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Chapter 1

Introduction

In the introduction it is expected to write how important, technologically interesting and
applicable your topic is. I have to confess, that I study the lanthanides (or rare earths)
because it is fun! It is fun to learn new things about a group of materials. It is fun to
relearn concepts I had forgotten. It is fun to establish the perfect basis. It is fun to try
to get “this-stupid-code” converged and to investigate the results. It is fun to come up
with creative solutions to simulations that are not willing to converge and to learn from
it.

But why would you want to read this licentiate thesis? If you do not know much
about the rare earths, I think it is super interesting to learn about them. When I started
this project, I barely knew where in the Periodic Table I could find the lanthanides1.
But now I know that they are very interesting from a fundamental point. Their outer-
most incomplete shell (4f) consists of very localized electrons, that behave very close
to atomic-like. This gives very interesting physical behavior. Both from technological
point of view, such as strong localized magnetic moments, as well as from theoretical
point of view. How to describe such localized states in a material that consists otherwise
of very itinerant electrons? This is exactly the topic of this licentiate thesis.

The properties of rare earth metals or rare earth compounds are highly influenced by
the characteristic behavior of the localized 4f shell. Many attempts have been made to
describe these materials accurately. A practical and good theory to build the description
upon is the standard model of the lanthanides. This model assumes a chemically inert
4f shell that is very much atomic-like. It has been able to successfully describe the
properties of the rare earth elements and compounds.

Various attempts have been made to combine the standard model with ab initio based
electronic structure theory. The usual density functional theory is quite inadequate for
describing the lanthanides. For this reason more sophisticated theories have been tried,
such as LDA+U, self-interaction correction (SIC), orbital polarization, and a treatment
of the 4f shell as core-like. All these methods can describe certain properties very
well, but not all. In this licentiate thesis we attempt to describe as many properties
as we can within a single method: density functional theory plus dynamical mean-
field theory within the Hubbard I approximation (HIA). This licentiate thesis is mainly
focused on the cohesive properties (such as equilibrium volume and bulk modulus), the
ground-state magnetic properties (spin and orbital moments) and the photoemission
spectra (photoemission and inverse photoemission of the valence band). In the article

1The upper of these two rows that are displayed below the main table.
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on which this licentiate thesis is based (Paper I), we also report the Heisenberg exchange
parameters, the magnon spectra and the ordering temperatures. The latter are discussed
only in Paper I, as they are mainly contributed by other authors.

This licentiate thesis contains an introduction to the lanthanides in Ch. 2, discussing
the electronic configuration, the bonding properties, magnetism and the spectral proper-
ties. Thereafter follows an introduction of methods to solve solid state problems in Ch. 3.
This chapter contains a short description of density functional theory and the problems
it has in describing the localized 4f electrons of the lanthanides. We also briefly explain
the HIA, which is the method we propose to connect the standard model with ab initio
electronic structure methods and that we use to describe the rare earth metals. In Ch. 4
we introduce the code that we used for our calculations, the way the basis is formed and
the parameters that come along with it. In Ch. 5 we present the computational details,
in particular in Ch. 5.1 we elaborate on how we found the optimal, light but su�ciently
flexible, basis to describe the lanthanides. In Ch 6 we compare the results presented in
Paper I to results obtained by other scientists using other methods.



Chapter 2

Lanthanides

This licentiate thesis focuses on the lanthanides, also called the rare earth (RE) ele-
ments1. The properties of materials consisting of these elements are to a great extent
determined by the behavior of the 4f shell. To describe these materials, the standard
model of the lanthanides has turned out to be very successful. It assumes that the 4f
shell behaves as atomic-like, with vanishingly small overlap between the 4f wave func-
tions on neighboring sites. In the next sections we will summarize some properties of the
rare earths. Why this standard model has been so successful can be understood in the
light of these properties. The more or less constant volume across the series, for example,
points to almost chemically inert 4f electrons, which is perfectly compatible with the
standard model. The magnetic moments turn out to be very close to what is expected
from Hund’s rules, which are devised for atoms. Also the 4f photoemission spectra are
very close to atomic-like spectra. This chapter is organized as follows, in Sec. 2.1 we will
describe the outer electronic configuration of the rare earths in the atomic and in the
solid phase. In Sec. 2.2 we will summarize the bonding properties of the rare earths, in-
cluding the characteristic lanthanide contraction. In Sec. 2.3 we will shortly elaborate on
the magnetism in the rare earths, the expected moments from Hund’s rules ground-state
and the Russell-Saunders coupling scheme. Finally in Sec. 2.4 we will arrive at the direct
and inverse photoemission spectra of the rare earths. Photoemission spectroscopy and
inverse photoemission spectroscopy will be explained briefly as well as how to interpret
the spectra in terms of multiplet features.

2.1 Outer electronic configuration

The lanthanides denote the elements from lanthanum (atomic number Z = 57) till
lutetium (Z = 71). Sometimes Ba (Z = 56) is included for reasons that will become clear
later. Across the series, the 4f shell is filled. The electronic configuration of an isolated
rare earth atom usually is [Xe]6s2d04fn, where n depends on the atomic number. There
are a few exceptions to this, namely Lanthanum, Gadolinium and Lutetium, who have
one 5d electron and therefore one 4f electron less than expected [2]. For isolated atoms,
the energy levels are truly discrete and filling the 4f shell is straight forward. However,
when the atoms form a crystal, the orbitals start to hybridize with other orbitals, and
the energy levels broaden into bands. For the crystalline phase of the lanthanides,

1Actually, the rare earths also include Sc and Y, which are not part of the lanthanides, but I will use
the term rare earths synonymously to lanthanides.
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one cannot any longer speak of the 6s energy level, instead the 6s, 6p and 5d orbitals
hybridize and the energy levels broaden to form the [6s6p5d]-band. The 4f energy levels
and this [spd]-band overlap and the consequence is that, for most lanthanides, one of
the 4f electrons of the isolated atom, gets promoted to the [spd]-band in the crystalline
phase. The reason for this is that the Coulomb energy to pay for adding an f electron
is much higher than the kinetic energy to pay for adding a delocalized [spd] electron.
The outer electronic configuration of the lanthanides in the crystalline phase is therefore
approximately [6s6p5d]3fn�1, where n�1 denotes that there is one 4f electron less than
in the bare atom. Also to these electronic configurations there are a few exceptions.
Barium, Europium and Ytterbium have only 2 instead of 3 electrons in the [spd]-band,
since in that way they have an f -shell which is empty, half-filled or full. The reason for
this is that the Coulomb energy to pay when adding an f electron to obtain a half-filled
of full shell is very small. These exceptions are called divalent elements, since they only
have 2 electrons in the [spd] band. The other elements are called, as expected, trivalent.
In the following table the outer electronic configuration of the rare earths is given for
the atomic and the crystalline phases.

La Ce Pr Nd Pm
Atomic 5d16s2 4f25d06s2 4f35d06s2 4f45d06s2 4f55d06s2

Solid [spd]3 4f1[spd]3 4f2[spd]3 4f3[spd]3 4f4[spd]3

Sm Eu Gd Tb Dy
Atomic 4f65d06s2 4f75d06s2 4f75d16s2 4f95d06s2 4f105d06s2

Solid 4f5[spd]3 4f7[spd]2 4f7[spd]3 4f8[spd]3 4f9[spd]3

Ho Er Tm Yb Lu
Atomic 4f115d06s2 4f125d06s2 4f135d06s2 4f145d06s2 4f145d16s2

Solid 4f10[spd]3 4f11[spd]3 4f12[spd]3 4f14[spd]2 4f14[spd]3

2.2 Bonding properties

In Fig. 2.1 the experimental average atomic volume of a crystal consisting of one element
from the lanthanide series is plotted. We included Ba as being divalent like Eu and Yb.
These elements have an empty, half filled and filled 4f shell respectively. If one compares
the volumes for the di↵erent elements, there are three important things to notice:

• The three exceptions, i.e. the divalent materials Ba, Eu and Yb, have a significant
larger volume than the ordinary trivalent materials.

• For the trivalent materials, the volume is approximately constant, and is not
parabolic-like as in the transition metal series.

• The volume decreases slightly across the series, both for divalent and trivalent
materials.

These three observations can intuitively be related to the behavior and the properties
of the 4f and [spd] electrons. If we focus for now on the trivalent materials, the 4f shell
is filled across the series, but the volume stays approximately constant. This implies
that the 4f electrons do not, or barely, contribute to the bonding between neighboring
atoms. It does not really matter whether there is one 4f electron more or less. But what
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matters, is how many [spd] electrons there are. The divalent materials, which only have
[spd]2, have a much larger volume, which indicates that the bonding between atoms is
much weaker than for the trivalent materials, where one more [spd] electron is present.
In summary, in the lanthanides, the [spd] electrons constitute the bonds. This is also
reflected in the localized nature of the 4f orbitals, which are close to the core, while
the delocalized [spd] hybridized orbitals extend far from the core. This di↵erence in
localization in illustrated in Fig. 2.2, where we plot the radial part of the wave function
inside the mu�n tin sphere. The localization of the 4f ’s is especially strong in the heavy
rare earths and becomes a bit less pronounced for the light rare earths. Therefore some
4f -hybridization might be expected for the very early rare earths.

If one compares a rare earth element to its neighbor to the left in the Periodic Table,
one proton and one 4f electron are added. The [spd] electrons experience the increasing
core charge only partially, since the latter is very well screened by the 4f electrons. How-
ever, this screening is not complete. Progressing through the series the [spd] electrons
experience slightly more attraction from the increasing core charge, the orbitals contract
and therefore the volume decreases. This incomplete screening explains the slight de-
crease in volume across the series. This volume decrease is called lanthanide contraction.

As illustrated by the behavior of the volume across the series, the f electrons do
barely contribute to the bonding. This, and also the behavior of the magnetic properties
of the rare earths, lead to the assumption of a chemical inert f shell. This assumption
made calculations involving lanthanides much easier than a proper solution of the many-
body problem. Assuming a chemically inert 4f -shell is often denoted as the standard
model of the lanthanides.
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2.3 Magnetism

In this section we will briefly describe magnetism in rare earths. For the present we
keep it simple and leave crystal field e↵ects out of the picture. Although, in this section,
we will present a basic picture without crystal field e↵ects, for some of the rare earths,
like Pr, they are extremely important. We will then explain about the Russell-Saunders
coupling scheme, and how the magnetic moments originate from spin, orbital and total
angular momentum. We will present the Hund’s rule ground-state for all rare earths.
This ground-state is (2J + 1)-fold degenerate without external magnetic fields. How a
field lifts this degeneracy and what moments are expected for small and big fields will
be explained at the end of this section. To study the magnetic properties of the rare
earths, Solid State Physics by Ashcroft and Mermin [2], Rare earth Magnetism by Jensen
and Mackintosh [23] and the Master’s Thesis of N.E. Koch [24] were very useful. The
following sections on the magnetic properties of the rare earths are based on these three
works.

2.3.1 Russell-Saunders coupling

The moments of the rare earths are well described in the Russell-Saunders (LS-) cou-
pling scheme. This scheme is based on the assumption that spin-spin coupling is stronger
than orbit-orbit coupling which is stronger than spin-orbit coupling. These couplings are
described by Hund’s rules, which are explained later on in the text. The exchange inter-
action couples the spins si of the individual electrons to a total spin angular momentum
S. The total spin quantum number is S =

P
im

i
s where mi

s is the spin projection quan-
tum number of the electron i and specifies the projection of si along a specific axis. The
Coulomb interaction similarly couples the orbital angular momenta li of the individual
electrons to a total orbital angular momentum L. The total orbital angular momentum
quantum number is L =

P
im

i
l, where the magnetic quantum number mi

l specifies the
projection of the orbital angular momentum of the electron i along a specific axis. For
the REs the electrons order according to Hund’s rules, which will be explained later in
this section.

Finally, the total angular momentum quantum number is given by J = |L ± S|.
Whether S is added to or subtracted from L depends on whether the shell more or less
than half filled respectively. This is because for shells that are less than half filled, the
energy is smallest for the state where Sz = S and Lz = �L have opposite sign. For
shells that are more than half filled instead, the energy is smallest when Sz = S and
Lz = L have the same sign. Here Sz and Lz are the projections of the total spin and
orbital angular momentum on the specified axis. From now on we will indicate this axis
as the ẑ-axis for sake of simplicity.

2.3.2 Moments arising from the spin, orbital and total angular mo-
menta

This section describes the moments associated to the spin, orbital and total angular
momentum vectors S, L and J for the entire atom, e.g. the contribution of all electrons.
The moment originating from the total spin angular momentum S is given by:

µS = �gsµB

~ S (2.1)
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where the gs-factor is the gyromagnetic factor of the electronic spin, which is close to 2,
and µB is the Bohr magneton. The magnitude of this moment is µS = gsµB

p
S(S + 1) ⇡

2µB

p
S(S + 1), where we used that the eigenvalues of S2 are ~2S(S+1). The magnitude

of the total moment originating from the orbital angular momentum is:

µL = µB

p
L(L+ 1) (2.2)

which is also directed opposite to L. Note that the gyromagnetic factor for the orbital
moment is gl = 1, which is why it does not appear in Eq. 2.2.

The moment due to the total angular momentum J has a similar form

µJ = gµB

p
J(J + 1) (2.3)

However, in this case g is the Landé factor and has a quite complicated form. This
arises from the fact that the spin moment is 2 times µB

p
S(S + 1), whereas the orbital

moment does not have this factor 2. To take this into account, the Landé g factor is:

g = 1 +
J(J + 1) + S(S + 1)� L(L+ 1)

2J(J + 1)
(2.4)

In Fig. 2.3 an illustration is sketched for the vector addition of S, L to J and for the
vector addition of µS and µL. Due to the Wigner-Eckart theorem, the average hµL + µSi
should lie along Ĵ, which is the unit vector in the J-direction. The projection of µL+µS

on the Ĵ-axis has length

µJ =
µB

~

⇣
L · Ĵ+ 2S · Ĵ

⌘
(2.5)

Using L2 = (J � S)2 to obtain an expression for S · Ĵ and S2 = (J � L)2 to obtain an
expression for L · Ĵ leads to the g-factor in Eq. 2.4. The total angular momentum J
precesses around ẑ.

Note that we assumed that the field is not too strong so that S and L are coupled to
J. For strong fields, S and L would precess independently around the direction of the
external field.

2.3.3 Hund’s rules ground-state

The magnetic ground-state for the lanthanides can be found by means of the Hund’s
rules. The Hund’s rules state:

1. Maximize S, taking into account the Pauli principle.

2. Maximize L, while satisfying the first rule.

3. Minimize J for less than half filled shells (J = |L � S|) or maximize J for more
than half filled shells (J = |L+ S|), while satisfying the first two rules.

The Hund’s rules ground-state and the corresponding magnetic moments are listed in
Tab. 2.1 for all rare earths. After the elements name and their 4f configuration (in the
solid state), the occupied ml are indicated by " and #, depending on ms. The resulting
total S, L and J are listed as well as the total moment µJ calculated from Eq. 2.3 and
2.4. The Hund’s rule ground-state is, in zero field, (2J + 1) fold degenerate. All states
for Jz = �J,�J + 1, . . . , J � 1, J have the same energy.
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Figure 2.3: Vector representation of S, L and J, and corresponding moments. The vector
representation is however a bit misleading, since we can not simultaneously know all com-
ponents of the vector. For that reason the ellipses are added, to denote that the vector is

somewhere along this ellipse.

Table 2.1: Hund’s rules ground-states and magnetic moments using Eq. 2.3 and 2.4.

ml Moments
Element -3 -2 -1 0 1 2 3 S L J µJ (µB)

Ba f0 0 0 0 0

La f0 0 0 0 0

Ce f1 " 1
2 3 5

2 2.535

Pr f2 " " 1 5 4 3.578

Nd f3 " " " 3
2 6 9

2 3.618

Pm f4 " " " " 2 6 4 2.683

Sm f5 " " " " " 5
2 5 5

2 0.845

Eu f7 " " " " " " " 7
2 0 7

2 7.937

Gd f7 " " " " " " " 7
2 0 7

2 7.937

Tb f8 "# " " " " " " 3 3 6 9.721

Dy f9 "# "# " " " " " 5
2 5 15

2 10.646

Ho f10 "# "# "# " " " " 2 6 8 10.607

Er f11 "# "# "# "# " " " 3
2 6 15

2 9.581

Tm f12 "# "# "# "# "# " " 1 5 6 7.561

Yb f14 "# "# "# "# "# "# "# 0 0 0 0

Lu f14 "# "# "# "# "# "# "# 0 0 0 0
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2.3.4 Energy shift due to a magnetic field

In case a magnetic field is present, the Hamiltonian gets modified by two extra contri-
butions. First the momentum operator gets replaced by pi ! pi +

e
cA(ri), where A

is the vector potential, �e the charge of an electron and c the speed of light. Second,
a term accounting for the interaction between the spin and the field is added to the
Hamiltonian. This term has the form of gsµBH ·S, where H is the magnetic field in the
ẑ-direction that the individual moments experience. These two contributions give field
dependent terms in the Hamiltonian

�Ĥ = µB(L+ gsS) ·H+
e2

8mec2
H2

X

i

(x2i + y2i ) (2.6)

The energy shifts that these terms produce are generally quite small and normal per-
turbation theory is adequate to calculate the splitting of the levels. The di↵erence in
energy induced by the field is given by

�En = µBH · hn|L+ gsS|ni+
X

n0 6=n

| hn|µBH · (L+ gsS)|ni |2

En � En0

+
e2

8mc2
H2 hn|

X

i

x2i + y2i |ni+ . . . (2.7)

where |ni is a state defined by quantum numbers J , L and S. In the case where J = 0,
the first term vanishes. For filled shells, the first and second term vanish and the third
term gives rise to Larmor diamagnetism. For not completely filled shells with J = 0
the second term (giving rise to Van Vleck paramagnetism) and the third term are in
competition. However, for not completely filled shells, J is usually not equal to zero.
We will now study the case where J 6= 0 in a small field.

