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1 Introduction

Twitter is a popular micro-blogging service used for social interaction online
that allows anyone to freely publish micro-blog posts. The published posts have
a limit of 140 characters and are called tweets. The medium is largely used to
share any kind of news and the editorial quality of tweets varies a lot. Since
the quality varies, algorithms that can sort out relevant topics in this medium
could be of great use.

The goal of this thesis is to automatically classify tweets in a stream with
respect to an underlying topic using nothing but the actual text content of the
tweet. This kind of classification has been done successfully on news articles
published by news agencies[2, 6], Wikipedia articles[5] and other kinds of tex-
tual bodies[13]. One very common method for identifying topics in these kinds
of feeds is the Latent Dirichlet Allocation. This thesis will examine whether
Latent Dirichlet Allocation is suitable to identify topics in a medium with very
short messages such as Twitter.

In 2013 there was on average 500 million1 tweets posted per day. An unsu-
pervised algorithm that can identify topics is necessary if these volumes of data
are to be processed. Therefore if Latent Dirichlet Allocation can yield a good
enough result it could be applied to the corpus of all tweets ever posted, classify
them, and generate a huge data set of classified tweets.

A good topic detection algorithm can be used by entities ranging from in-
telligence agencies to private companies. An intelligence agency can use topic
detection to automatically detect terrorist chatter by analysing streams of mes-
sages. The detected messages can then be flagged as interesting and sent for
a manual review. This would decrease the stream of potential interesting mes-
sages allowing for a more thorough manual analysis per message. On the other
side of the spectrum a company can use topic detection to find out what people
say about them and their products. This might be extra useful when releasing
new products and features since it can be used as an indicator of how the cus-
tomers react to the changes by detecting negative and positive reactions.

In order to evaluate Latent Dirichlet Allocation a system written in Java was
created. Latent Dirichlet Allocation was evaluated both quantitatively with Per-
plexity, a measurement on how well a model represents reality; and qualitatively
by subjectively analysing output from the system.

There are a lot of differences between tweets and news articles. One impor-
tant difference is that when identifying topics in news articles the documents
are considered filtered and trustworthy. As Gayo Avello suggests, this is not the
case for tweets[4]. The issue is that Latent Dirichlet Allocation does not consider
whether the documents are noise, spam, or relevant which suggests that many
topics may be caused by spam. Latent Dirichlet Allocation uses a collection of
words, vocabulary, which the system accepts when identifying topics. An issue
with Twitter is that the language constantly evolve rendering the vocabulary

1. http://www.internetlivestats.com/twitter-statistics/ accessed September 2015
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non-static. Since Latent Dirichlet Allocation requires a static vocabulary[2] this
could be an issue. There has been work done to avoid using a static vocabulary.
Ke Zhai and Jordan Boyd-Graber suggests a method that replaces the vocab-
ulary with a distribution of all possible combinations of characters[13]. This
distribution is then weighted based on what words are observed. However, due
to its late discovery and since using an infinite vocabulary is out of the scope of
this thesis, see Section 1.2, it was omitted.
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1.1 Research question

When applying Latent Dirichlet Allocation on a stream of tweets there are
certain requirements set on the algorithm; the algorithm has to qualify as a
streaming algorithm. An algorithms which can be called a steaming algorithm
must fulfill the requirements at least three requirements: memory-bound, sin-
gle glance, and real-time, described in Section 3.2. Whether Latent Dirichlet
Allocation fulfills these requirements in a realistic manner is the first research
question of the thesis.

As mentioned above there are no editors filtering out irrelevant tweets for
Twitter. Since [2, 6], [5] and [13] all evaluate Latent Dirichlet Allocation on a
medium that could be considered relatively spam free it would be interesting
to investigate what effect spam has on the outcome and performance of Latent
Dirichlet Allocation.

Blei et. al claims that the static vocabulary in a medium with rapidly
changing vocabulary will cause Latent Dirichlet Allocation to perform poorly;
and together with the two paragraphs above yields the four research questions
of the thesis.

1. Is it feasible to apply Latent Dirichlet Allocation on a stream in terms of
it being able to handle a stream as outlined in Section 3.2?

2. How does spam affect the performance of Latent Dirichlet Allocation?

3. Will Latent Dirichlet Allocation converge in terms of perplexity when a
static vocabulary is used on a stream of tweets?

4. Does a static vocabulary mean that Latent Dirichlet Allocation will per-
form worse with an old outdated vocabulary compared to a vocabulary
created for the data set?

1.2 Scope

The scope of thesis is analysing tweets based on their textual body only. While
an obvious extension would be to use some of the meta-data included in tweets
the scope was still set to exclude this meta-data since other media with short
text messages might not have the same set, or any at all, of meta-data. If Latent
Dirichlet Allocation could identify topics in a stream of tweets without using
any meta-data from the tweets it might mean that it could be applied to other
media of short texts as well.

1.3 Contributions

An implementation of Online Learning for Latent Dirichlet Allocation created
by Michael Berkovsky [1] was modified and integrated into a system that was
created in order to evaluate Latent Dirichlet Allocation. In Section 7 it is
shown that Online learning for Latent Dirichlet Allocation converges in terms
of perplexity when using a static vocabulary. It is also shown that an out-
dated vocabulary does not necessarily mean that Online learning for Latent
Dirichlet Allocation will perform worse. In the tests set up in Section 7.3
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Online learning for Latent Dirichlet Allocation is tested on how well it can
classify a held out test set once it has been trained. The performance was
measured with precision, recall and F-measure and Online learning for Latent
Dirichlet Allocation performed better or equally in all those terms when using
an old out-dated vocabulary. Furthermore it is shown that spam indeed does
affect the outcome of Latent Dirichlet Allocation and that while Online Learning
for Latent Dirichlet Allocation theoretically is applicable on a stream it might
not be fast enough as is and a proposal on how to set up a system that might
be able to handle the throughput is outlined in the discussion.
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2 Preliminaries

In order to avoid confusion this section will describe the terms used in the report.
There is no need to read this section straight away, it can be taken aside while
reading to quickly find the definitions.

P:1 word - is an item from a vocabulary {1, ..., V }. Words are represented
as unit basis vectors with one component equal to one and the rest equal to
zero[6].

w
u =

�
1 if u = v

0 otherwise

P:2 document - a collection of words in a data set, denotedD = {w1, ..., wn}
where wn is the nth word and N is the total number of words in the collection
[6].

