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We study numerical methods for time-dependent partial differential equations describing wave
propagation, primarily applied to problems in quantum dynamics governed by the time-
dependent Schrödinger equation (TDSE). We consider both methods for spatial approximation
and for time stepping. In most settings, numerical solution of the TDSE is more challenging
than solving a hyperbolic wave equation. This is mainly because the dispersion relation of the
TDSE makes it very sensitive to dispersion error, and infers a stringent time step restriction
for standard explicit time stepping schemes. The TDSE is also often posed in high dimensions,
where standard methods are intractable.

The sensitivity to dispersion error makes spectral methods advantageous for the TDSE. We
use spectral or pseudospectral methods in all except one of the included papers. In Paper
III we improve and analyse the accuracy of the Fourier pseudospectral method applied to a
problem with limited regularity, and in Paper V we construct a matrix-free spectral method for
problems with non-trivial boundary conditions. Due to its stiffness, the TDSE is most often
solved using exponential time integration. In this thesis we use exponential operator splitting
and Krylov subspace methods. We rigorously prove convergence for force-gradient operator
splitting methods in Paper IV. One way of making high-dimensional problems computationally
tractable is low-rank approximation. In Paper VI we prove that a splitting method for dynamical
low-rank approximation is robust to singular values in the approximation approaching zero, a
situation which is difficult to handle since it implies strong curvature of the approximation space.
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1. Introduction

With our eyes and ears, we sense optical and acoustic waves. The physics
of wave propagation thereby has a strong effect on how we experience the
world around us. The sound of thunder comes after the flash of lightning as
sound waves travel slower than light waves, and were it not for atmospheric
refraction the days would have appeared shorter. Waves are also frequently
used in technology. Broadcasting and mobile telecommunication transport
information using electromagnetic waves, which are the same kind of waves
as visible light, only with much longer wave lengths. In maritime navigation
sea depth is measured by emitting sound downwards and measuring the time
it takes for the echo to return. The same technique is used by bats to locate
flying insects. Radar also uses echoes, of electromagnetic waves, to locate
terrain obstacles and vehicles.

Optical and acoustic waves, as well as the vibrations of strings and mem-
branes, are described by the wave equation,

utt = c2Δu, x ∈ Ω, t > 0. (1.1)

Here, the wave speed c = c(x) > 0, Δ denotes the Laplace operator, and Ω is
the computational domain. The wave equation is a linear hyperbolic partial
differential equation (PDE), of second order in both space and time. For con-
stant wave speed it can be solved in a few simple geometries using separation
of variables [26], and on the real line there exists a simple general solution.
In more general geometries or with spatially variable wave speed, numerical
methods are necessary for solving (1.1).

Other types of wave phenomena satisfy different wave equations, unified
by the property that they describe transport of energy via the propagation
of oscillations. Seismic events trigger mechanical waves in the crust of the
earth, i.e., earthquakes, which are governed by the elastic wave equation. The
nonlinear Korteweg–de Vries equation can be used to describe waves in shal-
low waters. In this thesis we are mainly concerned with the time-dependent
Schrödinger equation (TDSE) [78], which describes the time evolution of the
wave function in quantum mechanics. A key concept in quantum mechanics
is the wave–particle duality: Not only do we experience the world around us
through waves, the world in itself consists of waves, as the state of a particle
has a probabilistic description through the wave function. The wave function
gives probability densities for the position, momentum, and other observables
of the particle. This probabilistic nature of matter has nothing to do with our
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limited capabilities for measurement, it is physically impossible to simultane-
ously know the position and momentum of a particle exactly. This is known
as the Heisenberg uncertainty principle [37].

The Schrödinger equation reads

iut =− 1
2m

Δu+Vu, x ∈ R
d , t > 0, (1.2)

where u = u(x, t) is the wave function, m is the mass of the particles under
consideration, and V is the potential. Since V can be an arbitrary function of x
this is a variable coefficient problem where analytical solutions are known only
in a small number of settings, such as the hydrogen atom [76] and the harmonic
oscillator [77]. Additionally, the Schrödinger equation is more difficult than
(1.1) to solve numerically. This is due to its dispersive nature, the speed of
propagation is not bounded for (1.2). We will discuss this, and the implications
of it, in more detail in Chapter 2.

x

V

Figure 1.1. A typical example of a potential for a diatomic molecule, as function of
the nuclear separation x.

An application of the Schrödinger equation which we frequently consider
in this work is molecular dynamics, the study of the motion of atomic nu-
clei. We will typically do this under the Born–Oppenheimer approximation
[8], assuming that the potential V is given. Intuitively speaking, the Born–
Oppenheimer approximation says that since the nuclei are much heavier than
the electrons, they move much slower. Therefore, the nuclei only sense the
time-averaged distribution of electrons, which can be modelled in the poten-
tial V . The art of determining the potential is known as electronic structure
theory or quantum chemistry, and features, e.g., the density functional theory
[44, 50] and Hartree–Fock [84] classes of methods. Figure 1.1 illustrates what
the potential might look like in a diatomic molecule, one of the simplest cases
imaginable. The nuclear dynamics of a diatomic molecule can be reduced to a
one-dimensional problem, with the distance between the two nuclei as spatial
coordinate, since the absolute position and orientation in space of the molecule
usually is of limited interest. It is possible to reduce the dimensionality also
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for larger systems by eliminating external degrees of freedom and take advan-
tage of symmetries in the system. One can, e.g, remove the absolute position
(three coordinates) and orientation (three coordinates) of the system, so that a
system with N nuclei yields a problem in d = 3N −6 dimensions. We call the
reduced configuration space internal coordinates.