The ground-state, without field, is given by the Hund’s rules and is (2J + 1) fold
degenerate (Jz = �J,�J + 1, . . . , J � 1,+J). A field lifts this degeneracy by energy
di↵erences calculated with Eq. 2.7. For small fields and J 6= 0, the first term is usually
dominant over the other two and therefore the last two terms are usually neglected. We
consider a small field in the ˆmathbfz-direction to simplify the dot product. The problem
at hand is now reduced to the (2J + 1)-dimensional matrix hJLSJz|Lz + gsSz|JLSJ 0

zi,
that can be simplified using the Wigner-Eckhart theorem

hJLSJz|Lz + gsSz|JLSJ 0
zi = g(JLS)Jz�J

z

J 0
z

(2.8)

where g(JLS) = g the same Landé g-factor as in Eq. 2.4. For clarity we will skip the
arguments (JLS) of the g-factor.

2.3.5 Moments

In this section we continue assuming J 6= 0 and calculate the total moment at a tem-
perature T . We assume now that the separation between the zero field ground-state
multiplet, given by the Hund’s rules, and the first excited multiplet is much bigger than
kBT . In this case, only the (2J + 1) states within this ground-state multiplet will con-
tribute to the moment. The first term in Eq. 2.7 can now be interpreted as �µ · H,
where µ = �gµBJ. To obtain the magnetization of a collection of ions, the Helmholz
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free energy F = � 1
� ln(Z), where Z is the partition function, has to be calculated. Tak-

ing into account that the separation between the di↵erent Jz is not very big compared
to kBT = 1/�, one obtains that the partition function is

Z = e��F =
X

n

e��E
n

(H) =
JX

J
z

=�J

e��gµ
B

HJ
z (2.9)

=
e�gµB

H(J+1/2) � e��gµ
B

H(J+1/2)

e�gµB

H/2 � e��gµ
B

H/2
(2.10)

In the last line the geometric series was summed to simplify the expression. The mag-
netization M per volume V for N ions is given by

M = �N

V

�F

�H
=

N

V
gµBJBJ(�gµBJH) (2.11)

where we have introduced the Brillouin function BJ(x). This function saturates to 1 for
large x = �gµBJH, which implies that at large fields all moments align and contribute
to the magnetization. We will first consider this limit and thereafter the limit for x ! 0,
where kBT >> gµBH.

Saturation moment kBT << gµBH
In case kBT << gµBH, only the lowest Jz of the zero field ground-state multiplet
contributes. Each ion has its maximum value Jz = J and the moment reaches its
saturation value of

M =
N

V
gµBJ (2.12)

A schematic representation of the saturated moment is given in Fig. 2.4 (left). Since we
can not know all three components of µJ simultaneously, the saturation moment is the
projection (black arrow) of µJ (green arrow) on the ẑ-axis.

Curie’s law kBT >> gµBH
When the splitting between the di↵erent energy levels in the zero-field ground-state mul-
tiplet is smaller than kBT , many levels contribute to the magnetization. The Brillouin
function can be expanded around small x, which leads to the magnetic susceptibility

� =
�M

�H
=

N

V

(gµB)2

3
�J(J + 1) (2.13)

This is often rewritten in the form

� =
�M

�H
=

1

3

N

V
�µ2

Bp
2 (2.14)

where p is the e↵ective Bohr magneton number p = g
p
J(J + 1). This relation between

the susceptibility and the temperature is called Curie’s law. A schematic representation
of the paramagnetic moment (pµB in Eq. 2.14 or µJ in Eq. 2.3) that is deduced from
Curie’s law is given in Fig. 2.4(right).
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Figure 2.4: Schematic representation of the saturated moment and the paramagnetic mo-
ment. For the saturated moment the direction of the moment is fixed along an axis,
therefore the maximum value it can take is the maximal projection of the vector µ

J

,
which is fluctuating around the ẑ-axis, on that axis as in Eq. 2.12 (black arrow in left
plot). For the paramagnetic moment the direction of the individual moments is not spec-
ified, therefore it can take the full moment µ

J

associated to the vector J as in Eq. 2.3
(green arrow in right plot). However in particular in this case the vector representation is

misleading, since we can not simultaneously know all components of the vector.

2.4 Spectral properties

The spectral function is a quantity than can be obtained from Dynamical Mean-Field
Theory (DMFT) and can be compared to experiment. In this licentiate thesis, we are
interested in the 4f multiplet structure of the lanthanides. This multiplet structure
is probed in two di↵erent ways. X-ray Photoelectron Spectroscopy (XPS) is used to
probe the occupied states and Bremstrahlung Isochromat Spectroscopy (BIS) is used to
probe the unoccupied states. The theory of high-energy spectroscopy, focussed on the
lanthanides, is nicely introduced in chapter 62 of Handbook on the physics and chemistry
of the rare earths by Gschneidner and Eyring [16]. The following sections will be based
on this book.

2.4.1 Spectroscopy

The methods used in electron spectroscopy can de divided into two main categories:
core level spectroscopy and outer level spectroscopy. In this section we will focus on
the outer level spectroscopy, which can again be divided into two di↵erent techniques:
photoemission (PE) and inverse photoemission (IPE) techniques.

In a photoemission experiment, the sample is irradiated with a monochromatic pho-
ton beam of known energy. This causes an emission of electrons from the sample, see
Fig. 2.5(a). The energy and intensity distribution of these emitted electrons is mea-
sured. From this and the energy of the photon beam, the energy di↵erence between the
initial and final states of the system is measured. The final state has one electron less
than the initial state. The probability of the transitions is mainly determined by the
available electrons just below the Fermi level. Therefore one probes the occupied part
of the spectrum with this technique. Traditionally, di↵erent photoemission experiments
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are characterized by the energy of the photon beam used, for example ultraviolet pho-
toemission spectroscopy (UPS), where the photon energy is h⌫ < 100eV or X-ray photo
emission spectroscopy (XPS), where the photon energy is about 1200 eV . h⌫ . 1500
eV [16]. Nowadays much higher photon energies can be used.

In an inverse photoemission experiment, the sample is irradiated with a monoener-
getic electron beam. The electrons impinging the sample couple to high laying unoccu-
pied states and decay to lower unoccupied states by emitting photons, see Fig. 2.5(b).
The energy and intensity of these photons are measured. The di↵erence of the photon
energy and the energy of the electron beam gives insight in the di↵erence between the
energy of the ground-state and the energy of the excited state which has one electron
more. The probability of the transitions is mainly determined by the low lying empty
states. Therefore one probes the unoccupied part of the spectrum with this technique.
An example of inverse photoemission spectroscopy is the bremstrahlung isochromat spec-
troscopy (BIS).

(a) PE (XPS) (b) IPE (BIS)

Figure 2.5: Schematic view of a photoemission experiment (left) and of a inverse photoe-
mission experiment (right).

For XPS and BIS, the energy of the electron beam or the emitted electron is very
high. In classical terms one could say that the speed of the electrons is very high. This
means that the time interval of the interaction with the sample is very short. In com-
parison to this time interval, the lifetimes of the final excited states are much longer and
can be approximated as infinite in the experiment. This means that one can describe
the final states as a sudden (dis)appearance of an electron (from) to the original state.
In XPS this state with n� 1 (passive) electrons can be described by the initial orbitals,
only with a di↵erent occupation. Also for BIS, the state of the final n+ 1 electrons can
be described by occupying the initial orbitals of the ground-state.

In summary, we will use XPS for fn ! fn�1 transitions and BIS for fn ! fn+1

transitions to probe the 4f multiplet structure of the lanthanides. The spectra can ac-
tually be interpreted as a superposition of the density of states for the di↵erent angular
momenta l weighted by their cross sections. For the energy range of our interest, the
fn ! fn�1 and fn ! fn+1 transitions will turn out to be most important.

The cross sections give the probability for transitions from states with a certain
angular momentum and depend on the photon energy of the impinging beam. The cross
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sections can enhance or suppress states of a given angular momentum compared to states
of a di↵erent angular momentum. This might, for di↵erent photon energies, change the
relative heights in the XPS spectrum. This is especially important if one would like to
compare the relative peak intensities of states belonging to states with di↵erent angular
momentum character.

2.4.2 Experiment and theory

To compare experimentally measured spectra to theoretically calculated spectra, one
has to take into account their di↵erences. In the experimentally measured spectra, the
peaks belonging to the di↵erent multiplets are not atomic sharp lines, but broad peaks.
This has several di↵erent reasons. The first reason for the broadening is the lifetime of
the excited state. To model the lifetime e↵ects in a theoretical spectrum, one should
broaden the spectrum with a Lorentzian. The second reason is the resolution of the
measurement apparatus used in the experiment. To simulate this finite resolution in a
theoretical spectrum, one should broaden the spectrum with a Gaussian, where the full
width at half maximum (FWHM) is given by the resolution of the measuring equipment
in the experiment which one would like to compare to. Other e↵ects that might cause
experimental broadening are the possible presence of hybridization or in metals the
formation of electron-hole pairs over the Fermi surface. From the theoretical side there
are also sources of broadening. A technical source of broadening arises from the fact that
we evaluate the imaginary part of the Green’s function just above the real axis, as will be
explained in Eq. 3.20. An other reason that we do not see sharp multiplets defined by S,
L and J is that these multiplets are split by crystal field into di↵erent Jz components or
linear combinations thereof. For the lanthanides this spitting is usually small compared
to the exchange splitting. The theory used in this licentiate thesis (HIA) can in principle
capture the crystal field e↵ects. However, in practice for technical reasons (no proper
formulation of the double counting for crystal field), no one has yet managed to include
it properly.

Another observation one can make about the experimental spectra is that there seems
to be an overall increment in intensity as one goes away from the Fermi energy. This
is due to the fact that some of the emitted electrons (XPS) or photons (BIS) scatter
around before they are captured by the detector. By scattering they lose some energy.
At the moment the electron (or photon) finally reaches the detector, a lower energy is
measured. This means that the energy di↵erence between the incoming photon beam
(electron beam) and the outgoing electron (photon) becomes bigger. This results in
an apparently higher di↵erence between the ground-state energy and the excited state
energy. These scattering processes contribute to a background which increases with
each multiplet state, as illustrated in Fig. 2.6. In Fig. 2.6(a) the XPS process is shown
schematically. One electron is excited and goes straight towards the detector. The other
electron scatters before it reaches the detector. So, although both electrons originated
from the same state, the second electron is detected with a lower energy. In Fig. 2.6(b)
the theoretical (yellow) and experimental (orange) XPS intensities are shown schemati-
cally. In between the first and second peaks from the Fermi level the theoretical intensity
(yellow line) goes, as expected, back to zero. However, the experimental intensity (or-
ange line) does not go back to zero. The finite intensity is due to electrons from the
first multiplet that have scattered around in the sample before reaching the detector.
The even more increased intensities observed in-between the other multiplets arise from
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electrons originating from any multiplet up to the Fermi level, with various scatterings
before reaching the detector.

 



(a) XPS proces










(b) XPS intensity

Figure 2.6: (a) Schematic view of an electron going directly to the detector and an other
one scattering before reaching the detector. (b) Schematic view of how the experiment
(orange line) measures the true peaks (yellow). The shaded areas are due to electrons

undergoing extra scatterings before the electron leaves the sample.

2.4.3 Multiplet structure

The spectra of the lanthanides consist of several peaks. These peaks correspond to the
transitions from the Hund’s rule ground-state with fn electrons and L, S and J quantum
numbers, to di↵erent final states with fn�1 electrons (XPS) and fn+1 electrons (BIS)
and quantum numbers L0, S0 and J 0, that are accessible from the Hund’s rules ground-
state. The crystal field is well screened by the valence electrons and the separation of
the multiplet states is dominant [26].

Which of all possible fn�1 or fn+1 multiplets are accessible from the Hund’s rules
ground-state, can be determined using certain selection rules [1]. For XPS, where one
electron is removed, S�S0 = 1

2 . The maximal amount of angular momentum which can
leave the system is ±l, where l is the angular momentum quantum number of the shell
where the electron is removed from. Therefore |L� L0|  l.

Let us consider, as an illustrative example, the multiplets in the XPS spectrum of
Neodymium (Nd). In the solid phase, Nd has an f3 configuration and XPS probes there-
fore f3 ! f2 transitions. The Hund’s rule ground-state of Nd is 4I 9

2
, where we used

the term symbol notation 2S+1LJ . The total angular momentum J is calculated in the
Russel-Saunders (LS) coupling scheme (Sec. 2.3.1), which is a good approximation for
the lanthanide series [23]. All possible ways to arrange 2 electrons over the �3  ml  3
and ms = ±1

2 orbitals, result in the following multiplets: 1I6, 3H4,5,6, 1G4, 1S0, 3F2,3,4,
1D2 and 3P0,1,2, see App. A for a recipe to obtain these multiplets. The multiplets with
2S + 1 = 1 cannot be reached from the Hund’s rule ground-state (f3 configuration)
where 2S + 1 = 4, since S can at most change by 1

2 , corresponding to the spin that
one electron can carry away. Hence 1I6, 1G4, 1S0 and 1D2 are not accessible. The state
3P0,1,2 is also not accessible, since the angular momentum changes by more than 3, the
maximal orbital momentum that one electron from the f -shell can carry away. We are
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left with 3H4,5,6 and 3F2,3,4. Transitions to these states will appear in the XPS spectrum.

A similar approach can be done for the BIS spectra, considering that adding one
electron is the same as removing one hole. The relative intensity of these di↵erent mul-
tiplets can be calculated from the coe�cients of fractional parentage, which is explained
in Ref. [1] for XPS and Ref. [7] for BIS. The coe�cients of fractional parentage are
tabulated in Ref. [1] for XPS and Chapter 62, Table I of Ref. [16] for BIS.





Chapter 3

Methods

In solid state physics the Hamiltonian describing a system of nuclei and electrons consists
typically of 5 terms. Two kinetic terms, one for the electrons and one for the nuclei,
and three Coulomb terms. The latter describe the Coulomb repulsion between the
nuclei, the Coulomb attraction between the nuclei and the electrons, and the Coulomb
repulsion between the electrons. For simplicity we will ignore the relativistic e↵ects,
but in principle using the Dirac equation instead of the Schrödinger equation is straight
forward. Despite these simplifications, this Hamiltonian involves an enormous amount
of particles and since everything is interacting with everything, the computational e↵ort
for a few atoms runs already out of control. In, amongst other fields, solid state physics,
one usually uses the Born-Oppenheimer approximation [6]. The mass of the nuclei is
much larger than the mass of the electrons. Given that the kinetic term is inversely
proportional to the mass, the kinetic term of the nuclei is much smaller than the kinetic
term of the electrons. Therefore, in order to describe the electronic degrees of freedom,
one can decouple them from the ionic degrees of freedom. One approximates the nuclei
as fixed at given positions. The Coulomb attraction that the ions exert on the electrons
can now be described as a static external potential experienced by the electrons. The
Hamiltonian for the electronic degrees of freedom becomes

Ĥ =
�~2
2me

X

i

r2
i +

X

i

Vext(~ri) +
1

2

X

i 6=j

e2

|~ri � ~rj |
(3.1)

where the indices i and j run over the di↵erent electrons. The first term is the kinetic
term of the electrons, where ~ is the Planck constant, me the electron mass and �i~r
the momentum operator. The second term is the external potential that the electrons
experience due to the nuclei (at their fixed positions). The last term is the Coulomb
repulsion between the electrons. It is precisely this last term which makes this problem
still incredibly di�cult to solve: all electrons interact with all electrons. Although this is
still manageable for systems with a small amount of electrons, diagonalizing the Hamil-
tonian becomes quickly a problem when approaching macroscopic solids. However, that
is precisely what one would like to do, since the eigenvalues of this Hamiltonian give the
energy of the system and the eigenfunctions give the electron many-body wave functions.

In case one considers a crystal, the translational invariance of the crystal provides
another simplification to the problem. In that case one can make use of the Bloch
theorem [5]. It states that the wave function can be written as a periodic function, with
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the same periodicity as the crystal lattice under consideration, times a plane wave, that
is

 ~k(~r) = u~k(~r)e
i~k·~r (3.2)

where  is the one electron wave function and ~r the position in space. The periodic
function u(~r) has the same periodicity as the lattice and ~k is the wave vector.