P:3 corpus - a collection of documents in a data set. It is denoted
C = {D1, ..., DM} where the Dmth document in the corpus and M is the total
number of documents [6]

P:4 Precision, recall and F-measure - are measures used in informa-
tion retrieval. Precision is the fraction of returned documents compared to the
expected outcome. Recall is the fraction of relevant documents returned. F-
measure is often called the precision of a test. It uses both precision and recall
together to form a more descriptive score.

P:5 Prior - The prior of a model is the belief the model has before any
observation has been done.

P:6 Posterior - The posterior of a model is the modified belief of the
model after observations are made.

P:7 Twitter Firehose - is a payed service by Twitter which allows you
to access an unfiltered and unsampled feed which is much larger that the stream
obtained from the Twitter Streaming API.

P:8 Multinomial distributions - Are a generalisation of a binomial dis-
tribution. A binomial distribution takes two parameters, n and p. The distribu-
tion is obtained by doing n yes or no trials with a success rate of p. Multinomial
distributions generalises this by allowing trials with k number of outputs from
a trial rather than only yes or no. In other words a binomial distribution is a
2-Multinomial distribution.
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P:9 Latent variables - variables that cannot be directly observed. Latent
variables can be inferred from other observable variables [6]. Given a weighted
die one can view the weight as a latent variable. If we never observe a toss there
is no way to identify which number the die favors. However, if we toss the die
several times we could deduce the latent weight by analysing the observed die
tosses. In other words, latent variables are unobservable variables that affect an
outcome. These variables can then be deduced by observing and analysing the
observed variables.

P:10 Posterior inference In Bayesian inference the posterior inference
is updated when an observation is made. For instance, if we have a bag of black
and white marbles with unknown ratio between them and our initial assumption
is that there are 50/50 of each color. When a marble is taken from the bag this
ratio is updated based on the color of the marble. Let us assume that after
20 marbles we have gotten 15 black and 5 white; our posterior inference of the
ratio would then be 75/25. This is a very simple method of posterior inference
and there exist a lot of different methods for it. In this thesis an online version
of the Variational Bayes inference is used. Figure 1 shows how Bayes theorem
can be used to get the prior from the posterior.

p(α|β) = p(β|α) ∗ p(α)
p(β)

(1)

p(β) =

�
p(β|α)dα (2)

Figure 1: Bayes theorem. This theorem is the basis on which Vari-
ational Bayesian inference is built upon. p(α|β) is the posterior,
p(β|α) is the likelihood, p(α) prior and p(β) =

�
p(β|α)dα is the

marginal likelihood of the model, or in other words: the model
evidence

P:11 Hyper parameters - Are parameters controlling the prior of the
model. The hyper parameters are used to fit the model on the problem and or
data at hand. In this report α is a hyper parameter for the topic distribution.
If α is well fitted to the problem our model will work better than if it is not.

P:12 Simplex - A simplex is used to describe distributions of parameters
in an object. In the scope of this thesis, a simplex is used with the variational
inference. While Latent Dirichlet Allocation uses a k-simplex where k+1 is the
number of topics. This section will describe the principles of a 2-simplex since
they are easier to understand. In Figure 2 the objects are documents and the
parameters are the topics of which a document consists of. The total sum of
e0, e1 and e2 for any document sums to 1 or 100%. If a document is on any
of the edges between any two topics it means that the third topic is absent in
the distribution of the document. When expanding the simplex to a 3-simplex
we get a tetrahedron instead of a triangle. The same principles apply on how
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a document consists in different parts of all topics. As mentioned above; when
modelling over k topics a (k-1)-simplex is used.

e0

e1

e2d0
d1

d2

Figure 2: Show a 2-Simplex over three topics e0,e1 and e2. The
three points d0, d1 and d2 are documents and their position in the
simplex shows how much of each topic they contain. d0 consists of
approximately 90% topic e2 and 10% topic e1 and almost none of
topic e0. d1 contains 50% of topics e0 and e1 and none of e2 while
d2 has an equal part of all three topics.
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3 Background

Consider an application where we want to serve an unbiased stream of tweets
for different topics. Not only is it affected by hash tags but also dependent on
the actual content in the tweets. This can be done with a Topic model that is
trained and run on a stream of tweets. Latent Dirichlet Allocation is evaluated
on how well it is suited to solve this problem. Before Latent Dirichlet Allocation
can be evaluated on a stream the algorithms needs to be extended, allowing it to
be run on a stream. An implementation of Hoffman et al’s Online learning for

Latent Dirichlet Allocation was used when evaluating the suitability on tweets.

3.1 Topic modelling

Identifying topics in texts is called Topic Modelling. This is usually done by
detecting patterns in a collection of documents called a corpus[P:3], and group-
ing the words used into topics. One key part of the topic model is how the
model assumes the documents are being generated. There are several different
approaches to this. The topics are usually defined as a density function pi(w)
where w is a word and pi is the density function for topic i. Thus pi(w) is the
probability for the word w given topic i. A generative topic model is a topic
model that allows for classification of unseen documents once the model has
been trained without going through the whole corpus. Which is an important
feature for a model when run on a stream of documents, which is the same as
a possibly infinite corpus.

3.2 Requirements for streaming algorithms

Since Online learning for Latent Dirichlet Allocation will be evaluated on a
stream of tweets it is important to understand what criteria are set on the
algorithm in order to be suitable for streams. There are at least three main
criteria that must be met by an algorithm in order for them to work on streams.

1. Memory-bound - When working on a stream of data the size of the data
set should be assumed to be infinite, in other words, the stream should be
assumed to have no end. This means that the algorithm cannot save the
data for later use, it must discard old data in the same rate as new data
comes in. By doing so the algorithm can become memory-bound. The
output of a streaming algorithm is usually a stream as well. However,
if the output is dumped to disk this does not affect the memory-bound
status of the algorithm.

2. Single glance - The data received from a stream is usually grouped into
so called windows. The window can be all the data points received the
last ten seconds or it might be the last 100 data points received. The
important part is that the window is somehow moving forward discarding
old data points. These data points cannot be processed once they have
been discarded. This means that an algorithm is allowed to view the data
points inside a window several times together; but once the window has
moved forward the data points cannot be viewed again.