In classical mechanics, one models the dynamics of the nuclei using Hamil-
ton’s equations of motion [35]. This is a much simpler model than the TDSE.
With q and p denoting the positions and momenta of the nuclei, possibly in
internal coordinates, Hamilton’s equations read

dq
dt

=
∂H
∂ p

, q, p ∈ R
d ,

dp
dt

=−∂H
∂q

.

(1.3)

In Cartesian coordinates, the Hamiltonian function is

H(q, p) =
|p|2
2m

+V (q),

where the terms in the right-hand side are the kinetic and potential energies,
respectively. Coordinate transformations, e.g., to internal coordinates, modify
the Hamiltonian function. Eq. (1.3) is a Hamiltonian system of ordinary dif-
ferential equations (ODEs). Its numerical solution is well studied, see, e.g.,
[32, 57], and computations with millions of nuclei are made routinely. How-
ever, not all the physics of molecular dynamics can be explained by classical
mechanics, which does not take phenomena like the uncertainty principle, tun-
nelling or zero-point energy into account. Chemical reactions are particularly
difficult to model classically. This motivates quantum mechanics, modelled
by the Schrödinger equation (1.2), which offers a more accurate description,
especially for light particles. As m grows, quantum dynamics approaches clas-
sical dynamics. Unfortunately, as the Schrödinger equation is a PDE, solving
it is much more demanding than solving the system of ODEs (1.3). Direct
solution is only possible for very small systems. The necessary amount of
computational work and memory grows exponentially with the dimension, a
property known as the curse of dimensionality. Direct numerical simulation
becomes intractable already in five or six dimensions. Possible remedies to
this will be discussed in Chapter 3. The numerical solution of the Schrödinger
equation need not be easy in small dimensions either, as will be discussed in
the next chapter.
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2. What’s difficult about computational wave
propagation?

In this chapter we discuss some of the difficulties with computational wave
propagation in general, and with numerical solution of the Schrödinger equa-
tion in particular.

2.1 Dispersion error
In wave propagation, errors tend to accumulate over time. This stands in con-
trast to parabolic problems, where small disturbances normally are smoothed
out. The effect of this error accumulation is enhanced by the tendency of
waves to travel over large distances. The considered domain is often many
times larger than the wave length. When wave propagation problems are
solved with difference methods, the type of error which most often dominates
is called dispersion error, i.e., that waves are propagated with the wrong speed.
This type of error is smaller if higher order discretisations are used. We illus-
trate this below using a simple model problem. A more detailed discussion is
found in, e.g., [24].

The advection equation,

vt + vx = 0, x ∈ R, t > 0, (2.1)

is arguably the simplest possible model problem for wave propagation. The
plane waves

v(x, t) = eiω(x−t), ω ∈ R,

are solutions to (2.1). The waves travel with unit speed for all choices of ω .
We introduce a computational grid with uniform spacing h, x j = jh, j ∈Z, and
discretise the spatial derivative with pth order central finite differences. This
yields an infinite system of ODEs, solved by the plane waves

v j(t) = eiω(x j−cp(ωh)t), j ∈ Z, |ω| ≤ π
h
,

where v j(t) is an approximation of v(x j, t). The finite difference approxima-
tion of the spatial derivative results in a new wave speed, cp, which now is a
function of ωh. cp is approximately 1 for small frequencies but deteriorates
as |ωh| approaches π . The wave speed deteriorates slower for higher order
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methods, as illustrated in Figure 2.1 (left panel). The frequency ω = π/h cor-
responds to two grid points per wave length, and is the highest representable
frequency on the grid. If we demand that the pointwise error should not exceed
ε after the time t, we need at least

Mp =Cp

(ωt
ε

)1/p

grid points per wave length [25, Ch. 3]. The constant Cp depends on p, but
not on ω , t or ε . This expression shows that we need fewer grid points for the
same accuracy if we use higher order methods, and that the benefit of using
higher order methods grows if the solution is to be transported many wave
lengths.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8
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ωh

c p

p = 2

p = 6

0 0.5 1 1.5 2 2.5 3
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1.5
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h
c′ p
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Figure 2.1. (left) The wave speed cp for (2.1), as approximated by pth order central
finite differences. The dashed reference line indicates the desired wave speed, which
is 1 for all frequencies. (right) The wave speed c′p for (2.2) scaled by the grid size,
as approximated by pth order central finite differences. The dashed reference line
indicates the desired wave speed ω .

We now contrast this with the Schrödinger equation for a free particle in
one dimension,

ut = iuxx, x ∈ R, t > 0, (2.2)

which has the plane wave solutions

u(x, t) = eiω(x−ωt), ω ∈ R.

The TDSE is a dispersive wave equation, i.e., the phase velocity of a wave
depends on its spatial frequency. In the case of the TDSE, the phase velocity
grows linearly with the frequency. As the number of wave lengths the solution
is transported seems to be a measure of the difficulty of a wave propagation
problem, this indicates that solving Schrödinger equations is harder than solv-
ing linear hyperbolic problems. Indeed, to keep the error below ε at time t, we
need at least

M′
p =C′

p

(ω2t
ε

)1/p
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points per wave length when solving the Schrödinger equation. This also in-
dicates that the gain of using higher order methods is higher for Schrödinger
problems. This last statement is supported by common practice: The methods
used when solving the Schrödinger equation are most often of higher order
than the methods used for hyperbolic problems. While methods of order four
or six often are considered sufficient for hyperbolic problems, spectral and
pseudospectral methods dominate the scene for the Schrödinger equation. The
Fourier pseudospectral method [53, 55], which is particularly useful thanks to
the fast Fourier transform (FFT), is equivalent to an (infinitely wide) infinite
order finite difference method [19, 20].

