
IT Licentiate theses
2015-004

Parallelism and Efficiency in Discrete-Event
Simulation

PAVOL BAUER

UPPSALA UNIVERSITY
Department of Information Technology

Parallelism and Efficiency in Discrete-Event Simulation

Pavol Bauer
pavol.bauer@it.uu.se

October 2015

Division of Scientific Computing
Department of Information Technology

Uppsala University
Box 337

SE-751 05 Uppsala
Sweden

http://www.it.uu.se/

Dissertation for the degree of Licentiate of Technology in Scientific Computing

c© Pavol Bauer 2015
ISSN 1404-5117

Printed by the Department of Information Technology, Uppsala University, Sweden

Abstract

Discrete-event models depict systems where a discrete state is
repeatedly altered by instantaneous changes in time, the events
of the model. Such models have gained popularity in fields such
as Computational Systems Biology or Computational Epidemi-
ology due to the high modeling flexibility and the possibility
to easily combine stochastic and deterministic dynamics. How-
ever, the system size of modern discrete-event models is growing
and/or they need to be simulated at long time periods. Thus,
efficient simulation algorithms are required, as well as the pos-
sibility to harness the compute potential of modern multicore
computers. Due to the sequential design of simulators, parallel-
ization of discrete event simulations is not trivial. This thesis
discusses event-based modeling and sensitivity analysis and also
examines ways to increase the efficiency of discrete-event simula-
tions and to scale models involving deterministic and stochastic
spatial dynamics on a large number of processor cores.

i

ii

With love to my family,

Sanja and Lea.

iii

iv

List of Papers
This thesis is based on the following papers

I P. Bauer, S. Engblom. Sensitivity estimation and inverse problems
in spatial stochastic models of chemical kinetics. In Lecture Notes in
Computational Science and Engineering. Springer, 2015, 519-527

II P. Bauer, S. Engblom, S. Widgren. Fast event-based epidemiological
simulations on national scales. Submitted. Preprint available under
http://arxiv.org/abs/1502.02908.

III P. Bauer, J. Lindén, S. Engblom, B. Jonsson. Efficient Inter-Process
Synchronization for Parallel Discrete Event Simulation on Multicores.
In ACM SIGSIM Principles of Advanced Discrete Simulation 2015.

v

vi

Contents

1 Introduction 3

2 Background 5
2.1 Discrete-Event Simulation . 5
2.2 Applications . 7

2.2.1 Sampling the reaction-diffusion master equation . . . 7
2.2.2 Modeling of infectious disease-spread on networks . . 10

2.3 Parallel Discrete Event Simulation 11
2.3.1 PDES at deterministic time steps 13
2.3.2 PDES at stochastic time steps 15

3 Summary of papers 19
3.1 Paper I . 19
3.2 Paper II . 20
3.3 Paper III . 21

4 Conclusions 23
4.1 Outlook . 24

1

Chapter 1

Introduction

Discrete-event models depict a system as a sequence of discrete events evolving
over time, each of them marking a change of the model state. In stochastic
discrete-event models, the occurrence time of each event is of stochastic
character, i.e. it is generated by a random variable or function. A typ-
ical example is the time series evolved by a continuous-time Markov Chain
(CTMC) on a discrete state space. In the field of Computational Systems
Biology, CTMCs are simulated with sampling methods such as the Gillespie
Algorithm.

The main concern of this thesis is the efficiency of discrete-event simu-
lation (DES). I discuss how to design efficient simulation algorithms as well
as how to parallelize simulations of certain discrete-event models on mod-
ern shared-memory computers. In particular, I discuss two models where
different parallelization techniques are required: the simulation of infec-
tious disease spread on spatial networks, and the sampling of the Reaction
and Diffusion Master Equation (RDME). In the first model, synchroniza-
tion between parallel simulation processes is made at discrete steps of the
model time that is specified in advance. For parallelization of such mod-
els, we discuss so-called conservative parallel DES methods. In the second
model, synchronization between parallel simulation processes must be made
at stochastic time steps, where the time increments are exponentially dis-
tributed and not bounded from below. For this class of models, we consider
optimistic parallel DES techniques.

The thesis is structured as follows: In §2.1 I start with a brief intro-
duction of DES and the application to the two specific models in §2.2. I
continue in §2.3 by discussing parallel DES at deterministic and stochastic
time steps. Finally, I briefly summarize the contributed papers in §3 and
give a conclusion and outlook on future work in §4.

3

Chapter 2

Background

In the following chapter I will give a broad overview of the research areas
this thesis covers. I start with a brief introduction of Discrete-Event simu-
lation (DES) in §2.1, followed by an overview of two application areas; the
simulation of systems governed by the reaction and diffusion master equa-
tion in §2.2.1 and a related framework for simulation of infectious disease
spread on networks in §2.2.2. I conclude with the concrete topics of this
thesis: a brief introduction to parallel Discrete-Event simulation (PDES)
in §2.3, and with a discussion of PDES synchronization at deterministic or
stochastic time steps in §2.3.1 and §2.3.2.

2.1 Discrete-Event Simulation

To discuss the area of DES, we first need to introduce the concept of a
discrete-event system. According to Cassandras et al. [4], two characteristic
properties describing a given system as a discrete-event system are;

1. The state space is a discrete set.

2. The state transition mechanisms are event-driven.

A system with a discrete state space is a system with a countable set of
states. Typical examples of discrete state systems include finite-state auto-
mata and queues and more generally models of computers, communication
or manufacturing processes.

The second property of a discrete-event system states that system trans-
itions are driven by “events”. Although a formal definition of an event is
difficult to obtain, one can agree that an event is an instantaneous occur-
rence that changes the state of a system. In a system that is time-varying,
such occurrences are assigned to points in time.