3. Real-time - Since the data stream continues to arrive whether the al-
gorithm has processed the previous data or not it is important that the
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algorithm has a strategy when the stream is overflowing. This can either
be done by optimisation or by throwing away incoming data when the
processor is busy.

3.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation is a generative topic model. Latent Dirichlet Allo-
cation assumes that each word in a document is generated from a topic that in
turn is picked from the topic distribution for each document. The topic distri-
bution for each document is generated from a Dirichlet distribution [2] which
means that Latent Dirichlet Allocation allows a document to consist of several
topics in different magnitude.

3.3.1 Online learning for Latent Dirichlet Allocation

Hoffman et al. provides an online version of Latent Dirichlet Allocation. It
modifies the original Latent Dirichlet Allocation to work on a stream. The
documents are collected into mini-batches and the algorithm is run on each
mini-batch. Each mini-batch updates a matrix that represents the topics and
their word frequency spectrum. This algorithm is suitable for streaming since
it satisfies the criteria for a streaming algorithm:

1. Memory-bound - Each mini-batch updates a matrix, which is constant
in size.

2. Single glance - Each mini-batch is only processed once.

3. Real-time - While the algorithm has a linear complexity in terms on the
number of topics modelled it still gets quite expensive when using a large
set of topics. A possible solution to this issue is outlined in Section 8.2

12



4 Methodology

The thesis was divided into three major phases. The first phase was a literature
study with the main goal of understanding Latent Dirichlet Allocation. During
this phase the theory behind Latent Dirichlet Allocation together with Bayesian
statistics were studied. The second phase was an experimental phase where
Latent Dirichlet Allocation was applied to various media, including Tweets.
Phase two allowed for a better understanding on how Latent Dirichlet Allo-
cation behaved when used on different data sets. There were no quantitative
measurements done during this phase since its main purpose was to deepen the
understanding of the algorithm. The knowledge acquired from the second phase
was taken into consideration when setting up the quantitative experiments in
phase three.

4.1 Phase one: Literature study

As mentioned above the purpose of this phase was to get acquainted with
Bayesian statistics and more specifically Latent Dirichlet Allocation. The lit-
erature study consisted of papers from Blei et al. [2], Hoffman et al. [5] and
Zhai et al. [13]. [2] goes through the original theory behind Latent Dirich-
let Allocation and was studied a lot in order to acquire proper knowledge and
understanding of Latent Dirichlet Alloctaion. The second paper [5] suggested
modifications to Latent Dirichlet Allocation which allows it to be applied to a
stream of documents. The paper by Zhai et al. suggests an algorithm that has
an infinite vocabulary and thus would render the static vocabulary issue irrel-
evant. While this method is out of the scope of this thesis it is an interesting
method to further evaluate in future work.

4.2 Phase two: Experimenting

During the literature study a Java implementation of Hoffman et als. Online
learning for Latent Dirichlet Allocation created by Michael Berkovsky [1] was
discovered. Since this implementation only needed a few modifications to work
on a stream of Tweets, see Section 6.5.1, it was used during the rest of this
thesis.

In phase two the implementation was run on news articles, tweets, and
Wikipedia articles. The reason for testing the different media was to see the
difference in how Latent Dirichlet Allocation performed on the different data
sets in order to better understand it. Furthermore phase two was used to find
out a good way to actually evaluate Latent Dirichlet Allocation. The original
research question was just Evaluate Latent Dirichlet Allocation on a stream of
tweets, the last part of phase two was dedicated to how this evaluation can be
done.

4.2.1 Unexpected issues

During this phase there were two major issues that were not expected.

• Tweets are very unstructured and a lot of them only have a short comment
followed by a link to an article. These types of tweets are hard to classify
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without the content of the link and these links polluted the vocabularies in
the data set which meant that the vocabularies would have to be groomed
manually in order to perform well.

• It is hard to objectively measure topic modeling on a quantitative way if
there is no test data present [10]. Furthermore it was very hard to find any
large data set of manually labeled tweets, the biggest found contained only
5 000 tweets which is not enough to measure Latent Dirichlet Allocation
since it needed far more tweets to be trained in the first place. This
resulted in an improved solution where tweets were queried in a way that
would yield tweets with roughly the same topics, see Section 7.3.1 for
more details.

4.3 Phase three: Evaluating Latent Dirichlet Allocation

In phase three the evaluation procedure from phase two was implemented and
executed. The evaluation was divided into two parts. The first part was done
by measuring perplexity. Perplexity is a measurement on how well the results
represents reality; it is not an absolute metric but it can be used to compare
several algorithms, or the same algorithm with different parameters, on the
same data set. The second part measured how well Latent Dirichlet Allocation
could identify topics in tweets from an automatically generated test set with
known topics. This test was run in two flavors; one on a data set which could
be considered relatively spam free and the other with the same data set with
injected spam. By controlling the amount of spam injected into the data set it
should yield an overview on the effects of spam on Latent Dirichlet Allocation.
The measurements were done using precision, recall and F-measure. These
metrics are often used in data mining, F-measure is a weighted combination
of precision and recall that can be a good indicator on how well an algorithm
performs.
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5 Related work

This report uses Online learning for Latent Dirichlet Allocation. Other methods
of topic modelling that might be of interest are Hierarchical Dirichlet Processes
[11], A correlated topic model of Science [3], and Automatic Topic Detection
with an Incremental Clustering Algorithm [14]. In order to achieve a realistic
scope only one method had to be evaluated. Due to the many recent publica-
tions on Latent Dirichlet Allocation and derivations thereof it was considered a
good candidate to focus on in the thesis. This assumption was reinforced when
discussing with the supervisor and reviewer.

Latent Dirichlet Allocation was proposed by Blei et al. in their paper from
2003 [2]. This model was then improved to allow for online learning seven years
later in 2010 by Hoffman et al. [5]. When doing topic modelling there are cer-
tain details that are needed to be considered. These details are how the data
being modeled is structured, removing stop words and finally modelling how the
bodies of texts are generated.