Although the Born-Oppenheimer approximation and the use of the Bloch theorem
greatly simplify the task of solving the Hamiltonian in Eq. 3.1, it is still impossible for
more than a few atoms and electrons. However, thanks to Pierre C. Hohenberg, Walter
Kohn, Lu Jeu Sham and many others, we nowadays have a very successful way to tackle
this problem in most cases: Density Functional Theory (DFT).

3.1 Density Functional Theory

Pierre C. Hohenberg and Walter Kohn came with a brilliant idea [19]. Roughly speaking,
they stated that if you have the ground-state density of the particles in space and the
interaction between the particles, you have, in principle access to any property of the
system. They formulated and proved this in two theorems, known as the Hohenberg-
Kohn theorems. These theorems, together with the Kohn-Sham ansatz [25] form the
basic ideas behind Density Functional Theory (DFT). For me, Electronic Structure by
Martin [29] proved to be a good reference for learning the fundamentals of DFT and
electronic structure calculations, and therefore Sec. 3.1.1 and 3.1.2 will be mainly based
on chapter 6 and 7 of this book.

3.1.1 Hohenberg-Kohn theorems

The Hohenberg-Kohn theorems shift the attention from the wave function, depending
on the position vectors of all electrons simultaneously, to the density, which depends
only on one position vector. Precisely formulated, the Hohenberg-Kohn theorems read:

Theorem 1 For any system of interacting particles in an external potential V
ext

(~r),
the potential V

ext

(~r) is determined uniquely, except for a constant, by the ground-state
particle density n0(~r).

Corollary 1 Since the Hamiltonian is thus fully determined, except for a constant shift
of the energy, it follows that the many-body wave functions for all states (ground and
excited) are determined. Therefore all properties of the system are completely determined
given only the ground-state density n0(~r).

Theorem 2 A universal functional of the energy E[n] in terms of the density n(~r) can
be defined, valid for any external potential V

ext

(~r). For any particular V
ext

(~r), the exact
ground-state energy of the system is the global minimum value of this functional, and
the density n(~r) that minimizes the functional is the exact ground-state density n0(~r).

Corollary 2 The functional E[n] alone is su�cient to determine the exact ground-state
energy and density. In general, excited states of the electrons must be determined by other
means.
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The proofs of these theorems are surprisingly simple and are nicely explained in, for
example, chapter 6 of Electronic Structure by Martin [29]. The basic idea of the first
theorem can be summarized in the scheme below:

Vext(~r)
Hohenberg-Kohn

n0(~r)

 0({~r}) i({~r})Ĥ

where  is the many-body wave function, the subscript zero denotes the ground-state
and all other  i are excited states. Starting from the external potential Vext(~r) the
route to obtain the density is known from quantum mechanics: constructing the Hamil-
tionian Ĥ, solving the Schrödinger equation and obtaining the wave functions  i(~r),
including the ground-state  0(~r), which gives the ground-state density n0(~r). The first
Hohenberg-Kohn theorem closes the circle: from the ground-state density the external
potential is uniquely defined (except for a constant shift).

While the first Hohenberg-Kohn theorem claims that it is possible to find Vext(~r)
from n0(~r), the second gives a clue how to find it. The second Hohenberg-Kohn theorem
a�rms the existence of a universal energy functional E[n]. One could split this functional
into di↵erent terms belonging to the di↵erent terms in the Hamiltonian:

EHK[n] = T [n] + Eint[n] +

Z
d3rVext(~r)n(~r) + EII (3.3)

The first term represents the kinetic energy of the electrons, while the second term
represents the Coulomb interaction between the electrons. The third therm is the energy
associated to the external potential that the electrons experience due to the position of
the nuclei. The last term is the energy of the nuclei.

3.1.2 Kohn-Sham ansatz

DFT would not be so important nowadays, if Walter Kohn and Lu Jeu Sham had not
come up with a very useful ansatz [25]. Their idea was to replace the original (inter-
acting) many-body problem with an auxiliary independent particle problem, where the
auxiliary system is chosen such that the ground-state density is the same as the ground-
state density of the interacting problem. The Kohn-Sham ansatz makes it possible to
use independent particle methods to calculate, in principle exactly, the properties of a
fully interacting many-body system. Combining the Hohenberg-Kohn theorems and the
Kohn-Sham ansatz has proven to be remarkably successful. In fact, shifting the atten-
tion from the wave functions to the ground-state density makes it easier to find useful
approximations.

In the scheme below we present the combination of the Hohenberg-Kohn theorems
and the Kohn-Sham ansatz
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Non-interacting problemInteracting problem

Vext(~r)
Hohenberg-Kohn

n0(~r)

 0({~r}) i({~r})Ĥ

Kohn-
Sham

n0(~r)
Hohenberg-Kohn

VKS(~r)

ĤKS i(~r) i=1,N (~r)

where  i is the i-th wave function in the non-interacting problem. By occupying the
first N wave functions  i one can form the ground-state. From the interacting problem
one constructs an auxiliary non-interacting system with the same ground-state density.
From this ground-state density, the auxiliary potential VKS(~r) can, in principle, be con-
structed with the Hohenberg-Kohn theorems for a non-interacting system. Solving the
Schrödinger equation for the non-interacting Hamiltonian ĤKS gives the wave functions
 i(~r). Occupying of the first N wave functions  i=1,N (~r) gives the ground-state and
the ground-state density. So, instead of solving the left (interacting) circle in the above
scheme, we can solve the right (non-interacting) circle.

In the Hohenberg-Kohn theorems, the universal functional E[n] plays an important
role, but the theorems reveal nothing about the exact form of this functional. And that
is precisely the problem: nobody knows the exact form of this functional. However,
to connect the two circles, we have not only to know that VKS exists, but also to find
it. Given an appropriate form of VKS, the Kohn-Sham ansatz leads to the Kohn-Sham
equations (in Hartree units):

(ĤKS � ✏i) i(~r) = 0 (3.4a)

ĤKS(~r) = �1

2
r2 + VKS(~r) (3.4b)

VKS(~r) = Vext(~r) + VHartree(~r) + VXC(~r) (3.4c)

EKS[n] = Ts[n] +

Z
d3rVext(~r)n(~r) + EHartree[n] + EII + EXC (3.4d)

n(~r) =
NX

i=1

| i(~r)|2 (3.4e)

The Kohn-Sham Hamiltonian ĤKS (Eq. 3.4b) is non-interacting, therefore Eq. 3.4a is
numerically solvable in a finite Hilbert space. The many-body e↵ects are hidden in the
potential VKS, more precisely in the exchange correlation part VXC. In the Kohn-Sham
potential, the complicated electron-electron interaction term is split into two parts. The
main part is captured by the Hartree potential

VHartree(~r) =
�EHartree[n]

�n(~r)
(3.5)

where the Hatree energy is

EHartree[n] =
1

2

Z
d3rd3r0

n(~r)n(~r 0)

|~r � ~r 0| (3.6)
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which is the electron density interacting with itself. The remaining part is included in
the exchange correlation potential, which is the last term in Eq. 3.4c. Apart from this,
the exchange correlation potential includes the di↵erences between the real (interacting)
kinetic energy and the Kohn-Sham approximation of it; i.e. the non-interacting kinetic
energy Ts[n]. The exchange correlation energy (EXC in Eq. 3.4d) is given by comparing
the Kohn-Sham energy (Eq. 3.4d) with the Hohenberg-Kohn energy (Eq. 3.3). This is
however a formal definition that is not super useful since we do not know the Hohenberg-
Kohn energy.

The Kohn-Sham equations built an e↵ective potential from a density and an external
potential. This e↵ective potential results into a new density and so on. Therefore the
Kohn-Sham equations must be solved self-consistently in the e↵ective potential and the
density. This is schematically shown in Fig. 3.1. As a self consistent method, the Kohn-
Sham approach uses independent particle techniques, but describes interacting densities.

Figure 3.1: Schematic view of the DFT cycle: solving the Kohn-Sham equations self-
consistently.

The Kohn-Sham ansatz makes it possible to do very good approximations to the
energy functional. The Hohenberg-Kohn energy functional was unknown. Kohn and
Sham separated out the kinetic energy of non-interacting particles and the Hartree part
of the Coulomb interaction. This means that the unknown part (the exchange corre-
lation energy) consists now of two (hopefully) small terms. 1. The di↵erence between
the interacting and non-interacting kinetic energies. 2. The di↵erence between the
Hartree energy and the full electron-electron interaction energy. The Hartree term in-
cludes the long-range Coulomb interaction. Therefore the exchange-correlation energy
can reasonably well be approximated by a local, or nearly local, quantity. This short
range character of VXC is the main cause of the huge success of DFT. Without this
main progress in approximating the unknown exact universal energy functional, density
functional theory would not be so successful.

3.1.3 Approximations to the energy functional

The exact functional to go from the density n(~r), in the scheme in Fig. 3.1, to the Kohn-
Sham potential VKS [n] is unfortunately not known. Despite that, DFT became very
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successful and that is mainly because of two reasons. On one hand, the Kohn-Sham
approach allows one to use independent particle theories to solve a fully interacting
many-body problem. On the other hand, the fact that the long range Coulomb inter-
actions (Hartree term) and the independent particle kinetic energy are separated out,
allows one to approximate the exchange correlation functional by a quantity that is ap-
proximately local. This has resulted in very good approximations, such as the Local
(Spin) Density Approximation (L(S)DA) and the Generalised Gradient Approximation
(GGA). This paragraph will shortly describe these two functionals. A more elaborate
overview of these and other functionals can be found in, for example, chapter 8 of Elec-
tronic Structure by Martin [29].

Electrons in solids resemble very often nearly-free electrons. Therefore the uniform
electrons gas was chosen as a starting point to construct the first approximation of the
exchange correlation functional. In the uniform electron gas, the exchange correlation
energy is local. In the Local Density Approximation (LDA), the exchange correlation
functional is directly derived from the uniform electron gas and thus local. The exchange
energy is calculated analytically from the uniform electron gas and the correlation energy
is approximated very well by Monte Carlo calculations on the uniform electron gas. The
proposed LDA functional has the same functional dependence on the density as found
in the uniform electron gas. The only di↵erence is that the uniform density n = N/V is
replaced by the density at a given point n(~r). The Local Spin Density Approximation is
a straightforward spin dependent generalization of LDA. Usually the L(S)DA functional
works very well, since the range of the e↵ects of exchange and correlation is generally
small. However, the approximations made, are not based on a formal expansion around
some small parameter. Therefore, it can not be formally proven whether the local ap-
proximation will work for a general case or not. The validity of the local approximation
should be tested for each case by comparing theory and experiment or calculated and
exact solutions, if available. Nonetheless, the DFT community has developed some in-
tuition on the applicability of di↵erent functionals. One expects the LDA functionals
to perform well for systems where the electrons behave as nearly-free, and one expects
them to work very bad for systems where the electron density is distributed very inho-
mogeneously in space.

An intuitive first step to improve the LDA functionals is to include, the dependency
on not only the density in a specific point, but also on the gradient of the density in that
point. The first attempts to include the gradients did not work very well, and especially
for large gradients the expansions performed poorly. But later on more elaborate ways
of taking the gradient of the density into account were developed and named Generalised
Gradient Approximation (GGA). The GGA functionals perform generally better than
the LDA functionals. For example, where the LDA functional usually overestimates the
bonding and gives a too small volume, the GGA functionals predict equilibrium volumes
that are closer to experimental values.

3.2 Hubbard I approximation

In the lanthanides, the 4f electrons are very localized. The LDA or GGA functionals,
which are based on the uniform electron gas, are, as one can imagine, bad approxi-
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mations to describe such localized electrons. On the other hand, the [spd] bonding
electrons are very delocalized and DFT-LDA (or GGA) can describe them very well.
There are di↵erent methods to include the e↵ects of (strong) localization in di↵erent
types of situations. The two standard computational methods nowadays are LDA+U
(Hartree-Fock) or LDA+Dynamical Mean-Field Theory (LDA+DMFT). The latter is
much more sophisticated than the former. Historically both approaches originated from
the following observations. It had been found that the usual LDA (GGA) approach can
not describe the localized nature of, for example, the 4f electrons or other correlated
materials. Surprisingly, the Hubbard model [20, 21, 22], with parameters obtained from
LDA, had been shown to describe various correlated materials very well [8, 33, 18, 17, 30].
The observations of this procedure lead to the idea of embedding the model Hamilto-
nian into DFT. The advantage is that the properties arising from the Hubbard model
merged with DFT become now material-dependent quantities. The main idea is that
an explicit Hubbard term can be added to the LDA-Hamiltonian for the strongly local-
ized electrons. This corrected Hamiltonian can now be solved with di↵erent methods
like LDA+U or LDA+DMFT. In both LDA+U and LDA+DMFT this Hamiltonian is
mapped onto a Single Impurity Anderson Model (SIAM). In LDA+U this is then solved
in the Hartree Fock approximation. In LDA+DMFT the SIAM is solved with one of the
possible “solvers”. In this licentiate thesis the Hubbard I Approximation (HIA) is used
as an approximated solver of the SIAM. The HIA provides a good method to describe
the lanthanides, since the 4f electrons are very localized and the hybridization of the f
electrons is very small.

Roughly speaking the main idea of the Hubbard I approximation is to combine the
many-body structure of the 4f states, given by the atomic multiplets, with the broad
bands of the delocalized valence electrons, see Fig. 3.2. In Sec. 3.2.1, 3.2.2 and 3.2.3
these intuitive ideas will be substantiated with some formulas. The following sections
will aim at illustrating the main idea of DMFT. To include correlation e↵ects, an on-
site Coulomb repulsion tensor U is added to the Kohn-Sham Hamiltonian. The new
Hamiltonian obtained in this way is rewritten in the form of a Hubbard Hamiltonian.
The latter is solved through a mapping onto a SIAM. This SIAM has to be solved to
recover the solution of the initial problem. The Hubbard I approximation can be seen
simply as a particular approach to solve the SIAM. In summary, we will go step by step
through the following scheme:

ĤLDA + Û = . . . = ĤHubbard Model ����! ĤAnderson Model approximations����������! Solution

In Sec. 3.2.1 we explain how to merge DFT with the Hubbard model. In Sec. 3.2.2
the mapping procedure to the SIAM is explained. Finally we explain how the Hubbard
I approximation is implemented in RSPt [38] in Sec. 3.2.3. RSPt is a full-potential
electronic structure code based on linear mu�n tin orbitals. The acronym stands for
Relativistic Spin-Polarized test. More details about the code and the linear mu�n tin
orbitals can be found in Ch. 4. The following sections are based on introductory lectures
of Antoine Georges [13] and the PhD thesis of Igor Di Marco [10].
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Figure 3.2: The idea of the Hubbard I approximation is to combine the LDA (GGA)
description of the delocalized conduction electrons (red dashed density of states) with the

atomic multiplets of the localized 4f electrons (blue solid multiplets).

3.2.1 E↵ective Hubbard model

This section is about merging the Hubbard model with DFT, the blue part (left) of the
illustrating scheme introduced in the previous section

ĤLDA + Û = . . . = ĤHubbard Model ����! ĤAnderson Model approximations����������! Solution

The LDA+DMFT approach is based on the idea of merging LDA and the Hubbard
model. In a heuristic way, one adds a Hubbard interaction term to the DFT-LDA
Hamiltonian for those orbitals where the description in LDA is not good enough due to
strong on-site Coulomb repulsion. The adjusted Hamiltonian reads

Ĥ = ĤLDA � ĤDC +
1

2

X

R

X

⇠1,⇠2,⇠3,⇠4

U⇠1,⇠2,⇠3,⇠4
ĉ†R,⇠1

ĉ†R,⇠2
ĉR,⇠4

ĉR,⇠3
(3.7)

The orbitals (on site R) for which the local correction tensor U is added, are usually
called the “correlated orbitals”. This set of orbitals is labeled by the Bravais lattice
site vector R and a general orbital index ⇠. Later on we will split ⇠ in the well-known
quantum numbers. In an atomic-like basis this would correspond to the spin-orbitals
{l,m,�}. The operators ĉ†R,⇠ and ĉR,⇠ are the creation and annihilation operators for

electrons in the correlated orbitals. The second term ĤDC is the double counting term,
which subtracts from Ĥ those terms that are due to added U but are already included
in the LDA Hamiltonian. The latter should in principle contain all terms of the original
Hamiltonian (Eq. 3.1) and we do not want to count some contributions twice. This

term has the form ĤDC ⇠ A
P

⇠1
ĉ†R,⇠1

ĉR,⇠1
and is sometimes merged with the chemical

potential. We will elaborate more on this term in Fig. 3.4 and Sec. 3.2.5, but for now
let us ignore it.