5

6 Chapter 2. Background

A concrete example of a discrete-event system is a random walk of a
particle on a discrete plane in two dimensions. The state of the system can
be described by the position of the particle X = {(x1, x2) : x1,2 ∈ Z} and a
natural set of events can be given by E = {N,W,S,E}, corresponding to the
action of “taking a step to the north, west, south or east”. Then, a possible
sequence of events in the system starting at an initial state (0, 0) at time
t = t0 can be [W,W,N,N, S,E], occuring at some event times [t1, t2, . . . , t6].
Note that such a sequence of events can be determined stochastically but
may also be defined by deterministic functions or logical rules.

No uniquely defined methods or algorithms to simulate a DES exist,
but one can agree on certain components which are contained in a typical
discrete-event simulator;

1. State: a data-structure where the complete model state is stored

2. Clock: a variable where the current simulation time is stored

3. Scheduled event list: a data-structure where all scheduled events are
stored in combination with their future occurrence time

4. Initialization routine: a routine which initializes all data structures
(elements 1-3) at the beginning of the simulation run

5. Time update routine: a routine which identifies the next event to occur
and advances the current simulation time to the occurrence of that
event

6. State update routine: a routine which updates the state based on the
event to occur

A typical simulator run consists of an initial call to the initialization
routine which sets the simulation time t = 0. Then, the simulator calls
the time update routine to obtain the next event and its occurrence time
∆t from the scheduled event list and applies the event transition to the
state using the state update routine. Next, the current system time is set
to t = t+ ∆t. Afterwards the simulation continues with iterative execution
of both of the before-mentioned routines until a stopping criterion such as
t > Tend is fulfilled and the simulation terminates.

As it is straightforward to introduce randomness in the time or state
update routines of the algorithm, DES-algorithms can be easily adapted to
Monte-Carlo samplers. Next, I will dicsuss how DES-algorithms can be used
in different applications.

2.2. Applications 7

2.2 Applications

In this section I will discuss two specific applications of DES. The first ap-
plication is the numerical simulation of trajectories governed by the reaction-
diffusion master equation (RDME) which is an important model in the field
of computational Systems Biology. The second application is a framework
for modeling and simulation of infectious disease spread on networks that
are created from epidemiological data. In both cases, DES is needed to
generate trajectories of a continuous-time discrete-space Markov chain or to
incorporate discrete state changes that are given by data.

2.2.1 Sampling the reaction-diffusion master equation

In order to discuss the RDME we need to introduce the chemical master
equation (CME) first. The CME [16, 22] describes reactions kinetics of mo-
lecular species at the mesoscopic level. On this scale, the system is described
by the discrete vector X = X(t), where each entry is the copy number of a
chemical species j = 1 . . . D. This species can take part in r = 1 . . . R dif-
ferent reactions, which are defined with a stoichiometry matrix N ∈ ZD×R+

and a set of propensity functions ωr(x), r = 1 . . . R. The transition between
states caused by a reaction can be written as

X wr(X)−−−−→ X− Nr. (2.1)

The state is thus described until the next reaction happens, in all a continuous-
time Markov Chain. As a consequence, the reaction time τr is an exponential
random variable of the rate 1/ωr(X). It is possible to explicitly evolve the
probability density function of such a system using the forward Kolmogorov
equation or CME, which is given by

∂p(X, t)
∂t

=

R∑
r=1

wr(X + Nr)p(X + Nr, t)−
R∑
r=1

wr(X)p(X, t) (2.2)

=:Mp, (2.3)

where p(X, t) := P (X = X(t)|X(0)) for brevity.

Equation (2.2) can be solved analytically for simple models involving a
small number of species. However, for a realistic set of species and reactions
the curse of dimensionality prohibits an analytical solution and thus the
study of such systems relies on approximations or sampling methods.

One such sampling method is the Gillespie’s direct method [18], com-
monly known as the stochastic simulation algorithm (SSA) (Algorithm 1).

8 Chapter 2. Background

Algorithm 1 Gillespie’s direct method (SSA)

1: Let t = 0 and set the state X to the initial number of molecules.
2: Compute the total reaction intensity λ =

∑
r wr(X). Generate the time

to the next reaction τ = −λ−1 log u1 where u1 ∈ (0, 1) is a uniform
random number. Determine also the next reaction r by the requirement
that

r−1∑
s=1

ws(X) < λu2 ≤
r∑
s=1

ws(X),

where u2 is again a uniform random deviate in (0, 1).
3: Update the state of the system by setting t = t+ τ and X = X− Nr.
4: Repeat from step 1 until some final time T is reached.

The algorithm uses inverse transform sampling in order to generate expo-
nential random variates and to determine the time τ until the next reaction
fires.

Note that the algorithm generates a single realization or trajectory of the
given stochastic system, but that the histogram of many such realizations
converges to equation (2.2). It should also be clear, that this algorithm has
a similar structure to the typical DES loop presented in §2.1.

A way of representing one realization of the probability density given by
(2.2) is using the random time change representation introduced by Kurtz
[13]. This representation describes the state Xt as a sum of R independent
unit-rate Poisson processes Πr, since t = 0. The representation is given by

Xt = X0 −
R∑
r=1

NrΠr

(∫ t

0
wr(Xt−) dt

)
, (2.4)

where X0 is the initial state, and where Xt− denotes the state before any
transitions at time t.

As shown in [11], an alternative construct to (2.4) is the random count-
ing measure µr(dt) = µr(wr(Xt−); dt). The measure is associated with the
Poisson process for the rth reaction at rate wr(Xt−) for any time t. Writing
the counting measures for each reaction as a vector µ = [µ1, . . . , µR]T one
can represent (2.4) as

dXt = −Nµ(dt), (2.5)

which is a stochastic differential equation (SDE) with jumps.
The chemical kinetics discussed so far was assumed to be spatially ho-

mogeneous, which means that all molecules in the system are “well-stirred”

2.2. Applications 9

(uniformly distributed) in space. Clearly, this assumption can be restrictive
if more complex structures, such as for example biological cells, are stud-
ied. Therefore it is meaningful to extend the mesoscopic description to the
spatially heterogeneous case [27].