2.2 Time integration
Linear hyperbolic problems are fairly well-behaved when it comes to time
stepping. For short time simulation, many general-purpose explicit Runge–
Kutta and linear multistep methods are adequate, given that a (usually mild)
time step restriction is satisfied [14, 25]. For the Schrödinger equation, which
is not hyperbolic since the speed of propagation is unbounded, standard time
stepping schemes tend to perform poorly. We will discuss that in more detail
later in this section.

It is common that the solutions of wave propagation problems have con-
served quantities and symmetries. There may be much to win by using a time
stepping scheme which takes such properties into account, especially for long
time simulation. Such methods are studied in the field of geometric numerical
integration [10, 32]. The canonical application area for geometric integration
is Hamiltonian ODEs. A Hamiltonian ODE is time-reversible, and preserves
a Hamiltonian functional, or energy, and a quantity known as its symplectic
bilinear form. The workhorse of Hamiltonian ODEs, the Störmer–Verlet or
leapfrog method [33, 91], is time-reversible and symplectic, i.e., it preserves
the symplectic form. Symplectic methods do not preserve the Hamiltonian
exactly, but almost. By backward error analysis of symplectic methods one
can show that there exists a modified Hamiltonian, close to the true Hamilto-
nian, which the method preserves up to an error which is exponentially small
in the time step [32]. In, for instance, molecular dynamics, such preservation
properties are very important. For large systems and long simulation times it
is often inevitable that the error may become very large in absolute terms, but
if energy, momentum, and angular momentum are conserved to high accuracy
the simulation may still retain many macroscopic properties of the system.

Both the wave equation and the Schrödinger equation are, with suitable
boundary conditions, Hamiltonian PDEs. After appropriate discretisation in
space the resulting systems of ODEs are also Hamiltonian. In addition, the
Schrödinger equation preserves the L2-norm of the solution. As previously
mentioned, standard explicit time stepping schemes such as the leapfrog meth-

12



od work well for the wave equation, given that a time step restriction Δt ≤αΔx
is satisfied. The same holds in principle for the Schrödinger equation, but
since it has a higher order derivative in space than in time, the time step re-
striction becomes Δt ≤ α ′Δx2. This is very restrictive, and renders standard
time stepping schemes practically useless. Instead, different kinds of exponen-
tial integration methods dominate the scene. These include splitting methods
[18, 64, 80, 89], Krylov subspace methods [4, 43, 56, 74] and polynomial
(Chebyshev) methods [86]. Splitting and Krylov subspace methods are uni-
tary, i.e., they preserve the L2-norm of the solution, but only the splitting meth-
ods are symplectic, and only symmetric splitting methods are time-reversible
[59].

The simplest possible splitting method, the Lie–Trotter scheme [89], reads

eh(A+B) ≈ ehBehA,

and is first order accurate in the time step h. A and B are the operators oc-
curring in the right-hand side of the differential equation; for (1.2) we get
A = (i/2m)Δ and B = −iV . Higher order accurate splitting methods can be
constructed by using more substeps in the decomposition [7, 32]. Splitting
methods are particularly useful when Fourier methods are applied to the TDSE
since the potential is diagonal in coordinate space, and the Laplace operator is
diagonal in frequency space. Diagonal operators are trivially exponentiated,
and the FFT provides a fast means for going between the coordinate and fre-
quency representations. We can thereby compute the substeps in essentially
linear time. As its substeps are unitary, any splitting scheme for the TDSE
is unconditionally stable. Any consistent splitting method is exact if A and B
commute, so naturally, commutators of A and B occur in the error estimates.
Order conditions can be derived using the Baker–Campbell–Hausdorff (BCH)
formula [32] or Taylor expansion, but the resulting error estimates are only
valid for bounded operators A and B and sufficiently small time steps. By us-
ing more delicate techniques, one can derive error estimates which under cer-
tain assumptions are valid for PDEs and longer time steps. Error estimates for
the Lie–Trotter and the second order Strang [80] schemes for the Schrödinger
equation were derived in [46], in which bounds on the commutators was an
important ingredient. Estimates for higher order splitting methods, valid for
PDEs, were derived in [36, 67, 88]. In Paper IV we extend the error analysis
from [88] to splitting schemes of force-gradient type [52].
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3. High-dimensional problems

The dimensionality of the TDSE grows linearly with the number of particles
under consideration. Solving high-dimensional PDEs numerically is notori-
ously difficult due to the exponential growth of work and data with the dimen-
sion when standard methods are applied. If n grid points are needed in one
dimension, one generally has to expect that nd grid points are required when a
similar problem is to be solved in d dimensions. To be able to attack problems
in more than, say, four dimensions, some kind of reduction of the model is
necessary—solving the problem on a standard grid would be intractable.