The LDA Hamiltonian ĤLDA can be expressed as the sum over the Kohn-Sham
Hamiltonians Ĥ�

i

KS(ri) for all i = 1, N electrons, with spin �i on position ri. If we
choose a basis of one particle wave functions, which are centered at site R and labeled
by a set of quantum numbers �, we can express the first term in Eq. 3.7

ĤLDA =
NX

i=1

Ĥ�
i

KS(ri) =
X

R1�1

X

R2�2

tR1�1,R2�2
ĉ†R1�1

ĉR2�2
(3.8)
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where the hopping matrix t is defined by the elements

tR1�1,R2�2 =

Z
dr hR1�1|ri Ĥ

�
�2

KS (r) hr|R2�2i (3.9)

With this rewriting it can be seen that the Hamiltonian as defined in Eq. 3.7 looks
very similar to the Hamiltonian of the Hubbard model. The hopping t comes from the
DFT-LDA problem and the Coulomb repulsion tensor U is added on top of that. Note
however that U is not the bare Coulomb repulsion, but an e↵ective interaction. This
e↵ective interaction is based on the Coulomb repulsion, but is screened by the other
electrons. We will discuss the heuristically added U -tensor later, in Sec. 3.2.4.

3.2.2 E↵ective Single impurity Anderson model

An e�cient way to solve the Hubbard model is the dynamical mean-field theory. In
DMFT the e↵ective Hubbard model, introduced in Sec. 3.2.1, is mapped onto an e↵ective
model, the single impurity Anderson model (SIAM). This is the second half of the scheme
below

ĤLDA + Û = . . . = ĤHubbard Model����! ĤAnderson Model approximations����������! Solution

The SIAM consists of a single impurity embedded in an e↵ective field. This corresponds
to solving the problem in a mean-field approach for the space degrees of freedom. How-
ever, the quantum degrees of freedom at a single site are still accounted exactly. The
e↵ective Hamiltonian, which is the Hamiltonian of the single impurity Anderson model,
describes the impurity, the e↵ective bath and the coupling between them:

Ĥeff = Ĥatom + Ĥbath + Ĥcoupling (3.10)

For simplicity we will assume for now a one orbital case. Assuming the single orbital
level to be located at the Fermi level, the atomic Hamiltonian reads

Ĥatom = U ĉ†"ĉ"ĉ
†
#ĉ# (3.11)

where the ĉ-operators denote the creation (ĉ†) and annihilation (ĉ) of electrons in the
impurity orbital. The second term of Eq. 3.10 represents the bath, which may consist
of real conduction electrons, as in the original SIAM, or also of fictitious electrons, as in
DMFT. For spin �, wave vector k and energy ✏k,�, the bath term is

Ĥbath =
X

k,�

✏k,�â
†
k,�âk,� (3.12)

where the â-operators denote the creation (â†) and annihilation (â) of electrons in the
bath. Finally the last term of Eq. 3.10 represents the coupling between the impurity
(ĉ-operators) and the bath (â-operators)

Ĥcoupling =
X

k,�

Vk,�(â
†
k,� ĉ� + ĉ†�âk,�) (3.13)

To complete the mapping procedure, one has to find the mapping parameters ✏k,� and
Vk,�. In the mapping procedure, the local Green’s function at a single site should be
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conserved from the original system (Hubbard model) to the e↵ective system (SIAM).
The local Green’s function at a single site (in the real system) is defined as

G�
R,R(⌧ � ⌧ 0) ⌘ �hT ĉR,�(⌧)ĉ

†
R,�(⌧

0)i (3.14)

where T denotes the time ordering operator and ⌧ the imaginary time in the Matsubara
formalism. To impose the conservation of the local Green’s function, the local Green’s
function that follows from our e↵ective Hamiltonian Eq. 3.10 (the impurity Green’s
function) is needed too. To calculate this Green’s function, we separate the only term
that has two particles involved from the rest. The latter is Ĥbath plus Ĥcoupling plus the
unperturbed level position. They determine the bare Green’s function, which coincides
in the SIAM with the bath Green’s function. The bare Green’s function as a function
of the Matsubara frequencies !n is

G�
0 (i!n) =

1

i!n + µ���(i!n)
(3.15)

where �� is called the hybridization function and contains the parameters ✏k,� and Vk,�

of the e↵ective system

��(i!n) =
X

k

|Vk�|2

i!n � ✏k,�
(3.16)

We can now formally rewrite the e↵ect of the two-particle term contained in Ĥatom in
the form of a self-energy function ⌃�

imp(i!n). This function can be determined by several
techniques, named “solvers”. Once we have ⌃, the Dyson equation gives the impurity
Green’s function

G�
imp(i!n) =

1

G�
0 (i!n)�1 � ⌃�

imp(i!n)
(3.17)

To complete the mapping procedure, one has to find ✏k,� and Vk,� and the consequent
hybridization function � and self-energy ⌃ that reproduce the correct G�

imp, such that
G�

imp(i!n) = G�
R,R(i!n). This is the core ingredient of the mapping procedure. There

are several ways to find these parameters. In Dynamical Mean-Field Theory (DMFT),
the approximation is made that the self-energy is local or in other words k-independent.
Therefore it can be related to the impurity self-energy as

⌃�
RR0(i!m) = �RR0⌃�

imp(i!m) (3.18)

This DMFT approximation becomes exact in three limiting cases. The first case is the
limit of infinite nearest neighbors or infinite dimensions, as was proven by Metzner and
Vollhardt in Ref. [31]. The second limit is the non-interacting limit where the U in Eq. 3.7
is zero. This implies that the self-energy is zero and thus trivially local. The third limit
is the atomic limit, where the hopping between nearest neighbors in Eq. 3.8 becomes
zero tR1,R2 = �R1,R2 . With zero hopping the hybridization in Eq. 3.16 is zero which
implies that the self-energy has only on-site components and is thus local. The Hubbard
I approximation, which is an approximate solver to the SIAM in DMFT, is build upon
this limit. It requires an additional approximation on top of the DMFT approximation.
The last term in the Hamiltonian of the e↵ective system (Eq. 3.10), the coupling between
the bath and the impurity, is neglected. This boils down to approximating the self-energy
in the impurity problem by the atomic self-energy. Hence the approximation becomes

⌃�
RR0(i!m) = �RR0⌃�

at(i!m) (3.19)
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The above described procedure, where the Hubbard model (Eq. 3.7) is mapped onto
the single impurity Anderson model (Eq. 3.10) and then approximated by an atomic
problem is schematically depicted in Fig. 3.3. The mapping procedure is now, of course,

Figure 3.3: In the Hubbard I approximation the lattice problem is mapped to an impurity
problem which is simplified into an atomic problem. The self-energy is calculated in the

simplified case and the real self-energy is approximated by the atomic self-energy.

far from exact. A crucial approximation (Vk,� = 0) is made and this method can only
give sensible results if the correlated orbitals are close to atomic-like. Or, in other words,
if the hybridization between the correlated orbitals and the rest (correlated orbitals on
di↵erent atoms, and not-correlated orbitals on same or di↵erent atoms) is very small.

3.2.3 Computational scheme

For our calculations on the rare earths, we used the Hubbard I approximation as im-
plemented in the Full Potential Linear Mu�n Tin Orbital (FP-LMTO) code RSPt [38].
In this paragraph we will explain schematically how the computational scheme of the
Hubbard I approximation works.

In Fig. 3.4 the computational scheme for the Hubbard I approximation is sketched.
The Kohn Sham Hamiltionian HKS , coming from the DFT-LDA part in a global basis
� (see also Sec. 3.2.1), is projected onto the correlated states denoted with a generic
set of quantum numbers ⇠ on site R. In case of the lanthanides, HKS is projected onto
the atomic-like 4f states. The resulting Hamiltonian Ĥat

0R, is written on a many-body
basis of Fock states and the on-site Coulomb repulsion tensor U is added. The term
containing the on-site Coulomb repulsion U (Eq. 3 in Fig. 3.4) takes into account the
repulsion between two electrons on the same site R. The terms (µ+�µat + µDC) take
into account the chemical potential of the Green’s function coming in the first iteration
from the LDA calculation, the correction due to the fact that the hybridization is ignored
in the Hubbard I approximation and the double counting correction. In Sec. 3.2.5 we
will elaborate a bit more on these terms and will explain why ĤDC ! µDC with respect
to Eq. 3.7. Diagonalisation of the matrix (Eq. 3 in Fig. 3.4) gives the eigenvalues Eµ and
the eigenstates |µi. Using the Lehman representation, the full atomic Green’s function
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Figure 3.4: Schematic view of the HIA cycle. The creation and annihilation operators of
the correlated orbitals are denoted with respectively c†R⇠i

and cR⇠i
. The other symbols

are explained in the text.
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Gat (Eq. 5 in Fig. 3.4) is constructed. The full atomic Green’s function (Gat) and the
bare atomic Green’s function Gat

0 (Eq. 6 in Fig. 3.4) can be used in the Dyson equation
to construct the self-energy ⌃at. The self-energy includes, as usual, the interactions of
the system. The Hubbard I approximation (Eq. 8 in Fig. 3.4) consists in stating that the
self-energy of the impurity ⌃imp is equal to the atomic self-energy, as is schematically
shown in Fig. 3.3. After upfolding the self-energy to the global basis, the one electron
Green’s function G (Eq. 9 in Fig. 3.4) is constructed. For self-consistency, the chemi-
cal potential µ is fed back into the calculations, after it was adjusted to get the right
amount of particles. In Eq. 9 in Fig. 3.4 the atomic features and the delocalized electrons
are combined. For a charge self-consistent calculations, the density of the delocalized
electrons has to be recalculated taking the new density of the localized electrons into
account. This results in a slightly di↵erent HKS in Eq. 1 in Fig. 3.4. The loop has to
be repeated until ⌃ does not change significantly anymore between consecutive iterations.

To relate to physical observables, the spectral function can be calculated. It is given
by

⇢(!) = � 1

⇡
Im [G(! + i�)] � ! 0 (3.20)

where � approaches 0 from the positive site. In computations it will never be exactly
zero and causes therefore a broadening in the spectrum.

3.2.4 Hubbard U and Hund’s J

In the discussion on our calculations for the rare earths, we frequently refer to the Hub-
bard U and Hund’s J . In this section we will give an intuitive picture of their physical
meaning and relate them to the Coulomb U -tensor, which is added to the LDA Hamil-
tonian in Eq. 3.7.

To understand the physical meaning of the parameters U and J more precisely, Eq.
3.7 can be rewritten. When considering only intra-site and intra-shell interactions, one
can omit the site index and shell index. Moreover the U -tensor does not a↵ect the spin.
We take a d band in a cubic environment as an example. Here the degeneracy is lifted,
and the three-fold degenerate T2g state is normally lower than the two-fold degenerate
Eg state. For real valued wave functions, only four terms in the U -tensor are not equal
to zero. When taking these considerations into account, the Coulomb interaction term
can be rewritten in a more intuitive form. In App. B we assumed that the orbitals are
atomic like, we omitted the sum over R and replaced the generic set of quantum numbers
⇠ with the quantum numbers for the real spherical harmonics m. The final result is

ĤCoulomb =
1
2

P
m,m0,� Umm0 n̂m�n̂m0�̄ (3.21a)

+1
2

P
m,m0,�
m 6=m0

(Umm0 � Jmm0) n̂m�n̂m0� (3.21b)

�1
2

P
m,m0,�
m 6=m0

Jmm0

⇣
ĉ†
m�

ĉ†
m�̄

ĉm0� ĉm0�̄ + ĉ†
m�

ĉ
m�̄

ĉ†m0�̄ ĉm0�

⌘
(3.21c)

The di↵erent parts of the U -tensor are replaced by Umm0 for the direct Coulomb repulsion
and Jmm0 for the Coulomb exchange, which is done in App. B. Now only two indices are
su�cient in stead of the original four. For spins opposite to �, we introduced �̄. The term
3.21a gives the repulsion between two electrons with opposite spin, while the term 3.21b
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gives the repulsion between two electrons with the same spin, which should, according
to Pauli, be in di↵erent orbitals. The first term in 3.21c describes the transition of a
pair of electrons with opposite spins from one orbital to the other. The second term in
3.21c describes a spin flip in the orbital m, accompanied by the opposite spin flip in the
orbital m0.




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Figure 3.5: Schematic view of how the Hubbard U and Hund’s J shift the “energy levels”.
Energy levels are an intuitive way of understanding these numbers, but are a bit di�cult
to grasp in case of a many-body state. In the initial case we have one electrons and two
orbitals. In the final case, we have two electrons and a many-body state, which might be
a sort of combination between the original two orbitals. This combination is denoted with
a wiggly line between the orbitals. The position of the many-body orbital is such that, in
order to obtain the energy of the system, you have to take the energy of the energy level
times the occupancy of the level. The most left plots correspond to the initial situation
with one electron in orbital 1. In the second column an electron with opposite spin is added
to the second orbital. In the third column an electron with opposite spin is added to the
same orbital and in the last column an electron with same spin is added to (of course) the
other orbital. The top panels show the shift of the energy levels in the situation where the
Coulomb repulsion is taken into account. The bottom panels show the situation where it

is not taken into account, so the one electron theory.

If we neglect the terms in Eq. 3.21c, the parameters Umm0 and Jmm0 can be related1

to the Hubbard U and Hund’s J [12]

m = m0 ) Umm = U

m 6= m0 ) Umm0 = U � 2J

Jmm0 = J (3.22)

To understand the meaning of U and J , we can look at the picture in Fig. 3.5. This
figure is a schematic view of a system consisting of two degenerate orbitals and initially
one electron in orbital 1. The question is, what is the energy cost to add 1 electron to
this system? We could add this second electron in three ways and the energy cost �E
can be found by applying the Hamiltonian in Eq. 3.21 to the initial state, which gives
0, and to the final state. The three possible energy costs for adding an electron are

1. With opposite spin in the second orbital: �E = U12
2 + U21

2 = U � 2J

2. With opposite spin in the same orbital: �E = U11
2 + U11

2 = U

1Actually there is also a constraint on the Slater integrals which will be defined later in this text, in
(Eq. 3.24), namely the F 4 << F 6.
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3. With the same spin in the second orbital: �E = U12�J12
2 + U21�J21

2 = U � 3J

This o↵ers a schematic view of di↵erent contributions to the U -matrix, but several
approximations have been performed. Therefore, in our method, we follow a di↵erent
strategy and work directly with the full U -tensor, which we parametrize with help of its
expansion in spherical harmonics. This is possible because of the atomic-like orbitals.
The expansion is given by

Um1�1,m2�2,m3�3,m4�4 = ��1,�3��2,�4

2lX

n=0

an(m1,m3,m2,m4)F
n (3.23)

where the �s ensure that the interaction does not change the spin of the electrons. The
parameters an are integrals over products of three spherical harmonics. Their form is
such that they are only non-zero if n is even and n  2l. The Slater integrals Fn are
given by

Fn =

Z 1

0

Z 1

0
drdr0r2r02|�(r)|2|�(r0)|2 rn<

rn+1
>

(3.24)

where � are the atomic radial wave functions and r< and r> denote the lesser and the
greater between r and r0. The parameters U and J from Eq. 3.22 are related to the
Slater integrals F 0, F 2, F 4 and F 6 (these are the only Slater integrals that contribute
for f systems). The Hubbard U corresponds to the zeroth Slater integral F 0 = U and
is usually heavily screened. Therefore calculating F 0 directly from Eq. 3.24 would not
be very sensible. However F 2, F 4 and F 6 do not su↵er as much from this problem and
therefore calculating them is preferable above introducing a parameter. The Hund’s J
for f systems is given by J = 1

6435(286F
2 + 195F 4 + 250F 6) [10].

3.2.5 Double counting

Finally we elaborate a bit more on ĤDC in Eq. 3.7. This term results in the last terms
in Eq. 3 of Fig. 3.4, i.e. (µ +�µat + µDC). The first term µ is the chemical potential
obtained from the DFT-LDA calculation in the first iteration and thereafter modified
to account for the self-energy. When adding the U -tensor, we add a strong Coulomb
repulsion among 4f orbitals. However, this repulsion is already taken into account in
the DFT-LDA Hamiltonian, although it is not described correctly. Therefore one needs
to correct for this double counting with a rigid shift, µDC . Moreover, in HIA, we neglect
the coupling between impurity and bath, when mapping the electronic structure problem
onto SIAM. The term �µat should in principle enforce the conservation of the particle
number between the SIAM and the atomic model obtained in HIA, but in practice is
not needed. These two terms �µat and µDC , are rigid shifts, and are unknown, so they
can sometimes be grouped together into one term. Correcting for the double counting is
a somewhat arbitrary procedure and di↵erent schemes for it have been proposed. Some
double counting schemes used in this licentiate thesis are summarized in Tab. 3.1 and
some examples are shown in Sec. 6.3.

Position of the first (un)occupied peak When comparing calculated spectra to
experimental data, it might be useful to choose a double counting correction such that
the position of one of the peaks in the calculation is exactly the same as in the experiment.
This introduces an extra parameter, namely the position of the first occupied or the first
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Table 3.1: Double counting corrections

Double counting scheme Input Determines

Position of the first (un)occupied peak Nat, Epeak (�µat + µDC)

µ is determined self-consistently

Fully Localized Limit (N) µDC +�µat = HDC(N)

µ is determined self-consistently

Fully Localized Limit (Nat) Nat µDC +�µat = HDC(Nat)

µ is determined self-consistently

unoccupied peak, but it makes comparison much easier. This double counting correction
is implemented such that once µ has been determined to obtain the correct number of
electrons in the global system, �µat + µDC is adjusted to get the correct number of f
electrons. Since the multiplets are well separated by a certain range, �µat + µDC is
still undetermined within this range. Fixing the position of the first (un)occupied peak
determines �µat + µDC univocally.

