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Abstract

Nature presents multiple intriguing examples of processes which proceed at high preci-
sion and regularity. This remarkable stability is frequently counter to modelers’ experience
with the inherent stochasticity of chemical reactions in the regime of low copy numbers.
Moreover, the effects of noise and nonlinearities can lead to “counter-intuitive” behavior,
as demonstrated for a basic enzymatic reaction scheme that can display stochastic focusing
(SF). Under the assumption of rapid signal fluctuations, SF has been shown to convert a
graded response into a threshold mechanism, thus attenuating the detrimental effects of
signal noise. However, when the rapid fluctuation assumption is violated, this gain in sensi-
tivity is generally obtained at the cost of very large product variance, and this unpredictable
behavior may be one possible explanation of why, more than a decade after its introduction,
SF has still not been observed in real biochemical systems.

In this work we explore the noise properties of a simple enzymatic reaction mechanism
with a small and fluctuating number of active enzymes that behaves as a high-gain, noisy
amplifier due to SF caused by slow enzyme fluctuations. We then show that the inclusion of
a plausible negative feedback mechanism turns the system from a noisy signal detector to a
strong homeostatic mechanism by exchanging high gain with strong attenuation in output
noise and robustness to parameter variations. Moreover, we observe that the discrepancy
between deterministic and stochastic descriptions of stochastically focused systems in the
evolution of the means almost completely disappears, despite very low molecule counts and
the additional nonlinearity due to feedback.

The reaction mechanism considered here can provide a possible resolution to the apparent
conflict between intrinsic noise and high precision in critical intracellular processes.

1 Introduction

Random fluctuations due to low-copy number phenomena inside the microscopic cellular vol-
umes have been an object of intense study in recent years. It is now widely recognized that
deterministic modeling of chemical kinetics is in many cases inadequate for capturing even the
mean behavior of stochastic chemical reaction networks, and several studies have explored the
discrepancy between deterministic and stochastic system descriptions [1, 23, 33, 26].
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Despite the all-pervasive stochasticity, cellular processes and responses proceed with sur-
prising precision and regularity, thanks to efficient noise suppression mechanisms also present
within cells. The structure and function of these mechanisms has been a topic of great interest
[7, 2, 32, 31, 15, 22, 3, 26], and in many cases still remains unknown.

Moreover, recent theoretical works on enzymatic reaction schemes with a single or a few
enzyme molecules [18, 11, 13, 29] have repeatedly shown that low-copy enzymatic reactions
demonstrate a stochastic behavior that can lead to markedly different responses in comparison
to the predictions of deterministic enzyme kinetic models.

In this work we investigate the properties of a possible noise suppression mechanism for
an enzymatic reaction with a small and fluctuating number of active enzymes. Under certain
conditions, presented in [23], this system displays an increased sensitivity to enzyme fluctuations,
a phenomenon that has been termed stochastic focusing.

Stochastic focusing has been presented as a possible mechanism for sensitivity amplification:
compared to a deterministic model of a biochemical network, the mean output of the stochastic
version of the system can display increased sensitivity to changes in the input, when the input
species has sufficiently low abundance. Consequently, it has been postulated that stochastic
focusing can act as a signal detection mechanism, that converts a graded input into a “digital”
output.

The basic premise of [23] has been that fluctuations in the “input” species are sufficiently
rapid, so that any rates that depend on the signaling species show minimal time-correlations.
We show that if this condition fails, i.e. when the fluctuations in the input signal are slow
compared to the average lifetime of a substrate molecule, stochastic focusing can result in a
dramatic increase in substrate fluctuations, a fact also acknowledged in the original publication.
Increased sensitivity to input changes does not only come at the cost of extremely high output
noise levels; as we will demonstrate here, systems operating in this regime are also extremely
sensitive to variations in reaction rates, which in fact precludes robust signal detection by
stochastic focusing.

For the first time since its introduction we could study the steady-state behavior of this
system analytically, by formulating and solving the equations for the conditional means and
(co)variances [14]. Motivated by our observations on the open-loop, stochastically focused sys-
tem, we investigated the system behavior in the presence of a plausible feedback mechanism.
We treated the enzyme as a noisy “controller” molecule whose purpose is to regulate the outflux
of a reaction product by – directly or indirectly – “sensing” the fluctuations in its substrate.
For the sake of simplicity and clarity, we focused on very simple and highly abstracted mecha-
nisms, but we should remark that several possible biochemical implementations of our feedback
mechanism can be considered.

