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Populärvetenskaplig sammanfattning 
Simon Lind 

Big Data är en ny term inom både vetenskapen och den kommersiella marknaden som 

fått ökad spridning de senaste åren. Big data kan definieras som data som anländer i hög 

hastighet, har stor volym och hög variation. Denna typ av data för med sig stora 

möjligheter, men den kräver också speciella åtgärder för att man ska kunna hantera och 

analysera den. 

Det distribuerade ramverket för datalagring och behandling Hadoop har den senaste 

tiden blivit mycket populära eftersom det tillåter enkel distribuering av både data och 

beräkningar i ett data-kluster. Hadoop är dock begränsat eftersom data ofta måste läsas 

och skrivas från disk i iterativa applikationer, vilket tar lång tid. Apache Spark löser detta 

genom att tillåta att data lagras i det snabbare, primära minnet i ett datakluster. Detta 

tillåter applikationer som behöver tillgång till data ofta att köras upp till 100 gånger 

snabbare. 

Ett möjligt användningsområde inom big data är ”Machine Learning” vilket innebär att 

man tränar en modell genom att analyserar data av känd data karaktär. Modellen kan 

sedan användas för att avgöra okänd datas karaktär. När stora datamängder hanteras 

måste man välja vilken data som ska användas för att träna modellen. Mycket 

information kan förloras i detta steg eftersom en stor del inte används. Detta kan lösas 

genom att man tränar flera modeller på olika delar av tillgängliga data för att sedan 

kombinera deras bedömningar. Detta kallas ”Ensemble Learning”.  Ensemble Learning 

kan leda till en mer träffsäker bedömning på ny data eftersom modellerna lärt sig olika 

saker och kan bidra med olika synvinklar på problemet. 

I detta examensarbete har jag implementerat och utvärderat metoder för Ensemble 

Learning med Apache Spark på stora mängder, obalanserad data.  Resultatet visar att 

det är möjligt att implementera Ensemble Learning metoder som skalar nära linjärt i 

Apache Spark och att dessa kan exekveras upp till 10 gånger snabbare än tidigare försök 

på samma data.  

Examensarbete 30 hp Civilingenjörsprogrammet Molekylär bioteknik, inriktning 
Bioinformatik 

Uppsala universitet, januari 2016 
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1 Introduction 

1.1 Background 

The amount of data that is being collected by companies and scientists has increased 

greatly over the last decade. The Big Data trend shows no signs of slowing, and 

predictions say that Big Data is here to stay (Laney 2015; Kambatla et al. 2014; “2015 

Predictions and Trends for Big Data and Analytics | The Big Data Hub” 2015). Big data 

can be used to find patterns, which can be used for many things. For example, Netflix 

uses data gathered from its user base to predict movie recommendations (Töscher, 

Jahrer, and Legenstein 2008). Another example is the 1000 genome project, where huge 

amounts of genetic data is being collected continuously, with the goal to map all the 

genetic variants of the human genome (The 1000 Genomes Project Consortium 2010). 

Machine learning (ML) is a field in data science where one supplies an algorithm with 

data, from which the algorithm “learns” to identify patterns and correlations (Kohavi 

and Foster 1998). Big Data combined with ML can be a very powerful tool for actors on 

the commercial market and scientists alike when it comes to pattern detection and 

decision making. Big data makes it possible to find patterns and correlations that 

previously were undetectable using small data and analogue data gathering methods, 

such as interviews or surveys, simply because of the lack of information. However, when 

collecting big data, it is not uncommon for one type of data to be more common than 

another type of data (He and Garcia 2009). One example is email spam detection. In 

their latest report of email metrics of q2 2012, Messaging, Malware and Mobile Anti-

Abuse Working Group (M3AAWG) states that approximately 80% of all emails sent were 

of an “abusive” nature, meaning it somehow seeks to exploit the recipient (“M3AAWG 

Email Metrics Report 16” 2014). The sum of all emails represent an imbalanced dataset, 

where 80% are of an abusive nature, and 20% are non-abusive. Another example of 

imbalanced data would be trying to identify criminals in a population. The vast majority 

are law abiding citizens whereas only a few are criminals. These types of datasets and 

problems are becoming the norm rather than the exception in modern ML. A search on 

“imbalanced data” on Uppsala University Library showed that the number of peer 

reviewed publications on the subject has increased by over 800% from 2000 to 2014 
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(“Uppsala University Library” 2015). This increase shows a growing interest in these type 

of problems, and that knowledge about how to go about solving them is a valued 

resource both commercially and scientifically. 

One way to handle the processing of big data is to parallelize the applications that use 

the data. The MapReduce programming model is a popular method for parallelizing 

applications in a computer cluster. The MapReduce model divides the computations into 

a number of Maps that reads the data and writes its results to disk, which is then read 

and aggregated by the reducers.  

Apache Spark is a framework for parallelized computations in a computer cluster, which 

allows data to be stored in memory for fast access. This is especially suitable for iterative 

applications like machine learning. Spark also allows for parallelization of data and 

applications in a cluster, allowing them to be processed and executed simultaneously. It 

has been shown that some applications execute up to 100 times faster than MapReduce 

based methods (Zaharia et al. 2010). Apache Spark could therefore be a suitable next 

step for machine learning on big data in distributed file system due to its state of the art 

framework for iterative processing of data in memory.  

1.2 Purpose and Aims 

Big data requires big storing capabilities. One common solution is to compress the data, 

making it occupy less space on disk. This solution does, however, increase the time 

required for the data to be read from disk, which can be very detrimental for 

applications that read from disk repeatedly. Spark allows us to compressed data on disk 

without it having a strong negative effect on the overall execution time since Spark only 

requires one pass over the compressed data to store it in memory as a Resilient 

Distributed Dataset (RDD). Once the data is in memory, it will not have to be 

decompressed again (Zaharia et al. 2012). 

If the dataset is too large, Spark will either re-compute the RDD using the RDDs lineage 

or spill it to disk for later access. This will severely deteriorate performance due to disk 

I/O. To address this, I suggest that the data can be divided into subsets that fit into 

memory. Training will be performed on data stored in memory, and each subset will 

produce one classifier. Each classifier will then be used to make predictions, which are 
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later combined to make a final decision. This is called Ensemble learning(Witten, Frank, 

and Hall 2011, 351–373). Ensemble Learning have been used previously, it utilizes the 

diversity in the ensemble of classifiers in the ensemble to produce predictions with 

greater performance than a single classifier would (Yang et al. 2010; Xie, Fu, and Nie 

2013; Polikar 2006; King, Abrahams, and Ragsdale 2015; Chawla and Sylvester 2007) . 

Ensemble learning using Spark would not only reduce the need of disk space, but also 

the RAM required, since data can be compressed on disk, and since the only subsets of 

the dataset has to be cached. 

In this thesis, I will attempt to contribute to the state of research in Big Data ML by 

investigating the possibility of a scalable, big data solution for ensemble learning on 

imbalanced datasets using Apache Spark. 

More specifically, the aims of this thesis are to evaluate Apache Spark usability in Big 

Data ML by implementing core ensemble learning applications in Apache Spark. These 

applications will be evaluated in regards to: 

 Scalability 

 Speed 

 Classifier Performance 

The work in this thesis was performed with a small 6 node cluster provided by Omicron 

Ceti. The cluster hardware configuration will be evaluated according to the following 

application areas in Big Data ML: 

 Development 

 Testing 

 Production 
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2 Theory 

2.1 Big Data 

Big Data is difficult to define. It is usually described as a large amount of data in the 

terabyte to petabyte range, which is hard to store using conventional data storage 

methods (White 2012). Since the ability to store and process large data volumes are 

growing, the limit for what can be called “Big Data” is always changing.   

One popular way to describe big data is the “three V’s” of big data which was first 

introduced in 2001 as Volume, Velocity and Variety (Laney 2001). These three V’s aim to 

explain the properties of big data other than just being “big” and what problems big data 

brings with it as well as what is required if one aims to utilize big data.  

Volume refers to the “big” part of big data. It simply means that we have many bytes 

which we need to decide if we should store, and if so, how we should store it.   

Velocity is the aspect of how fast data is generated, and processed. Other than the need 

for high bandwidth networking, this also puts pressure on the applications to process 

data as fast as it is received if real-time decisions are needed. 

Variety of data means that the data is not always consistent on terms of quality, format 

or content. This can be one of the most problematic aspects of big data, since the data 

might have to be reviewed before it can be processed, adding a time consuming step in 

the processing pipeline.  