Thus, to introduce diffusion, one can divide the domain V into K non-
overlapping voxels ζ1 . . . ζK , which can be ordered in a structured [9] or
unstructured grid [12]. Then, the molecules are assumed to be well-stirred
inside each single voxel ζn. As a consequence, the state space X will now
be of size D×K, and the new type of state transition occurring due to the
diffusion of species i from voxel Vk to another voxel Vj is

Xik
qkjXik−−−−→ Xij , (2.6)

where qkj is a diffusion rate.
The diffusion master equation can be now written as

∂p(X, t)
∂t

=
D∑
i=1

K∑
k=1

K∑
j=1

qkj(Xik + Mkj,k)p(X1·, . . . ,Xi· + Mkj , . . . ,XD·, t)

−qkjXikp(X, t) =: Dp(X, t), (2.7)

where Mkj is a transition vector that is zero except for Mkj,k = −Mkj,j = 1.
For a system with reactions and diffusions, one can combine (2.2) and

(2.7) and write the reaction-diffusion master equation

∂p(X, t)
∂t

= (M+D)p(X, t). (2.8)

To simulate trajectories from (2.8), we can again apply the previously in-
troduced Gillespie’s Direct Method, although it is not a very efficient method
if the model contains a larger number of cells K. Thus, further developed
methods have been introduced, which improve the simulation efficiency with
the implementation of a priority queue H and a hierarchical grouping of
events [17]. Another factor for improving the simulation efficiency is the
usage of a dependency graph G, which marks the rates that have to be re-
computed at the occurence of a given event. This prevents the unnecessary
evaluation of non-dependent events. The structure of one commonly used
algorithm of this type, the Next Sub-volume Method (NSM) [9], is shown
in Algorithm 2.

Further methods to simulate spatial models are spatial Tau-Leaping [19],
Gillespie Multi-particle Method [29], and Diffusive Finite State Projection
[8]. Note, that although some methods may be more efficient than the
NSM, they take different assumptions that can influence the computational
results. For example, solutions computed by the Gillespie Multi-particle
Method have been reported to violate statistical properties, a consequence
of the deterministic processing of diffusion events in the method [21].

10 Chapter 2. Background

Algorithm 2 The next subvolume method (NSM)

1: Let t = 0 and set the state X to the initial number of molecules. Generate
the dependency graph G. Initialize priority queue H. For all j = 1 . . .K
voxels, compute the sum λrj for all reaction propensities ωr(Xj) and the

sum λdj for all diffusion rates.

2: Generate the initial waiting times τj ' Exp(1/(λrj + λdj). Store the
values in the priority queue H as ordered key-value pairs.

3: Remove the smallest time τj from H. Generate pseudo-random variable
u1.

4: if u1(λ
r
j + λdj) < λrj then a reaction occured in voxel j. Find out which

one it was as in the Gillespie’s Direct Method (Algorithm 1).
5: if u1(λ

r
j + λdj) ≥ λrj then a molecule diffused from voxel j. Sample

uniform random numbers to find out which species diffused to which
voxel.

6: Update the state of the system by setting t = t+ τ and X = X− Nr.
7: Draw a new exponential random number τj for the currently occurred

event.
8: Update all rates marked as dependent to the current event in G, and

recompute the next waiting time as τnewj = t+
(
τoldj − t

)
(λrj+λ

d
j)
old

(λrj+λ
d
j)
new .

9: Update H and repeat from step 3 until the final time T is reached.

2.2.2 Modeling of infectious disease-spread on networks

Another application area of DES is in modeling and simulation of infectious
disease spread on spatial networks. Here, the state X ∈ ZD×K+ represents the
count of some individuals contained in a compartment c = 1 . . . D at some
discrete node i = 1 . . .K. As an example, individuals could be grouped
according to their health state into a susceptible, infected, or recovered
group, as in the commonly used SIR-model [23]. The node index i represents
some discrete location at which no finer spatial information of the individuals
exist, or where it is not meaningful to consider one. Individuals are regarded
as uniformly distributed at every node, similarly as in the spatial RDME
setting discussed in §2.2.1.

The transitions between compartments are stochastic and described by
the transition matrix S ∈ ZD×R as well as the transition intensity R : ZD+ →
RR

+, assuming R different transitions.
Using the SDE representation of a Markov process from (2.5) we can

define the change in the state X of all individuals contained in the ith node
as

dX(i)
t = S(i)µ(dt), (2.9)

2.3. Parallel Discrete Event Simulation 11

where µ(dt) = [µ1(dt), . . . , µR(dt)]T is a vector of random counting measures
for all R transitions, µk(dt) = µ(Rk(X(t−)); dt).

The model can be further extended with interactions over a network,
where each node is a vertex of an undirected graph G. Then, each node i
may affect the state of the nodes in the connected components C(i) of i,
and may also be affected by other nodes j, where i ∈ C(j). This may for
example model a transfer or movement process of individuals between the
nodes. If each such connection is described by the counting measures ν(i,j)

and ν(j,i), the overall network dynamics is given by

dX(i)
t = −

∑
j∈C(i)

Cν(i,j)(dt) +
∑

j; i∈C(j)

Cν(j,i)(dt). (2.10)

Combining (2.9) and (2.10) the overall dynamics of the framework is

dX(i)
t = Sµ(i)(dt)−

∑
j∈C(i)

Cν(i,j)(dt) +
∑

j; i∈C(j)

Cν(j,i)(dt). (2.11)

Equation (2.11) can be further extended with other terms, one may
for example add additional discrete or continuous state variables that are
needed in a particular model. Furthermore, as it is discussed in Paper II,
it is possible to extend the model with deterministic dynamics that can be
combined with (2.11).