Our premise was that the great open-loop sensitivity of a stochastically focused system with
relatively slow input fluctuations creates a system with very high open-loop gain, which in turn
can be exploited to generate a very robust closed-loop system once the output is connected
to the input. Our simulation results confirmed this intuition, revealing a dramatic decrease in
noise levels and a significant increase in robustness in the steady-state mean behavior of the
closed-loop system. Such a system no longer functions as a signal detector, but rather behaves
as a strong homeostatic mechanism. Moreover, we observed that the steady-state behavior of
the means in a stochastically focused system with feedback can be captured quite accurately
by the corresponding deterministic system of reaction rate equations, despite the fact that the
stochastic system still operates at very low copy numbers.

Noise attenuation through feedback and the fundamental limits of any feedback system
implemented with noisy “sensors” and “controllers” have been studied theoretically in the recent
years, and some fairly general performance bounds have been derived in [19]. We should note
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that, despite its generality, the modeling framework assumed in [19] does not apply in our case,
since our system contains a controlled degradation reaction, whereas [19] considers only control
of production. More specifically, [19] examines the case where a given species regulates its
own production through an arbitrary stochastic signaling network. In this setting, it is shown
that, no matter the form or complexity of the intermediate signaling, the loss of information
induced by stochasticity places severe fundamental limits on the levels of noise suppression
that such feedback loops can achieve. On the other hand, it is still unclear what type of noise
suppression limitations are present for systems such as the one studied here, and a complete
analytical treatment of the problem of regulated substrate degradation seems very difficult at
the moment.

A first attempt to analyze the noise properties of regulated degradation was presented in
[7], which examined such a scheme using the Linear Noise Approximation (LNA) [9]. As the
authors of that work pointed out, however, the LNA is incapable of correctly capturing the
system behavior (i.e. means and variances) beyond the small-noise regime, due to the nonlinear
system behavior. We verified this inadequacy, not only for LNA, but for other approximation
schemes as well, such as the Langevin equations [21] and various moment closure approaches
[30]. Perhaps this is the reason why, contrary to regulated production, the theoretical noise
properties of regulated substrate degradation have received relatively little attention.

With the rapid advancement of single-molecule enzymatic assays [27, 20], we expect that
the study of noise properties of various low-copy enzymatic reactions, including the proposed
feedback mechanism described here, will soon be amenable to experimental verification. It also
remains to be seen whether the proposed feedback mechanism is actually employed by cells to
achieve noise attenuation in enzymatic reactions. At any rate, the noise attenuation scheme
presented here could be tried and tested in synthetic circuits through enzyme engineering [24, 4].

2 Results

2.1 A slowly fluctuating enzymatic reaction scheme that exhibits stochastic
focusing

In this section we formulate and analyze a simple biochemical reaction network capable of ex-
hibiting the dynamic phenomenon of stochastic focusing. It is shown that in the stochastic
focusing regime, the system acts as a noisy amplifier with an inherent strong sensitivity to per-
turbations. It follows that without modifications, the network cannot be used under conditions
requiring precision and regularity.

2.1.1 Modeling

We consider the simple branched reaction scheme studied in [23] and shown schematically in
Fig. 1(a). In this scheme, substrate molecules C enter the system at a constant influx, and can
either be converted into a product P or degraded under the action of a low-copy enzyme (or,
equivalently, converted into a product that leaves the system). While the number of enzymes
in the system is assumed constant, enzyme molecules can spontaneously fluctuate between
an active (E∗) and an inactive (E) form. The generality of this model and its sensitivity to
variations in the active enzyme levels is further discussed in the Supplement (sections 1 and 2).

Recent single-enzyme turnover experiments have shown that single enzyme molecules typ-
ically fluctuate between conformations with different catalytic activities, a phenomenon called
dynamic disorder [18, 11, 13, 29]. In the simple model considered here, the enzyme randomly
switches between two activity states. The stationary distribution of E∗ in this case is known to
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be binomial [35]; that is, E∗ ∼ B(N, p), where N = E + E∗ is the total number of enzymes in
the system and p = αE/(αE + µE), such that the mean 〈E∗〉 = Np.