Fully localized limit Additional parameters, as are needed for the fixed peak double
counting, are not really appreciated if one wants to predict quantities as ab initio as
possible. In that case one could use the fully localized limit (FLL) to approximate the
double counting. In the fully localized limit, the double counting energy is given by

EDC =
1

2
UN(N � 1)� J

N

2

✓
N

2
� 1

◆
(3.25)

where N is the number of correlated electrons as calculated from the local Green’s
function or the closest integer number to N , which we label Nat [34]. The first choice
leads however to a conceptual problem when one investigates the self-energy, but also
the second choice is not without problems. Let us start with N as the number of f
electrons as calculated from the local Green’s function. The self-energy in the Hubbard
I approximation is the atomic self-energy, and therefore depends on Nat, the integer
amount of electrons that is closest to N . Besides that, it depends on the double counting,
which is a function of N in the standard fully localized limit

⌃at[Nat, HDC(N)] (3.26)

This integer number Nat might di↵er from N which is generally non-integer (albeit,
normally close to the integer Nat). In order to make the self-energy internally consistent,
one could use the fully localized limit double counting with atomic occupations [34]. For
a true Hubbard I system, we must stress that N ⇡ Nat, so we are discussing small
changes in HDC . However, these small changes may be very important for us. The FLL
with Nat also leads to some inconsistencies, this time in the Galitskii-Migdal energy. To
obtain the energy correction, we compare the eigenvalue energy obtained from DFT

hĤ0i ⇠ Tr[Ĥ0Ĝ0] (3.27)
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with the total energy obtained in DMFT

hĤ0 + Û � ĤDCi ⇠ Tr[Ĥ0Ĝ] +
1

2
Tr[⌃̂Ĝ]� EDC (3.28)

The energy correction added to the DFT energy by the DMFT cycle is:

Ecorrection ⇠ Tr[Ĥ0Ĝ]� Tr[Ĥ0Ĝ0] +
1

2
Tr[⌃̂Ĝ]� EDC (3.29)

If we now look how the Galitskii-Migdal energy EGM = 1
2Tr[⌃̂Ĝ] changes with N , we see

some inconsistencies when comparing how each term scales. These inconsistencies arise
from the fact that in HIA, the local Green’s function and the impurity Green’s function
do not coincide. The mapping between the Hubbard Model and the SIAM is hence not
exact, which in the DMFT equations would be needed. Although the self-energy in the
lattice problem and the impurity problem match by construction, the Green’s functions
do not match. This results in the following scaling (the leading order Hartree term)
of the di↵erent terms and in particular in the inconsistency in the scaling of the term
EGM � EDC :

FLL ⌃̂ Ĝ EGM EDC EGM � EDC

N ⌃̂at[Nat, HDC [N ]] Ĝ[N ] 1
2Tr[⌃̂Ĝ] EDC [N ] 1

2Tr[⌃̂Ĝ]� EDC [N ]

⇠ UNat ⇠ N ⇠ UNatN ⇠ UN2 ⇠ U(NatN �N2)

Nat ⌃̂at[Nat, HDC [Nat]] Ĝ[N ] 1
2Tr[⌃̂Ĝ] EDC [Nat]

1
2Tr[⌃̂Ĝ]� EDC [Nat]

⇠ UNat ⇠ N ⇠ UNatN ⇠ UN2
at ⇠ U(NatN �N2

at)

In both cases, Tr[⌃̂Ĝ] ⇠ UNatN , whereas the double counting energy that is sub-
tracted scales with EDC ⇠ UN2 or EDC ⇠ UN2

at. If the hybridization is small � ⇡ 0,
then N ⇡ Nat and the error induced by the di↵erence between N and Nat is small. Usu-
ally it is also small compared to the energy di↵erence induced by the change in electron
density. However for the lanthanides, with only a few bonding electrons, the strength of
the bonding is small and the energy di↵erence induced by the change in electron density
is very small. Therefore the error in the energy correction becomes important. To reduce
the error we propose to use the following double counting energy:

EDC =
1

2
UN(Nat � 1)� J

N

2
(
Nat

2
� 1) (3.30)

This double counting correction we used to calculate the cohesive properties as presented
in Paper I and in Sec. 6.1. Another solution to the scaling problem would be to evaluate
Tr[⌃̂atĜat] instead of Tr[⌃̂atĜ]. In the former trace both quantities scale with Nat. In
that case the fully localized limit with atomic occupations would be a very good double
counting. We are planning to implement this in our method in the future. However at
the moment, for a generic ⌃, we usually evaluate Tr[⌃̂impĜimp] = Tr[⌃̂Ĝ], which means
Tr[⌃̂atĜ] for the HIA solver. This is an inheritance of the code which was written to be
able to use various solvers.
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Magnetic cases For the magnetic properties, the double counting issue is complicated
for another reason. There are two di↵erent options for the Hubbard I approximation in
the spin-polarized case: 1. Spin-polarized DFT (LSDA) + U, 2. Non spin-polarized DFT
(LDA) + U. If one combines spin-polarized DFT with the Hubbard I approximation, it
is less clear how to find a good double counting correction. The double counting term
should correct for the f -f exchange that is taken into account in the DFT part and again
in the U -tensor. However it should not correct for the f -d exchange, since this is not
taken into account for by the U -tensor. The problem is that one can not disentangle the
two. To keep the method as clear as possible, we decided to combine non-spin-polarized
DFT with the Hubbard I approximation. We start from a non spin-polarized density
calculated with DFT and add a small field to break the symmetry in the same time as we
add the U -tensor. This results in an (almost) non spin-polarized bare Green’s function

Gat"
0 ' Gat#

0 (Eq. 6 in Fig. 3.4), but in a spin-polarized self-energy ⌃"
imp 6= ⌃#

imp (Eq. 7,8
in Fig. 3.4). This produces a spin-polarized double counting potential, which would
have to be subtracted from the non spin-polarized Hamiltionian in the LDA part (Eq. 3
in Fig. 3.4). Since one wants to subtract those correlation e↵ects that are included in
both the LDA Hamiltonian (non spin-polarized) and in U (spin-polarized), one wants to
subtract a spin independent double counting. Therefore the double counting potential
is set to the average over the two spin channels:

V �
DC =

V "
DC + V #

DC

2
(3.31)

in which V �
DC can be calculated in for example the fully localized limit, where the

occupation number is now spin dependent.
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RSPt-code and LMTOs

The code that has been used in this licentiate thesis is called Relativistic Spin-Polarized
test (RSPt) and is based on a Full-Potential Linear Mu�n-Tin Orbital (FP-LMTO)
method [38]. This method provides a compact, but very accurate basis set, where the
orbitals are constructed to adapt to the crystal structure under consideration. In the
following sections we will explain the basic concepts of LMTOs, and the parameters that
are involved. These sections do not have the aim of containing a complete description
of the electronic structure code RSPt nor of the basis generation in the LMTO method.
They are merely aimed at providing enough background to understand the basis opti-
mization done in Sec. 5.1. In that section we will illustrate how to optimize the basis
for describing the rare earths, in order to obtain a set which is light but su�ciently
complete. It is going to be particularly important to reach a su�cient accuracy while
limiting the computational e↵ort. A more elaborate explanation of di↵erent basis sets
in electronic structure codes can be found in Ref. [29]. More details on the FP-LMTO
basis of RSPt specifically can be found in Refs. [38, 37, 10, 4]. In this chapter I mainly
follow the approach of Torbjörn Björkman in Ref [4].

The LMTO method is based on two main concepts, i.e. the construction of the
Mu�n-Tin Orbitals (MTOs) and the idea of linearization. The strong point of the
MTOs is that they are constructed to optimally describe the region close to the nucleus,
while keeping a reasonable description far away from them. This is done by using
free electron solutions in radial coordinates that are augmented with solutions to the
Schrödinger equation with a spherical potential close to the nuclei. The advantage of
introducing the linearization with respect to the energy is that the computational e↵ort
is reduced significantly, while keeping a su�cient completeness of the basis.
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Figure 4.1: mu�n-tin mold. The division of the space in LMTO resembles a mu�n-tin
mold, i.e. a spherical potential around the atoms (the cake mold) and a constant potential
in between the atoms (in between the cakes the mold is flat). In LMTO-ASA this is
actually the form of the potential. In FP-LMTO it is merely a geometrical separation
that is used to construct the basis functions. Thanks to my friend Laura there is even

something tasty inside the mold.

4.1 Symbols

In the construction of the basis functions, a lot of symbols and functions are needed.
Some modified versions of the spherical harmonics Ylm(r̂) will be used:

Ylm(r̂) = ilYlm(r̂) (4.1)

Clm(r̂) =

r
4⇡

2l + 1
Ylm(r̂) (4.2)

Clm(r̂) = il
r

4⇡

2l + 1
Ylm(r̂) (4.3)

where r̂ denotes the angular variable usually denoted by ✓ and �. For symmetry reasons,
not explained here, it is useful to introduce the operator D⌧ (r̂) that brings r̂ to the local
coordinate system centered at site ⌧ .

4.2 LMTO Basis

In the construction of the LMTOs, the geometry of the problems at hand, that is a
certain arrangement of atoms, is taken into account. The space is divided into two
qualitatively di↵erent regions. In a sphere around the atom, the potential is dominated
by the spherically symmetric Coulomb potential of the nucleus. In the region between
these atomic spheres, the Coulomb potential is screened and the remaining potential is
nearly constant. The space is therefore divided into spheres around the atom (mu�n-tin
spheres), and an interstitial region between the spheres. The name Mu�n-Tin Orbitals
arises from how a spherical potential inside the atomic spheres and the constant potential
in between the atomic spheres would look like. This reminds us of the, although only
two dimensional, mu�n-tin mold (Fig. 4.1), which is used to bake mu�ns or cupcakes.

To construct the basis functions, the solutions �l(r, ✏⌫) of the radial Schrödinger
equation with the spherical average of the Kohn-Sham potential at a certain energy
✏⌫ are used inside the spheres. Here l denotes the orbital angular quantum number.
In the interstitial the potential is almost constant and therefore free electron solutions
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are a natural choice. The solutions of the radial Schrödinger equation with a constant
potential at quantum number 2, are

Nlm(, r) = nl(r)Ylm(r̂) (4.4)

Jlm(, r) = jl(r)Ylm(r̂) (4.5)

where jl are the spherical Bessel and nl the spherical Neumann functions.
Note that in FP-LMTO no geometric approximations to the shape of the potential

are made. However the basis functions are very similar to LMTO in the atomic sphere
approximation (ASA) and a similar partitioning of space into spheres and an interstitial
region is made.

4.2.1 Basis in the interstitial

The basis in the interstitial is based on the free electron solutions in radial coordinates

Klm(, r) = �l+1

⇢
Nlm(, r) if 2 > 0
Nlm(, r)� iJlm(r) if 2 < 0

(4.6)

This choice is suggested by the KKR and MTO methods and gives a bounded function.
By considering a solid with di↵erent atoms in the unit cell, the basis function for i =
{l,m, ⌧ ,} can be written as a Bloch sum over the above mentioned K

 i(k, r) =
X

R

eik·RKl
i

m
i

(i,D⌧
i

(r� ⌧ i �R)) (4.7)

(4.8)

where k is the wave vector andR are the Bravais lattice vectors. To see how the structure
of the solid enters in the basis choice, the equation above is separated into two terms.
The first term is centered at reference Bravais lattice vector R = 0. The second term
is the summation of all K centered at other sites. If we now evaluate the basis function
originating at ⌧ i in the reference frame centered at ⌧ , we get that

 i(k, r)|⌧ = Kl
i

m
i

(i,D⌧
i

(r� ⌧ i))�(⌧ , ⌧ i) (4.9)

+
X

lm

Jlm(i,D⌧ (r� ⌧ ))Blm;l
i

m
i

(i, ⌧ � ⌧ i,k) (4.10)

where Jlm(r) = �lJlm(r) and Blm;l
i

m
i

(i, ⌧ � ⌧ i,k) are the structure constants
or structure functions. These structure constants contain the information about the
structure of the solid.

4.2.2 Basis inside the mu�n-tin sphere

The strength of the LMTOs is the augmentation part. If we were to use Bessel and
Neumann functions all over the space, we would still need a lot to of them describe the
region around the atom reasonably. Instead for the LMTOs the Bessel and Neumann
functions inside the mu�n-tin sphere are replaced by solutions of the radial Schrödinger
equation for a spherical potential at an energy ✏⌫

✓
� d2

dr2
+

l(l + 1)

r2
+ VMT (r)� ✏⌫

◆
r�(✏⌫ , r) = 0 (4.11)



44 CHAPTER 4. RSPT-CODE AND LMTOS

The basis functions inside the mu�n-tin sphere consist of a linear combination of �(✏⌫ , r)

and its energy derivative �̇(✏⌫ , r) =
@�(✏,r)

@✏

���
✏=✏

⌫

evaluated at ✏⌫ . The coe�cients of the

linear combination should be chosen such that the basis functions inside and outside
the mu�n-tin sphere match in value and radial derivative across the sphere boundary.
This matching results in a basis function  i(k, r) consisting of two parts. There is a
contribution originating from the parent site ⌧ i itself plus a sum of structure functions,
that take into account the structure of the solid. In a very short notation, we can write
the basis functions as

 i(k, r)|r⌧ =
X

lm

Ut;lm(✏i,D⌧ rt)⌦tl(✏i,i)Slm;l
i

m
i

(i, ⌧ � ⌧ i,k) (4.12)

where t indexes all sites ⌧ with the same symmetry and

Ulm(✏i, r) = (�lm(✏i, r), �̇lm(✏i, r)) (4.13)

Slm;l0m0(, ⌧ � ⌧ 0,k) =

✓
�(⌧ , ⌧ 0)�(l, l0)�(m,m0)
Blm;l0m0(, ⌧ � ⌧ 0,k)

◆
(4.14)

⌦tl(✏i,i) is the matrix ensuring the correct matching conditions. (4.15)

Note that the tails depend on the quantum number 2, which is called the tail energy,
while the heads of the LMTOs depend on ✏⌫ . This linearization energy ✏⌫ is the energy
at which the Schrödinger equation, Eq. 4.11, for a spherical potential is solved. These
two values are usually treated as independent parameters and should be chosen wisely
to increase the LMTO precision.

4.3 Multiple linearization energies

A problem the of LMTOs in their original formulation, is the description of the intersti-
tial. With a single, energy dependent tail, the interstitial region is not very accurately
described. Especially for non-close-packed structures this is a problem. In LMTO-ASA
one solves this problem by using large overlapping spheres and thereby eliminating the
interstitial region. In the full-potential case, this is not possible. Therefore one should
find a way to refine the description of the interstitial. A way to do this is to use multiple
tails with di↵erent  extending outside the sphere attached to one �l, �̇l combination.
This is exactly the strategy followed by RSPt.

Moreover, for some elements, the basis needs to describe states with the same l,
but di↵erent n. In the rare earths for example, the 5s and 5p states are hybridizing
(especially under compression) and form bands, as well as the 6s, 6p and 5d states. For
l = 0 and l = 1 we have both n = 5 and n = 6. Including basis functions with the same
l but di↵erent n may be very tricky in LMTO, especially when the corresponding bands
start to overlap. To describe this properly, in RSPt all basis functions are included in
one fully hybridizing basis set and the linearization energies are depending on l and n.
To avoid mixing of the semi-core states (e.g. 5s and 5p) with the valence (e.g. 6s and
6p), the linearization energies should be chosen appropriately. A procedure to do this
is to impose for both n (e.g. 5s and 6s) the same logarithmic derivative, but fixing the
wave function for n + 1 to have one node more than for n. In this way the core states
are orthogonal to the valence states and there is no risk of mixing and obtaining an
unphysical basis.
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4.4 Parameters

In this section we will highlight some parameters in the basis set that are not very
obvious to choose. Although these parameters are common in all LMTO codes, the
following analysis will focus on the RSPt implementation.

Mu�n-tin radius: The mu�n-tin radii are variational parameters. To obtain the
best value, they should be varied such as to minimize the energy. However, for a good
basis set, the size of the mu�n-tin radius should not matter too much. In fact, we will
analyze this issue in our optimization of the basis set, in Sec. 5.1.3.

Angular momentum parameters: The angular momentum parameters, i.e. the set
of l needed for a calculation, are chosen to include the atomic l from which the crystal
orbitals are arising. In the case of di↵erent n this includes also the choice of n. Which n
and up to which l we should include among the basis functions, has to be decided case
by case. We always include basis functions for those (n, l) corresponding to the parent
atomic states, which form hybridizing bands in the crystal phase. In LMTO methods it
is not as trivial as in plane wave methods to converge the electron density with respect to
the size of the basis. We discuss this convergence issue for the lanthanides in Sec. 5.1.2
and Sec. 5.1.3.