2.3 Parallel Discrete Event Simulation

Parallel discrete-event simulation (PDES) is a collection of techniques used
to simulate discrete-event models on parallel computers. In general, the
goal is to divide an entire simulation run into a set of smaller sub-tasks that
are executed concurrently. As discussed by Liu [24], the simulation can be
decomposed to parallel work on several levels;

• Replicated Trials: The simplest form of PDES, independently pro-
cessing multiple instances of a sequential simulation on parallel pro-
cessors. An example from Computational Systems Biology is the gen-
eration of multiple trajectories of a stochastic model. Such compu-
tations can be run independently in parallel, for example on multiple
nodes in a cloud infrastructure [1].

• Functional decomposition: Different functions of the sequential simu-
lator, such as the random number generation [26] or the state update
routine are processed in parallel by separate processors, but the main
simulation loop is executed in a serial fashion.

12 Chapter 2. Background

• Time-parallel decomposition: A division of the time axis into smaller
time intervals, where each of them is simulated in parallel and then re-
assembled at synchronization steps. In the context of Computational
Systems Biology, an example of such a decomposition is given in [10].

• Space-parallel decomposition The spatial domain is divided into non-
overlapping sub-domains. Each sub-domain is assigned to a processor.
Events affecting several sub-domains have to be communicated between
processors. This is the commonly used decomposition in PDES. In this
thesis I will focus exclusively on this approach.

When space-parallel decomposition is used, the simulation task is distrib-
uted onto a group of so-called logical processes (LPs). Each LP is mapped
to a processor core or virtual thread, where it runs a self-contained discrete-
event simulator with its own list of scheduled events and an own simulation
clock. Typically, each LP has also it’s own local state (the state of the
sub-domain) that is not shared with other LPs [15].

Hence, LPs are required to communicate with each other in order to
synchronize events that affect the state of two or more sub-domains (residing
on two or more LPs). In order to do this, the LPs exchange so-called time-
stamped messages. A message contains the specification of the event and the
event occurrence time. The LP receiving the message enters the event into
its input queue (an event list dedicated for received events) and processes it
interleaved with the locally scheduled events.

In general, the design and implementation of PDES must be sensitive to
the computing environment. In the distributed environment, messages are
usually communicated via a network protocol, whereas on multi-cores they
can be written to variables in the shared memory. One implication is that
the issue of transient messages (that are sent by one LP, but not yet received
by the other LP) does not have to be handled in this case. Furthermore,
PDES operated in a cloud environment have to additionally compensate for
the unbalanced workload distribution and communication delays due to the
virtualization layer between the LP and the underlying hardware [25].

A significant challenge in PDES is to reproduce exactly the same end
state as in sequential DES. This is a non-trivial task, as messages could
arrive out-of-order due to the asynchronous processing of events on LPs. As
the event contained in the message should have been executed at an earlier
local simulation time the current state has to be consequently invalidated.
This violation is called a causality error, and it is defined as the violation of
the Local Causality Constraint (LCC), a term coined by Fujimoto [15]:

A discrete-event simulation, consisting of LPs that interact exclusively
by exchanging messages obeys the local causality constraint if and only if
each LP processes events in non-decreasing timestamp order.

2.3. Parallel Discrete Event Simulation 13

To satisfy the Local Causality Constraint, different PDES synchroniza-
tion methods have been proposed which can be generally categorized into
two major classes,

• Conservative synchronization, where causality errors are strictly avoided
by blocking every local or global execution which could lead to such a
violation.

• Optimistic synchronization, where causality errors are initially allowed,
but the system implements some sort of recovery which restores the
valid state once the error is detected.

It is difficult to state which method is the best choice for a computational
problem in general. While a simulation relying on optimistic synchronization
may seem to achieve a high processor utilization, the overhead caused by
the state recovery, or roll-backs, may be vast. Conservative synchronization
on the other hand may create a significant amount of blocking time while
deciding if an event can be processed safely without inducing causality errors
on neighboring domains. As we will discuss later, one may also consider a
class of hybrid-methods which make use of a combination of both approaches.

Next, we will discuss which type of PDES is more suitable for two specific
types of simulations. From the perspective of scientific computing, the key
issue is whether the simulation is carried out at deterministic or stochastic
time steps.

2.3.1 PDES at deterministic time steps

In this section I will briefly review PDES at deterministic time steps. In
this type of simulation, knowledge exists about future events and their ex-
act occurrence times. An LP can use this knowledge to synchronize with
dependent neighbors when needed. As reviewed by Jaffer et al. [20], the
literature distinguishes between two types of approaches for simulation of
such models: synchronous or asynchronous simulation.

In synchronous simulation, the local simulation time is identical on each
LP and evolves on a sequence of time steps (0,∆t, 2∆t, . . . , i∆t). This ap-
proach is suitable for models where events occur exactly at the ith time
step, or models where several continuous time updates occur in the time
interval [i∆t, (i + 1)∆t), but only the final state requires synchronization
with other LPs. Hence, if such a method is used for solutions of the RDME
(as in [8, 2]), it implies a numerical error that occurs due to the disregarded
synchronization of the continuous time state updates.

The implementation of a synchronous simulation engine is rather straight-
forward. Typically, a single LP evolves the local time until a global barrier

14 Chapter 2. Background

and broadcasts the new state to the neighboring LPs. As the computations
at each time step are independent of each other, massively parallel architec-
tures as GPUs can be targeted for efficient implementation, see for example
[28] in the context of the RDME.