These three V’s have been under some scrutiny from the community, and additional V’s 

have been purposed in addition to the three original (van Rijmenam 2015; Swoyer 2012; 

Shukla, Kukade, and Mujawar 2015), such as “value”, and “veracity”. However, many of 

these additions to the original Vs are not anything unique to Big data. Small data can 

also differ in value and veracity, but only big data has large volume, arrives in high 

velocity an in high variety. Therefore, only Volume, Velocity and Variety are used to 

define big data in this thesis. More specifically, in this thesis big data refers to data too 

large to store in the primary memory of a single computer. 
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2.3 Apache Hadoop 

Apache Hadoop is a framework that allows for distribution of data storage and data 

processing in a computer cluster (“Welcome to ApacheTM Hadoop®!” 2015). Hadoop 

makes each node in a cluster take the role as both a storage and computational node, 

improving the data locality. The Apache Hadoop project was first started in 2002 as the 

Nutch project and was later acquired by Yahoo! and renamed Hadoop. Hadoop is 

designed to scale to several thousands of nodes and is widespread in the industry of big 

data. The Hadoop project contains and supports several frameworks which allows 

developers and users to leverage Hadoop distributed framework in several different 

application areas, ranging from data storage, to ML algorithms (“Welcome to ApacheTM 

Hadoop®!” 2015).  

Data locality refers to where the data is stored in relation to the computations (Guo, 

Fox, and Zhou 2012). Limited data locality can be described as a situation in which the 

data must be transferred a lot between nodes.  In High Performance Computing (HPC) 

the data locality is limited since all the computation nodes have to access the data via 

network connections, creating a bottleneck in applications where much data is 

transferred (Guo, Fox, and Zhou 2012). This is all and well when working with 

computationally heavy applications that do not require a lot of communication, or when 

using high performing networks. However, when faced with problems that require a lot 

of communication between nodes, and high performance networking is not available, 

the Hadoop framework might be the better choice. 

Apache Hadoop improves upon the data locality of many applications by distributing the 

data, keeping replicas of the data across several nodes, and by instead of transferring 

data, moving the computations to the data instead, decreasing the total amount of data 

transferred between nodes, making communication intensive applications possible 

using commodity hardware, instead of expensive high end hardware  (Guo, Fox, and 

Zhou 2012).  

2.3.1 Hadoop Distributed File System 

The Hadoop Distributed File System (HDFS) is a framework in the Hadoop project for 

managing the distribution of data which is too large to store on a single node to several 
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nodes in a cluster. When storing large amounts of data indexing of the data becomes 

necessary (White 2012, chap. 3). HDFS solves this by having two types of nodes in a 

cluster. The NameNode, which keeps the metadata in memory, and a DataNode, which 

stores the data. This way the NameNode can quickly point to what data block on which 

DataNode where one can find the data. The HDFS also supports replication of data in 

the cluster, providing high availability of data should one node fail. This allows for jobs 

to continue on other nodes where the data is replicated (White 2012, chap. 3). 

2.3.2 YARN 

YARN, Yet Another Resource Negotiator or MapReduce2 is the newest iteration of the 

resource negotiator in the Hadoop framework (White 2012, chap. 4). YARN is 

responsible for distributing and queuing applications across the cluster, while also 

allocating resources to the application. YARN aims to decrease the amount of data 

transfer occurring in the cluster by placing applications on the nodes where the data is 

located instead of moving the data itself. If a node is busy, a new application will be 

placed in a queue and wait until the needed resources are released (White 2012, chap. 

4). 

The ability to distribute data across a computer cluster as well as the computations 

efficiently, gives the Hadoop framework an advantage compared to conventional HPC 

methods in communicational intense applications. Traditional HPC makes each 

computation node transfer the data from a shared data storage to local storage via some 

kind of network connection, which gives it a disadvantage in communicational intense 

applications (Guo, Fox, and Zhou 2012). When applications use large amount of data or 

output large amounts of data, traditional HPC become network bound due to the 

amount of data that is being transferred. Using Hadoop, there is much less data transfer 

since both the data and computations are distributed across the cluster thanks to the 

HDFS and YARN. 

When a user submits an application to the cluster, YARN first starts an application 

master (AM), which then requests the needed resources from the cluster resource pool. 

YARN then allocates a number of containers to the application (White 2012, chap. 4). A 

container is an abstraction in YARN which refers to a pool of resources which are 
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allocated to one job. A container has a minimum size and a maximum size in regards of 

memory and virtual cores. When the containers have been allocated, the application 

starts. The containers communicate with the AM who in turn communicates with YARN. 

When the application has finished, the containers and the AM are decommissioned and 

their resources are returned to the cluster pool. YARN also allows multiple users to 

utilize a cluster by only requesting the resources needed for their applications. 

Additionally, resource pools can be allocated to different users, only allowing them to 

access resources within their designated pool. This makes YARN useful for when the 

cluster is used by several users (White 2012, chap. 4). 

2.4 Spark 

Spark is a framework for cluster computing that has been develop with iterative 

applications in mind (Zaharia et al. 2010). It further decreases the amount of data 

transfer needed compared to MapReduce applications in Hadoop by storing data in the 

primary memory, instead of writing it to disk after each job, and read at the beginning 

of each job, as is done in conventional MapReduce. Depending on the replication factor 

specified, this might have to be done several times at the start and end of each job. 

Additionally, in MapReduce a new JVM is started for each new job. This can be very time 

consuming, especially if there are many jobs to be done. Spark solves this by keeping 

two types of JVMS active until the application finishes, the driver and its executors. The 

executors are responsible for the calculations and data caching required by the 

application. Each executor and the driver occupy one YARN container each and are as 

such restricted by the maximum, and minimum allowed memory and virtual cores 

specified in the YARN settings (Zaharia et al. 2010). 

A Spark job is divided between the executors and its driver (Zaharia et al. 2010). The 

driver is responsible for job scheduling and communication with YARN. The Spark driver 

is in fact running within a YARN Application Master, giving Spark the ability to 

communicate with yarn directly, instead of through a separate AM. In traditional 

MapReduce, after a job is finished, the JVM is decommissioned, and the application 

masters assigns a new JVM to the next job. In contrast to this, Spark starts each 

application by starting a JVM for each executor, to which the driver can assign a job to 
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an executor directly. When a job is finished, the JVM is kept online, speeding up the 

overall execution time (Zaharia et al. 2010). 

 

Figure 1 The Differences in how MapReduce and Spark manages job scheduling and its JVMS. In MapReduce, the AM 
first starts the JVMs and then assigns it a task with corresponding tasks (1). The JVM reads input data from disk (2), 
performs the computations and writes the output to disk (3) after which the JVM is decommissioned and the process 
restarts. In Spark, the driver within the AM requests the JVMs from the cluster (1) and assigns it with a task. The data 
is read from disk (2) and computations are performed. The output is written to memory (3) after which a signal is sent 
to the driver to inform it that the task is finished (4). A new task is assigned to the same JVM, who now can read the 
input data from memory (5). 

Spark does however not work within memory entirely. When results from tasks must be 

aggregated from across the cluster, spark tries to keep these results in memory, 

however when they no longer fit, they will be spilled to disk in stage 3 of Figure 1. This 

aggregate of results to a single node is called the shuffle stage, and can have a serious 

impact on performance, since it requires both disk and network I/O. Reducing the 

amount of shuffles required in an application can therefore improve performance 

greatly (“Spark Programming Guide - Spark 1.5.1 Documentation” 2015). 

Spark provides a native Machine Learning library (MLlib). MLlib is the native ML 

algorithm library available in Spark. It provides several ML algorithms and methods for 

evaluating the same (“MLlib | Apache Spark” 2015). This library will be the main source 

for ML algorithms in this thesis. 

2.4.1 Resilient Distributed Datasets 

Spark also introduces Resilient Distributed Datasets (RDD). An RDD is read-only 

collection of object that can be partitioned across the nodes in a cluster, allowing it to 

be accessed by several executors, and for the applications to work on the data in parallel 
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(Zaharia et al. 2012).  An RDD is not computed as it is defined. RDDs supports so called 

“lazy” transformations. The transformations are instructions on how the data should be 

derived. Since a RDD can be derived from a series of lazy transformations, a roadmap 

over how the RDD should be computed is stored as the user defines the transformations. 

These roadmaps are called the RDDs “lineage”. Using the lineage, the data can be 

replicated if an executor is assigned a job but does not have the entire RDD stored in its 

own primary memory. The lineage can also be used to restore the data, should a node 

or an iteration fail, providing fault tolerant data management (Zaharia et al. 2012). If the 

dataset is larger than the memory available, the RDD can be spilled to disk. This will 

require some disk I/O, and it will affect performance but it will keep the application 

running even if there is not enough memory available (Zaharia et al. 2012). 

2.6 Evaluation of Scalability 

One of the most important aspect of cluster computing is the ability to scale. Since both 

the data and problem complexity is always evolving, big data solutions need the ability 

to scale both in problem size, and cluster size. To evaluate performance in parallel 

scalability of the implementations in this thesis, two methods will be used to measure 

two different aspects of scalability, speedup and scaleup. 