The basic (empirically derived) conditions for stochastic focusing [23] are that the magnitude
of active enzyme fluctuations is significant compared to the mean number of active enzymes,
while the total number of enzymes is low. Moreover, it is assumed that the level of E∗ fluctuates
rapidly compared to the average lifetime of C and P molecules. Without this assumption, the
noise in E∗ can be greatly amplified by C and transmitted to P .

The first assumption (large enzyme fluctuations and low abundance) is maintained in our
setup. However, we shall dispense with the second assumption. We further postulate that C
(possibly a product of upstream enzymatic reactions) enters the system at a high input flux
(large αC) and that there exists a strong coupling between C and E∗, in the sense that a few
active enzymes can strongly affect the degradation of C.
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Figure 1: (a) The reaction scheme studied in this work. Thick arrows represent high-flux
reactions. (b) Blue line: Steady-state mean of C (denoted by 〈C〉 throughout) as a function of
the average number of active enzyme molecules (NαE/(αE +µE)) for N = 10, µE = 0.1, αC =
5010, k = 300, ν = 1, µP = 1. Since ν = µP , the average of P displays the same behavior as
the substrate. Red line: Steady-state of the ODE model for the same parameter values. The
large difference (notice the logarithmic scale) between the blue and red lines is a consequence
of stochastic focusing [23]. (c) Upper: Substrate (C) noise statistics as a function of the
average number of active enzymes. Blue: Steady-state Fano factor (variance/mean; notice
the logarithmic scale). Green: Steady-state coefficient of variation (standard deviation/mean).
Lower: Product (P ) noise statistics as a function of the average number of active enzymes. Color
coding same as in upper panel. Both plots were obtained for N = 10, µE = 0.1, αC = 5010, k =
300, ν = 1, µP = 1. All calculations were performed analytically, using the conditional moment
equations and the known stationary distribution of E∗.

More concretely, the previously stated assumptions imply that the reaction rates must satisfy
the following conditions:
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1. αC � 1 (high influx of C)

2. k � αE+µE (enzyme fluctuations are slow compared to the average lifetime of a substrate
molecule)

3. k � 1 (strong coupling between enzyme and substrate)

4. Np = N
αE

αE + µE
is small (e.g. below 10).

These conditions are motivated via a short theoretical and numerical analysis in the Supplement
(section 1). When they hold, we expect the amount of C to fluctuate wildly as E∗ varies over
time and these fluctuations to propagate to P . In the rest, we will refer to this motif as the
(open-loop) slowly fluctuating enzyme (SFE) system.

The computational analysis of this and similar systems has thus far been hindered by the
presence of the bimolecular reaction, which leads to statistical moment equations that are not
closed [30], while the presence of stochastic focusing presents further difficulties for any moment
closure method. In this work, we circumvent these difficulties by formulating and solving the
conditional moment equations [14] for the means and (co)variances of C and P conditioned on
the enzyme state (whose steady-state distribution is known). This enables for the first time the
analytical study of the steady-state behavior of this system (more details can be found in the
Supplement, section 3). Chiefly, the equations for the first two conditional moments of the SFE
system are in fact closed, i.e. they do not depend on moments of order higher than 2, and thus
do not require a moment closure approximation despite the fact that the unconditional moment
equations themselves are open. We next use these analytic equations to shed new light on the
properties of the network under consideration.

2.1.2 The SFE system functions as a noisy amplifier

According to the method of conditional moments (MCM) [14], the chemical species of a given
system are divided into two classes. Species of the first class, collectively denoted by Y , are
treated fully stochastically, while species of the second class, denoted by Z, are described through
their conditional moments given Y . More analytically, the MCM considers a chemical master
equation (CME) [36] for the marginal distribution of Y , p(Y, t) =

∑
Z≥0 p(Y,Z, t), and a system

of conditional means (µZ(Y, t) := Ep(Z|Y,t)[Z|Y, t]) and higher-ordered centered moments (e.g.
conditional variances CZ(Y, t) := Ep(Z|Y,t)[(Z −µZ(Y, t))2|Y, t]) for the Z species. In the case of
the SFE network, by taking Y = E∗ and Z = (C,P ), we see that Y is independent of Z and
its evolution is described by a CME whose stationary solution is known. Moreover, the system
of conditional means and (co)variances of Z given Y turns out to be closed.