In asynchronous simulation, the local simulation time differs on each
LP and the time propagation is event-driven; Events are lined up in input
queues and processed in non-decreasing timestamp order. The processing of
each event increases the local time on the LP. If the event generates a new
event on an other LP, the event is being sent as a message and enqueued
in the destination’s input queue. As some knowledge about future events
exists, conservative simulation algorithms such as the Null-message protocol
[5, 3] (Algorithm 3), can be used to process events safely, without validating
the LCC.

Algorithm 3 The Null-message protocol

1: Initialize N input queues for events received from N neighboring LPs
2: while t < Tend do
3: if Some queue is empty then
4: Propagate t to the time contained in the Null-Message for the empty

queue.
5: end if
6: Remove the event with the smallest time from all input queues.
7: Process that event and increment t. If the event generates another

event on a different LP, send a message.
8: Communicate a Null-message containing the lower bound of future

event times to all neighboring LPs.
9: end while

The lower bound of future event times, also termed lookahead, is the
earliest time when the LP communicates new events to a given neighbor.
The lookahead must exist in order to ensure the progress of the simulation,
and needs to be communicated via Null-messages.

Given an input queue is empty, the LP can not continue with the pro-
cessing of other messages, as causality errors may occur due to straggling
messages ariving in the empty queue at a later simulation time. When the
Null-message for the empty queue is available, the LP can propagate the
local time to the lookahead time contained in the Null-message and safely
process other messages whose time is smaller than the new local time.

In general, asynchronous simulation can also be seen as a scheduling
problem. As shown by Xiao et al. [32], a parallel scheduler can be used
to distribute the processing of events onto several parallel processors while
maintaining the LCC centrally. In such cases, messages do not have to be

2.3. Parallel Discrete Event Simulation 15

sent explicitely but can, for example, be stored in a memory location shared
between all parallel processors.

2.3.2 PDES at stochastic time steps

From the perspective of computer science, the design and implementation
of PDES at stochastic time steps is a much more challenging task than
the implementation of PDES at deterministic time steps. Nonetheless, this
approach is required if the time stepping is either given by a stochastic
function or by a deterministic function that is not accurately predictable at
previous time steps (e.g. chaotic or given by a complex set of rules), and
thus no lower bound of future event times is available.

As discussed in §2.3.1, if no such lookahead is available, PDES using con-
servative methods should be avoided. As noted by Dematté and Mazza [7],
this is clearly the case for the exact numerical simulation of RDME models,
where the time increments between events are exponentially distributed and
hence unbounded from below.

Thus, optimistic simulation needs to be applied to this class of problems,
where future events are executed speculatively, and causality errors are re-
solved using roll-backs. As shown by Wang et. al [31], optimistic simulation
of spatial stochastic systems governed by the RDME is scalable. On the
other hand such approaches are prone to be “over-optimistic”, in the sense
that an overly large number of local events are processed speculatively. This
may hinder the efficiency of the parallel simulation due to two main reasons;

• When a causality error occurs, the local state must be roll-backed to
the timestamp of the message that caused the error. Clearly, if the
amount of speculation is beyond some limit, the amount of roll-backed
events increases. Hence, the larger amount of unnecessary forward
computations and roll-backs will impose a greater overhead on the
processing LP.

• The speculative processing of local events may generate events that
affect the state of neighboring LPs and therefore have to be commu-
nicated via messages. If a causality error is detected, the changes in
the neighbors state caused by the messages sent during the speculative
period thus have to be reverted, too. Moreover, the events received at
the neighboring LP could have generated new events that were com-
municated to other, remote LPs. Hence, the state of the remote LPs
has to be included in the roll-back as well. It should be clear that this
can lead to a long cascade of roll-backs spreading over several LPs,
which are costly to resolve.

16 Chapter 2. Background

Blocking window size (in real time)
C

o
st

 (
in

 r
e

a
l t

im
e

)

Total cost

Blocking cost

Rollback cost

Figure 2.1: The impact of a static blocking window size on the simulation
cost of an optimistic simulator (freely adapted from [6]).

Therefore, adaptive protocols, which aim to limit the optimistic pro-
cessing of the simulator, can be beneficial for the performance. In general,
limitations can be imposed on all simulating LPs, or rather on LPs that have
a stronger contribution to over-optimism, e.g. by processing events faster
then their neighbors. For example, the limitations can be implemented by a
reduction of the event processing rate due to a propagated blocking window,
during which the local simulation is suspended for a certain amount of real
time [rt(t) rt(t) + s], where rt() is the real time as a function of the simu-
lation time, t is the local simulation time and s is the size of the blocking
window.

As shown in Figure 2.1, it is a challenge to set a window size that has the
optimal impact on the simulation performance. Assuming the window is of
fixed size (defined in real time units, e.g. micro-seconds) it is optimal when
both, the cost of roll-backs and the overhead due to the additional blocking
time are minimized. In addition, the blocking time should be chosen for
each LP in a way, so that all LPs propagate at the same average event rate
throughout the simulation. Under this condition, the simulation time is
expected to be lower, as causality errors due to straggling messages are less
probable to occur.

Since it is difficult to define an optimal static window size, different
methods to set an adaptive blocking window have been proposed, see for
example [6] for a review by Das. Typically, the adaptivity is based on a
measure of potential over-optimism that is estiamted during the simulation
run. One possibility is to compute the measure globally, e.g. by monitoring
the behaviour of simulating LPs and inferring on the individual progress.

Another example is given by the Elastic Time protocol [30], where the
measure is computed locally based on the simulation time of an LP and the
simulation time of its neighbors. Assuming transient messages do not exist,

2.3. Parallel Discrete Event Simulation 17

the measure of over-optimism M computes as

M = max(t− α, 0), (2.12)

where t is the local simulation time of an LP and α is the minimum local
simulation time of its neighbors. The measure M is computed at each it-
eration of the simulation loop by every LP and translated into applicable
blocking time. Evidently, the computation of α requires ongoing exchange
of time information between LPs.