2.6.1 Strong Scaling - Speedup 

When doing a speedup study, the number of computational nodes, K, are increased, 

while keeping the data size the same, N, as visualized in Figure 2. In ideal situations, the 

execution time should decrease linearly with the addition of computation nodes. The 

speedup tells you how the applications execution time will decrease as you add more 

resources to the problem. 



18 
 

 

Figure 2 Visual representation of the data size N, number of nodes K and execution time T in a speedup study (Alan 
Kaminsky 2015). 

The speedup gained from increasing the cluster size is calculated according to: 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑁, 𝐾) =
𝑇𝑆

𝑇𝑝(𝑁, 𝐾)
                                𝐸𝑄. 1 

Where Ts is the execution time on a single node with data size N and Tp (N, K) is the 

execution time on K nodes with data size N. 

The efficiency measure how close to “ideal scalability” the application is scaling. The 

efficiency is calculated according to: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑁, 𝐾) =
𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑁, 𝐾)

𝐾
                 𝐸𝑄. 2 

In ideal situation the speedup is equal to K and the Efficiency is 1 (Alan Kaminsky 2015). 

However, an ideal speedup is not always possible. Amdahl’s law divides an application 

into two parts, one that can benefit from improving or adding the resources available, 

and one that cannot. The latter is called the non- parallelizable fraction. Depending on 

how large this non- parallelizable fraction is, one can expect it to affect the speedup 

negatively at various degrees (Amdahl 2007). This effect is visualized in Figure 3. 
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Figure 3 A visual representation of how the non-parallelizable fraction (orange) can affect the speedup of an 
application 

2.5.2 Weak Scaling - Scaleup 

In a scaleup study, the data size and the number of computational nodes are increased. 

E.g. if the data amount is doubled, the number of nodes in the cluster is also doubled. 

This is visualized In Figure 4. In an ideal situation the execution time is expected to stay 

constant as the problem, and the cluster grows in size. The scaleup can give one insight 

in how the well the application parallelizes as the problem and resources grow. 

 

Figure 4 Visual representation of the data size N, number of nodes K and execution time T in a scaleup study  (Alan 
Kaminsky 2015). 

The Scaleup is measured according: 
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𝑆𝑐𝑎𝑙𝑒𝑢𝑝(𝑁, 𝐾) =
𝑁(𝐾)

𝑁(1)

𝑇𝑆(𝑁(1), 1)

𝑇𝑝(𝑁(𝐾), 𝐾)
                 𝐸𝑄. 3 

 

Where N(K) is the data size on K nodes. 

Similar to the efficiency of the speedup, the efficiency of the scaleup is calculated 

according to: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑁, 𝐾) =
𝑆𝑐𝑎𝑙𝑒𝑢𝑝(𝑁, 𝐾)

𝐾
                 𝐸𝑄. 4 

 

Again, in ideal situation the scaleup is equal to K and the Efficiency is equal to 1 (Alan 

Kaminsky 2015). 

2.6 Machine Learning 

Machine Learning is the process of finding patterns and correlations in data by using 

different methods for analyzing this data. The goal is to be able to make predictions on 

future data based on what was learned on previous data (Witten, Frank, and Hall 2011; 

Kohavi and Foster 1998). 

In this thesis the ML methods will fall into the supervised learning category. That is the 

algorithms will be presented with the solution and try to find the patterns according to 

the solution. These methods are often called classifiers as each instance in the dataset 

has a set of attributes and decision class, which the ML algorithm tries to determine 

(Witten, Frank, and Hall 2011; Kohavi and Foster 1998). For example, the dataset of 

emails. Each email would be an instance in the dataset, and its content would be its 

attributes. The decision class of the email could be if it is of malicious nature or not (as 

previously explained in 1.1). The goal of the supervised learning algorithm would be to 

find patterns in the emails content, and correlate these to the decision class of the email. 

The patterns found could later be used to classify emails of unknown nature.  

2.6.2 Linear Support Vector Machines with Stochastic Gradient Decent 

Linear Support Vector Machines, (SVM) is a popular method for big data classification. 

The SVM algorithm attempts to separate instances in the training set by representing 
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each instance as a support vector composed by its attributes (Witten, Frank, and Hall 

2011, chap. 6). A hyperplane that separates the support vectors of the different classes 

is then computed iteratively. The hyperplane aims to minimize the errors made, i.e. 

support vectors on the wrong side of the hyper plane, while maximizes the distance 

between the hyper plane and the vectors of the different classes. The vectors closest to 

the hyper plane are its support vectors and are used to define the hyper plane (Witten, 

Frank, and Hall 2011, chap. 6). Figure 5 shows a simple 2D maximum margin plane with 

the support vectors outlined. 

 

 

Figure 5 A 2-dimensional feature space with a maximum margin hyperplane, wTx+b, separating two classes, orange 
and blue. The outlined dots are the support vectors. b is a bias which can be defined to move the hyperplane closer 
to one class cluster, preferring the other class. 

As of November 2015, The SVM implementation in MLlib only supports Stochastic 

Gradient Decent (SGD) optimization and will as such be used as the optimization 

algorithm. 

SGD in MLlib aims find the maximum margin hyperplane from n data points by solving 

the following optimization problem: 

𝑚𝑖𝑛𝑤∈𝑅𝑑  𝐹(𝑤), 𝐹(𝑤) ≔ 𝜆 
1

2
||𝑤||

2
2

+  
1

𝑛
∑ max {0,1 − 𝑦𝑤𝑇𝑥}

𝑛

𝑖=1

 

Where xi ϵ Rd are the feature vectors, and y is each feature vectors corresponding label. 

w is a vector of weights which represent the hyperplane.  
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𝜆 is the regularization parameter. 𝜆 defines the cost of a training error and regulates the 

tradeoff between minimizing the training error, and minimizing the complexity of the 

model which is being trained (“Linear Methods - MLlib - Spark 1.5.1 Documentation” 

2015). 

SGD seeks the optimal solution by “walking” in the direction of steepest decent of the 

sub-gradient. The gradient can be computed using a subset of the dataset in memory. 

The size of this subset can be specified using the mini-batch fraction (“Optimization - 

MLlib - Spark 1.5.1 Documentation” 2015). A smaller mini batch would require less 

computations being made, resulting in faster execution times. Additionally, a mini-batch 

fraction would allow for some randomness in the training. If the full dataset was used, 

the direction of the steepest decent would always point in the same direction, which 

could lead to some local optima, resulting in one missing the global optima. In MLlib SGD 

implementation, the step-size decreases for each iteration, allowing for more fine 

adjustments as the training progresses. The step-size γ is defined as: 

γ =  
𝑠

√𝑡
 

where s is the initial step size, and t is the iteration number (“Optimization - MLlib - Spark 

1.5.1 Documentation” 2015). 

The resulting SVM model makes predictions based on wTx, where the decision class is 

predicted to be either positive or negative if wTx is greater or lesser than a defined 

threshold. This threshold should be selected to maximize the classifier accuracy or some 

other quality measure (“Linear Methods - MLlib - Spark 1.5.1 Documentation” 2015). 

SVM are however biased towards the majority class, since minimizing the errors made 

on that class will reduce the total error, which the SGD aims to minimize. One must 

therefore keep the class distribution in mind when training SMVs on imbalanced 

datasets. 

2.6.4 Evaluation of Classifier 

An essential practice in ML is to divide the data into a training and test set. The algorithm 

only sees the training set, where the classes are known. The classifiers performance is 

then tested on the test set, where the classes are hidden from the model.  



23 
 

When testing the classifier, you get a number of correct predictions, true positives (TP) 

and true negatives (TN), and a number of incorrect predictions, false positives (FP) and 

false negatives (FN). Using these, a confusion matrix (Figure 6) can be constructed which 

can be used for further analysis (Witten, Frank, and Hall 2011, chap. 5). 

 

Figure 6 Binary confusion matrix 

From the confusion matrix one can compute the true positive rate and the false positive 

rate according: 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
                                𝐸𝑄. 5 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

(𝐹𝑃 + 𝑇𝑁)
                                𝐸𝑄. 6 

The Receiver Operating Characteristic Curve, or ROC can then be constructed by 

measuring the TRP and FPR of a classifier at different thresholds. The area under the 

curve, auROC gives an approximation of how accurate a classifier is in general. Ranging 

from 1 to 0, where 1 is a perfect classifier, and 0.5 is no better than random chance 

(Figure 7) (Witten, Frank, and Hall 2011, 629). 
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Figure 7 Receiver operating characteristic curve of one classifier. Each blue dot represents the classifiers TPR and FPR 
different thresholds. Dotted orange line represents a random classifier, which is no better than random guessing.  