We thus begin by examining the behavior of the system as the enzyme activation rate is
varied while keeping other parameters unchanged. Assuming a fixed µE , αE is directly related
to 〈E∗〉, the average number of active enzymes. Thus, any changes in 〈E∗〉 are assumed to
be driven by αE , which means that the two can be used interchangeably. We present the
performance of the open-loop system with respect to 〈E∗〉 wherever possible, as we find this
more intuitive.

The results in Fig. 1(b) show that the stationary means of C and P (denoted by angle
brackets throughout the paper) depend very sensitively on 〈E∗〉, as one would expect from a
stochastically focused system. Moreover, owing to the relatively slow switching frequency of
enzyme states, the stationary distributions of substrate and product are greatly over-dispersed,
as shown in Fig. 1(c).
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Apart from the enzyme activation rate, the catalytic degradation rate (k) is also expected
to affect noise in the system, as it controls both the timescale and magnitude of substrate
fluctuations: as k increases, the rate of substrate consumption grows as well. On the other
hand, the impact of a change in the number of active enzymes is also magnified. We can study
the interplay of αE and k by varying both simultaneously, as shown in Fig. 2(a). Although
αE has a much more pronounced effect on substrate and product means and variances, the
interplay of k and αE is what determines the overall noise strength in the system, as the third
row of plots shows.
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Figure 2: (a) Steady-state means, variances and CVs of substrate and product as a function of
the average active enzymes (αEN/(αE + µE)) and k for N = 10, µE = 0.1, αC = 5010, ν =
1, µP = 1 (notice the logarithmic scales). (b) Closed-loop SFE system with substrate feedback:
steady-state means, variances and CVs of substrate and product as a function of αE (which
determines the average number of active enzymes) and k for K = 3, C0 = 5, N = 10, µE =
0.1, αC = 5010, ν = 1, µP = 1. Logarithmic scales are preserved to make comparisons with
Fig. 2 easier, although the range of variation is much smaller in this case.

From the above analysis, we deduce that the open-loop motif amplifies both small changes
in the average number of active enzymes (Fig. 1(b)), as well as temporal fluctuations in the
active enzyme levels (Fig. 1(c)): for intermediate values of αE , the CV and FF of C and P
are much greater than zero. This implies that the instantaneous flux of substrate through the
two alternative pathways experiences very large fluctuations, which would propagate to any
reactions downstream of C.

2.1.3 The SFE system is very sensitive to parameter perturbations

The increased sensitivity of the SFE network to fluctuations in the active enzyme would suggest
sensitivity with respect to variations in reaction rates. To verify this, we generated 10000
uniformly distributed joint random perturbations of all system parameters that reach up to
50% of their nominal values. That is, every parameter was perturbed according to the following
scheme:

ppert = pnom + (n− 0.5)pnom, n ∼ U([0, 1]). (1)

For each perturbed parameter set, the steady-state conditional moment equations were solved
to obtain the means, variances and noise measures for both the substrate and product. The
results are summarized in Fig. 3 (dashed lines), where the large parametric sensitivity of the
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system can be clearly seen. Global sensitivity analysis of the mean, variance and CV histograms
[25] reveals that the total number of enzymes (N) has the largest effect on all these quantities,
with the enzyme activation/deactivation rates (αE , µE) coming at second and third place.
Although one could argue that αE and µE are biochemical rates that are uniquely determined
by molecular features of the enzyme, the total number of enzyme molecules would certainly be
variable across a cellular population.
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Figure 3: Dashed lines: Histograms of steady-state means, variances, CVs and Fano Factors
of substrate and product, obtained from 10000 randomly sampled parameters, following (1).
Nominal values of perturbed parameters: N = 10, αE = 0.08, µE = 0.1, αC = 5010, k =
300, ν = 1, µP = 1. The black line on the top left plot denotes the (common) mean of
substrate and product for the nominal parameters. On the top right plot, black lines mark the
nominal variance for substrate (solid) and product (dashed). Continuous lines: Closed-loop
SFE system (K = 3, C0 = 5) with substrate feedback: Histograms of steady-state means,
variances, CVs and FFs of substrate and product, obtained from the same 10000 randomly
sampled parameters used for the dashed line histograms. The great reduction in sensitivity of
the closed-loop SFE system in comparison to the open-loop can be easily observed.