A different approach to adaptive PDES was proposed by Ferscha with the
Probabilistic Adaptive Direct Optimism Control (PADOC) [14]. In a nut-
shell, the algorithm applies to an LP that is subject to the incoming messages
mi from its neighbors at simulation time t(m(−2)), t(m(−1)), t, t(m1), t(m2),
where t is the local simulation time on the LP. Then, the method first com-
putes an estimate of the future event arrival time t̂ = t(m(−1)) + ∆̂, where

t(m(−1)) is the arrival time of the last message and ∆̂ the estimated inter-
event time. With this, the LP computes the probability to block the local
simulation at the current simulation time t as

P (block|t) = 1 + e
−ζ(t−t̂)

t̂ , (2.13)

where ζ is the scaling of a confidence interval in the range [0 1].
The inter-arrival time estimator can be computed via different statistical

methods, as for example by

∆̂ =
1

n

n∑
j=1

t(mj + 1)− t(mj), (2.14)

and iteratively propagated as a moving observation window.
In summary, the main goal of both algorithms is to adapt the progress

of LPs to the same average rate. PADOC compares to the Elastic Time
protocol in that it uses statistical estimation of arrived messages in order to
infer on an LPs progress rate in relation to its neighbors. This can be unsat-
isfactory if the event dynamics change frequently throughout the simulation,
and the prediction of future arrival times fails due to a large statistical error.
In contract, the Elastic Time protocol is based on the observation of the ac-
tual model state, but it requires additional information to be communication
between LPs, which introduces further simulation overhead.

Chapter 3

Summary of papers

3.1 Paper I

This paper addresses parameter sensitivity estimation in spatial stochastic
models of chemical kinetics. It proposes a new algorithm which can propag-
ate perturbations effectively through simulations. Furthermore, the al-
gorithm can be used to solve problems of inverse character, for example
in combination with numerical optimization.

In the stochastic setting, the goal of sensitivity estimation is to char-
acterize the mean effect of a function of interest due to some perturbation
c→ c+ δ. One possibility would be to determine

E[f(X(t, c+ δ))]− E[f(X(t, c))], (3.1)

for example, by computing a sample average. In this case c could be a
reaction rate constant and f a function of the species copy number Xt.

If one solves a parameter estimation task using Monte-Carlo methods,
such as the Gillespie’s method (Algorithm 1), a trivial approach would be
to generate N independent trajectories each of f(X(t, c+ δ)) and f(X(t, c))
using independent random numbers and then observing the difference of
their average. This approach can lead to unsatisfactory results as the vari-
ance obtained in both simulations can be large in comparison to the average
difference f(X(t, c+ δ))− f(X(t, c)).

A solution of the variance reduction problem is given by a strong coupling
of the two processes X(t, c + δ) and X(t, c). As discussed in this paper,
the previously introduced Next Subvolume Method (Algorithm 2) can not
guarantee such consistency, as the coupling between X(t, c+δ) and X(t, c) is
simply not the intended one. This fact was the inspiration for the creation
of the All Events Method (AEM), which is demonstrated to achieve a better
coupling between processes and therefore reduces the variance significantly
compared to the NSM.

19

20 Chapter 3. Summary of papers

0 50 100

0

20

40

60

0 50 100

0

20

40

60

0 50 100

0

20

40

60

Figure 3.1: AEM solution of an unperturbed (blue) and increasingly per-
turbed (red, from left δ = [0.01, 0.5, 0.1]) trajectory.

As an example, take the perturbation of a simple birth-death process of
a species A,

∅ 1−→ A, A
A(1−δ)−−−−→ ∅. (3.2)

The difference in perturbed and unperturbed trajectories computed with
the AEM is shown in Figure 3.1.

We evaluated the performance of the AEM and NSM in terms of variance
reduction. For this purpose, we constructed a spatial model with strongly
nonlinear reaction dynamics and perturbed a sensitive parameter. We con-
cluded that using the AEM, significantly less trajectories are required in
order to minimize the error in (3.1) at a given tolerance level.

We furthermore used the method in combination with a numerical optim-
ization routine to solve for an inverse formulation. In particular, we found
the optimal amount of a reactant required to obtain a certain quantity of a
product in a chemical reaction network.

3.2 Paper II

This paper contains two contributions. The first contribution is a mathemat-
ical framework for modeling of infectious disease spread on spatial networks.
The framework is briefly reviewed in §2.2.2 of this thesis. The second con-
tribution is a sequential and parallel DES algorithm for models formulated
within the framework. We show how the parallel algorithm can be used to
solve a computationally intensive problem: the fitting of model parameters
to given reference data.

Because the spatial dynamics of the model is assumed to be determin-
istic and given by data, the PDES algorithm makes use of synchronization
approaches as discussed in §2.3.1 of this thesis. In particular, we view the
parallelization as a scheduling problem and make use of a dependency-aware
task-computing library to evolve events concurrently while maintaining the
causality of the model.

3.3. Paper III 21

The parallel simulation algorithm using the SuperGlue task-library is
demonstrated to efficiently scale real-world problems on multi-socket shared-
memory computers with up to 32 computing cores. The performance of the
task-based approach is significantly better than traditional parallelization
using OpenMP, provided that the average task size does not drop under a
critical limit.

3.3 Paper III

This paper addresses the parallel numerical solution of spatial stochastic
systems governed by the RDME by sampling statistically equivalent tra-
jectories from a continuous-time Markov chain, as introduced in §2.2.1 of
this thesis. Paper III comes to Paper I in that the parallel algorithm is
based on the All Events Method (AEM), the numerical algorithm presented
and evaluated in Paper I.