 

When building classifiers on imbalanced datasets however, the auROC is not a suitable 

metric for classifier performance. In a highly imbalanced dataset, one can reach a high 

auROC, while still being unable to accurately predict the minority class. For instance, if 

a classifier is trained on a 1:100 class imbalance, the classifier would reach an auROC of 

0.99 by simply classifying each instance as the majority class. A classifier such as this is 

by no means accurate. In these cases the Precision Recall Curve (PRC) is a much more 

suitable metric (Davis and Goadrich 2006). 

Precision refers to the fraction of correctly identified positives over the total amount of 

instances classified as positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                𝐸𝑄. 7 

Recall is defined as the fraction of correctly identified positives over the total amount of 

positive instances (Witten, Frank, and Hall 2011). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                    𝐸𝑄. 8 
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Figure 8 A Precision Recall Curve. Each dot represents a classifiers Recall and Precision at different thresholds. 

One can record the precision and recall of different thresholds and construct the PRC 

(Figure 8). From the PRC the area under the precision recall curve (auPRC). This can be 

used as a measure of how well a classifier can catch positive instances and at its 

precision. A high auPRC tells us that the classifier has a high recall while maintaining a 

high precision. 

Using both the auPRC and auROC, one can choose what threshold the final classifiers 

should use to make their predictions. The chosen threshold should yield a recall and 

precision suitable for the application at hand. For example, a model for diagnosing a 

disease should have a high recall, even at the cost of precision, since a false negative is 

much more expensive than a false positive. 

2.6.4.4 F-Measure 

The F-measure is a harmonic average of both the precision and the recall of a model at 

a given threshold (Witten, Frank, and Hall 2011, 175). The F-measure effectively sums 

up the models ability to recall positive instances, and at what precision, in a single 

metric. The F-measure is calculated according: 

𝐹𝛽 = (1 +  𝛽2) ∗  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
                                𝐸𝑄. 9 

The F-measure allows us to consider both a models recall and precision at the operating 

threshold when deciding on the importance of a models prediction.  
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The F-measure also allows us to change the Beta value, to put more or less emphasis on 

the recall of the model. A beta value of 2 would value a high recall over precision, 

whereas a beta value of 0.5 would value precision over recall (Chinchor 1992). 

2.6.2 Ensemble Learning 

Ensemble learning has in several cases proven to provide ensemble classifiers whose 

accuracy were comparable to classifiers trained on the entire dataset (Polikar 2006; Yang 

et al. 2010; Chawla et al. 2003).  Using Ensemble Learning, new data can be added to 

the classifiers in batches as it arrives. As old classifiers grow obsolete, their performance 

will deteriorate, and when a classifiers performance falls below a certain threshold, it 

can be discarded. 

The process would begin with splitting the dataset into subsets, using some suitable 

sampling technique. Each subset would be sued to train one classifier each in sequence. 

These classifiers make up the ensemble of classifiers. Each classifier in the ensemble is 

then allowed to make predictions on the same data point. Their resulting predictions 

are then combined to make one final ensemble prediction. This way, you can utilize the 

strengths of one classifier, while not allowing the weaknesses of the individual classifiers 

to affect the end result. Figure 9 shows a visual representation of the workflow of an 

ensemble. 

 

Figure 9 A visual representation of the workflow of ensemble learning and ensemble classification. Initially the 
dataset is divided into subsets using some subsampling technique ε. Each subset is used to train a classifier using 
some training scheme ϴ. Each classifier then makes individual predictions Φ on input data. The predictions are 
combined using some voting scheme Σ to produce a final prediction ΦE. 
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One drawback of doing ensemble learning is of course that making predictions will 

require more time since more predictions are made. However, it has previously been 

shown that the extra time for classification does not exceed that of the reduce time 

required for training since ensemble learning allows of classifiers to be trained entirely 

in memory (Chawla et al. 2003). 

When predicting the class of a new instance using ensemble methods, the most intuitive 

technique is a simple majority vote. The different models simply vote on what class they 

predict an instance belongs to and the majority decides. Since each classifier will be 

trained on different subsets of the data, their performance will differ. One classifier 

might be much more accurate than another. A simple majority vote might not be the 

best way to combine individual predictions. In these cases, one can give the more 

accurate classifier more weight in the voting scheme.  Another, more prudent way to 

weigh a majority vote, is to do so by some sort of quality measure. Previously a F-

measure weighted majority vote has been used, it proved to be more accurate than the 

standard majority vote (Chawla and Sylvester 2007). Each classifier will have its F-

measure calculated on an unseen validation set for different thresholds. To performed 

a F-measure weighted majority vote, the threshold that yields the highest F-measure 

bust first be computed. The corresponding F-measure will be used as the classifiers 

individual voting weight. 

This method does add an additional step when classifying new instances since the F-

measure and corresponding thresholds must be computed. Luckily spark allows us to 

cache a small validation set which will be used to find F-measure. The validations set will 

be a randomly sampled subset of the training data with equal class distribution as the 

test set. This way, I avoid fitting my models to the test set, which would yield misleading 

results. 

In MLlib, the model outputs a raw score. This score can be used to classify the instance 

based on a threshold. Average Majority Vote takes the average value of the raw scores 

from the different classifiers before comparing the score with the threshold. Using an 

average majority vote, both a PRC and ROC can be constructed, representing the 

average performance of the ensemble. 
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3. Method 

To evaluate Sparks usability in big imbalanced data ML applications, three vital parts of 

big data ensemble ML will be implemented in Spark. Hyper parameter tuning, Ensemble 

Training, and ensemble classification. To bring the problem into the realm of big data, 

the Splice-Site dataset was selected. The dataset was selected because of its large 

volume (3T), and imbalanced class distribution, 1 positive instance for each 300 negative 

instances. Additionally, previous work has been conducted on the same dataset, which 

makes comparisons possible (Sonnenburg and Franc 2010; Agarwal et al. 2014). 

3.1 Material and Configuration 

3.1.1 The cluster 

The hardware for this study is a 6 node cluster, with 1 master node and 5 worker nodes.  

Each worker node is equipped with 16G ram, of which 4G are reserved for OS, and other 

running applications. This leaves us with 12G per worker node. Each worker node has 

an intel i5 quad core processor of which 3 will be reserved for yarn containers.  

Initial testing showed that the minimum memory require for the driver was 2G + 1G 

overhead for the SVM training application. This leaves us with only 8G + 1G per worker 

node. This yields a total of 40 G. It was decided that 4 executors with 11G +1G was the 

preferable configuration, since it would allow for more work to be done by each 

executor, while still allowing for more data to be cached than by the 5 executor 

configuration. 

As for the classification application disk I/O and data locality will most likely be the 

limiting factor. As such a 5 executor configuration is more suitable for this application 

since the data is distributed across all 5 worker nodes. 

The cluster uses Hortonworks HDP 2.3 distribution and Spark runs at version 1.4.1 

A more extensive summary of the Spark settings and cluster hardware can be found in 

Appendix B. 
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3.1.2.1 Data prepossessing 

Data preprocessing is a vital part of ML. Data must sometimes be sanitized of ill 

formatted data points. The data can also be discretized, yielding a more generalized data 

set. Since data preprocessing only requires one pass of the data being processed, this 

part of the ML process will not benefit from being implemented in Spark. Performance 

measurements of this step is therefore out of the scopes of this thesis. 

It is not always possible to find linear solutions to the problem we want to solve. In these 

cases, we might end up with a O(n2), or even worse O(nn) time complexity. When 

considering big data, where n->∞, it is clear that these kind of non-linear solutions 

quickly becomes unfeasible. One way to deal with these non-linear correlations is to 

expand the feature space. In an expanded feature space one might find a linear solution 

to a non-linear problem. A simple way one might expand the feature space is with a 

polynomial kernel. A dataset with features x and y, whose instances cannot be linearly 

separated, can have an expanded feature space of; x, y, xy, xx, yy where a linear solution 

can be found (Witten, Frank, and Hall 2011). Figure 10 shows a simple visual 

representation of how an expanded feature space might allow for linear separation. 

There are many other kernel methods, some of which are more suitable for some 

applications than others. Some care must therefore be taken when deciding what kernel 

to use. 

 

Figure 10 A simple schematic of how a feature expansion by applying some arbitrary function “f” on the variables x 
and y can make linear solutions possible on a nonlinear problem. 
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The Splice Site training set is composed of 50 000 000 sequences of human DNA. These 

are sites that are either splice sites, or non-splice sites, represented as a label of 1 and 0 

respectively. Additionally, 4 600 000 instances available for classifier evaluation. From 

the raw sequences, the feature space was expanded to 12 725 480 features were 

originally derived by (Sonnenburg, Rätsch, and Rieck 2007),using a weighted degree 

kernel of d=20 and gamma =12. The same kernel was also used by (Agarwal et al. 2014) 

and (Sonnenburg and Franc 2010), which makes it ideal for comparative purposes. The 

same kernel was applied to the sequence data using the Shogun toolbox (Sonnenburg 

et al. 2010) and a slightly modified version of the script used by (Agarwal et al. 2014) to 

parallelize the computation in the Hadoop framework. The modifications rendered the 

dataset readable by MLlib native LIBSVM functions. The data is stored on HDFS with 3 

replications across 5 executors.  