5.1 Stop words

Blei et al. suggests that one should remove common stop words in a document
before running Latent Dirichlet Allocation [2]. Stop words are words that are
very common and do not alter the meaning of a sentence [6], typical stop words
include ”the”, ”in” and ”so” etc. Kim et al. automatically filtered out words
from the vocabulary that were present in more than 50% or less that 5% of the
documents [6]. They state that it was an effective way of removing both stop
words, misspelled words and non-words. In this thesis a static list of common
stop-words2 was used as suggested by Blei et al. [2]

5.2 Topic modeling

A topic model is a statistical method for detecting abstract topics in documents.
Let us start by defining what an abstract topic is. In this thesis it is some un-
derlying variable that causes documents with the same value of the variable to
produce bodies of text with similar word frequency spectrum.

The general idea of a topic model is that a generative process is defined.
For instance, the words used in an e-mail to a family member are probably less
formal than those sent to a superior at work. Let’s assume that it is true that
the relationship between the sender and the receiver of a message affects the
type of words used; and that each type of relationship has its own bag of words
where the probability of each word is dependent on how often it is used in the
bags relationship. If the sender is writing a message to a very close friend most
words would be picked from the close friends relationship bag of word. However,
if the message is sent to a co-worker with an equal amount of professional and
personal relationship half of the words would be picked from each relationship
bag of words. This is a description of a generative process. If the process is
consistent with reality one can use reverse engineering to infer what relationship

2. Found on the github page https://github.com/johanrisch/TwitterTopicMining
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the sender had to the receiver by putting the words in the message into a bag
of words. This bag of words could then be matched to all relationships bag of
words to find how similar the message bag is to different relationships.

The process described in the previous paragraph is an example of a topic
model that has some resemblance to Latent Dirichlet Allocation. The genera-
tive process is never used to produce any documents, rather, it is a hypothesis
on how the documents observed are being generated.

There are several different models that can be used. Blei et al. goes through
the following models and explains why their Latent Dirichlet Allocation is supe-
rior. Section 5.2.1 through 5.2.4 describes how one of the most simple models,
the Unigram model can be extended step by step to become the Latent Dirichlet
Allocation model. As mentioned above, these generative processes are not used
to actually generate documents, they are the basis for which the posterior in-
ferences are made. All the mathematical details are not provided in this report.
To get these details the paper written by Blei et al. [2] in 2003 should be read.

5.2.1 Unigram model

The unigram model does not take any topics into consideration. However, it is
a good starting point when explaining the different models. As shown with the
plate notation in figure 3 the unigram model generates a document by selecting
words from a completely independent multinomial distribution[P:8].

p(w) =
N�

n=1

p(wn)

w

N

M

Figure 3: The plate notation for the Unigram model. A corpus
consists of M documents which in turn consists of N words w that
are independently drawn from a multinomial distribution

In the context of the example given at the beginning of Section 5.2 this would
imply that each document if completely independent of the relationship between
the sender and receiver of the message. Each message is written without any
bias towards the relationship.

5.2.2 Mixture of unigrams

The mixture of unigrams model is created by adding a latent[P:9] discrete ran-
dom topic variable z to each document. Each document has a multinomial
distribution[P:8].
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When generating a document with the mixture of unigrams model a topic
is selected for each document. Once the topic is selected the words are drawn
from the multinomial distribution[P:8], for the selected topic. [2]

p(w) =
�

z

p(z)
N�

n=1

p(wn|z) (3)

As the plate notation in figure 4 and equation 3 suggests there is one disad-
vantageous limitation to this model. Each document consists of one, and only
one topic. In our example from Section 5.2 this would mean that a sender could
not be friends with his co-workers or boss. This might be to limiting when
modelling the real world. Furthermore Blei et al. made an empirical study
that proved this assumption is to limiting when modelling a large collection of
documents [2].

wz

N

M

Figure 4: The plate notation for the Mixture of Unigrams model.
In this model each document is assigned a topic. The words in
each document is then drawn from the multinomial distribution
for the assigned topic.

5.2.3 Probabilistic latent semantic indexing

Probabilistic latent semantic indexing pLSI expands the model further by adding
an observed document[P:2] d that is conditionally independent to the word wn

given an unobserved topic z [2]. pLSI allows for documents to consist of several
topics since p(z|d) serves as a mixture weight of topics for the document d [2].
However, there is an issue with pLSI. The document is an observed variable and
thus we have no way of dealing with new documents that are not a part of our
training data which means that the pLSI model is not a well defined generative
model. In other words, there is no natural way of classifying a previously unseen
document [2]. From the example above this would mean that we could classify
all of the previously sent messages by a person; but not classify a new message
that is written without going through all of the e-mails on the senders account.

It is important to note that the parameters needed to calculate scale linearly
with the number of documents in the training set [2]. If we have a k-topic
pLSI model the parameters are k multinomial distributions[P:8] of size V and
M mixtures over k hidden topics which gives us kV + kM parameters with a
linear growth in M [2]. The consequences of this is that the pLSI is not well
suited for streaming applications since it’s run-time increases with the number
of documents and that all older documents needs to be processed for each new
document violating the single-glance criteria from Section 3.2.

p(d, wn) = p(d)
�

z

p(wn|z)p(z|d)
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Figure 5: The plate notation for the probabilistic latent seman-
tic indexing. This model relaxes the assumption from Mixture of

unigrams that each document can only have one topic. Instead
we have a latent variable that is the topic allowing documents to
consist of several topics with different magnitude.

5.2.4 Latent Dirichlet Allocation

The Latent Dirichlet Allocation can intuitively be described as a model that
identifies topics of documents based on the word frequency spectrum in each
document. In other words: the words in a document are dependent on the latent
topic distribution. The Latent Dirichlet Allocation works with a Dirichlet prior
that the words in a document are generated based on the topic distribution of
the document [2]. If we assume that this is the case we can use any method of
posterior inference[P:10] to infer the latent[P:9] variables in the Latent Dirichlet
Allocation model. Both Blei et al. and Kim et al. used an online version of the
variational Bayes inference m.

As the plate notation in figure 6 suggests the document d was changed into
a latent[P:9] multinomial distribution[P:8] parameter θ and added two more
parameters α and β [2]. α is the hyper parameter[P:11] for the Dirichlet distri-
bution θ; α controls the generation of θ. β is a k × V matrix where each cell
represents the distribution of words for each topic. βin = the probability for
word wn in topic i. If we put all of this together we get that for each document
we do the following:

• Generate a multinomial topic distribution θ from α.