Taken together, the results of this section and the previous one suggest that the operation of
the SFE reaction scheme in Fig. 1(a) as a signal detection mechanism (the original point made
in [23]) is severely compromised when the system operates in the regime defined by our set of
assumptions: besides amplifying enzyme fluctuations, the system responds very sensitively to
parametric perturbations. These features render the enzyme a highly non-robust controller of
the substrate and product outfluxes, which can fluctuate dramatically in time. In addition,
reaction rates have to be very finely tuned to achieve a certain output behavior, for example a
given mean and variance, or a given average substrate outflux.
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2.2 Closing the loop: The SFE network with negative feedback

It is a well-known fact in control theory that negative feedback results in a reduction of the
closed-loop system gain [6, 17]. However, this reduction is exchanged for increased stability and
robustness to input fluctuations, and a more predictable system behavior that is less dependent
on parameter variations. Systems with large open-loop gain tend to also display extreme sensi-
tivity to input and parametric perturbations, and can thus benefit the most from the application
of negative feedback.

We shall examine the operation of the SFE network under feedback by assuming that C (or
P ) affects the rate of activation of the enzyme, for example by controlling its activation rate.
We will call this new motif the closed-loop SFE system, to differentiate it from the open-loop
system presented above.

According to the closed-loop reaction scheme (Fig. 4(a)), the activation rate of E becomes
αE(1+f(x)) (x being C or P ), where f models activation by x, thus creating a negative feedback
loop between the system input and output. Our only requirement for f is to be nondecreasing
(e.g. a Hill function). To facilitate our simulation-based analysis, we will assume that f arises
from the local, piecewise linear approximation of a Hill function, as shown in Fig. 4(b). In this
case, the form of f is controlled by two parameters: K (the “gain”) and x0 (the point beyond
which feedback is activated). Finally, αE can be thought of as the “basal” activation rate in
the absence of the regulating molecule.

We should note that the proposed form of feedback regulation is fairly abstract and general
enough to have many alternative biochemical implementations. It is possible, for example, for
the enzyme activity to be allosterically enhanced by the cooperative binding of C or P (termed
substrate and product activation respectively in the language of enzyme kinetics), giving rise to
a Hill-like relation between effector abundance and enzyme activity [28]. In this work we will
work with the abstract activation rate function defined above.
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Figure 4: (a) The SFE network with feedback (two possible configurations). (b) Red line:
the class of feedback functions considered in this work, which can approximate a Hill function
around its lower end. (c) Ratio of open-loop vs. closed-loop CVs as a function of αE (which
determines the average number of active enzymes) and k for K = 3, C0 = 5, N = 10, µE =
0.1, αC = 5010, ν = 1, µP = 1.
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In the following we analyze the closed-loop SFE network behavior by studying how the SFE
network properties described in the previous sections are transformed under feedback.

2.2.1 Feedback results in a dramatic noise reduction and increased robustness to
parameter variation

Here we study the SFE network under the influence of negative feedback. We should point out
that we characterize the open- and closed-loop systems with respect to the same features (noise
and robustness), not to directly compare them, but because these features play an important
role in the function of both mechanisms. Whenever we use the open-loop system as a baseline for
assessing closed-loop system properties, scale-independent measures are used since this allows
for the evaluation of relative distribution spreads. This principle is only disregarded in Fig. 5
below.

For our first test, we use the same settings and parameters as those of Fig. 2(a), only this
time we add a feedback term from the substrate to the enzyme activation rate. Increasing the
gain K or shifting the activation point x0 to the left results in a decrease of both means and
variances of substrate and product. For the ranges of K and x0 values considered, the means
change by at most a factor of 2.5, while the variances by about 5 times. At the same time,
the CVs vary by about 50% and the corresponding Fano Factors by a factor of 5. Moreover,
as the analysis in the Supplement (section 5) shows, the CVs of both species become relatively
flat as K and x0 increase, while the Fano Factor gets very close to 1 as K increases for small
values of x0, indicating that the resulting substrate and product stationary distributions are
approximately Poissonian in this regime. For the analysis that follows, we fix K = 3 and x0 = 5
in the feedback function f(·).

With the above choice of feedback parameters, we first study the sensitivity of the closed-
loop SFE system to variations of the two key parameters, αE and k. As Fig. 2(b) demonstrates,
means and variances (and, consequently, CVs) of substrate and product become largely in-
dependent of αE , except for very large values of k (similar results are obtained for product
feedback). Moreover, noise of substrate and product is dramatically reduced in comparison
to the open-loop SFE system, while the variation of means and variances is now quite small,
despite the large ranges of αE and k values considered. It is also worth noting that the Fano
Factors of both substrate and product are very close to one for a large range of parameters.