As discussed in §2.3.2, the parallel simulation of spatial stochastic sys-
tems requires synchronization at stochastic time steps of the model time.
For this purpose, we propose a hybrid synchronization protocol for simula-
tion on shared-memory multicores, which uses a mixture of optimistic and
conservative PDES techniques.

The reason why the algorithm is based on the AEM is because it enables
the extraction of future diffusion event times stored in an LPs event list.
The times are communicated as a “probabilistic lookahead’ to neighboring
LPs, where the estimate is used to control the optimism by introduction of
an adaptive blocking window. This process is demonstrated to significantly
reduce the probability of roll-backs and thus to improve the overall efficiency.

Further contributions include a selective roll-back function, which addi-
tionally increases the parallel performance by lowering the overall cost of
roll-backs and therefore enabling a more speculative simulation regime.

Overall, we show that the presented simulator is able to achieve a par-
allel efficiency of up to 80% at the simulation of certain RDME models
on 64 parallel processes. Furthermore, the method achieves a significantly
better speedup in comparison to previously published parallel simulation al-
gorithms based on the Gillespie method, tested on the same benchmark. We
also analyze the influencing factors of the performance on a wide selection
of differently constructed spatial models and present a statistical evaluation
of so-called performance indicators.

Chapter 4

Conclusions

In this thesis I described the applications and concepts that have been con-
sidered in our research so far. I introduced two application areas and several
sequential and parallel discrete-event simulation methods.

I conclude that discrete-event modelling is a useful and flexible concept
applicable in many areas of computational science. The main advantages of
DES are that models may consist of discrete and continuous state variables
and that the dynamics can be given by both, stochastic and deterministic
terms.

I have discussed several practical issues regarding the simulation of discrete-
event models. For example, if the aim is to estimate parameter sensitivity
of stochastic models, caution has to be taken in the choice of the simulation
method, as the effect of parameter perturbations may not be observable
when a less suitable method is employed.

Regarding the efficiency of DES, I conclude that the parallelization of
such algorithms is not trivial, as they typically consist of a sequential sim-
ulator loop where the state updates are causally dependent on each other.
Hence, PDES techniques have to be used, where decomposed parts of a
model are simulated concurrently and some kind of synchronization exists
for events that affect several processors.

PDES methods can be categorized into optimistic and conservative ap-
proaches. Conservative methods can be used if a model is simulated at
deterministic time steps. As discussed in this thesis, such simulators can
also be implemented using task-based processing, where causality of state
updates is maintained by a dependency-aware scheduler.

Optimistic PDES is necessary if a model is simulated at stochastic time
steps. In such case it is important that the simulation regime does not be-
come “over-optimistic” in the sense that roll-backs dominate the total sim-
ulation cost. Adaptive methods have been proposed that attempt to find a

23

24 Chapter 4. Conclusions

trade-off between optimistic and conservative execution. Results shown in
this thesis suggest that such methods are very suitable for parallel simula-
tion of spatial stochastic systems, as for example systems governed by the
reaction-diffusion master equation.

4.1 Outlook

I am looking forward to further extend my research in the areas discussed
in this thesis, and here I present a short outlook on future work.

A challenging task is the parallelization of the Next-subvolume method
(NSM), which is a different task than the parallelization of the AEM as there
is no explicit information of future diffusion events available. However, I be-
lieve that this is an important step in the current research, as the algorithm
finds frequent use in the Computational Systems Biology community and
efficient multi-core implementations are therefore demanded.

Another challenging aspect is the consideration of an approximative par-
allel simulation of systems governed by the RDME, which allows for some
controlled error taken in the simulation of a trajectory. Such a method
would likely improve the efficiency of parallel simulations, as small devi-
ations from temporal causality would not necessarily lead to roll-backs in
affected sub-domains.

Lastly, a natural progression of the work presented in Paper II is to
analyse the scaling of the task-based approach in a distributed memory en-
vironment. This task is motivated by ongoing extensions of the underlying
modeling framework which substantially increase the computational intens-
ity of simulations.

Bibliography

[1] M. Aldinucci, M. Torquati, C. Spampinato, M. Drocco, C. Misale,
C. Calcagno, and M. Coppo. Parallel stochastic systems biology in
the cloud. Briefings in Bioinformatics, 15(5):798–813, 2014.

[2] G. Arampatzis, M. A. Katsoulakis, P. Plechac, M. Taufer, and L. Xu.
Hierarchical fractional-step approximations and parallel kinetic Monte
Carlo algorithms. Journal of Computational Physics, 231(23):7795–
7814, 2012.

[3] R. E. Bryant. Simulation of packet communication architecture com-
puter systems. Technical report, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1977.

[4] C. G. Cassandras and S. Lafortune. Systems and models. In Introduc-
tion to Discrete Event Systems, pages 1–51. Springer US, 2008.

[5] K. M. Chandy and J. Misra. Asynchronous Distributed Simulation via
a Sequence of Parallel Computations. Commun. ACM, 24(4):198–206,
Apr. 1981.

[6] S. R. Das. Adaptive protocols for parallel discrete event simulation.
The Journal of the Operational Research Society, 51(4):385–394, 2000.

[7] L. Dematté and T. Mazza. On parallel stochastic simulation of diffusive
systems. In Computational Methods in Systems Biology, number 5307
in Lecture Notes in Computer Science, pages 191–210. Springer Berlin
Heidelberg, 2008.

[8] B. Drawert, M. J. Lawson, L. Petzold, and M. Khammash. The diffusive
finite state projection algorithm for efficient simulation of the stochastic
reaction-diffusion master equation. The Journal of Chemical Physics,
132(7):074101, 2010.

[9] J. Elf and M. Ehrenberg. Spontaneous separation of bi-stable biochem-
ical systems into spatial domains of opposite phases. Systems biology,
1(2):230–236, 2004.