• Generate N words by picking one topic from θn for each word and then
generate a word wn from the column representing θ in β.

• Repeat for each document.

In Latent Dirichlet Allocation the words in both seen and unseen documents
are generated from topics that are randomly generated given α. Thus an unseen
document may be classified in the same way as a training document and we have
a well defined generative model for topic detection.
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Figure 6: The Latent Dirichlet Allocation expands the model by
adding a matrix β that represents the words distribution for each
topic, a Dirichlet hyper parameter[P:11] α that is used to generate
the multinomial distribution[P:8] parameter θ that represents the
topic distribution for each document. A document with N words
is then generated by choosing N topics from θ and then for each
topic pick one word from the column in β that represents the topic.

5.3 Latent Dirichlet Allocation Inference and Parameter

Estimation

In order to make use of our Latent Dirichlet Allocation model we need to have
some method of inference and parameter estimation [2]. This section will go
through the method used in the paper from Blei et al. [2]. In order to make
use of the Latent Dirichlet Allocation model we need to infer the posterior
distribution of the latent[P:9] variables [2]. Blei et al. formulates this problem
mathematically as shown in equation 4

p(θ, z|w,α,β) = p(θ, z, w|α,β))
p(w|α,β) (4)

Equation 4 is a hard equation to solve and Blei et al. suggests that we
marginalise over the latent variables. For an in depth run-down on how to
get to Equation 5 please read the paper by Blei et al. [2]. Equation 5 has
a high coupling between θ and β that makes it intractable [2]. However it is
still possible to use some kind of variational approximation, including but not
limited to: variational approximation, Markov chain Monte Carlo and Laplace
approximation [2]. Blei et al. describes how to use a convexity-based variational
inference to solve equation 5.

p(w|α,β) =
Γ(

�
i αi)�

i Γ(αi)

� �
k�

i=1

θ
α−i
i

��
N�

n=1

k�

i=1

V�

j=1

(θiβi)
wj

n

�
dθ (5)

5.3.1 Variational inference

Since equation 5 is intractable Blei et al. modifies the model by removing
the troubling edges between θ, z and w resulting in figure 7. This variational
distribution can also be written as equation 6 [2]

The parameters (γ∗(w),φ∗(w)) are document specific and the Dirichlet pa-
rameters γ∗(w) are viewed as providing a representation of a document in the
topic simplex[P:12] [2]
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Figure 7: This is the model used to approximate the posterior in
Latent Dirichlet Allocation. Kullback–Leibler divergence) is used
to optimise the parameters γ and φ in order to avoid loss of infor-
mation when using this posterior distribution.

.

p(θ, z|γ,φ) = q(θ|γ)
N�

n=1

q(zn|φn) (6)

(γ∗
,φ

∗) = argmin(γ,φ)D(q(θ, z|γ,φ)||p(θ, z|w,α,β)). (7)

Blei et al. shows that this new simplified model leads us to the optimisation
problem shown in equation 7. Which is basically minimising the divergence
between the variational distribution and the true posterior p(θ, z|w,α,β) [2].
An iterative fixed-point, Section 5.3.2 method can be used to achieve this
minimisation [2] and Blei et al. shows how this leads to the following two
update equations

φni � βiwnexpEq[log(θi|γ)] (8)

γi = αi +
N�

n=1

φni (9)

The expectation multinomial update can be computed with equation 10 [2]

expEq[log(θi|γ] = Ψ(γi)−Ψ(
k�

j=1

γj) (10)

Where Ψ is the first derivative of the logΓ function witch is computable via
Taylor approximations [2]. Γ is defined as Γ(x) = (x− 1)! One important detail
that has been omitted until now is that the new variational model is actually a
conditional distribution varying as a function of w [2]. If we take a closer look
on the optimisation problem in equation 7 we can see that we obtain (γ∗,φ∗)
when optimising q(θ, z|γ,φ) against a fixed w thus we can state this dependency
explicitly by writing the variational distribution as q(θ, z|γ∗(w),φ∗(w)) [2]. It
should now be clearer how q(θ, z|γ∗(w),φ∗(w)) can be used as an approximate
posterior to the original distribution p(θ, z|w,α,β) [2]. In their paper Blei et
al. clearly explains the variational inference algorithm with the pseudo code in
algorithm 1
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initialise φ0
ni := 1/k for all i, n

initialise γi := αi +N/k for all i
repeat

for n = 1 to N do
for i = 1 to k do

φ
t+1
ni := βiwnexp(Ψ(γt

i ));
end

normalize φ
t+1
ni to sum to 1

end

γt+1 := α+
�N

n=1 φ
t+1
n

until Convergence;
Algorithm 1: Variational inference for Latent Dirichlet Allocation

When inspecting this algorithm one can see that each iteration inside the
repeat block takes O((N+1)k) operations [2]. Empirical studies done by Blei et
al. showed that the number of iterations needed was dependent on the number
of words in a document which gave roughly O(N2k) iterations [2]

5.3.2 Fixed-point iteration

Fixed-point iteration is a method that can be used to approximate roots of a
function. Given a function f(x) re-write f(x) = 0 to x = g(x). Then, set that
xi+1, that is x for iteration i+ 1 to g(xi). This leads to the following formula:
xi+1 = g(xi). As an example, lets find the roots to x2 − x− 1.

f(x) = x
2 − x− 1

x
2 − x− 1 = 0

(11)

x
2 − x− 1 = 0

x
2 = x+ 1

x = 1 +
1

x

xn+1 = 1 +
1

xn
(F1)

x
2 − x− 1 = 0

x
2 − x = 1

x(x− 1) = 1

x =
1

x− 1

xn+1 =
1

xn − 1
(F2)

As shows in Equation 11 we can get two different equations on the form
x = g(x). There is one more version but it is omitted in this example. Before
we start our iteration we need to guess an x0. Lets say x0 = 0 for F1 and
x0 = 1.6 for F2 we then get the following iterations with F1 and F2
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(F1) xn+1 = 1 +
1

xn

x0 = 2

x1 = g(x0) = 1.5

x2 = g(x1) = 1.667

x3 = g(x2) = 1.6

x4 = g(x3) = 1.625

x5 = g(x4) = 1.6153

x6 = g(x5) = 1.619

(F2) xn+1 =
1

xn − 1

x0 = 1.6

x1 = g(x0) = 1.667

x2 = g(x1) = 1.5

x3 = g(x2) = 2

This proves that F1 converges quite quickly while F2 diverges. It can be
proved that if xr is the root to f(x) and |g�(xr)| < 1 then fixed point iteration
converges. Otherwise it will diverge.