Interestingly, if we quantify noise reduction by the ratio of open-loop vs. closed-loop CV,
we observe that noise reduction is maximal where the open-loop SFE system noise is greatest,
as demonstrated by comparing Fig. 4(c) with Fig. 2(a).

Another striking effect of feedback regulation of enzyme activity is that the closed-loop
SFE system becomes much less sensitive to parameter variations in comparison to the open-
loop case. Applying the same parametric perturbations described in §2.1.3, we obtain the
histograms of Fig. 3 (continuous lines). As it becomes apparent, the histograms corresponding
to the closed-loop SFE system are several orders of magnitude narrower compared to the open-
loop. Moreover, despite the relatively large parametric perturbations, variability in substrate
and product statistics of the closed-loop SFE system is largely contained within an order of
magnitude.

As it was pointed out in §2.1.3, variability in biochemical reaction rates can be considered
“artificial”, however changes in the number of enzymes, N , are to be expected in a cellular
population. It is therefore interesting to study how variations in N alone are propagated to the
substrate and product statistics. Assuming that both the open- and closed-loop systems operate
with the same average number of active enzymes for the “nominal” value of N = 8, Fig. 5(a,b)
shows how the substrate mean and variance vary as N is perturbed around this value, both
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in the open- and closed-loop systems (with substrate feedback). To achieve the same average
number of active enzymes for N = 8, the closed-loop SFE system was simulated first, and the
mean number of active enzymes was recorded. This number was then used to back-calculate an
appropriate αE value (keeping µE fixed) for the open-loop SFE system. Panel (c) also shows
how the distribution of active enzymes differs in the two systems for N = 8. The cyan line
corresponds to a binomial distribution, B(8, p), where p = αE/(αE + µE) is determined by the
αE and µE values of the open loop. The red distribution is obtained from simulation of the
closed loop and is markedly different from a binomial. The difference is especially significant at
the lower end, as small values of E∗ lead to fast accumulation of C. Similar results are obtained
for product feedback.
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Figure 5: (a, b) Mean and variance of substrate in the open- and closed-loop SFE system with
substrate feedback (notice the logarithmic variance scale). The closed loop was simulated with
αE = 0.04, µE = 0.1, αC = 5010, ν = 1, k = 100, µP = 1 and feedback parameters K = 10,
C0 = 15. In the open-loop SFE system all parameters were kept the same, except for αE , which
was set to 0.1572 to achieve the same mean of E∗ that the closed-loop SFE system achieves for
N = 8.

2.2.2 Open-loop stochasticity vs. closed-loop determinism

A further remarkable by-product of feedback in the closed-loop SFE system is the fact that
the mean of the stochastic model ends up following very closely the predictions of the ODE
equations for the deterministic system. This behavior becomes more pronounced as the number
of available enzymes (N) grows, while the average number of active enzymes (NαE/(αE +µE))
remains small. Under this condition, one can think of enzyme activation in the original system
as a zeroth-order reaction with rate NαE , and the active enzyme abundance to be described by
a birth-death process with birth rate NαE , death rate µE and Poisson stationary distribution
with parameter λ = NαE/µE .

The accuracy of the ODE approximation to the mean substrate levels in the case of substrate
feedback can be demonstrated using the same type of parametric perturbations with those
employed in §2.1.3. All nominal parameters were kept the same for this test, except for µE ,
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NαE and k, which were set equal to 1, 5 and 100 respectively (N = 100, αE = 0.05). We
compare the mean of the stochastic model with the ODE prediction in the case of substrate
feedback with K = 0.4, x0 = 5, and define the relative error

R.E. :=
|〈C〉 − Css|
〈C〉

· 100%, (2)

where Css is the equilibrium solution of the ODE model. In this setting, a set of 5000 random
perturbations leads to an average relative error of 1.5% with standard deviation 0.96%, which
clearly shows that the ODE solution captures the mean substrate abundance with very good
accuracy indeed (note that the same holds for the mean of P , since it depends linearly on the
mean of C). Very similar results are obtained in the case of product feedback.