25

26 Bibliography

[10] S. Engblom. Parallel in Time Simulation of Multiscale Stochastic Chem-
ical Kinetics. Multiscale Modeling & Simulation, 8(1):46–68, 2009.

[11] S. Engblom. On the stability of stochastic jump kinetics. Applied
Mathematics, 51:3217–3239, 2014.

[12] S. Engblom, L. Ferm, A. Hellander, and P. Lötstedt. Simulation of
stochastic reaction-diffusion processes on unstructured meshes. SIAM
Journal on Scientific Computing, 31(3):1774–1797, 2009.

[13] S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and
Convergence. Wiley series in Probability and Mathematical Statistics.
John Wiley & Sons, New York, 1986.

[14] A. Ferscha. Probabilistic adaptive direct optimism control in time warp.
In Proceedings of the Ninth Workshop on Parallel and Distributed Sim-
ulation, PADS ’95, pages 120–129. IEEE Computer Society, 1995.

[15] R. M. Fujimoto. Parallel and Distribution Simulation Systems. John
Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1999.

[16] C. W. Gardiner. Handbook of stochastic methods for physics, chemistry,
and the natural sciences. Springer, 1985.

[17] M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of
chemical systems with many species and many channels. The Journal
of Physical Chemistry A, 104(9):1876–1889, 2000.

[18] D. T. Gillespie. Exact stochastic simulation of coupled chemical reac-
tions. The Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[19] K. A. Iyengar, L. A. Harris, and P. Clancy. Accurate implementation
of leaping in space: The spatial partitioned-leaping algorithm. The
Journal of Chemical Physics, 132(9):094101, 2010.

[20] S. Jafer, Q. Liu, and G. Wainer. Synchronization methods in parallel
and distributed discrete-event simulation. Simulation Modelling Prac-
tice and Theory, 30:54–73, Jan. 2013.

[21] M. Jeschke, R. Ewald, and A. M. Uhrmacher. Exploring the perform-
ance of spatial stochastic simulation algorithms. Journal of Computa-
tional Physics, 230(7):2562–2574, 2011.

[22] N. G. V. Kampen. Stochastic Processes in Physics and Chemistry.
Elsevier, Aug. 2004.

Bibliography

[23] W. O. Kermack and A. G. McKendrick. A Contribution to the Mathem-
atical Theory of Epidemics. Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences, 115(772):700–
721, 1927.

[24] J. Liu. Parallel Discrete-Event Simulation. John Wiley & Sons, Inc.,
2010.

[25] A. Malik, A. Park, and R. Fujimoto. Optimistic Synchronization of
Parallel Simulations in Cloud Computing Environments. In IEEE In-
ternational Conference on Cloud Computing, 2009. CLOUD ’09, pages
49–56, Sept. 2009.

[26] M. Mascagni and A. Srinivasan. SPRNG: A Scalable Library for Pseu-
dorandom Number Generation. ACM Transactions on Mathematical
Software, 26(3):436–461, 2000.

[27] R. Metzler. The Future is Noisy: The Role of Spatial Fluctuations in
Genetic Switching. Physical Review Letters, 87(6):068103, July 2001.

[28] M. S. Nobile, P. Cazzaniga, D. Besozzi, D. Pescini, and G. Mauri.
cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator
for Massive Parallel Analyses of Biological Systems. PLoS ONE,
9(3):e91963, 2014.

[29] J. V. Rodŕıguez, J. A. Kaandorp, M. Dobrzyński, and J. G. Blom. Spa-
tial stochastic modelling of the phosphoenolpyruvate-dependent phos-
photransferase (PTS) pathway in escherichia coli. Bioinformatics,
22(15):1895–1901, 2006.

[30] S. Srinivasan and P. F. Reynolds, Jr. Elastic Time. ACM Trans. Model.
Comput. Simul., 8(2):103–139, Apr. 1998.

[31] B. Wang, B. Hou, F. Xing, and Y. Yao. Abstract next subvolume
method: A logical process-based approach for spatial stochastic sim-
ulation of chemical reactions. Computational Biology and Chemistry,
35(3):193–198, 2011.

[32] Z. Xiao, B. Unger, R. Simmonds, and J. Cleary. Scheduling Critical
Channels in Conservative Parallel Discrete Event Simulation. In In Pro-
ceedings of the 13th Workshop on Parallel and Distributed Simulation,
pages 20–28, 1999.

Recent licentiate theses from the Department of Information Technology
2015-003 Fredrik Hellman: Multiscale and Multilevel Methods for Porous Media

Flow Problems

2015-002 Ali Dorostkar: Developments in preconditioned iterative methods with
application to glacial isostatic adjustment models

2015-001 Karl Ljungkvist: Techniques for Finite Element Methods on Modern
Processors

2014-007 Ramūnas Gutkovas: Advancing Concurrent System Verification: Type
based approach and tools

2014-006 Per Mattsson: Pulse-modulated Feedback in Mathematical Modeling
and Estimation of Endocrine Systems

2014-005 Thomas Lind: Change and Resistance to Change in Health Care: Iner-
tia in Sociotechnical Systems

2014-004 Anne-Kathrin Peters: The Role of Students’ Identity Development in
Higher Education in Computing

2014-003 Liang Dai: On Several Sparsity Related Problems and the Randomized
Kaczmarz Algorithm

2014-002 Johannes Nygren: Output Feedback Control - Some Methods and Ap-
plications

2014-001 Daniel Jansson: Mathematical Modeling of the Human Smooth Pursuit
System

2013-007 Hjalmar Wennerström: Meteorological Impact and Transmission Er-
rors in Outdoor Wireless Sensor Networks

2013-006 Kristoffer Virta: Difference Methods with Boundary and Interface
Treatment for Wave Equations

Department of Information Technology, Uppsala University, Sweden