3.1 Semiclassical methods and high frequency
approximation

The TDSE (1.2) for molecular dynamics and Hamilton’s equations (1.3) model
the same physics: Classical dynamics can be seen as an approximation of
quantum dynamics. A molecular system behaves more classically when the
nuclei are heavy, and classical dynamics is retained in the m → ∞ limit. By us-
ing this relation between quantum and classical dynamics, approximate meth-
ods can be constructed. Such methods are often called semiclassical. Many of
these are based on Gaussian wave packets [38]. Gaussian wave packets stem
from the observation that a complex Gaussian with appropriately evolved pa-
rameters solves the TDSE when V is a convex quadratic polynomial, the so-
called harmonic oscillator, exactly. In particular, the centre point and centre
frequency of the Gaussian are evolved according to (1.3), and its covariance
matrix according to a Riccati equation. For anharmonic potentials, the TDSE
is solved approximately by evolving the wave packet according to the second
order Taylor expansion of the potential. For increasing m the wave packet be-
comes more narrow, and the error from the truncation of the Taylor expansion
decreases. This justifies using Gaussian wave packets to construct a semi-
classical method. The wave function also becomes more oscillatory as m in-
creases. Gaussian wave packets with fixed width, so-called frozen Gaussians,
are also popular [39, 40, 83]. One can construct approximations of higher
order in m−1 by multiplying the Gaussian wave packet with a carefully con-
structed polynomial prefactor. These functions are known as Hagedorn wave
packets [30, 31]. In [17], a practical computational algorithm using Hagedorn
wave packets was devised. Such wave packets are an important ingredient in
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Paper I, although not as a semiclassical method. A review of semiclassical
methods, written from a mathematical perspective, is given in [47].

Gaussian wave packets have also been explored by the mathematical com-
munity under the name Gaussian beams [42, 58, 71, 72]. They were mo-
tivated as an asymptotic method in the limit of high spatial frequency, and
can be derived from the eikonal and transport equations of geometrical op-
tics. Application-wise, Gaussian beams initially focused on optic, acoustic
and seismic wave propagation rather than on quantum mechanics, but they
can be derived also for the TDSE in an analogous way. For the Schrödinger
equation there is a close relation between high frequency approximation and
semiclassics, as the wave function will have wave lengths of order m−1/2. In
Paper II, we couple Gaussian beams for the TDSE to a direct solver using
finite differences on summation-by-parts form.

3.2 Sparse grids
A different way of reducing the computational complexity of solving high-
dimensional PDEs is sparse grids. They were first introduced for multivariate
quadrature and interpolation by Smolyak [79]. A multi-dimensional grid is
constructed using a hierarchy of one-dimensional quadrature formulas of dif-
ferent spacing. Most of the nd points occurring in the full grid are omitted,
and the resulting grid has only O(n(logn)d−1) points. Sparse grid techniques
have also been used for partial differential equations [11, 96]. The accuracy of
approximation on sparse grids relies on fast decay of mixed derivatives. This
somewhat limits the applicability of the approach.

3.3 Low-rank approximation
Another way of reducing the model, which has had much success in quantum
dynamics, is low-rank approximation. In two dimensions, where function val-
ues on a tensor product grid can be represented by a matrix, a rank-r approxi-
mation can be constructed using a truncated singular value decomposition,

R
n×n � A ≈ Y =USV T ,

where U,V ∈ R
n×r have orthonormal columns, and S ∈ R

r×r. When r � n,
this significantly reduces the amount of data required to represent (an approx-
imation of) the matrix. Various low-rank tensor formats generalise this data-
sparse representation to higher dimensions [27, 51]. Of particular relevance is
the Tucker format, which is used in the multi-configurational time-dependent
Hartree (MCTDH) method [65, 66]. MCTDH and its variants have become
standard approaches for quantum dynamics problems of moderately high di-
mension. The amount of data needed in the MCTDH method still scales ex-
ponentially with the dimension, but with a possibly much smaller base. For a
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rank-r representation of a d-dimensional wave function with n points per di-
mension, rd +drn numbers must be stored. This exponential scaling is reme-
died in multilayer MCTDH [93, 94], which uses variants of the hierarchical
Tucker (H-Tucker) format [28]. The rd-element core tensor of the Tucker
format is decomposed hierarchically, forming a tree structure. The H-Tucker
format is retained as a special case when the tree is binary, and requires the
storage of O(drn+ dr3) numbers. Another important special case is tensor
trains (TT) [70], where the tree is binary and made as unbalanced as possible.
The tree then gets a linear structure, which simplifies many algorithms. A ten-
sor train requires the storage of O(dr2n) numbers. Before being explored in
the mathematics community tensor trains were discovered by physicists, who
call them matrix product states [29, 75, 92].

The spaces of Tucker, H-Tucker and TT tensors of fixed rank are embedded
manifolds in C

n1×···×nd [45, 49, 90], which forms a foundation for stable com-
putations. For low-rank approximation of time-dependent problems we apply
the Dirac–Frenkel time-dependent variational principle [15, 54, 59]. Consider
the tensor differential equation

Ȧ(t) = F(A(t)), A(0) = A0 ∈ C
n1×···×nd .