3.1.2.1 Compression 

Since the data will be loaded into memory, the applications only requires one pass of 

the data stored on disk. This allows us to store the data in a compressed format without 

the extra time needed for decompression severely increasing the execution time. Due 

to storage limitations compression of the data is necessary. BZip2 and Snappy 

compression codecs were compared against raw data in a simple test, where 120.000 

rows of the data were read from HDFS into memory and the total number of attributes 

were counted, to be followed by 10 SGD iterations.  

3.2 Ensemble Application Settings 

Due to time constraints, only one ensemble will be trained. To ensure that this ensemble 

is the best possible, a series of tests were performed to identify the optimal settings for 

the ensemble. 

3.2.1 Data Sampling 

Since the dataset is highly unbalanced, with only 143 668 positives instances out of a 

total of 50 000 000, each individual classifier in an ensemble will only be allowed to train 

on a small fraction of these. The imbalance can be addressed by oversampling the 

minority class by replication. This does however not add any new information, but only 

strengthens the bias towards the minority class, which can cause overfitting. Overfitting 
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means that the models will not be able to accurately classify new data points that differ 

from the ones used during training. An over fitted model cannot not guarantee 

generalization when making future predictions. To attempt to improve the models 

ability to generalize over positive instances, two different sampling methods of positive 

instances will be evaluated. First the original dataset with the original class ratio will be 

used. The second alternative is to extract all positive instances from the full dataset, and 

always include them in the ensemble training. The latter method will induce under 

sampling of the majority class. Under sampling the majority class to provide a less 

imbalanced dataset does reduce the bias towards the majority class, but it does however 

generate information loss, often leading to less accurate classifiers (He and Garcia 2009). 

To investigate to what extent under sampling of the majority class will cause information 

loss, the majority class will not only be under sampled to the point of a 1:1 class ratio, 

but also to approximately a 1:3 class ratio. The latter would result in a larger total data 

volume for each model since a 1:1 class ratio between the classes would not utilize the 

entire cacheable memory fraction without some type of oversampling of the minority 

class. A larger dataset with a 1:3 class ratio could reduce the information loss since it 

utilized more data. 

Easy Ensemble is a subsampling technique that under samples the majority class using 

random sampling with replacement to the point of no imbalance. An ensemble of 

classifiers trained on all positive instances and different subsets of randomly sampled 

negative instances is thereby trained (Liu, Wu, and Zhou 2006). True random sampling 

is however not very efficient. It would require data to be loaded into memory and for 

singe data points to be selected at random. To increase efficiency and reduce data 

transfer, the data will be randomly sampled from disjoint partitions. Randomly sampled 

disjoint partitions has been shown to yield comparable results to classifiers trained on 

subsets produced by true random sampling (Chawla et al. 2003). 

3.2.2 Hyper-parameter Tuning using Random Grid Search 

To determine the optimal settings for the Ensemble SVM application one must tune the 

parameters of the individual classifiers. These are; the initial step size, regularization 

parameter, the number of iterations, the mini batch size and whether or not to under 

sample the majority class. To do this a random grid search will be used. The random grid 
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search trains several models in sequence, where the parameters are randomly sampled 

from a uniform distribution in a given range. This method is not only reliable but has also 

shown to find the global optima in faster than a standard exhaustive grid search (James 

Bergstra and Yoshua Bengio 2012). 

The random grid search will choose a small subset of original data or a dataset with all 

positive instances and randomly under sampled negative instances, on which several 

models will be trained with different parameter settings. The models will then be 

evaluated using a small validation subset from the training data. The model that 

performs best on the validation subset will then be evaluated on the test set. 

To assess the performance of the classifiers in the random grid search the auPRC will be 

the dominant metric. However, since MLlib native auPRC functions interpolate between 

data points, a high auPRC can be very misleading (Figure 11) (Davis and Goadrich 2006). 

Therefore, the auROC will also be used as a supplementary metric to assess the 

classifiers performance.  

 

Figure 11 Misleading Precision Recall curve. Blue line show interpolated curve, orange shows true curve. Adapted from 
Figure 6 in reference (30). 

The random grid search will search the parameter space of the following parameters 

with values randomly selected from the following pools: 
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 Initial step size:   

o [50, 100, 150, 200, 250, 300, 350, 400, 450 ,500, 550, 

600,650,700,750,800] 

 Regularization Parameter:  

o [10-4, 10-5, 10-6, 10-7,10-8, 10-9] 

 Mini Batch fraction: 

o [0.1, 0.2, 0.3, 0.4, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] 

The random grid search will train models on either; Randomly selected original data with 

replacement, or all positive Instances and randomly under sampled negative instances 

with replacement.  Regardless of the sampling technique, the models will be trained on 

approximately 250 000 rows of data. 
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4. Results 

4.1 Compression Codec 

To determine what compression codec should be used, a simple test was performed 

where 120 000 rows were compressed using Snappy and Bzip2 compression codes. The 

final size of the data and the time required to load the data was compared to that of raw 

data. The results are shown in Figure 12-13. 

As expected, the average iteration time for the SVM was not affected by the 

compression compared to raw data since there is no difference when it has been read 

into memory as an RDD. The average time required for the data to be read into memory 

does however vary. The BZip2 codec does show a high compression ratio, it does 

however take twice as long to read data into memory compared to raw and snappy 

compressed data (Figure 12-13). Due to it being read into memory as fast as raw data, 

and its good compression ratio, the Snappy codec will be used to decrease the need for 

disk space, at small to no cost of execution time. 

 

     

Figure 12 Time to load 120 000 rows of data.               Figure 13 Data Volume. Percentage of Raw data
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4.2 Scalability 

This section will cover the results of the scaling studies. The speedup, speedup 

efficiency, scaleup and scaleup efficiency are calculated according to EQ.1-4 

respectively.

4.2.1 Hyper parameter tuning and Training 

The hyper parameter tuning and training applications in this thesis both revolve around 

two core aspect when scalability is concerned. These are the ability to load data into 

memory, and to performed SGD iterations. This part of the thesis covers the scalability 

of these two core aspects of the applications in this thesis. 

 

 
Figure 14 Scaleup study across 4 nodes. Data was read in multiples of 3.7 G snappy compressed data (156 778 rows, 
5,75 G RDD in memory). Average of 3 Load times and 10 SGD iterations 

Table 1 Scaleup and efficiency of the Data Loading and Training scaleup study 

#Executors Load Time 
Scaleup 

Load 
Time 
Efficiency 

Iteration 
Scaleup 

Iteration 
Efficiency 

1 1 1 1 1 

2 1,91 0,96 1,83 0,91 

3 2,81 0,94 2,52 0,84 

4 3,69 0,92 3,03 0,76 

 

Figure 14 and Table 1 show the results from the weak scaling study of the load time and 

iteration execution time. In this study the input data volume was increased by 3.7 G 

snappy compressed data as nodes were added.  The load time and iteration scaleup and 

efficiency were derived from the average of 3 and 10 runs respectively. 

1 2 3 4

0

20

40

60

80

100

120

# Executors / Nodes

Se
co

n
d

s

Weak Scaling / Scaleup

Average Load Time Average Iteration Time



36 
 

 

 

Figure 15 Speedup study across 4 nodes. 3.7 G snappy compressed data (156 778 rows, 5,75 G RDD in memory). 
Average of 3 Load times (blue) and 10 SGD iterations (grey). 

Table 2 Speedup and efficiency of the Data Loading and Training Speedup study 

 

 

 

 

Similarly, Figure 15 and Table 2 shows the results from the strong scaling study of the 

load time and iteration execution time. In this study the input data was kept the same, 

at 3.7 g snappy compressed data, as nodes were added to the cluster. Again, the load 

time and iteration scaleup and efficiency were derived from the average of 3 and 10 

runs respectively.  

1 2 3 4

0

20

40

60

80

100

120

#Executors/ Nodes

Se
co

n
d

s

Strong Scaling / Speedup

Average Load Time Average Iteration Time

#Executors Load Time 
Speedup  

Load Time 
Efficiency 

Iteration 
Speedup  

Iteration 
Efficiency 

1 1 1 1 1 

2 1,97 0,98 1,03 0,51 

3 2,64 0,88 0,94 0,31 

4 3,03 0,76 0,90 0,22 
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4.2.2 Classification 

When measuring the scalability of the Ensemble classification there are three steps of 

measurement, time to load the models, time to calculate the voting weights, and finally 

the time for ensemble classification. Further in the scaleup study, both the input data 

for classification and the number of models can grow. Therefore, two scaleup studies 

was performed, one where the input data is increased, and one where the number of 

models is increased. The validation set is cached in memory to allow for fast weight 

calculation. 