5.3.3 Parameter estimation

The last piece of the puzzle is the parameter estimation. There are at least two
different ways of estimating these parameters, the empirical Bayes method and
the fuller Bayesian method [2]. We will go through the empirical Bayes method
here, for the full Bayesian method take a look at the paper from Blei et al.

Given a corpus of documents C = {D1, D2, ..., Dm} we want to find α and β

such that the marginal log likelihood is maximised [2], this is shown in equation
12

�(α,β) =
M�

d=1

log p(wd|α,β) (12)

As mentioned previously computing p(w|α,β) is not tractable but with vari-
ational inference we get a tractable lower bound on the log likelihood [2]. Blei et
al. shows us that we can approximate the estimates for Latent Dirichlet Alloca-
tion with an alternating variational Expectation Maximisation (EM) procedure

[2]. For a detailed derivation see the report on Latent Dirichlet Allocation by
Blei et al. They derive the following EM-algorithm described in Algorithm 2
which is repeated until the lower bound on the log likelihood converges [2]. Fur-
thermore Blei et al. shows us that the M step in Algorithm 2 can be written as
equation 13. Lastly they also show that α can be implemented using an efficient
Newton-Raphson method in which the Hessian optimising is inverted in linear
time [2].

�(α,β) =
M�

d=1

log p(wd|α,β) (13)

5.4 Latent Dirichlet Allocation performance

Blei et al. used two sets of training corpora to test the generalisation of the La-
tent Dirichlet Allocation compared to other models such as Mixture of unigrams

and probabilistic latent semantic indexing. The documents in the corpora were
unlabelled and they measured the density estimation. Their result was that
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1. (E-step) For each document, find the optimising values of the
variational parameters {γ∗

d ,φ
∗
d : d ∈ D}. This is done as described in the

previous section.

2. (M-step) Maximise the resulting lower bound on the log likelihood with
respect to the model parameters α and β. This corresponds to finding
maximum likelihood estimates with expected sufficient statistics for each
document under the approximate posterior which is computed in the
E-step.

Algorithm 2: Parameter estimation algorithm as described by Blei et al. in
their paper on Latent Dirichlet Allocation [2]

the Latent Dirichlet Allocation had a lower perplexity than the other methods
described when the number of topics increased. A lower perplexity means that
the model is better at generalisation, or in other words, better at modelling
documents that is previously unseen [2].

6 System overview

The system was created in Java consisting of five major components as seen in
Figure 8. Each component is loosely coupled with an interface allowing each
part to be exchanged. The first component is the Stream provider and this
component is responsible for fetching the tweets (documents). Two Stream
providers were created, one that read tweets from a file and one that read live
from Twitter. The second component is the filter component. For every tweet
the filter may choose to pass through the tweet or remove it. In order to remove
unwanted topics a spam filter could be applied here. The third component, the
tokeniser, splits the tweet into an array of strings where each string is one word,
or token. In the fourth component the tokens are stemmed using a stemmer
which outputs an array of stemmed tokens. The stemmed tokens are passed to
the fifth component which is a modified version of Berkovsky’s Online learning
for Latent Dirichlet Allocation [1]. The original implementation took a folder
of files and did not allow for a continuous stream of tweets; thus the program
was modified by adding the Stream provider, Filter, Tokeniser and Stemmer.
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LDA
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newDocument : String

filteredDocument : String

tokens : String[]

stemmedTokens : String[]

result : Result

Figure 8: Overview of the data flow in the system. The stemmer
used is the Snowball stemmer (Section 6.4). The Stream provider
notifies the filter whenever a new document is read. The filter may
just pass through each document or it could be a fully fledged spam
filter. The tokeniser splits the documents into an array of words
that is later stemmed by the stemmer. The Online learning for
Latent Dirichlet Allocation waits until it has collected a mini-batch
of documents and then runs the mini-batch through the Latent
Dirichlet Allocation and yields and intermediate result with topics
and perplexity.

This implementation was modified to be able to get documents from an
input stream allowing the stream of tweets to be piped into the Latent Dirichlet
Allocation program. Evaluation of Latent Dirichlet Allocation was made in two
phases. First in an experimental manner by subjectively viewing the results
while developing the system and tuning the parameters. Once the first phase
was completed the observations were taken into consideration when deciding
what ranges of parameters to use when running a script to find combination
of parameters that yielded lower perplexity score. Furthermore the system was
tested on precision, recall, and F-measure using a dataset containing tweets with
known topics.

6.1 Stream provider

In order to get access to the Twitter streaming API [12] a Twitter application
had to be created in order get an access token. Once the token was obtained a
Java module was created. When connecting to Twitter streaming API there are
two types of streams: either a sampled stream of all tweets or a filtered stream
based on query parameters. When using the filtered stream there are two ma-
jor query types;:either supplying geographic areas in the form or rectangles or
supplying a number or terms contained in the tweet.

Geographical queries have one issue: the streaming API will only supply
geographically tagged tweets. A test was set up to count the number of geo-
graphically tagged tweets compared to those who are not. The test ran through
50,000 tweets containing any of the words Twitter, Facebook, Instagram, Google,
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Apple or life. Of these 50,000 tweets 279, or 0.0056%, where geographically
tagged. This is an issue since we get a lot less data when using geographical
queries. Content queries on the other hand filter on the terms and this gives
us biased content in streams. Ideally the Twitter Firehose[P:7] would be used.
However, the Firehose API hard to get access to.

6.2 Filter

The filter step is used to remove tweets that are not of any interest. Since
what tweets are relevant is dependent on the application of the tweets the filter
module was made exchangeable. One common application of topic modelling is
categorising news articles. There are several differences between news articles
and tweets. One of these differences is that news articles could be viewed as
spam free, since news agencies have legally responsible publishers. These pub-
lishers make sure that the content published is both legal, but also something
interesting and relevant for readers. Tweets are posted by anyone and thus there
is no one stopping spam from being published.