Tail energy: The tail energy (or energies) 2 is an other variational parameter of the
basis set. The simplest choice would be to set  to zero and this is already remarkably
successful, especially for close packed solids. A finite  is only needed to represent
variations of the wave function in the interstitial region. To successfully describe the
interstitial region, several tails with di↵erent  can be attached to the function inside
the sphere. The choice of the tail energies 2 is not straight forward at all and di↵erent
schemes have been proposed. The default setup of RSPt is a set of three 2. The highest
value represents approximately the average kinetic energy in the interstitial. The lowest
value is chosen such that it can represent the energy of the semi-core states (the states
that are deep in energy, but still hybridizing). The third value is intermediate to these
two extremes, and ensures enough flexibility of the basis set. In Sec. 5.1.3 we will discuss
how the default choice of tail energies performs with respect to other possible choices.

Linearization energy: The linearization energies ✏⌫ are chosen for each n and l. They
can be chosen in several ways. The most natural choice, e.g. setting the linearization
energy to the center of the band, gives a good approximation of �l(✏, r). Other options
are for example to set ✏⌫ to the bottom of the band, to the average kinetic energy of
the interstitial or to zero. A commonly used option for (n, l) in the case that (n � 1, l)
is also included, is to chose the linearization energy such that the function for n is
orthogonalized to the function with the same angular momentum quantum number but
n� 1. This increases the flexibility of the basis and helps avoiding the problem of linear
dependencies in the eigenvalue problem, as mentioned above.
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Computational details

In this chapter we take a closer look at the computational setup for our calculations on
the RE series. We investigate di↵erent aspects of the basis in Sec. 5.1. The e↵ects and
the importance of charge self-consistent calculations versus single shot calculations are
presented in Sec. 5.2.

5.1 Choice of basis for the rare earths

In this section we investigate the di↵erent aspects of the basis, e.g. the number of
basis functions, the tail energies, and the linearization energies, for the lanthanides.
We investigate the basis when treating the 4f electrons as core electrons or as valence
electrons. With 4f as core electrons, we mainly focus on increasing the basis until the
properties under investigation do not change anymore (Sec. 5.1.2). Unlike for plane
wave methods, for LMTO methods there is no straight forward way to increase the basis
until this convergence is reached. The di�culties arise mainly due to the vast amount of
possibilities when choosing the amount of tails and their tail energies. From the results
we try to develop a physical intuition for finding the right basis when simulating the rare
earths with the 4f as valence electrons. These simulations are important, since they are
the starting point for the Hubbard I calculations.

In the lanthanide series, the spin-orbit coupling is important and has to be included
in the calculations. Since in our code spin-orbit coupling is taken into account only
inside the mu�n-tin spheres, one has to chose their size wisely. Without spin-orbit
coupling, the mu�n-tin radius could be treated as a variational parameter, where the
optimal choice minimizes the energy. When including spin-orbit coupling, however, the
Hamiltonian depends on the mu�n-tin radius. Therefore it is not a variational parameter
any longer. Instead we have to choose the mu�n-tin radius as big as possible in order to
have the most complete and realistic Hamiltonian. We also have to choose it constant
across di↵erent volumes [38], since we do not want to vary the amount of spin-orbit
coupling that we include in our calculations. However, the choice of a constant mu�n-
tin radius also means that the size of the interstitial region varies. Hence, it is important
to describe the interstitial region well, in order not to pile up errors. Therefore we need
a basis that is flexible enough to adjust inside big and small interstitial regions and there
should be a minimal dependence on the choice of the mu�n-tin radius. Finding such
a basis will be the main focus of Sec. 5.1.3. But first, we will start with developing a
good notation to specify the basis set one intends to use in a given RSPt calculation.
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The following sections will be rather technical and mainly interesting for people who use
RSPt or similar codes on similar systems.

5.1.1 Notation

The following sections will contain comparisons between di↵erent basis sets. To make
reading as easy as possible, we will denote the basis as follows. We start with the highest
principle quantum number n and the lowest angular momentum quantum number l and
move first towards higher l and after that towards lower n. For RSPt this a logical order
since basis functions with the same l but di↵erent n can not be in the same energy set,
e.g. they have a di↵erent linearization energy. By default the energy sets are ordered
from high n towards lower n from top to bottom and from low l to high l from left to
right. For each energy set, each n and each l we denote:

number-of-tailsset-of-tails: list-of-used-tails(nllinearization-energy-flag)

where one has to provide a separate list of the tail energies 2 and the associated pa-
rameters contained in “set-of-tails”. As an example we explain our first basis:

3↵:1,2,3(6s206p21)2↵:1,2(5d04f�1) 2↵:1,2(5s�15p�1)0(5d04f�1)

The 6s and 6p electrons in energy set 1 are described by three tails (namely tails 1,2 and
3) coming from the tail set ↵ (the exact form will be given below). Their linearization
energy flags are 20 and 21 respectively, which means that they are orthogonalized to the
5s and 5p states of the second energy set. The 5d and 4f basis functions are described
with tails 1 and 2 from, of course, the same tail energy set ↵. Their linearization
energy flags are set to 0 (linearization energy determined by an internal algorithm) and
-1 (linearization energy set to the center of the band) respectively. Higher l are not
included in the basis for this energy set, and the linearization flags of all higher l are set
to 0. Due to the multiple tails in RSPt, it is hardly needed to include basis functions
with higher l than the parent atomic functions. After the 4f basis functions we move
to the second tail energy set and start again with the lowest l. The 5s and 5p semi-core
electrons are described with two tails (1 and 2) and their linearization energy is set to
the center of the band (flag -1). The 5d’s and 4f ’s are not explicitly described as basis
functions in the second energy set, but their linearization flags matter. This is because
the linearization energy enters trough the expansion in Eq. 4.10. To denote that the 5d’s
and 4f ’s are not explicitly included in the basis, they are denoted as described by 0 tails,
but their linearization energy flags are specified. The tail set ↵ has defined 3 tails, with
tail energies 2tail 1 = 0.3 Ry, 2tail 2 = �2.3 Ry and 2tail 3 = �1.5 Ry. Other possible
choices are discussed below. In Fig. 5.1 the density of states for one of the REs is plotted,
together with the value of the tail energies of set ↵. The position of the semi-core states
and the valence band give an indication on how to chose the tail energies. In App. C a
quick look-up table for all the numbers and symbols in the basis notation is given.

5.1.2 Basis with 4f in the core

In the standard model of the lanthanides, the 4f electrons are assumed not to hybridize
with the valence electrons. One possible implementation of this standard model is to
treat the 4f electrons as core electrons, e↵ectively forbidding all hybridization. This
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Figure 5.1: Density of states of one of the REs. The position of the semi-core and valence
states can give a guideline on how to chose the tail energies. The 4f multiplets, as obtained

in HIA, are displayed on top of the [spd] band.

also implies that the 4f states are not included in the construction of the basis for the
valence electrons.

Using the 4f in the core approach, we constructed some di↵erent bases, trying to
increase the flexibility and to converge it with respect to the amount of basis functions.
All tested bases have a so called semi-core to describe the 5s and 5p states. These states
are almost fully occupied and lay at relatively deep energies, but also form bands, to a
certain extent, see Fig 5.1 for a typical density of states of a RE. Describing these states
is very important as they participate in binding under compression. As mentioned above,
in RSPt one can describe these semi-core states by means of an additional linearization
energy set. The valence [6s6p5d] states are described with other linearization energies
and for some bases a third linearization energy set is added to increase the flexibility.
We tried to converge the energy versus volume curve with respect to the basis in a sys-
tematic way. We started from one of the default setups of RSPt and included a third
linearization energy set, containing the 7s and 7p basis functions. On top of that we
added 6d, 6f , 5g and/or 6h to this set. These tests were performed with tail energies
di↵erent from those specified above. This tail energy set, which we denote as �, contains
2tail 1 = 0.3 Ry, 2tail 2 = �2.3 Ry and 2tail 3 = �0.6 Ry.

We report on the convergence of an illustrative example, i.e. the energy versus volume
curves for hcp Pr, as calculated by means of 5 di↵erent choices of the RSPt basis set,
in Fig. 5.2. The calculated points were fitted with the Birch-Murnaghan [3] equation of
state to obtain the equilibrium volume and bulk modulus. For a large enough basis (the
bottom three lines in the figure), the equilibrium volumes do not change more than 0.01
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Å3 and the total energies di↵er only by less than a mRy. These and other tests clearly
show that a good description of the electron density requires two groups of states with
f character. If 4f electrons are included in the core, this means that the valence will
contain both 5f and 6f states.
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Figure 5.2: Energy versus volume curve for Pr calculated with a GGA functional treating
the 4f electrons as core electrons. The di↵erent bases used are

purple = 3�:1,2,3(6s206p21)2�:1,2(5d�15f�1) 2�:1,2(5s�15p�1)0(5d05f�1)

dark blue = 2�:1,2(7s207p216d22)0(6f23)2�:1,2(5g�1)

3�:1,2,3(6s206p21)2�:1,2(5d�15f�1) 2�:1,2(5s�15p�1)0(5d05f�1)

cornflower = 2�:1,2(7s207p216d226f235g06h0)

3�:1,2,3(6s206p21)2�:1,2(5d05f�1) 2�:1,2(5s�15p�1)0(5d05f�1)

light blue = 2�:1,2(7s207p216d226f235g0)

3�:1,2,3(6s206p21)2�:1,2(5d05f�1) 2�:1,2(5s�15p�1)0(5d05f�1)

bright green = 2�:1,2(7s207p21)0(6d22)2�:1,2(6f235g�1)

3�:1,2,3(6s206p21)2�:1,2(5d�15f�1) 2�:1,2(5s�15p�1)0(5d05f�1)

The vertical lines denote the equilibrium volume for the curve with the same color. The
di↵erences in energy are taken with respect to the lowest calculated point of all curves.

5.1.3 Basis with 4f in the valence

As stated before, the naive LDA calculations, with the 4f states described as hybridizing
valence electrons, give poor results when compared to experiment. However it is impor-
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Figure 5.3: Energy versus volume curve for Tm calculated with an LDA functional with
the 4f electrons treated as valence electrons and without spin-orbit coupling. The three

colors denote three di↵erent bases:

yellow = 3↵:1,2,3(6s206p21) 2↵:1,2(5d04f�1) 2↵:1,2(5s�15p�1) 0(5d05f�1)

red = 3↵:1,2,3(6s206p21) 2↵:1,2(5d04f�1) 2↵:1,2(5s�15p�1) 0(5d0) 2↵:1,2(5f�1)

green = 3�:1,2,3(6s206p215d0) 3�:1,2,4(4f�1) 2�:1,2(5s�15p�1) 0(5d0) 3�:1,2,4(5f�1)

The tail energy set ↵ has 2
tail 1 = 0.3 Ry, 2

tail 2 = �2.3 Ry and 2
tail 3 = �1.5 Ry and tail

energy set � has 2
tail 1 = 0.25 Ry, 2

tail 2 = �2.3 Ry, 2
tail 3 = �1.0 Ry and 2

tail 4 = �0.2
Ry. The di↵erent line types (solid, dashed, dotted) belong to di↵erent mu�n-tin radii,
as denoted in the legend in a.u. The di↵erences in energy are taken with respect to the

lowest calculated point of all curves.

tant to investigate when the basis is converged, since this basis enters in the Hubbard I
calculations. For the Hubbard I calculation it is important to keep our basis as compact
as possible, but flexible enough to describe the energy versus volume curve properly. For
reasons explained above, including spin-orbit coupling requires a mu�n-tin radius which
is as big as possible. Moreover this sphere should be kept constant over di↵erent lattice
parameters, which requires a flexible basis, especially in the interstitial region.

Extending the basis: In Fig. 5.3 we reported the energy versus volume curve for
three di↵erent bases for Tm. We deliberately excluded spin-orbit coupling, so that we
are sure that changes in the curves are not due to spin-orbit coupling. This is of course
wrong to get the correct physics of this system, but is the best possible test to analyze
the flexibility of the basis. We started from the default basis setup of RSPt, describing
the s and p valence states with 3 tails, the other valence states as well as the semi-core
states with only two tails. By using the set of tails ↵, as specified in Sec. 5.1.1, this basis
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Figure 5.4: Energy depending on the interstitial volume fraction for Tm. The di↵erent
bases are described in the text and are analogous to the bases tested in Ref. [4] for Pb. The
di↵erences in energy are taken with respect to the lowest calculated point of all curves.

can be described as

3↵:1,2,3(6s206p21)2↵:1,2(5d04f�1) 2↵:1,2(5s�15p�1)0(5d05f�1),

One can notice from the yellow lines in Fig. 5.3 that this simple basis leads to an
energy curve that highly depends on the mu�n-tin radius. We infer that the basis is not
su�ciently flexible to describe the interstitial region well enough. Therefore we included
some 5f basis functions in the second energy set. This is analogous to including a 6f
basis function when we treated the 4f ’s as core, as was done in the previous section.
Adding a 6f basis function made the curve much less dependent on the mu�n-tin radius,
as shown by the red curves in Fig. 5.3. Further expansion of the basis, by adding more
tails for the 4f and 5f or changing the tail energies, does not improve on the dependence
of the curves on the mu�n-tin size, but lowers the total energy a bit. This is illustrated
by the green curves in Fig. 5.3.

Both Figs. 5.2 and 5.3 emphasize how important it is to include extra f ’s in the
basis. If the 4f ’s are treated as core electrons, 5f functions are by default included in
the basis. The results in Fig. 5.2 and other calculations show that it is important to also
include 6f functions in the basis. If the 4f ’s are treated in the valence it is needed to
include also one higher principle quantum number for f . Hence the 5f functions need
to be included in the basis, as can be seen from Fig. 5.3.
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Tail energies: The choice of the tail energies 2 is not straight forward and di↵erent
schemes have been developed and tested. In Ref. [4] di↵erent schemes for choosing the
tail energies have been tested for fcc Pb. We tested similar choices for Tm by still
focusing on the model with 4f in the valence. If the basis is su�ciently complete inside
as well as outside the mu�n-tin sphere, the size of the mu�n-tin radius should not
influence the total energy significantly. We therefore plotted the energy for di↵erent
mu�n-tin radii or di↵erent fractions of the interstitial volume Vinterstitial/Vtotal. The tail
energy schemes tested in Ref. [4] where the following:

Default: the default setup of RSPt. This setup attaches three tails to the valence s and
p states and 2 tails to the semi-core (5s and 5p) states and to the other valence
states (5d and 4f). The precise form of all basis setups will be explained below.

Uppsala setup: The highest tail energy is set to 2 = �0.1 Ry and the lowest is set to
the di↵erence between the lowest semi-core eigenvalue and the Fermi level. Two
other tails are distributed evenly between these two tails. The two lowest tails
are used for the semi-core states and the two highest tails are used for the other
valence orbitals. Having only negative tails make the simulations more stable (no
oscillatory functions are included), but variationally less powerful.

Combination: This setup combines the good points of the Uppsala setup and the
default setup.

A more detailed description of these setups, including their motivation, is given by
Torbjörn Björkman in Ref. [4]. It is interesting to compare these choices with the result
of our previous tests, i.e. the red basis in Fig. 5.3. The latter is denoted with the label
“Incl 5f” in Fig. 5.4, since it includes a 5f basis function. The precise form of the bases
tested in Fig. 5.4 will be described below. The default setup used the tail energy set �
described in Sec. 5.1.2 and basis functions

3�:1,2,3(6s206p21)2�:1,2(5d04f�1) 2�:1,2(5s�15p�1)0(5d05f�1) (5.1)

For the two Uppsala setups, the tail energies where constructed with the scheme de-
scribed above. For Uppsala 1, a standard value was taken for the di↵erence of the lowest
semi-core eigenvalue and the Fermi level, whereas for Uppsala 2 this value was calcu-
lated. This resulted in the following tail energies.

Uppsala 1: � = {2 = �0.1,�0.5,�1.2,�2.3} Ry
Uppsala 2: ✏ = {2 = �0.1,�0.96� 1.82� 2.68} Ry.

Apart from the tail energies, the basis functions were the same. Uppsala 1:

2�:1,2(6s206p215d04f�1) 2�:3,4(5s�15p�1)0(5d05f�1) (5.2)

Uppsala 2:
2✏:1,2(6s206p215d04f�1) 2✏:3,4(5s�15p�1)0(5d05f�1) (5.3)

For the combination of the default and the Uppsala setup, the following tail energy set
was used ⇣ = {2 = �0.1,�0.5,�1.2,�2.3, 0.1} Ry, where the last tail (0.1 Ry) was
varied such that the tail energy 2 was set to the value of the average kinetic energy in
the interstitial. The following basis functions were used

3⇣:1,2,5(6s206p215d04f�1) 3⇣:3,4,5(5s�15p�1)0(5d05f�1) (5.4)
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Figure 5.5: Energy versus volume curve for Tm calculated with an LDA functional with
the 4f electrons treated as valence electrons and with spin-orbit coupling. The two colors

denote two di↵erent bases:

yellow = 3↵:1,2,3(6s206p21)2↵:1,2(5d04f�1) 2↵:1,2(5s�15p�1)0(5d05f�1)

dark green = 3�:1,2,3(6s206p215d0)3�:1,2,4(4f�1) 2�:1,2(5s�15p�1)0(5d0)3�:1,2,4(5f�1)

where tail energy set ↵ has 2
tail 1 = 0.3 Ry, 2

tail 2 = �2.3 Ry and 2
tail 3 = �1.5 Ry

and tail energy set � has 2
tail 1 = 0.25 Ry, 2

tail 2 = �2.3 Ry, 2
tail 3 = �1.0 Ry and

2
tail 4 = �0.2 Ry. The di↵erent line types (solid, dashed, dotted, . . . ) belong to di↵erent

mu�n-tin radii, as denoted in the legend in a.u.