 

Figure 16 Scaleup Study of the Model Scaleup. Models were loaded in multiples of 5. 

 

Table 3 Scaleup and Efficiency of the Model Scaleup study 

 

 

 

 

 

Figure 16 and Table 3 shows the results from the weak scaling study of the model load 

time. In this study the number of models were increased in multiples of 5 as nodes were 

added and the load time scaleup and efficiency of the ensemble classification 

application was measured. Since the data is not increased in volume in this study, the 

data load time scaleup is not measured in this step. 
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Figure 17 Scaleup Study of Data Scaleup. Data to be classified was loaded in multiples of 925 567 rows ((50.1 G snappy 
compressed) and classified by 20 models. 

  

Table 4 Scaleup and Efficiency of the Data Scaleup study 

 

 

 

 

Figure 17 and Table 4 shows the results from the weak scaling study of the data load 

time. In this study the data volume was increased in multiples of 50.1 G as nodes were 

added, and the scaleup and scaleup efficiency was measured of the ensemble 

classification application. 
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Figure 18 Speedup Study of the data and model speedup study. 20 models were loaded after which 230 000 rows 
(50.78 G snappy compressed) were used to calculate the voting weights of each classifier. Finally, an ensemble 
classification of the full test set was performed. 

 

#Executors Speedup 
Load 
time 

Load Time 
Efficiency 

Calculate 
Weights 
Speedup  

Efficiency 
Calculate 
Weights 

Speedup 
Ensemble 
Classify 

Efficiency 
Ensemble 
Classify 

1 1 1 1 1 1 1 

2 0,99 0,50 1,55 0,77 1,92 0,96 

3 1,01 0,34 2,16 0,72 2,59 0,86 

4 0,98 0,245 2,33 0,58 3,59 0,90 

5 1 0,20 4,14 0,83 4,56 0,91 
Table 5 Speedup and Efficiency of the Data and Model speedup study 

Finally, the speedup and speedup efficiency of the ensemble classification application 

was measured. 20 models were used to classify 50.78 G snappy compressed data 

(230 000 rows). The results of this speedup study is shown in Figure 18 and Table 5. 
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4.3 Random Grid Search 

The random grid search resulted in 36 different models trained with varying parameters 

Appendix A. The search found that an under sampled SVM with all positive training 

instances yielded the highest auPRC. The hyper parameters of the model is shown in 

Table 6.  The best model was evaluated on the test set and it performed as well as on 

the validation set, proving that no overfitting has occurred. 

Table 6 Settings and resulting auPRC and auROC of the best model produced by the Random Search application. 

 

After the random grid search, two test runs were performed to determine the 

minimum number of iterations needed for the model to converge to the target auPRC 

(Figure 19).  

 

 

Figure 19 Resulting auPRC from increasing the number of iterations. 

The test showed that the SGD converges slowly and that the increase in auPRC decreases 

significantly after 600 iterations. 

Additionally, one model was trained with the same settings, but utilizing more of the 

clusters memory, allowing for more data to be cached. This allowed for more negative 

samples to be used, yielding a final class ratio of 1:3. This model yielded a auPRC of 0,34 

on the test set, and confirms the information loss caused by the small total sample size 

of the 1:1 under sampled datasets. The final ensemble will as such be trained on a larger, 

1:3 under sampled dataset, with the settings found by the random grid search. 
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4.4 Ensemble Training and Performance 

The final ensemble was composed of 20 models, trained on approximately 445 000 

instances each, including the 143 663 positive instances. The total amount of data used 

sums up to 8 904 778, or approximately 1/6 of the total training set size. Note however, 

that approximately 2 900 000 of these are the 143 663 positive instances, repeated in 

the training set of each model. Each of the 20 models took an average of 145 minutes1 

to train, resulting in a total of approximately 48 hours. Using the same cluster and same 

methodology, the entire training set would yield about 120 models, requiring 290 hours 

of training. Note however that the total volume of the training sets would be closer to 

60 million instances, due to the minority oversampling. 

When investigating the ensembles performance, an average majority vote was used to 

get average raw scores from the ensemble. These were then used to compute the 

average auPRC and auROC. The average was compared to the classifier that yielded the 

highest auPRC, hence forth called “the best” classifier (Table 7). The performance 

measures of all classifiers in the ensemble can be found in Appendix C 

Table 7 Average auPRC and auROC of the ensemble compared to auPRC and auROC of the best classifier in the 
ensemble. 

 

 

Finally, three ensemble Confusion matrix were constructed at the threshold which 

yielded the highest F-measure. The following voting schemes were applied; majority 

vote, and F-measure weighted majority vote. the confusion matrix of the best classifier, 

yielded at its best threshold, was constructed (Table 8). The confusion matrix of the best 

classifier was then used to evaluate the ensemble performance.  The confusion matrices 

resulting from the different voting schemes are shown in Table 9-10.  

 

                                                      
 

1 This average excludes models 10 and 18 runtime since the application failed during their training and 
had to restart. 

Average auPRC Best 
auPRC 

Average 
auROC 

Best 
auROC 

0,373 0,383 0,967 0,970 
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Table 8 Confusion matrix of the Best Classifier 

 

  

 

Table 9 Confusion matrix of the Ensemble using F-measure weighted voting 

 

 

 

Table 10 Confusion matrix of the Ensemble using Majority voting 

 

 

 

From these confusion matrices, the precision and recall for the different voting schemes 

was calculated according to EQ. 7-8.  These are shown in Table 11. 

 

Table 11 precision and Recall of The best classifier and the Ensemble for different voting schemes. 

 

 

 

  

Actual 
Predicted 

Positive Negative 

Positive 6935 12023 

Negative 7614 4601268 

Actual 
Predicted 

Positive Negative 

Positive 7154 14476 

Negative 7395 4598815 

Actual 
Predicted 

Positive Negative 

Positive 7176 14846 

Negative 7373 4598445 

Best 
Classifier 
Precision 

Best 
Classifier 
Recall 

Ensemble FM 
Precision  

Ensemble FM 
Recall  

Ensemble 
MV 
Precision 

Ensemble 
MV 
Recall 

0,37 0,48 0,33 0,49 0,33 0,49 
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4.5 Throughput 

To measure the throughput of the training application the same methodology used by 

Agarwal et al. (2014) will be used for comparative purposes. The feature throughput of 

a training application is calculated according to: 

#𝑁𝑜𝑛𝑍𝑒𝑟𝑜𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗ #𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ∗ #𝑟𝑜𝑤𝑠

#𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑁𝑜𝑑𝑒𝑠
∗

1

𝑆𝑒𝑐𝑜𝑛𝑑𝑠
=

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
𝑁𝑜𝑑𝑒

𝑆𝑒𝑐𝑜𝑛𝑑
   𝐸𝑄. 10 

Using (Agarwal et al. 2014) estimate of 3300 non zero features per instance in the Splice 

Site dataset, and using a mini-batch fraction of 1, ensuring that full passes of the data 

are made, this yields a feature throughput when training a model of: 

3300 ∗ 600 ∗ 443886

4
∗

1

9120
=

24 ∗ 106 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑁𝑜𝑑𝑒
/𝑆𝑒𝑐𝑜𝑛𝑑 
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5. Discussion 

5.1 Scalability 

This section of the discussion will cover the scalability of the applications developed 

during this thesis. 

5.1.1 Training and Data Loading 

When examining both the strong and scaleup study the deteriorating iteration efficiency 

of both the scaleup and speedup stand out (Table 2). This could have been caused by 

the increase in network I/O required when adding nodes. When investigating the 

iteration execution time further, it was discovered that the time needed for network 

shuffling was not affected during the speedup study, while the computation step of the 

iteration decreased close to linearly. This would have been all and well until the 

computations are reduced to their non-parallelizable fraction, at which point adding 

more nodes would not be beneficial for the execution time. This is most likely also the 

case in the speedup study of load time, and iteration time (Figure 15, Table2). One 

possible solution would be to increase the available RAM of each worker node. 

Increasing the available RAM would allow each node to perform more computations, 

while still only shuffling the same amount of data to the driver. This would shift the time 

consumption towards the computational stage, and would make the time for shuffling 

less noticeable as a whole, and thereby improving the scaleup and speedup efficiency 

until the application becomes CPU bound. The efficiency of the scaleup study confirms 

that the non-parallelizable fraction is less noticeable as the dataset grow. It is however 

still noticeable. 