There are several ways this filter could be implemented. One way is any
version of a naive Bayes spam filter [8]. A naive Bayes spam filter works similar
to Latent Dirichlet Allocation with only two topics, spam and not spam. In the
conducted tests which contained spam it was known whether or not the tweet
was injected as spam. Thus the filter used in the experiments was created to be
able to easily change the amount of spam let through the filter.

6.2.1 Spam

The definition of spam in this thesis is bodies of texts that we are not interested
in. This means that spam is very context specific. If the application wants to
identify tweets with high news value then most of the tweets about a users pri-
vate life would be considered spam. However, if the application was to identify
topics that people talk about that are relevant to their private life then tweets
from news agencies would be considered spam.

If the data set used to train the model on is polluted with spam the model
might actually consider the spam as a topic itself. This might not be an issue if
the persons analysing are aware that some of the topics are spam. This means
that Latent Dirichlet Allocation might actually be able to sort out the spam it
self. As long as those analysing the model are aware of it.

6.3 Tokeniser

When processing texts of natural language a tokeniser is often used. The to-
keniser splits the text into tokens and can also annotate the texts. For instance
there is a part of speech tokeniser called TweetNLP3. The advantage of a good
tokeniser is that it might help the model better understand texts. For instance
TweetNLP tries to identify proper nouns. Instead of saving each Proper noun
such as: Facebook, Twitter, Instagram, Ikea, Uppsala as separate word all of
these could be grouped into one single token (ˆ) in TweetNLPs case. This way

3. Found at http://www.ark.cs.cmu.edu/TweetNLP/ accessed July 28, 2015
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other type of topics could emerge. Instead of the topics: ”Positive reactions to

Facebook”, ”Positive reactions to Twitter”, ”Positive reactions to Instagram”,
”... to Ikea” and ”... to Uppsala” a single topic ”Positive reactions to ˆ” could
emerge.

During evaluation two different tokenisers were used. The first one simply
split a string into tokens based on all non alpha-numeric characters. The second
tokeniser was was based on O’connor et al. tokeniser used in TweetMotif [9];
which is a specialised tokeniser for tweets.

6.4 Stemming

Stemming was defined by Lovins [7] in 1968 as:

”... computational procedure which reduces all words with the
same root (or, if prefixes are left untouched, the same stem) to a
common form, usually by stripping each word of its derivational and
inflectional suffixes.”

In this project the Java version of the Snowball Stemmer4, which is based on
the stemmer proposed by Lovins, was used. Stemmers do not take context into
consideration. For instance the Snowball stemmer stems both informational

and informality to the word inform. Since Informational and informality do not
mean the same thing there is a risk of loosing information when using stemming.
However, it seems to be common practice to use a stemmer when doing natural
language processing. All tests in this project where executed with the snowball
stemmer.

6.5 Online learning for Latent Dirichlet Allocation

Hoffman et al. provides an online version of Latent Dirichlet Allocation, see
Section 5.2.4. The difference from the original Latent Dirichlet Allocation is
that it requires only one pass over the data set. They define Online learning for
Latent Dirichlet Allocation as shown in Algorithm 3; definitions of all symbols
can be found in Table 1. While working in a similar manner to the regular
Latent Dirichlet Allocation there are a few differences. ρt is a parameter that
controls how fast old iterations are forgotten. τ0 controls the weight of the early
iterations while κ defines the decay rate of old λ. λ is the result of the previous
mini-batches. More precisely it is the variational parameter on the matrix with
word frequency spectrum of all the topics.

While Algorithm 3 shows that it can process each document t separately it
is a common practice to collect a mini-batch of documents and then run the
algorithm on all documents in each mini-batch [2, 5, 13]. Furthermore Hoffman
et al. show that if and only if κ ∈ (0.5, 1] convergence is guaranteed [5].

6.5.1 Berkovsky’s Java Online learning for Latent Dirichlet Alloca-
tion

Michael Berkovsky has created and shared a Java implementation of Online
learning for Latent Dirichlet Allocation (JOLDA). Berkovsky’s program was

4. Found at http://snowball.tartarus.org/texts/introduction.html as of July 28, 2015
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Define ρt ≡ (τ0 + t)−κ

initialise λ randomly
for t = 0 to ∞ do

E step:
Initialise γtk = 1. (The constant 1 is arbitrary.)
repeat

Set φtwk ∝ expEq[log(θtk)] + Eq[log(βkw)]
Set γtk = α+

�
w φtwkntw

until 1
K

�
k | change in γtk| < 0.00001;

M step:
Compute λ̃kw = η +Dntwφtwk

Set λ = (1− ρt)λ+ ρtλ̃

end
Algorithm 3: Online learning for Latent Dirichlet Allocation

Table 1: Shows what each symbol in Algorithm 3 represents.

symbol Definition
α The hyper-parameter for the Dirichlet distribution θ

θ The k-dimensional Multinomial parameter that specifies the topic
distribution for a document

β a k × V -matrix where each row describes the probability of words for a specific topic
γ The variational Dirichlet parameter
φ The variational Multinomial parameter
λ The variational parameter on β

η The hyper-parameter for the Dirichlet distribution on β

κ Controls the rate at which old values of λ are forgotten
τ0 Slows down early iterations of the Online variational Bayes algorithm
k Number of topics
D Size of corpus (D → ∞) in a true online setting [5]

modified to receive texts from a blocking queue instead of reading the docu-
ments at initialisation from a folder. This allows two programs to be coupled
with any type of stream provider. Support for a stemmer was added.

When attempting to categorise new tweets with a profiler it showed that
almost 80% of the run time was spent looking up words in the vocabulary. The
reason for this is that the supplied Vocabulary in Java Online learning for Latent
Dirichlet Allocation was a plain vocabulary that used a list as the underlying
data structure. Using a list for looking up words yields a time complexity of O(n)
and an average of (n/2); since the vocabularies contain upwards 50 000 - 200 000
terms this becomes quite expensive. To avoid this unnecessary computation a
vocabulary using a trie data structure was used. With a trie the look up of a
word is only dependent on the length of the word and not on the number of
words in the data structure.
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6.5.2 Solving Latent Dirichlet Allocation

The classification of a document could be described as reverse engineering the
process of generating documents, formally called inferring the topic. Inferring
the topic is done by solving the intractable equation [2] found in Section 5.3.
Blei et al. use a convexity based variational inference. In short the Latent
Dirichlet Allocation model is modified making it tractable to solve. The sim-
plified model is optimised using Kullback-lieber divergence for which Jensen’s
inequality, also know as the secant rule, is used to calculate.