If M is the manifold of tensors of fixed rank and TY M its tangent space at
Y ∈M , application of the Dirac–Frenkel principle gives a variational problem
for the low-rank approximation Y (t) of A(t), reading, for all t ∈ [0,T ], find
Y (t) ∈ M such that Ẏ (t) ∈ TY (t)M and

〈X ,Ẏ (t)〉= 〈X ,F(Y (t))〉 ∀X ∈ TY (t)M , Y (0) = Y0 ∈ M . (3.1)

Quasi-optimality results for dynamical approximation with Tucker, H-Tucker
and TT tensors are given in [3, 49, 62]. In [60, 61], an efficient time stepping
scheme for (3.1) on the manifolds of low-rank matrices and TT tensors was
presented. The scheme has some remarkable robustness properties, which we
analyse in Paper VI.
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4. Absorbing boundary conditions

The Schrödinger equation (1.2) is generally posed on the infinite spatial do-
main R

d . This makes the numerical treatment of boundary conditions delicate
in many cases. In other cases, it may become very easy. The easy cases are
bound problems, where a localised wave packet oscillates around an equilib-
rium. The wave function then decays fast, often exponentially, away from a
region of effective support, and we can safely truncate the domain. At the
introduced boundary we can use any boundary condition we want, as long as
it is well-posed and does not excite the system. A popular choice is periodic
boundary conditions, as they are easy to implement, do not affect the stability
of the discretisation, and facilitate the use of Fourier methods.

For scattering and dissociation problems, the situation is more complicated.
There, the wave function will not be confined in a small region, but instead
spread over an extended area. It is, however, reasonable also for such prob-
lems to truncate the domain outside the region where the phenomenon under
study takes place. The scattered or dissociated wave packet spreading towards
infinity is usually of lesser interest. In such cases it is important that the trun-
cation of the domain does not affect the solution in the interior, the bound-
ary should be absorbing so that a wave moving towards the boundary exits
the domain without reflections. Exact absorbing boundary conditions can of-
ten be constructed in theory, but they are global in both space and time and
therefore of limited use for practical computations. Local absorbing boundary
conditions were pioneered by Engquist and Majda for the scalar wave equa-
tion [16]. They related spatial and temporal derivatives of the solution at the
boundary to derive local absorbing boundary conditions of different orders,
which yield well-posed initial-boundary value problems. The boundary con-
ditions absorb waves with normal incidence exactly, but give reflections when
waves approach tangential incidence. The higher order boundary conditions
deteriorate slower when the angle of incidence grows, but involve higher or-
der derivatives and are therefore more cumbersome to implement. Engquist–
Majda-type absorbing boundary conditions have also been constructed for the
Schrödinger equation, see, e.g., the review article [1].

An alternative to local absorbing boundary conditions is to embed the do-
main in an absorbing layer where a modified equation is solved. One way
of modifying the equation is to add an imaginary term to the potential, a so-
called complex absorbing potential [63, 68, 73]. This technique is popular
among chemists. Another technique, which we employ in Papers II and III, is
perfectly matched layers (PML). It was first invented for Maxwell’s equations
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in [6], and has been used and studied a lot for hyperbolic problems [2, 5].
The interface between the regions where the original PDE and the PML equa-
tions are to be solved does not cause any reflections—the absorbing layer is
perfectly matched. If the layer is infinitely wide we have a perfectly absorb-
ing boundary at the interface. That is, of course, of little practical use as the
computational domain then still is infinite, but since waves are damped within
the layer we only get small reflections when the layer is truncated to finite
size. Some small reflections may also arise due to the discretisation of the
PML equations. In this thesis, we use the PML developed for the Schrödinger
equation in [69]. An attractive feature of this PML is that it only amounts to a
modification of the kinetic energy operator in the layer. For hyperbolic prob-
lems, auxiliary variables with accompanying equations have to be introduced
in the PML.
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5. Summary of papers

5.1 Paper I
In this paper we develop an adaptive pseudospectral method using Hagedorn
wave packets [30, 31]. Hagedorn wave packets are Gaussian functions mul-
tiplied by polynomial prefactors. They are orthonormal in L2(Rd) and gener-
alise Hermite functions to multiple dimensions. Similarly to Gaussian wave
packets, their position and shape parameters can be evolved in time such that
each basis function solves the harmonic oscillator exactly. A difference com-
pared to Gaussian wave packets is that all the Hagedorn basis functions have
the same position and shape parameters, while the Gaussian basis functions
move independently of each other. Instead, the Hagedorn basis functions dif-
fer by being of different polynomial degree. When evolved on an anharmonic
potential, error estimates in terms of m−1 can be derived. A practical com-
putational algorithm, designed for the semiclassical regime, was developed in
[17].

Error estimates for semiclassical methods deteriorate with time, in some
cases rather quickly. In this work we use Hagedorn wave packets in a non-
semiclassical setting. Instead of letting the basis follow the classical equations
of motion, we make it match the support of the wave packet. This is done using
a proportional-derivative controller, a standard tool from automatic control.
The end result is a collocation method with a time-dependent, adaptive basis.
Semiclassical error estimates for Hagedorn wave packets are no longer valid,
but instead we get the possibility for accurate simulation over longer periods
of time in situations where we can afford to resolve the wave function. We
demonstrate applicability of the method on photodissociation problems in one
and two dimensions.

5.2 Paper II
In the semiclassical regime, i.e., when the particles are heavy, solutions to the
TDSE are highly oscillatory. This makes grid-based methods very expensive
also in low dimensions, and it might be worthwhile to consider alternative ap-
proaches, e.g., asymptotic methods. One such asymptotic method is Gaussian
beams, cf. Section 3.1. Gaussian beams are accurate in the high frequency
regime, where the wave length is much shorter than the scale on which the po-
tential has variations. In this paper we consider a problem where a local sharp
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feature of the potential breaks the validity of high frequency asymptotics. Such
a feature could be, e.g., a reaction barrier allowing for tunnelling, which is a
feature Gaussian beams cannot represent. We develop a hybrid method which
uses Gaussian beams in smooth regions and a finite difference method where
the potential has sharp features. A similar hybrid method was developed in
[48]. Our method is based on a similar idea, but is more efficient since it uses
thinner interfaces which reduces redundancy, and also uses cheaper algorithms
for handling the interfaces.