When considering the load time speedup and scaleup it is clear that it is not quite ideal. 

This is most likely due to the executors were not being able to access the data locally 

but had to load it from another node via network. One explanation for this is the limited 

data locality caused by the 4 executor configuration (Figure 14-15, Table 1-2). A 5 

executor configuration could mend the low load time scaleup and speedup efficiency, it 

would however have a negative impact on the Iteration scaleup and speedup, due to 

the extra networking required. Since the majority of the time of the application is spent 

in the training stage, detrimental effects to the load time is preferred over detrimental 
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effects to the training time. Further, the decrease in cacheable memory of a 5 executor 

configuration would, as previously stated, yield a smaller dataset for training since both 

the driver and an executor would have to fit on the same node. When investigating the 

results of the speedup study of the iteration time (Figure 14, Table 2), it Is clear that 

distributing data that could have been processed in fewer nodes does not improve the 

execution time. This indicates that the improved data locality of a 5 executor 

configuration would not have reduced execution times. 

5.1.2 Classification 

Both the speedup and scaleup studies of the ensemble classification application showed 

that classification scales remarkably well, both when increasing the number of models, 

and when increasing the volume of the training data (Figure 17-18, Table 4-5). The 

studies also show that increasing the number of models in the ensemble does not 

increase the classification time linearly as one would have expected. This means that the 

extra time required for ensemble classification, compared to single model classification 

is almost negligible. Note however the speedup and scaleup of the model loading stage. 

This is a perfect example of a non-parallelizable step, which is caused by the fact that 

the models are loaded by the driver alone, and not parallelizable using Sparks native 

functions. This could become an issue if the number of models increase greatly, causing 

the model load time to be the majority part of the ensemble classification application. 

If the application could be extended to load the models in parallel, ensemble 

classification would truly be a viable option to single model classification. If 

parallelization of the model loading is not possible, an increase in RAM would allow for 

more data to be cached, which in turn would mean less models would be trained. This 

is however not a long term solution. Parallelization of the model loading would be the 

preferable option. 

The speedup study further shows that the applications speedup is close to ideal in all 

regards of ensemble classification. These results prove that ensemble classification on 

big data using Spark is as viable as single model classification when considering 

execution time. 
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5.2 Algorithm and Cluster Tuning 

The hyper parameter tuning found parameters that, when used, yielded individual 

models with comparable auPRC of those previously trained on equally sized subsets of 

the data (Sonnenburg and Franc 2010, Table 2). However, it is important to remember 

that the global optima is not guaranteed to be within the parameter ranges used by the 

random grid search. Additionally, the pools were not composed of a continuous value 

ranges, which also makes it possible for the random search to miss the global optima. In 

real applications with more available resources, the random search should have trained 

more models, over larger, continuous value ranges, resulting in a greater coverage of 

the hyper parameter space. However, despite the limitations in this thesis, the random 

grid search application does work as a proof of concept of scalable big data hyper 

parameter tuning using Spark. 

In addition to this, the clusters YARN and Spark configurations used might not have been 

the most optimal for the applications at hand. Additional YARN and Spark tuning can 

provide a larger storage fraction, a higher disk throughput, and reduce network I/O, 

which in turn could result in faster, more scalable applications as well as more accurate 

classifiers. 

5.3 Ensemble performance 

The auPRC of the best classifier in the ensemble was just short of what was previously 

achieved by (Sonnenburg and Franc 2010)) where 105 rows generated an auPRC of 

approximately 0,31 using the same kernel, and 106 achieved an auPRC of approximately 

0,46. The ensemble did however fail to achieve similar performance in regards to 

precision and recall considering the amount of data used regardless of the voting 

scheme being used in this thesis (Sonnenburg and Franc 2010, Table 2). This is most 

likely due to the lack of variety in the ensemble since each classifier in the ensemble was 

trained on the same positive instances.  This indicates that an addition in classifiers to 

the ensemble would not have increased the overall performance, and that training a 

large ensemble on the entire dataset would not have yielded comparable results to 

(Agarwal et al. 2014) and (Sonnenburg and Franc 2010) who achieved 0.5857 and 0.5778  

auPRC respectively using the same kernel used in this thesis.  Another possible reason 
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which could explain the poor ensemble performance could of course be ill tuned hyper 

parameter in the training application.  

The ensemble of this thesis did not outperform the best classifier in the ensemble (Table 

5- 9). One explanation for this, could be that since each classifier was trained on the 

same positive instances, there is not enough variety in the training sets to generate a 

diverse ensemble of classifiers.  One possible option to mend this could be to try to 

synthetically generate positive instances, similar to the ones in the dataset. One 

example would be Synthetic Minority Over-Sampling Technique (SMOTE). SMOTE is a 

method for generating synthetic instances from the original data. SMOTE has shown to 

help mend data imbalance and generate more accurate classifiers in previous studies 

(Chawla et al. 2002; Blagus and Lusa 2013; García et al. 2012). 

Another approach would be to train classifiers on the original distribution for an 

Ensemble. It has been proven that accurate classifiers can be trained on the Splice Site 

dataset without under- or oversampling (34,35). This would generate classifiers of 

greater variety considering the minority class, which could in turn produce more 

accurate ensemble. It did however prove difficult during this thesis to find suitable 

parameters for the original data distribution, which was why an under sampling of the 

majority class was preferred. 

5.4 Throughput 

The most important result in this thesis is the high feature throughput in Spark. With an 

average feature throughput of 24 million features per node per second during training, 

Spark provides a speedup just short of 10 compared to Logistic Regression (LR) solutions, 

implemented within AllReduce, which reached a throughput of 2.6 million features per 

node per second2 (Agarwal et al. 2014). This is a long way from the reported 100 

speedup factor, but it does however prove that Spark can provide with significant 

speedups in iterative applications (Zaharia et al. 2010). None of the applications in this 

thesis showed any indications of being bottlenecked by the CPU, it therefore stands to 

                                                      
 

2 Estimates were made using (Agarwal et al. 2014) reported 1920 second execution time on 500 nodes, 
3300 non-zero features, 50 000 000 rows and 14 LR iterations on the Splice Site dataset. 
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reason, that given more RAM, more data could have been cached, and processed as fast, 

potentially yielding a higher feature throughput. As previously stated, the majority of 

the time taken for the training application was used for network shuffling between the 

driver and executors. This fraction was reduced by 66% by repartitioning the RDD to as 

many partitions as there were executor cores in the cluster3.   

Note that the SVM application in this thesis needed 600 iterations to converge (Figure 

19). Compare this to 14 LR iterations needed to converge in a previous study (Agarwal 

et al. 2014). This does, by no means, indicate that all SVM with SGD applications will 

converge this slowly. One could surely improve the algorithm by further tweaking the 

settings, which could yield faster convergence. Further, the number of iterations does 

not affect the feature throughput, since fewer iterations would also yield a shorter 

execution time. Additionally, the fact that the training time of only one model was used 

to estimate feature throughput does not affect the throughput, since an increase in the 

number of models would increase the number of rows passed as well as the time 

required linearly with the increase in models.  

These results prove that Spark provides a high feature throughput on cached data, and 

it stands to reason, that models trained in Spark should be able to reach as good 

accuracy as algorithms trained in any other framework in as few iterations, provided 

that the hyper parameters are tuned equally well. 

6. Conclusion 

In this thesis I have implemented three core applications of Ensemble Machine Learning, 

Hyper parameter tuning, ensemble training and ensemble classification in Apache Spark 

on YARN. Although the implementations could all be developed and tuned further to 

provide more accurate classifiers and more scalable applications, these results do 

however provide some insight into the possibility and feasibility of scalable big data 

ensemble ML using Apache Spark. 

                                                      
 

3 The Repartitioning was done using Coalesce with shuffle =false to reduce network I/O. 
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During the work on this thesis, I was not able to implement an Ensemble that could 

justify the increased training time generated by adding to the performance of the 

ensemble. This result should not be viewed as a general result regarding ensembles, and 

should not be interpreted as general limitations in ensemble techniques, only that, in 

this particular case, an increase in performance was not achieved by training an 

ensemble. The most important thing to remember, is that the model parameters were 

only estimates of the optimal values. The resulting accuracy of the best classifier does 

by no means imply any limitations in Sparks ability to train accurate models. 

Despite the poor performance of the ensemble, the primary goal of assessing Apache 

Sparks usability in big data ML was achieved. Apache Spark proved to be a great tool for 

big data ML, providing a high feature throughput up to (but not necessarily limited to) 

10 times larger than previous methods based on AllReduce on Hadoop (Agarwal et al. 

2014). Apache Spark MLlib is not limited to SVMs, but also support Linear Regression, 

Naïve Bayes, Random Forest and more algorithms are bound to be implemented in 

future releases. The high feature throughput provided by Sparks is bound to favor any 

iterative ML application. 