The “Incl 5f” basis used the ↵ tail energy set described in Sec. 5.1.1 and basis functions

3↵:1,2,3(6s206p21)2↵:1,2(5d04f�1) 2↵:1,2(5s�15p�1)0(5d0)2↵:1,2(5f�1) (5.5)

As can be seen in Fig. 5.4 the default setup, the combination and the setup that in-
cludes the 5f basis functions perform better than the Uppsala setups for Tm. For small
interstitial volume fractions, which we are finally interested in, the basis that includes
the 5f functions performs best.

We can finally analyze the e↵ects due to the inclusion of spin-orbit coupling. In
Fig. 5.5 we show when including spin-orbit coupling, the curves change with di↵erent
mu�n-tin size. For the simple basis (yellow) the di↵erences are due to two e↵ects. The
first origin is the poor basis, as it was shown in Fig. 5.3. The second cause is the di↵erent
amount of spin-orbit coupling taken into account depending on the mu�n-tin size. For
the extended basis (green) we know now that the di↵erences are mainly due to that the
spin-orbit coupling is only taken into account inside the mu�n-tin region. The curves
di↵er therefore slightly in energy. However the minimal volume is still quite similar for
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the di↵erent curves. To describe the physics as correctly as possible, one would like the
mu�n-tin region to be as big as possible and constant over the di↵erent volumes under
consideration.

In conclusion we propose that the following basis

3↵:1,2,3(6s206p21)2↵:1,2(5d04f�1) 2↵:1,2(5s�15p�1)0(5d0)2↵:1,2(5f�1) (5.6)

o↵ers a good compromise between being su�ciently flexible and still quite small. We
used this basis for the calculations on the trivalent rare earths. For the divalent elements
it was found to be important to fix the linearization energy of the 5d orbitals to the center
of the band

3↵:1,2,3(6s206p21)2↵:1,2(5d�14f�1) 2↵:1,2(5s�15p�1)0(5d�1)2↵:1,2(5f�1) (5.7)

Finally we would like to stress that the REs are a particularly di�cult case. All the
above mentioned optimizations are usually not of great importance, but for the RE they
are. Due to the very weak bonding in the REs, the energy versus volume curve is very
shallow and minor errors can become important.

5.2 Charge self-consistent versus single shot

In Sec. 3.2.3 we have explained how the Hubbard I calculations are done. In Fig. 3.4
a scheme was sketched to illustrate the various steps to follow. Starting from the
Kohn-Sham Hamiltonian and using the atomic self-energy, one finally arrives at the
one-electron Green’s function (Eq. 9 in Fig. 3.4). The results obtained from this calcula-
tion are often referred to as “single shot”. One can, however, recalculate the Kohn-Sham
potential in the DFT part, taking into account the new electron density modified by the
self-energy. When repeating this until the density is converged, this procedure is called
a charge self-consistent calculation. In this section we investigate the di↵erence between
both methods.

In Figs. 5.6 and 5.7 we display for some of the rare earths the energy versus volume
curve for a charge self-consistent calculation and for a single shot calculation. In all cases
the single shot calculations results in a higher energy than the charge self-consistent
calculations. For the light rare earths, La, Pr and Pm, the results for a charge self-
consistent simulation and for a single shot calculation are very similar. The divalent
Eu has very di↵erent results depending on whether the calculation was done charge
self-consistently. The single shot calculation largely overestimates the volume and also
the bulk modulus. The latter can be concluded from the fact that �E1sh >> �Ecsc

on a similar volume range. For the heavy rare earths, Gd, Ho and Tm, the single shot
simulation largely underestimates the volume and overestimates the bulk modulus. For
Lu, which has a full 4f shell the di↵erence is again very small.

To explain the di↵erence between the single shot results and the charge self-consistent
results, it is important to look at the starting point of these simulations, e.g. the plain
DFT simulation with the 4f electrons treated as band like electrons. This band-like
treatment results in the 4f electrons erroneously participating in the bonding and there-
fore in a large overestimation of the bonding and hence underestimation of the volume.
In the early RE this e↵ect can be clearly seen. In the late RE a second error occurs,
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which has the opposite e↵ect. In the late RE, when treating the 4f electrons band-like,
part of the density with [spd] character is transformed to states with an f character.
This results in a decrease of [spd] electrons, which are the main contributors to the
bonding. Less bonding leads to a larger volume. Because of these two compensating
errors in the late RE, the volume calculated with the 4f electrons treated as band-like,
is quite close to the actual volume. In Tab. 5.1 the amount of [spd] and f character in-
side the mu�n-tin sphere is displayed, together with the relative volumes, for the DFT
simulation and the HIA simulations.

The single shot HIA removes most of the f contribution to the bonding. For the
early RE, this results in a slight underestimation of the binding and hence a slight
overestimation of the volume after the single shot procedure. Adding HIA self-energy to
the potential in a charge self-consistent way improves the description of the [spd] valence
electrons and slightly decreases the volume.
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Figure 5.6: The di↵erence in the energy versus volume curve in case of a charge self-
consistent calculation (green dots, left axis) and a single shot calculation (blue dots, right
axis) for some light rare earths. Note that La has 0 f electrons and the Eu is divalent.

Also note the di↵erent axes and their di↵erent range especially for Eu.

For the heavy RE, the e↵ect of the removal of the f contribution to the bonding, is
counteracted by an other e↵ect. The HIA also seems to restore the correct 4f occupation.
This gives rise to an increase in [spd] electrons, which results in a drastic increase of
the binding. After the single shot HIA ,the e↵ect of the increase in [spd] electrons is
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much bigger then the e↵ect of the removal of the f electrons. Hence the volume is
largely underestimated. Allowing the potential to adjust in a charge self-consistent way
improves the description of the [spd] valence electrons. The amount of [spd] character
inside the mu�n-tin sphere increases, or in other words more of the [spd] density is inside
the mu�n-tin sphere and less outside. This results in less bonding and hence a larger
volume.

Last but not least, we arrive at the middle element Eu, where we find a somewhat
unexpected behavior. The plain DFT simulation largely underestimates the volume.
This e↵ect arises from the 4f contribution to the bonding and the slight overestimation
of the [spd] character of the valence electrons. After the single shot HIA procedure, the
volume is hugely overestimated. This is due to the removal of the f contribution to
the bonding and the erroneous shift of [spd] to f character. The charge self-consistent
description improves the description of the [spd] valence electrons. The shift of [spd]
to f character is counteracted and the [spd] electrons slightly move from the mu�n-tin
sphere to the interstitial. Both result in an increase of the bonding, which results in a
smaller volume compared to the single shot procedure.
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Figure 5.7: The di↵erence in the energy versus volume curve in case of a charge self-
consistent calculation (green dots, left axis) and a single shot calculation (blue dots, right
axis) for some heavy rare earths. Note that Lu has a completely filled 4f -shell. Also note

the di↵erent axes, with quite di↵erent ranges.
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Table 5.1: Di↵erences between DFT, HIA single shot (1sh) and HIA charge self-consistent
(csc) simulations. The numbers are quite approximate and represent the average of the
electrons density projected onto the [spd] or f orbitals inside the mu�n-tin sphere. Es-
pecially for the [spd] electrons a significant amount will be outside the mu�n-tin sphere.
The volume is reported to be much (<<) or slightly (<) smaller, much (>>) or slightly

(>) bigger or equal (⇡) than/to the HIA charge self-consistent volume.

El [spd] in MT f Volume
La DFT 1.4-1.56 0.1 <

1sh 1.42-1.60 0.1 ⇡
csc 1.43-1.60 0.1

Pr DFT 1.34-1.50 2.16 <<
1sh 1.38-1.55 2.13-2.16 >
csc 1.37-1.52 2.14-2.17

Pm DFT 1.16-1.39 4.34 <<
1sh 1.31-1.52 4.13-4.16 ⇡
csc 1.32-1.53 4.12-4.16

Eu DFT 0.9-1.2 6.55-6.60 <<
1sh 0.8-0.95 7.4 >>
csc 0.7-0.9 7.07

Gd DFT 1.01-1.26 7.46-7.47 <
1sh 1.23-1.49 7.07-7.09 <<
csc 1.31-1.63 7.05-7.07

Ho DFT 1.00-1.20 10.52-10.56 >
1sh 1.28-1.49 10.03-10.04 <<
csc 1.38-1.65 10.03-10.04

Tm DFT 0.9-1.14 12.5-12.55 >
1sh 1.21-1.47 12.0 <<
csc 1.29-1.54 12.01-12.02

Lu DFT 1.37-1.58 13.96 >
1sh 1.37-1.57 13.97-13.98 ⇡
csc 1.37-1.57 13.97-13.98



Chapter 6

Results

This chapter is an extension to the results section presented in Paper I. Instead of
repeating the same presentation of our results, we use this chapter to compare our
findings to those obtained by other scientists with other methods. It might therefore be
useful to first read Paper I and thereafter continue with this chapter. The parameters
used in the HIA calculations presented here are the same as those reported in Paper I,
unless otherwise specified. In Sec. 6.1 we compare the obtained cohesive properties to
the results from A. Delin et al. [9], P. Söderlind et al. [35], P. Strange et al. [36] and S.K.
Mohanta et al. [32]. In Sec. 6.2 we compare our results on the magnetic moments to the
results from P. Söderlind et al. [35] and S.K. Mohanta et al. [32]. In Sec. 6.3 we compare
the photoemission spectra for some di↵erent settings and investigate the consequences
of the Atomic Sphere Approximation used by S. Lebègue et al. [28, 27].

6.1 Cohesive properties

In Fig. 6.1(e) and 6.2(d) we present our results on the equilibrium volume and bulk
modulus for the RE series, calculated within the Hubbard I approximation. We compare
these to the calculations by other authors [9, 35, 36, 32] that used di↵erent methods than
HIA. Here follows a short description of these methods and their results.

A. Delin et al. [9] have calculated the cohesive properties for the RE series, treating
the 4f electrons as core electrons. In this way the 4f electrons can not possibly hybridize,
which is compatible with the standard model of the lanthanides. The approximated
exchange correlation functionals still describe the 4f orbitals not correctly, but since
they can not hybridize with the valence electrons, they can not influence the bonding
properties. The results of A. Delin et al. from Ref. [9], are reprinted in Figs. 6.1(a) and
6.2(a).

P. Söderlind et al. [35] also calculated the cohesive properties treating the 4f elec-
trons as core electrons. The results are reprinted together with the above mentioned
calculations of A. Delin in Fig. 6.1(a). However the authors of Ref. [35] mainly consid-
ered the 4f electrons as band electrons, treating them either as spin-polarized (SP), or
spin-polarized including spin-orbit coupling (SO), or even spin-polarized with spin-orbit
coupling and orbital polarization (OP). The latter method adds an energy term that is
proportional to the square of the orbital moment to the total energy. This takes into
account the intra-atomic interactions corresponding to the Hund’s rules. The results
from Ref. [35] are reprinted in Figs. 6.1(b), 6.1(c) and 6.2(b).
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P. Strange et al. [36] calculated the equilibrium volume of the RE series going be-
yond plain DFT by applying the Self Interaction Correction (SIC). This removes the
spurious interaction of an electron with itself, which arises in plain DFT due to that
an approximate exchange cannot cancel exactly the unphysical term in VHartree. The
volumes calculated by P. Strange et al. [36] are reprinted in Fig. 6.1(d).

S.K. Mohanta et al. [32] calculated the cohesive properties of the second half of the
RE series including correlation e↵ects with the LDA+U scheme. The LDA+U scheme
includes a U -term that takes the correlation e↵ects of the localized electrons into account.
In the LDA+U scheme only the static Hartree-Fock like interactions are taken into
account. The starting Hamiltonian is exactly the same as Eq. 3.7 and the problem is
also formally solved via DMFT. However, the SIAM is then solved in the Hartree-Fock
approximation, which means that this theory is a mean-field theory for both space and
quantum degrees of freedom. The results of S.K. Mohanta et al. [32] are reprinted in
Figs. 6.1(d) and 6.2(c).

The results of the above mentioned methods, are displayed for comparison with the
Hubbard I approximation. Treating the 4f electrons as core electrons (Fig. 6.1(a)) is
compatible with the standard model of the lanthanides. The trend in the volume across
the series is in agreement with experiment for the heavy REs. However, for the light
RE the trend is not so well-captured. This is probably due to some small hybridiza-
tion of the 4f ’s that is present in the light RE. Also the bulk modulus (Fig. 6.2(a)) is
found quite close to experiment. Although this methods works very well for the cohesive
properties, the spectral properties are not accessible by this method. Treating the 4f
electrons as band electrons, including either spin-polarization (SP), or spin-polarization
and spin-orbit coupling (SO), or even spin-polarization and spin-orbit coupling and or-
bital polarization (OP) (Figs. 6.1(b) and 6.1(c)) does not quite well capture the trend
in the volume across the series. For the light RE the trend is even opposite to the trend
in experiment. This is probably because the 4f electrons are described band-like, which
gives them a very itinerant character and a great contribution to the bonding. Our
own tests with the 4f as valence electrons (including spin-polarization and spin-orbit
coupling) pointed towards two compensating errors for the late REs. On one hand, the
treatment of the 4f electrons as valence electrons results in a 4f contribution to the
bonding. On the other hand it results in a decrease in the amount of 5d character of
the valence band (compensated by an increase in the amount of 4f character). This
decrease in the strongly binding d electrons results in a decrease of the bonding. These
two compensating errors might be the reason why the trend in the volume across the
heavy REs is not that bad. The SIC method (Fig. 6.1(d)) seems to reproduce the trend
in the volume across the series, although it is strictly speaking not completely compat-
ible with the standard model of the lanthanides. P. Strange et al [36] did not provide
values for the bulk modulus. The main advantage of SIC is that it is a parameter free,
entirely self-contained method. It reproduces the equilibrium volume very well and also
the total energy di↵erence between the divalent and trivalent state is found in very good
agreement with experiment [36]. However, spectroscopies are not available directly, as
SIC generally pushes correlated states too far below the Fermi level. Moreover it does
not capture the multiplet e↵ect since it is a single determinant, static mean field so-
lution. The hybridization of the f states is generally overestimated, wherefore it is
not completely compatible with the standard model of the lanthanides. The GGA+U
method (Fig. 6.1(d)) seems to reproduce the trend in the volume of the late REs very
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well. Judging on only the Sm volume, GGA+U probably does not capture the trend
in the volume across the light RE series. The GGA+U bulk modulus (Fig. 6.2(c)) has
the correct order of magnitude for the late RE. However, also this method is not able
to correctly reproduce the spectral features as can be seen in the appendix of Paper I.
Since GGA+U is essentially a single particle method, this method might give the correct
electron density, but is not able to capture the many-body transitions that constitute
the spectra.
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Figure 6.1: Equilibrium volume per atom: The red solid dots are experimental data from
Ref. [15] for the volumes and from Ref. [14] for the bulk moduli. All other dots are
calculations with various methods, as explained in the legend and captions to the di↵erent

figures. The di↵erent methods are described in the main text.
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Figure 6.2: Bulk modulus: The red solid dots are experimental data from Ref. [15]. All
other dots are calculations with various methods explained in the legend and captions to
the di↵erent figures. The di↵erent methods are described in the main text. The slightly
lighter dots in the HIA calculation belong to points that are currently not yet completely

converged with respect to the number of k points.
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6.2 Magnetic Moments

In Paper I, the saturation moments are presented and they are here repeated in Fig. 6.3(a).
The theoretical values belong to the 4f moment in a field that is high enough and for a
temperature that is low enough to select only the lowest multiplet. Under the influence
of a field, the degenerate J multiplet splits into |J, Jzi states, which are separated by
an energy proportional to the strength of the magnetic field. The temperature in the
simulations in chosen such that kBT is smaller than this separation and therefore only
the lowest multiplet is selected. In Fig. 6.3(c) and 6.3(d) the contribution of the f spin
moment and f orbital moment are presented separately. Results from P. Söderlind et
al. [35] for the trivalent RE’s, obtained with a 4f band model including spin-polarization,
spin-orbit coupling and orbital polarization, and from S.K. Mohanta et al. [32] for the
heavy RE’s, obtained with GGA+U, are added for comparison. The 4f band model used
by P. Söderlind et al. [35] shows the strongest discrepancy with the moments expected
from Hund’s rules and those obtained by the HIA. The HIA clearly overestimates the
saturated moments for the early RE’s and underestimates them for the late REs. For
the light REs, in particular for Ce, the largest error comes from neglecting a still finite
hybridization. Across the entire series, instead, an other error is due to the contribution
of the [spd] electrons to the total moment, since the experiments are carried out at mod-
erately high fields, which polarizes the valence electrons. Therefore an estimation of the
[spd] moment is plotted in Fig. 6.3(b). We subtract the experimental moment from our
HIA results for the f moment. We added the [spd] contribution to the total moment
calculated with the 4f in the core model.
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Figure 6.3: Magnetic moments: Di↵erent methods are compared, including the Hund’s
rules, the present method (HIA), the 4f band including orbital polarization (OP) by P.
Söderlind [35] and the GGA+U by S.K. Mohanta [32]. The red dots are experimentally
measured saturated moments taken from Ref. [23] (Table 1.6). The highest experimental

value for Ce is taken from Ref. [11].
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6.3 Spectra

In Paper I, the photoemission and inverse photoemission spectra of all REs have been
reported. In this section we discuss only a few REs in order to compare the spectra
for di↵erent double counting schemes and di↵erent exchange correlation functionals.
Moreover we will compare our results to the results obtained by S. Lebègue et al. [28, 27],
who used the atomic sphere approximation (ASA).

