesis did the analysis, writing, and per-
formed the numerical experiment in close collaboration with the second au-
thor. The idea was developed in close collaboration between the authors.

26



7. Summary in Swedish

I denna avhandling fokuserar vi både på partiella differentialekvationer med
data som varierar över flera olika skalor i rummet, multiskalproblem, samt som
har osäkerhet i datat, osäkerhetskvantifiering. Modellering och simulering av
denna typ av problem är mycket utmanande och förekommer i de flesta om-
råden inom vetenskap och teknik. Några exempel är flöden i porösa medier
och kompositmaterial. Vanliga numeriska metoder, t.ex enskaliga numeriska
metoder samt Monte Carlo simuleringar för multiskal och osäkerhetkvantifier-
ingsproblem är i många fall olämpliga och i andra fall omöjligt att använda på
grund av deras höga kostnad. I denna avhandling behandlar vi problemen som
dyker upp i multiskal- och osäkerhetskvantifieringsproblem separat.

Standardmetoderna för numeriska beräkningar fungerar dåligt för multi-
skalproblem när man har snabbt varierande data och när den finskaliga in-
formationen i data inte löses upp av beräkningsnätet. Vi behandlar problem
där både koefficienterna och beräkningsdomänen har multiskalstruktur. Den
huvudsakliga utmaningen i att konstruera numeriska metoder för multiskal-
problem är att minska beräkningskomplexiteten utan att förlora noggrannhet i
lösningen. Vi utvecklar en multiskalmetod där grova basfunktioner som spän-
ner upp lösningen korrigeras med hjälp av lokaliserade finskaliga beräkningar.
Lösningen för multiskalmetoden har samma konvergenshastighet som stan-
dard metoderna har för problem utan multiskaldata. De finskaliga korrektion-
sproblemen avtar exponentiell bort från stödet av den ursprungliga basfunk-
tionen och beräkningarna kan därför lokaliseras till små områden. Storleken
av beräkningsområderna kan väljas så att konvergensen för multiskalmetoden
inte påverkas. Korrektionsproblemen kan lösas helt oberoende av varandra,
vilket gör metoden perfekt lämpad för parallella beräkning. Det är också
möjligt att återanvända de finskaliga beräkningarna i t.ex. tidsstegning och
icke-linjära iterationer.

I osäkerhetkvantifiering fokuserar vi på tillämpningar där modellparame-
trarna beror på stokastiska variationer. Vi vill beräkna statistiska egenskaper
hos en kvantitet av lösningen till modellen, mer exakt så vill vi beräkna p-
kvantiler och felsannolikheter. Felsannolikheter definieras som sannolikheten
att en given kvantiteten av lösningen till modellen är mindre än något kritiskt
värde. Uppskattningen av p-kvantiler är det inversa problemet, dvs bestäm
värdet så att en givna kvantiteten av lösningen är större eller mindre än ett
givet värde med sannolikhet p. Beräkningar av den här typen av problem
har två felkällor, ett numeriskt fel från diskretiseringen av modellen och ett
statistiskt fel från ett ändligt antal stickprov. För att uppskatta p-kvantiler eller
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felsannolikheter effektivt så måste de båda felkällorna balanseras. Vi utveck-
lar tekniker för att uppskatta/beräkna det nummeriska felet tillammans med
existerande variansreducerande metoder för att minska beräkningskostnaden
samt för att balansera de båda felkällorna.
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