The method is based on an a priori decomposition of the domain into re-
gions handled by Gaussian beams and finite differences, respectively. This
is justified since the choice of method depends on what the potential looks
like, which is information available before starting the computation. The main
contribution of this paper is the treatment of the interfaces. We treat the trans-
formation of Gaussian beams to a grid representation using Huygens’ surfaces
[85, Ch. 6.5], which is a standard approach in electromagnetics but little used
for other types of problems. Transforming the grid representation to Gaussian
beams is less straight-forward. In [87] it was shown how a highly oscillatory
function in WKB form, i.e., of the form

u(x) = A(x)eiφ(x)/ε

with A and φ independent of ε � 1, could be written as an integral super-
position of Gaussian beams, and error estimates in terms of ε were proven.
We treat the grid-to-beams transformation in a similar way, but using a super-
position over the temporal instead of the spatial coordinate. We also prove a
similar error estimate. When the outgoing wave packet has crossed the point
where it is translated to Gaussian beam representation, we remove it from the
grid by absorbing it with a PML.

5.3 Paper III
This work was motivated by a particular application in experimental physics,
known as higher harmonic generation (HHG) [95]. In a variety of experiments,
sequences of short but highly energetic pulses of light are desired. HHG is a
means of creating such pulses. This is done by exposing a thin atomic gas to an
oscillating electric field created by a strong laser beam. The electric field may
then, with some probability, rip one valence electron off, ionising the atom.
Since the field oscillates, the electron may be accelerated back to recombine
with the ion. As it returns to a bound orbit, the excess energy it has acquired
from the field will be emitted as a high energy photon. Since the electric field
oscillates with a certain frequency, the atomic gas will emit bursts of light at
regular intervals.

A difficulty with solving electron dynamics problems numerically is the
lack of regularity of the solution, which is caused by the singular Coulomb
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potential. By formulating the problem in cylindrical coordinates, using Bessel
functions in the radial and a Fourier basis in the axial direction, the situation
is somewhat improved, but the potential still has a discontinuous first deriva-
tive. This results in a jump in the third derivative of the solution in the axial
direction. We derive an expression for the size of this jump, and propose a reg-
ularisation which cancels it. One would expect this to increase the order of ac-
curacy from two to three, but numerical experiments indicate that the method
is fourth order accurate. To explain this behaviour we study the Laplace trans-
form of the error equation. By exploiting localisation of the error, both in time
and frequency, we are able to prove a sharp error estimate.

5.4 Paper IV
This paper concerns splitting methods for, primarily, Schrödinger type prob-
lems. We consider a problem of the form

ut(t) = Au(t)+Bu(t), u(0) = u0,

posed on a Banach or Hilbert space, with possibly unbounded operators A
and B. If additional assumptions are made, this can sometimes be exploited
to construct more efficient methods. For example, if the iterated commutator
[B, [B, [A,B]]] vanishes, which is the case for the TDSE, splitting schemes of
Runge–Kutta–Nyström type [7, 32] can be applied. By exploiting that this
commutator vanishes they need fewer stages for the same order of accuracy,
compared to standard splitting methods. In this paper we assume this, and
also that an explicit, computable expression for the commutator [B, [A,B]] is
available. One can then use force-gradient, or modified potential, splitting
methods [52, 81, 82]. For the Schrödinger equation, with A = iΔ and B =
−iV (x), we get [B, [A,B]] = 2i|∇V |2, i.e., the commutator has the form of a
potential.

Classical error analysis for splitting methods can be based on the BCH for-
mula [32] or Taylor expansion. That is, however, only valid if A and B are
bounded operators and the time step h is sufficiently small. Error estimates
which hold also for unbounded operators, such as differential operators, are
called stiff error estimates. Stiff convergence for standard splitting methods
of any order, applied to the Schrödinger equation, was proven in [88]. In this
paper we extend that result to force-gradient methods.

5.5 Paper V
For wave propagation problems, high order methods are advantageous. For
pth order finite difference or finite element methods, the cost of numerical
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differentiation is linear in the number of grid points, with a p-dependent pro-
portionality constant. The error decays as Δxp when the spatial stepsize Δx
is decreased. For spectral and pseudospectral methods on the other hand, the
error decays faster than any polynomial in Δx, while the computational cost
generally is quadratic in the number of grid points. This quadratic scaling eas-
ily renders spectral methods prohibitively expensive. There are, however, situ-
ations where the computational cost of numerical differentiation can be drasti-
cally mitigated. The most prominent example is periodic problems, where the
Fourier method can be applied. With the help of the fast Fourier transform, the
cost is then again essentially linear. For problems with less trivial boundary
conditions it is not as easy to make spectral methods efficient.