In Fig. 6.4 in the first and second row, we compare two double counting schemes. The
first double counting scheme is the fixed peak (FP) double counting, where the double
counting energy is chosen such that the first occupied (or unoccupied) peak is fixed to
its experimental value. The second double counting scheme is the fully localized limit
(FLL), which is explained in Sec. 3.2.5. Changing from FP to FLL results mainly in a
rigid shift (towards lower energies) of the f spectrum compared to the [spd] spectrum.

In Fig. 6.4 in the second and third row, we compare the LDA and GGA exchange
correlation functionals for the FLL double counting. Tiny di↵erences can be observed,
such as the fact that GGA seems to shift the peaks to slightly higher energies, which
results in a slightly better agreement with experiment.

In Fig. 6.5 we compare our FP-LMTO method to the LMTO-ASA method used
by S. Lebègue et al. [28, 27], also employing the HIA. There seem to be three main
di↵erences between the present calculations and the calculations done by S. Lebègue et
al. We used a FP-LMTO code, whereas S. Lebègue et al. performed the calculations
within the atomic sphere approximation. Moreover S. Lebègue et al neglected all crystal
field e↵ects. And last, S. Lebègue et al. write in Ref. [28] that they use a temperature
close to zero in order to populate only the lowest multiplet. We, however, use a bigger
temperature, which might give rise to a bit di↵erent initial occupations of the multiplets.

The most striking di↵erences were found in the BIS spectra of Pr, Nd and Sm, as well
as in the XPS spectra of Tb and Dy. In Fig. 6.5 we therefore present the BIS spectra for
Pr and Nd and the XPS spectra for Tb and Dy. We compare the experimental spectra
to the spectra calculated with LMTO-ASA [28, 27] and with FP-LMTO (present study).
In the present study, as well as in the study of S. Lebègue et al. [28, 27], U = 7 eV was
used. The calculated J ’s are similar up to tens of meV. Two main di↵erences are found
between the FP and ASA results. Firstly the relative heights of the peaks di↵er, which is
displayed in the plots. The FP-LMTO methods finds better agreement with experiment
regarding the relative heights of the peaks. The second di↵erence can be found in Paper
I and regards the little hump in the XPS spectrum between -1.5 and 0 eV. For the light
elements this hump was not captured by the LMTO-ASA method [28], whereas the FP
method captures it quite well. It appears to be mainly due to the [spd] contribution to
the spectral function. Note that in Fig. 6.5 all FP-LMTO results and the LMTO-ASA
results for the light RE are total spectral functions, whereas the LMTO-ASA results
for the heavy RE contain only the f contribution to the spectral function, since these
results are the only once reported in Ref. [27]. One can therefore not see whether the
LMTO-ASA method captures the hump for the heavy REs or not.
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Figure 6.4: Spectra for Nd, Tb and Dy: The first and second row show the di↵erence
between the fixed peak (FP) double counting and the fully localized limit (FLL) double
counting. The second and third row show the di↵erence between LDA and GGA function-

als. The red dots are experimental data from Ref. [26].
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Figure 6.5: BIS spectra for Pr, Nd and XPS spectra for Tb and Dy: Comparison between
spectra calculated with FP-LMTO (present study) and LMTO-ASA (S. Lebègue et al. [28,
27]). The FP-LMTO spectra are smeared compared to the spectra displayed in Fig. 6.4

for easy comparison. The red dots are experimental data from Ref. [26].



Chapter 7

Outlook

In this licentiate thesis and in Paper I we show that the FP-LMTO LDA+HIA method
reproduces the cohesive properties like equilibrium volume and bulk modulus for the
REs. We also find an excellent agreement between theory and experiment for the pho-
toemission and inverse photoemission spectra of the valence band, and we reproduce the
spin and orbital moments of these elements. However there are still some open questions
and unsolved problems. One of these is the inclusion of crystal field e↵ects. For some of
the REs these e↵ects are very important. A good description of the crystal field would
be helpful for investigating the magnetic moment, critical temperature and magnetic
anisotropy energy of permanent magnets including REs. An other interesting topic to
investigate is the contribution of the [spd] polarization to the total moment. For this
it would be nice to describe the [spd] electrons charge self-consistently in spin-polarized
simulations. However this is a bit complicated, since it is not so straightforward which
double counting scheme to use in the spin polarized case. A small technical improvement
that could be done is the evaluation of Tr[⌃̂atĜat] instead of Tr[⌃̂atĜ] in the Galitskii-
Migdal energy. This improves the adequateness of the FLL with atomic occupations
double counting scheme, as was explained in Sec. 3.2.5. To really make sure that the
HIA is the best way to calculated the lanthanides, it is needed to know if HIA predicts
the correct crystal structures. We did some preliminary tests on Nd, which seem to give
the correct structures. However, further investigations, including the other REs and
under variable pressures, still have to be done.





Appendix A

Finding the multiplets in Nd

In this appendix the multiplets in the f3 ! f2 transition in Nd are constructed. This
is a sort of recipe how to construct the multiplets, which I have probably learned in my
undergraduate studies. Unfortunately I have also forgotten it. . . For me learning it again
was an eye opener and made a lot of things clearer. Therefore I wrote the example of
Nd down.

To construct the many body multiplets after the f3 ! f2 transition in Nd, one has
to write down all the ways in which one can divide two electrons over 7 orbitals or 14
spin orbitals. This can be done in 14⇤13

2 = 91 ways. In Tab. A.1 I listed all of them in
a compact way. I listed them in 5 groups. The first group is special, it contains a spin
pair in one orbital, which can be ml = �3,�2,�1, 0, 1, 2, 3. The second group considers
two spin up in di↵erent orbitals. The first spin up can be in ml = �3,�2,�1, 0, 1, 2, 3
and the second can be in all possible orbitals with ml bigger than that of the first. The
other three groups have the same form, but with one up and one down, with one down
and one up and finally with two spin down electrons.

The next step in the multiplet recipe is to construct a table denoting how many
states we have for each Sz and Lz, see Tab. A.2. The final step is to obtain the possible
S,L multiplets from this table. We notice that the highest possible L = 6, since the
highest possible Lz = 6, for this L we have only Sz = 0 and therefor S = 0. We can
thus highlight the S = 0, L = 6 multiplet as is done in Tab. A.3. In the following table
(Tab. A.4) we have subtracted the S = 0, L = 6 multiplet and highlighted the next
biggest multiplet S = 1, L = 5. This procedure we follow until nothing is left, displayed
in Tab. A.5 till A.9. This procedure gave us the following multiplets: 1I6, 3H4,5,6, 1G4,
1S0, 3F2,3,4, 1D2 and 3P0,1,2.
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Table A.1: All possible ways to divide two electrons in 7 orbitals denoted with �3  m
l


3. The states are grouped, such that the red arrow can be also in the position of the red
dots. The total S

z

and L
z

are given in the subsequent columns. Where all possibilities
for L

z

are listed, depending on where the red arrow is. In the last column the number of
states in this group is given. The total number of states is 21 + 21 + 21 + 21 + 7 = 91 as

expected.

-3 -2 -1 0 1 2 3 Sz Lz #
"# . . . . . . . . . . . . . . . . . . 0 -6,-4, -2,0,2,4,6 7
" " . . . . . . . . . . . . . . . 1 -5, -4,-3,-2,-1,0 21

" " . . . . . . . . . . . . -3, -2, -1,0,1
" " . . . . . . . . . -1,0,1,2

" " . . . . . . 1,2,3
" " . . . 3,4

" " 5
Same for " # 0 -5,-4,-3,-2,-1,0, 21

-3,-2,-1,0,1,-1,0,1,2,
1,2,3,3,4,5

Same for # " 0 -5,-4,-3,-2,-1,0, 21
-3,-2,-1,0,1,-1,0,1,2,
1,2,3,3,4,5

Same for # # -1 -5,-4,-3,-2,-1,0, 21
-3,-2,-1,0,1,-1,0,1,2,
1,2,3,3,4,5

Table A.2: Number of states with all possible S
z

and L
z

.

Sz \Lz -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-1 0 1 1 2 2 3 3 3 2 2 1 1 0
0 1 2 3 4 5 6 7 6 5 4 3 2 1
1 0 1 1 2 2 3 3 3 2 2 1 1 0

Table A.3: S = 0 and L = 6 multiplet 1I6.

Sz \Lz -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-1 0 1 1 2 2 3 3 3 2 2 1 1 0
0 1 2 3 4 5 6 7 6 5 4 3 2 1
1 0 1 1 2 2 3 3 3 2 2 1 1 0
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Table A.4: S = 1 and L = 5 multiplet 3H4,5,6.

Sz \Lz -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-1 0 1 1 2 2 3 3 3 2 2 1 1 0
0 0 1 2 3 4 5 6 5 4 3 2 1 0
1 0 1 1 2 2 3 3 3 2 2 1 1 0

Table A.5: S = 0 and L = 4 multiplet 1G4.

Sz \Lz -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-1 0 0 0 1 1 2 2 2 1 1 0 0 0
0 0 0 1 2 3 4 5 4 3 2 1 0 0
1 0 0 0 1 1 2 2 2 1 1 0 0 0

Table A.6: S = 1 and L = 3 multiplet 3F2,3,4.

Sz \Lz -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-1 0 0 0 1 1 2 2 2 1 1 0 0 0
0 0 0 0 1 2 3 4 3 2 1 0 0 0
1 0 0 0 1 1 2 2 2 1 1 0 0 0

Table A.7: S = 0 and L = 2 multiplet 1D2.

Sz \Lz -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-1 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 2 3 2 1 0 0 0 0
1 0 0 0 0 0 1 1 1 0 0 0 0 0

Table A.8: S = 1 and L = 1 multiplet 3P0,1,2.

Sz \Lz -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-1 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 2 1 0 0 0 0 0
1 0 0 0 0 0 1 1 1 0 0 0 0 0

Table A.9: S = 0 and L = 0 multiplet 1S0.

Sz \Lz -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0





Appendix B

Direct Coulomb and Coulomb
exchange

In this appendix the math is done for obtaining Eq. 3.21 from the third term in Eq. 3.7.
Note that we will consider only intra-site and intra-shell interactions, which means we
can omit the site index and shell index and the tensor can be expressed as

Um1,m2,m3,m4 (B.1)

where m is the magnetic quantum number belonging to the orbital quantum number l
under consideration. Note moreover that the Coulomb repulsion does not touch the spin,
therefore ��1,�3��2,�4 . For real valued wave functions and in the case that F 2 >> F4,
only four terms in the U -tensor are not equal to zero. These componenents correspond
to the cases where m1 = m2&m3 = m4, m1 = m3&m2 = m4, m1 = m4&m2 = m3

and m1 = m2 = m3 = m4. We can rewrite the third term of the Hamiltonian in Eq. 3.7
without the sum over R, where we separate the above mentioned cases into Eq. B.2a,
Eq. B.2b, Eq. B.2c and Eq. B.2d respectively.

ĤCoulomb =
1
2

P
m1�,m2�0,
m3�,m4�0

Um1,m2,m3,m4 ĉ
†
m1� ĉ

†
m2�0 ĉm4�0 ĉm3� =

1
2

P
m,m0

m 6=m0

P
�,�0 Um,m,m0,m0 ĉ†m� ĉ

†
m�0 ĉm0�0 ĉm0� (B.2a)

+1
2

P
m,m0

m 6=m0

P
�,�0 Um,m0,m,m0 ĉ†m� ĉ

†
m0�0 ĉm0�0 ĉm� (B.2b)

+1
2

P
m,m0

m 6=m0

P
�,�0 Um,m0,m0,mĉ†m� ĉ

†
m0�0 ĉm�0 ĉm0� (B.2c)

+1
2

P
m

P
�,�0

� 6=�0
Um,m,m,mĉ†m� ĉ

†
m�0 ĉm�0 ĉm� (B.2d)

We will rewrite this equation term by term, by anti commuting the creation and annihi-
lation operators until we obtain number operators (if possible) or until m0 is right from
m. We skip the factor 1/2 and the sum for a while and write only the surviving terms.
Term B.2a gives zero if � = �0. For � 6= �0 we obtain:

�Um,m,m0,m0 ĉ†m� ĉ
†
m�̄ ĉm0� ĉm0�̄ (B.3)
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where we wrote �̄ to denote the opposite spin of �. The next term B.2b contributes for
both � = �0 and � 6= �0, it gives respectively:

Um,m0,m,m0 n̂m�n̂m0� (B.4a)

Um,m0,m,m0 n̂m�n̂m0�̄ (B.4b)

where n̂ is the number operator. The third term B.2c contributes as well for both � = �0

and � 6= �0:

�Um,m0,m0,mn̂m�n̂m0� (B.5a)

�Um,m0,m0,mĉ†m� ĉm�̄ ĉ
†
m0�̄ ĉm0� (B.5b)

Finally the last term B.2d contributes only for � 6= �0 as can already be seen in the sum:

Um,m,m,mn̂m�n̂m�̄ (B.6)

Now we will regroup them:

ĤCoulomb =
1
2

P
m,m0,� Um,m0,m,m0 n̂m�n̂m0�̄ (B.7a)

+1
2

P
m,m0,�
m 6=m0

�
Um,m0,m,m0 � Um,m0,m0,m

�
n̂m�n̂m0� (B.7b)

�1
2

P
m,m0,�
m 6=m0

Um,m,m0,m0 ĉ†m� ĉ
†
m�̄ ĉm0� ĉm0�̄ (B.7c)

�1
2

P
m,m0,�
m 6=m0

Um,m0,m0,mĉ†m� ĉm�̄ ĉ
†
m0�̄ ĉm0� (B.7d)

This regrouping was done as follows: B.4b + B.6 ! B.7a, B.4a + B.5a ! B.7b, B.3 !
B.7c and B.5b ! B.7d. This can now be written as

ĤCoulomb =
1
2

P
m,m0,� Umm0 n̂m�n̂m0�̄ (B.8a)

+1
2

P
m,m0,�
m 6=m0

(Umm0 � Jmm0) n̂m�n̂m0� (B.8b)

�1
2

P
m,m0,�
m 6=m0

Jmm0

⇣
ĉ†m� ĉ

†
m�̄ ĉm0� ĉm0�̄ + ĉ†m� ĉm�̄ ĉ

†
m0�̄ ĉm0�

⌘
(B.8c)

Where the di↵erent parts of the U -tensor are replaced by Umm0 for the direct Coulomb
repulsion and Jmm0 for the Coulomb exchange

Umm0 = Umm0mm0 (B.9)

Jmm0 = Umm0m0m (B.10)



Appendix C

Basis notation look-up

In this appendix I briefly list the explanation of all symbols in the basis notation and
the di↵erent tail energy sets. As an example we will take the following basis:

3↵:1,2,3(6s206p21)2↵:1,2(5d04f�1) 2↵:1,2(5s�15p�1)0(5d04f�1)

The red numbers denote the number of tails attached to the basis functions in the
parentheses to the right of the red number. These basis functions are described by their
atomic parentage. Zero tails indicate that the following nl are not explicitly included in
the basis.
The blue Greek letter indicates the tail energy set used. This tail energy sets are de-
scribed in the text and listed below:

↵ : 2 = {0.3,�2.3,�1.5} Ry
� : 2 = {0.25,�2.3,�1.0,�0.2} Ry
� : 2 = {0.3,�2.3,�0.6} Ry
� : 2 = {�0.1,�0.5,�1.2,�2.3} Ry
✏ : 2 = {�0.1,�0.96,�1.82,�2.68} Ry
⇣ : 2 = {�0.1,�0.5,�1.2,�2.3, 0.1} Ry, where the energy of the

last tail (0.1 Ry) was varied such that the tail energy 2 was
set to the value of the average kinetic energy in the interstitial.

The green list of numbers denote which of the tails in the tail energy set are used.
The violet quantum numbers nl denote the atomic parentage of the basis functions inside
the mu�n tin sphere.
The orange superscript numbers encode the linearization energy. Values commonly used
in this report are

20 = linearization energy of the s-function is chosen such that the
function is orthonormalized to the function of s with the lowest
principal quantum number that is included

21 = linearization energy of the p-function is chosen such that the
function is orthonormalized to the function of p with the low-
est principal quantum number that is included

0 = internal algorithm is used to determine the linearization en-
ergy

-1 = linearization energy is set to the center of the band
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