Omicron Cetis cluster is well suited for development, however, when testing scalability, 

the number of nodes does not provide enough data points in a scaling study for the 

results to be very reliable. As for production purposes, the cluster is not well suited for 

Spark applications that require data to be cached, due to the nodes limited amount of 

RAM. Most of the 12 G available RAM on each node was used by other fractions than 

the storage fraction, such as shuffle, unroll, safety, and heap fractions, leaving only 

about 4.5G for caching on each node. A larger storage fraction resulted in the 

applications running out of memory and failing. Additionally, during the speedup studies 

of the training application it was discovered that the application worked at or near the 

non-parallelizable fraction, providing no speedup when increasing the number of 

computational nodes.  

For these reasons I do not recommend further development of the cluster by adding 

nodes with similar configuration for any other reason other than to improve the 

development environment. A more suitable approach for Spark applications would be 

increasing each nodes available RAM and adding more disks. The extra RAM would allow 
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each node to cache more data and to performed more computations, while not 

increasing the network I/O and allowing for more accurate models to be trained. More 

disks would allow for more parallelizable disk I/O, speeding all applications that read 

from HDFS. Another viable alternative is to investigate the possibility and viability of 

cloud computing service, such as Amazon Work Spaces or similar services. 

 I believe that the high feature throughput provided by Apache Spark makes it a very 

powerful tool for big data ML and that more knowledge in the area of Big data ML using 

Apache spark will be a valuable resource in the future. 
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Appendices 

Appendix A – Random Grid Search Results 

Sample Technique #iterations Stepsize RegParam 
Mini-
Batch auPRC auROC 

Positives +Under sampled 600 650 1,00E-05 0,1 0,321056538 0,973356928 

Positives +Under sampled 500 450 1,00E-09 0,1 0,26365499 0,97181113 

Positives +Under sampled 300 400 1,00E-07 1 0,231289464 0,966628833 

Positives +Under sampled 200 400 1,00E-08 0,9 0,169685159 0,957664738 

Positives +Under sampled 300 100 1,00E-04 1 0,160607955 0,957965781 

Positives +Under sampled 200 200 1,00E-05 0,4 0,154464121 0,954943403 

Positives +Under sampled 500 700 1,00E-04 0,4 0,114417866 0,949408405 

Positives +Under sampled 200 400 1,00E-04 0,8 0,097897652 0,944058368 

Positives +Under sampled 100 400 1,00E-05 0,3 0,094515714 0,939041335 

Positives +Under sampled 100 400 1,00E-07 0,3 0,09225479 0,939012977 

Positives +Under sampled 100 800 1,00E-05 0,7 0,084750434 0,938393925 

Positives +Under sampled 100 500 1,00E-09 0,7 0,083212081 0,936284916 

Positives +Under sampled 100 500 1,00E-09 0,7 0,083212081 0,936284916 

Positives +Under sampled 100 350 1,00E-08 0,8 0,082614683 0,936509396 

Positives +Under sampled 100 100 1,00E-07 0,7 0,06430015 0,93265768 

Positives +Under sampled 50 500 1,00E-04 0,6 0,036503812 0,910225507 

Positives +Under sampled 50 550 1,00E-06 0,4 0,035961005 0,911306594 

Positives +Under sampled 50 400 1,00E-07 0,2 0,035461203 0,910776222 

Positives +Under sampled 50 250 1,00E-09 0,1 0,03456653 0,910411966 

Positives +Under sampled 20 200 1,00E-04 0,4 0,025203026 0,894528438 

Positives +Under sampled 20 200 1,00E-04 0,4 0,025203026 0,894528438 

Positives +Under sampled 20 100 1,00E-06 0,9 0,024887277 0,894353622 

Original 500 450 1,00E-07 1 0,002304333 0,474062057 

Original 500 350 1,00E-09 0,9 0,002303352 0,473888161 

Original 400 450 1,00E-05 0,1 0,002290243 0,471441394 

Original 200 250 1,00E-04 0,8 0,00226997 0,467686471 

Original 300 150 1,00E-09 0,9 0,002245392 0,462980143 

Original 300 450 1,00E-06 0,1 0,002242017 0,462296691 

Original 200 450 1,00E-09 0,6 0,002214093 0,456838389 

Original 200 200 1,00E-08 0,9 0,002212619 0,456524991 

Original 200 450 1,00E-07 0,1 0,002208304 0,455635985 

Original 100 400 1,00E-06 0,4 0,00217578 0,449014664 

Original 100 250 1,00E-09 0,6 0,002174899 0,448844765 

Original 50 50 1,00E-04 0,6 0,002151247 0,443861267 

Original 50 150 1,00E-06 0,3 0,002149625 0,443534403 

Original 50 100 1,00E-08 0,1 0,00214473 0,442433308 

Original 20 550 1,00E-04 0,4 0,00213494 0,440341266 

Original 20 500 1,00E-04 0,4 0,002134337 0,440210064 
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 Appendix B- Spark configuration and Cluster Hardware 

 

Application Specific settings: 

Training 

--num-executors 4 –executor-memory 11g –driver-memory 4g –executor-cores 5 –driver-

cores 5 –master yarn-cluster 

Setting Value 

spark.history.kerberos.keytab none 

spark.history.kerberos.principal none 

spark.history.provider org.apache.spark.deploy.yarn.history. 
YarnHistoryProvider 

spark.history.ui.port 18080 

spark.driver.extraJavaOptions -Dhdp.version=-2557 -
Dspark.akka.frameSize=128 

spark.yarn.am.extraJavaOptions -Dhdp.version=2.3.0.0-2557 

spark.yarn.applicationMaster.waitTimes 10 

spark.yarn.containerLauncherMaxThreads 25 

spark.yarn.driver.memoryOverhead 1024 

spark.yarn.executor.memoryOverhead 1024 

spark.yarn.historyServer.address agena.omicron.se:18080 

spark.yarn.max.executor.failures 10 

spark.yarn.preserve.staging.files false 

spark.yarn.queue default 

spark.yarn.scheduler.heartbeat.interval-ms 5000 

spark.yarn.services org.apache.spark.deploy.yarn.history. 
YarnHistoryService 

spark.yarn.submit.file.replication 3 

spark.scheduler.maxRegisteredResourcesWaitingTime 1200 

spark.scheduler.minRegisteredResourcesRatio 1 

spark.shuffle.manager hash 

spark.shuffle.compress true 

spark.shuffle.consolidateFiles true 

spark.shuffle.spill true 

spark.shuffle.blockTransferService nio 

spark.driver.maxResultSize 2g 

spark.shuffle.safetyFraction 0.9 

spark.shuffle.memoryFraction 0.2 

spark.storage.memoryFraction 0.6 

spark.storage.safetyFraction 0.9 

spark.rdd.compress false 

spark.serializer org.apache.spark.serializer.KryoSerializer 

spark.kryoserializer.buffer.max 512m 
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Classification 

--num-executors 5 –executor-memory 6g –driver-memory 4g –executor-cores 5 –driver-

cores 5 –master yarn-cluster 

Random Search 

--num-executors 2 –executor-memory 11g –driver-memory 4g –executor-cores 5 –driver-

cores 5 –master yarn-cluster 

Slave Hardware: 

2x 8GB 1600MHz DDR3  

Intel i5-4460 3.20 GHz 

1GBit Ethernet port 

1TB 7200 RPM HDD 
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Appendix C – Individual model Performance 

Model auPRC auROC #Rows used  Time Required for 
training in minutes 

Model0 0.3473365043 0.9700500389 445758 138 

Model1 0.3542048162 0.9703641169 443944 143 

Model2 0.3731360307 0.9700342076 447852 144 

Model3 0.3771984429 0.9702648524 444250 142 

Model4 0.3769994855 0.9704187144 443254 140 

Model5 0.3779121113 0.9702318718 446512 137 

Model6 0.3497192412 0.9700675228 445231 144 

Model7 0.3360254382 0.9697897239 444025 145 

Model8 0.3823664078 0.9705788686 446158 149 

Model9 0.3532737861 0.9703011754 443958 139 

Model10 0.3292577368 0.9698577529 445523 234 

Model11 0.3461104473 0.970192659 444522 157 

Model12 0.3184986596 0.9695488757 445548 151 

Model13 0.3645723928 0.97022999 444698 146 

Model14 0.3541102443 0.9703264079 447662 146 

Model15 0.3645911411 0.9699976746 444927 146 

Model16 0.3833391822 0.9704324432 445722 146 

Model17 0.352032043 0.9698979545 444476 161 

Model18 0.3798485499 0.9702591117 445215 267 

Model19 0.3738273688 0.9703964428 445543 142 

 