In this paper, we develop a spectral method which is applicable to time-
dependent PDEs with a wide range of boundary conditions, and which scales
essentially linearly with the number of grid points. The method is based on a
Galerkin ansatz in a basis of Legendre polynomials and operates in the spectral
space, i.e., we work with the expansion coefficients for the Legendre polyno-
mials rather than with the point-wise values of the solution. The motivation
for this is that spatial derivatives then can be evaluated in linear time using
recurrence relations, see, e.g., [12, Ch. 2.3]. This however comes at a price—
multiplicative operators such as variable coefficients become global, and the
cost for applying them will be quadratic in the number of grid points. In [17] it
was suggested how this could be circumvented when the coefficients are much
smoother than the solution, in the context of solving the Schrödinger equation
in a basis of Hermite functions. The method was further elaborated on, and
analysed in detail, in [9]. It uses orthonormality and recurrence relations for
the basis functions to construct a recursive procedure for how to apply polyno-
mial multiplicative operators. If the variable coefficients are much smoother
than the solution they can be approximated by polynomials of relatively small
degree, which is the key to the efficiency of the approach. We extend this
approach to initial-boundary value problems, where we impose boundary con-
ditions weakly using a penalty technique [13, 21, 22, 41]. The penalty terms
are global in the spectral space, but they are also of low rank which makes it
possible to evaluate them in linear time. We prove that the method is stable
and spectrally accurate for the scalar wave equation.

5.6 Paper VI
A difficulty with dynamical low-rank approximation is that the curvature of
the approximation manifold M grows without bound when singular values
taken into account in the approximation tend to zero. The dynamical low-rank
approximation, as given by the Dirac–Frenkel principle (3.1), can be written
equivalently as

Ẏ (t) = P(Y (t))F(Y (t)), Y (0) = Y0 ∈ M , (5.1)
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where P(Y ) is the orthogonal projection onto the tangent space TY M . The
Lipschitz constant of P(Y ) is inversely proportional to the smallest nonzero
singular value of Y . This forces standard time stepping schemes to take very
small time steps. Small singular values in Y is something one has to expect. In
the initial data Y0 we have neglected all singular values which are smaller than
some threshold. However, the singular values of the matrix or tensor1 we want
to approximate typically decay without a distinct gap. If the largest neglected
singular value is not small we will neglect a lot of information, and thus make a
significant modelling error. There is, however, no reason to expect the smallest
included singular value to be much larger, and as we just saw, small included
singular values causes problems with large Lipschitz constants. Small singular
values in the low-rank approximation is therefore most often something we
desire, but at the same time something we would rather avoid.

Recently, an efficient time stepping scheme for low-rank approximation
of matrix and TT-tensor differential equations was proposed [60, 61]. This
scheme is a splitting method, based on decomposing the projection P(Y ) into
2d−1 terms. Each substep of the projector-splitting integrator is an evolution
equation for at most r2n degrees of freedom. Furthermore, if F(Y ) is linear the
subproblems will also be linear, even though (5.1) is nonlinear. Standard er-
ror estimates for splitting methods [32] will break down when singular values
tend to zero, as they depend on the Lipschitz constant of P. This deterioration
in accuracy is however not seen in numerical experiments. It was proven in
[60, 61] that if F = F(t) does not depend explicitly on A, and if A(t) is of the
prescribed rank, the projector-splitting integrator is exact. This is an indication
of the remarkable robustness of the method.

In this paper, we present a thorough robustness and accuracy analysis of
the projector-splitting integrator. We prove that if the exact solution is almost
of the prescribed rank, i.e., if F maps onto the tangent bundle of M up to an
ε-perturbation, the error ‖A(tk)−Y (kh)‖ will be bounded in terms of ε and h,
where h is the time step. The error estimate depends on the Lipschitz constant
of F , but not on the Lipschitz constant of P or in any other way on the included
singular values. We prove the result by combining the exactness result from
[60, 61] with the fact that the spaces spanned by the basis vectors for each co-
ordinate direction are preserved in all but one substep of the splitting scheme.
Using that, we can avoid the large Lipschitz constants of the projections when
we isolate the O(ε) perturbations.

1The singular values of a tensor should in this context be understood as the singular values of
its matrix unfoldings [23, 70].
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6. Sammanfattning på svenska

Vår uppfattning av världen omkring oss formas i hög utsträckning av vågut-
bredningens fysik, då vi med synen och hörseln uppfattar optiska respektive
akustiska vågor. Oftast får vi därigenom en någorlunda rättvisande beskrivn-
ing av verkligheten, men ibland kan egenheter hos vågfysiken lura oss. Exem-
pelvis gör dopplereffekten att samma fordon låter annorlunda när det närmar
respektive avlägsnar sig, och regnbågen är en effekt av att ljushastigheten i
vatten beror på ljusets våglängd. Vågor används i ett otal tekniska tillämp-
ningar. Etermedia och mobiltelefoni sänds med elektromagnetiska vågor, dvs.
vågor av samma sort som synligt ljus, men med mycket större våglängd. Ett
ekolod använder vanliga ljudvågor för att mäta havets djup, på samma sätt som
fladdermöss använder ekot från sina rop för att hitta flygande insekter. Den här
avhandlingen handlar om beräkningsmetoder för vågutbredning.