The above observations are even more striking, if we take into account 1) the fact that the
closed-loop SFE system is still highly nonlinear and 2) the intrinsic property of stochastically
focused systems to display completely different mean dynamics when compared to the ODE
solutions. An explanation of this behavior can be given by examining the moment differential
equations. In the limiting case considered in this section, denoting αE(C) the production rate
of active enzyme, we obtain

d〈C〉
dt

= αC − ν〈C〉 − k〈E∗C〉 = αC − ν〈C〉 − kCov(E∗, C)− k〈C〉〈E∗〉 (3)

dCov(E∗, C)

dt
= −(µE + ν)Cov(E∗, C)− Cov(kE∗C,E∗) + Cov(αE(C), C) (4)

The last two terms on the right-hand side of (4) denote the covariance of the substrate en-
zymatic degradation rate with active enzyme and the covariance of the enzyme activation rate
with the substrate. Both covariances are expected to be positive at steady state, which implies
that the terms act against each other in determining the steady-state covariance of substrate and
active enzyme. In turn, a small value of this covariance (compared to the product 〈C〉〈E∗〉) im-
plies that the mean of C can be approximately captured by a mean-field equation, where 〈E∗C〉
has been replaced by 〈C〉〈E∗〉. This is indeed the case in our simulations, where Cov(E∗, C)
turns out to be ∼20–30 times smaller than 〈C〉〈E∗〉. On the other hand, the open-loop value
of Cov(E∗, C) is about 30 times larger than the closed-loop one. This comes as no surprise,
as one expects substrate and active enzyme to display a strong negative correlation, which is
the cause of the discrepancy between stochastic and deterministic descriptions of stochastically
focused systems.

Similar observations can be made when N is small (e.g. around 10), however the relative
errors become at least one order of magnitude larger. We believe that this can be attributed
to the fact that the enzyme activation propensity depends both on the abundance of inactive
enzyme and the substrate/product abundance, which increases the inaccuracy of the ODEs.

2.2.3 The feedback mechanism is intrinsically robust

As we have already demonstrated, the closed-loop SFE system is remarkably robust to para-
metric perturbations of the open-loop model. However, in all of our numerical experiments we
have kept the parameters of the feedback function f fixed to a few different values. Here we
examine the opposite situation, in which only the controller parameters are free to vary while
the rest are held constant. We therefore consider the problem of regulating the mean of C
around a fixed value with feedback from C. The problem can be posed as follows:

min
K, C0

h(K, C0) := 〈(C − Ctarget)
2〉 = (〈C〉ss − Ctarget)

2 + Var(C)ss,
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where both the mean and variance of C depend on the feedback function parameters. Fig. 6
shows the contour lines of h, obtained via stochastic simulation over a wide range of K and C0

values for Ctarget = 10. It can be observed that h is more sensitive to C0 than K: beyond a
certain K value, the function quickly levels off.

Based on our simulation runs, the optimal feedback parameters turned out to be K = 30
(the maximum K value considered for the plot) and C0 ' 16 (given the inevitable uncertainty
in h due to sampling variability, the true optimal value should be close to this). The optimal
feedback function therefore resembles a “barrier”: for x < C0 it is zero, while it rises very
steeply beyond C0.
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Figure 6: Contour lines of log10(h(K,C0)) for Ctarget = 10, obtained by evaluating the function
via stochastic simulation on a logarithmic grid in the parameter space.

Note that the mean and variance of C both depend on (K,C0), but neither quantity is avail-
able in closed form as a function of the feedback parameters or obtainable from a closed set of
moment equations. Thus, h had to be evaluated on a grid with the help of stochastic simulation.
Alternatively, as we show in the Supplement (section 6), one can exploit the behavior presented
in the previous Section, and optimize a similar objective function by directly evaluating the
required moments of C using a simple moment closure approximation based on the method of
moments. This scheme, introduced in [10], provides very accurate approximations of the mean
and variance at a fraction of the computational effort, thus allowing optimization to be carried
out very efficiently. The optimal parameters for the approximate system can be used as starting
points in the optimization of h.

3 Discussion

In this work we have examined the behavior of a branched enzymatic reaction scheme. This
system has already been shown to display stochastic focusing, a sensitivity amplification phe-
nomenon that arises due to nonlinearities and stochasticity whenever only a few enzyme molecules
are present in the system. We have additionally shown that when the enzyme activity evolves
on a slow timescale compared to that of the substrate, very large fluctuations can be generated
in the system. Moreover, the dynamics of the system is extremely sensitive to variations in
its reaction rates. Both these observations imply that this simple model is not appropriate for
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robust signal detection.
We asked how the system behavior would change in the presence of a feedback mechanism,

so that the “controller” molecule (E∗) could sense the fluctuations in C (its substrate) or P (the
product of the alternative reaction branch). We have shown that noise decreases dramatically
in the presence of feedback, while the robustness of the average system behavior is boosted
significantly. Consequently, the focused system with feedback ends up behaving almost as
predictably as a mean-field ODE model, even when the number of active enzymes is very small.

There exist several biochemical systems which in certain aspects match the main ideas
behind the SFE motif, i.e. display stochastic fluctuations in enzyme activity/abundance and
substrate/product feedback activation. For example, it was recently discovered [16] that the
guanine nucleotide exchange factor SOS and its substrate, the Ras GTPase, are involved in
a feedback loop where SOS converts Ras-GDP (inactive) to Ras-GTP (active) and, in turn,
active Ras allosterically stabilizes the high-activity state of SOS. Another prominent example
is microRNA post-transcriptional regulation of gene expression [34], where a microRNA may
mediate the degradation of a target mRNA, while the protein arising from this mRNA in turn
activates the microRNA transcription.

Yet another instance is the heat shock response system in E. coli [8]: here the σ32 factor,
which activates the heat-shock responsive genes, is quickly turned over under the action of the
protease FtsH at normal growth temperatures. After a shift to high temperature, σ32 is rapidly
stabilized and at the same time it also activates the synthesis of FtsH. The FtsH-mediated
degradation of σ32 is under negative feedback. Finally, it is known that mRNA decapping (a
process that triggers mRNA degradation) is controlled by the decapping enzyme Dcp2, which
fluctuates between an open (inactive) and closed (active) form. Experimental evidence suggests
that the closed conformation of the enzyme is promoted by the activator protein Dcp1 together
with the mRNA substrate itself [12, 5]. We should stress, however, that it is still unclear if
any of the aforementioned examples display all the dynamic features of the motif considered in
this work. Speaking generally, due to the required levels of measurement accuracy, it is difficult
to find examples that exactly match the conditions considered here with current experimental
techniques. However, it is certainly conceivable that this will be achieved in the future.

An interesting feature of our system is that homeostasis is achieved with a very small number
of controller molecules (in the order of 10), which are able to maintain the output at a very low
level with fluctuations that are – to a good approximation – Poissonian. We have considered
two alternative feedback schemes: in the first the substrate directly affects the activation rate of
the enzyme (a case of substrate activation), while in the second the product of the alternative
reaction branch is used as a “proxy” for the substrate abundance. Note that the flux through
the C-P branch is many orders of magnitude smaller than the flux in the E-regulated branch.
The C-P branch can thus be thought to act as a “sensor mechanism”, used to control the
high-flux branch of the system. To the best of our knowledge, this type of feedback has not yet
been observed in naturally occurring reactions.

Finally, it is worth to note that one could achieve this type of regulation with an “unfocused”
system, in which the coupling between enzyme and substrate (parameter k) would be much
smaller. This would imply, however, that the number of enzyme molecules needed to achieve
the same substrate levels would have to be much greater, and this could entail an added cost
for a living cell.

In summary, to regulate a low-copy, high-flux substrate via an enzymatic mechanism such
as the one considered here, there are three possibilities: a) use of a low number of controller en-
zymes and strong coupling between enzyme and substrate (which results in stochastic focusing
and noise), b) use of a high-copy enzyme and weak coupling (with the associated production
cost) or c) use of a low-copy controller with feedback: an alternative which, as we have demon-
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strated, leads to a remarkably well-behaved closed-loop system.
It is thus conceivable that cellular feedback mechanisms have evolved to exploit the nature

of stochastically focused systems to achieve regulation of low-copy substrates with the mini-
mal number of controller molecules. We expect that the rapid development of experimental
techniques in single-molecule enzymatics will soon enable the experimental verification of our
findings and possibly the discovery of similar noise attenuation mechanisms inside cells. Finally,
our results can be seen as a first step towards the rational manipulation of noise properties in
low-copy enzymatic reactions.
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