Många vågutbredningsproblem är i grunden ganska enkla. Ljudvågor är
små svängningar i lufttrycket som förflyttar sig med ljudhastigheten c. Den
matematiska beskrivningen av ljudutbredning, vågekvationen, är också enkel.
Den lyder

utt = c2Δu, x ∈ Ω,

n ·∇u = 0, x ∈ ∂Ω,
(6.1)

där u = u(x, t) är lufttryckets avvikelse från jämviktsläget vid positionen x och
tiden t, och Δ är Laplaceoperatorn. Randvillkoret n ·∇u = 0 beskriver reflek-
tion mot hårda väggar. I en fri luftmassa är det betraktade området Ω = R

3,
och problemet låter sig enkelt lösas med variabelseparation. Om Ω beskriver
en mer komplicerad geometri, exempelvis en konsertsal, blir lösningen mycket
mer komplicerad eftersom ljudvågorna reflekteras mot rummets golv, väggar
och tak. Problemet kan lyckligtvis fortfarande lösas numeriskt, med hjälp av
datorberäkningar.

Ett centralt koncept inom kvantmekaniken, våg-partikel-dualiteten, innebär
att vi inte bara uppfattar världen omkring oss genom vågor: världen består av
vågor, en slags sannolikhetsvågor. Det är omöjligt att veta exakt var en partikel
befinner sig, vi kan bara känna till en sannolikhetsfördelning för partikelns
position. Sannolikhetsfördelningen kan beräknas med hjälp av den så kallade
vågfunktionen. Vågfunktionen uppfyller Schrödingerekvationen [78],

iut =−Δu+V (x)u, x ∈ R
n, t > 0, (6.2)

som är den ekvation vi oftast studerar i den här avhandlingen. Schrödingerek-
vationen är av andra ordningen i rummet och första ordningen i tiden; den
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imaginära enheten gör att lösningen trots detta har vågkaraktär. Skillnaden i
ordning på tids- och rumsderivatorna gör att vågor med kortare våglängd trans-
porteras snabbare, dvs. Schrödingerekvationen är en dispersiv vågekvation.
Detta gör det besvärligare att lösa (6.2) med en dator, jämfört med (6.1).

Det är vanligt att vågor rör sig över långa sträckor, ofta tiotals eller hun-
dratals våglängder. Ett vanligt problem vid numerisk lösning av vågutbred-
ningsproblem är dispersionsfel, att man får ett litet fel i utbredningshastigheten.
Några hundra våglängder bort kan ett fel på en halv våglängd tyckas bagatel-
lartat, men om vågen där, t.ex., samverkar med en annan våg kan det få stora
konsekvenser om vågen pekar upp istället för ned vid en viss punkt. Schrödin-
gerekvationen är extra känslig för den här typen av fel eftersom den trans-
porterar vågor med kortare våglängd snabbare. Högre ordningens metoder,
som har små dispersionsfel, används ofta för vågutbredningsproblem. Spek-
tralmetoder, i synnerhet Fouriermetoden, är särskilt populära för Schrödin-
gerekvationen. Vi använder spektralmetoder i flertalet delarbeten. I Manu-
skript III utvecklar och analyserar vi en vidareutveckling av Fouriermetoden
för problem med stygga lösningar, och i Manuskript V utvecklar vi en spek-
tralmetod för problem med icke-triviala randvillkor.

Att (6.2) har en högre ordningens derivata i rummet än i tiden gör också att
den blir styv. Det innebär att man måste ta väldigt små steg om man propagerar
lösningen i tiden med vanliga metoder för tidsstegning, t.ex. explicita Runge–
Kutta- eller flerstegsmetoder [34]. Sådana metoder är väldigt ineffektiva för
Schrödingerekvationen. Istället används ofta olika former av exponentialinte-
gratorer, t.ex. splittingmetoder [18, 64, 80, 89], Krylovmetoder [4, 43, 56, 74]
och Chebyshevmetoder [86]. I Manuskript IV bevisar vi en rigorös felupp-
skattning för en klass av splittingmetoder.

Ytterligare en svårighet med Schrödingerekvationen är dess höga dimen-
sionalitet. För traditionella, nätbaserade, beräkningsmetoder växer arbete och
minnesåtgång exponentiellt med dimensionaliteten. Ett system med N partik-
lar beskrivs av en Schrödingerekvation i 3N rumsdimensioner. Om vi använder
n (ofta något hundratal) nätpunkter per dimension får vi totalt n3N punkter i
nätet. Detta blir snabbt ohållbart. Genom att bara betrakta partiklarnas rörelser
i förhållande till varandra kan vi få ned dimensionaliteten en aning, 3N reduc-
eras till 3N − 6, men lösning på nät är fortfarande begränsat till mycket små
system.

I Manuskript VI betraktar vi ett sätt att möjliggöra simulering av större
system: lågrangsapproximationer. Genom att utnyttja att lösningen (förhopp-
ningsvis) har en särskild struktur kan vi reducera mängden arbete avsevärt.
Istället för att lösa ett d-dimensionellt problem löser vi r2d endimensionella
problem, där r � n är lösningens rang, och kopplar samman de endimen-
sionella lösningarna på ett finurligt sätt. Mängden data reduceras därmed från
nd till r2dn, vilket är en himmelsvid skillnad. I [60, 61] presenteras en tidssteg-
ningsmetod för lågrangsapproximationer som är förvånansvärt robust. Tradi-
tionell felanalys bryter samman när singulärvärden i lösningen närmar sig noll,
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men den här metoden ger bra resultat även i sådana fall. I Manuskript VI tar vi
ett stort steg på vägen till att förstå varför. Vi bevisar en feluppskattning som
är oberoende av lösningens singulärvärden.
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Smålands nation i Uppsala.

I also want to acknowledge Stiftelsen Skandinaviska Malm och Metalls
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