Jensen’s inequality - generalises the fact that the secant of a convex
function f(x) is always above the graph and its integral is always larger than
the integral of f(x). In our case it means that if X is a random variable and
ρ is a convex function then ρ(E(X)) ≤ E[ρ(X)]. This is useful when trying to
solve hard or intractable integrals. Given the two graphs in figure 9 it can be
observed that the area under the secant lines, secant1 and secant2, is always
larger than the area under the convex graph, f(x). If the function is concave
the same principle applies, only changing that the area beneath the secant is
always smaller than the area under f(x).
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Jensen’s inequality example

Figure 9: Jensen’s inequality exemplified. As seen in the figure
the area under secant1 is A1 + A2 which is larger than the area
under f(x) which is A2. The same goes for the area under secant2
compared to the area under f(x). This fact can be used to ap-
proximate the integral of f(x) by dividing the graph into several
secants and then calculating the integral for each secant and then
summing them together.

This method can be explained using the equations in Eq 14. If f(x) is the
function that we want to approximate the integral for and g(x0, x1, x) is the
function defining the secant that intersect f(x) at x0 and x1. Then we can

28



divide f(x) into smaller ranges and calculate the integral of the secant for each
range.

f(x) = x
2
/2− 2x+ 3

g(x0, x1, x) =
f(x1)− f(x0)

x1 − x0
x+ f(x0)−

f(x1)− f(x0)

x1 − x0
x0

∀xi, xi+1;

� xi+1

xi

f(x)dx ≤
� xi+1

xi

g(xi, xi+1, x)dx

(14)

Kullback–Leibler divergence - is a way of measuring the data loss when
using a simplified model Q to approximate another model P . It is denoted
DKL(P ||Q) however the KL can be omitted when the context is clear. The KL-
divergence is used to measure the data loss when simplifying a model in order
to allow for calculations on it. KL-divergence can be described mathematically
for both discrete and continuous functions. Eq. 15 defines the discrete version
while Eq. 16 defines the continuous one. Suppose that Q(i) = 0 for some i; this
will render a division by zero which is invalid. The KL-divergence handles this
problem by being defined only if Q(i) = 0 then p(i) = 0. This is valid because
of the fact that limx→0 x ln(x) = 0

DKL(P ||Q) =
�

i

P (i) ∗ ln P (i)

Q(i) (15)

DKL(P ||Q) =

� ∞

−∞
P (x) ∗ ln P (x)

Q(x)
dx (16)

Getting the integral for the KL-divergence will often be intractable due to
the complex distributions of both P and Q. This is where the Jensen’s inequality
comes in handy. Even if the integral is intractable we can always input values
for x to create secants that can very easily be integrated and summed together.

6.5.3 Creating the vocabulary

A Javascript application was written to generate a vocabulary given a file with
a document on each line. Early experiments suggested that vocabularies older
than a few days would make the algorithm perform poorly. However, in Section
7.3 it is shown that this might not be the case. Comparing two vocabularies,
the first one that was created 2015-06-09 and the second one created 2015-06-10
yielded the following results:

• The first and second vocabulary had 48 204 and 46 605 terms respec-
tively

• The first vocabulary contained 37 402 terms not present in the second
one.

• The second vocabulary contained 35 803 terms not present in the first
one.
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Additionally Table 10 shows the ten most common words in both vocabu-
laries. As seen in the figure most words are the same or similar.

2015-06-09 2015-06-10
love love

people people
today good
follow follow
good zaynmalik
time today
happy time
life days

summer life

Figure 10: The top ten words of two vocabularies generated one
day from each other. One of the interesting words that came up
in the later vocabulary is zaynmalik, which is a Twitter user. This
word was not present in the first vocabulary.
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7 Evaluation of Latent Dirichlet Allocation on

Tweets

A test was set up to find the parameters that yielded the best measurements
on a run with 200 000 tweets. The measurements were made with perplexity
which Blei et al. and Hoffman et al. also used [2, 5].

The parameters used in the end were found by first empirically testing dif-
ferent values for each parameter. This led to the set of parameter ranges found
in Table 2. A script was created that ran the system with all permutations of
these parameters on the same 200 000 tweets. The program measured perplex-
ity after each mini-batch together with the average perplexity and the standard
deviation of the perplexity with a decaying window of 50 mini-batches. The
best parameters were found in the run that yielded the lowest sum of average
perplexity and standard deviation times three. All of these files can be found
on the repository5

Parameters min max step
Mini-batch size 20 100 20
tau 0.5 1 0.1
kappa 0.5 1 0.1
alpha 0.05 0.35 0.05
eta 0.05 0.35 0.05

Table 2: The ranges of the parameters used in script to find the
optimal parameters.

OptArg = Min(AV Gperplexity + 3 ∗ StDevperplexity) (17)

Equation 17 was used to pick the best combination of parameters. By weight-
ing the standard deviation higher than the average yielded series with less vari-
ance and more uniform values for perplexity. The ratio between average and
standard deviation was discovered empirically.

7.1 Perplexity

Perplexity is used to measure how well our model fits the data. It measures how
well our model estimates the density of word occurrences in topics. The lower
the perplexity score the better [2]. Blei et al. defines perplexity as

”Algebraically equivalent to the inverse of the geometric mean
per-word likelihood.”

which can be written for a test set of M documents [2]:

perplexity(Dtest) = exp {−
�M

d=1 log p(wd)�M
d=1 Nd

} (18)

5. https://github.com/johanrisch/TwitterTopicMining
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It is important to remember that perplexity is not an absolute metric. It can
only be used to compare different models on the same data set. The reason for
this is because the per-word likelihood of the model is compared to the per-word
likelihood of the data used.

7.2 Perplexity from runs with optimal parameters found

Figure 11 to 15 show the perplexity, average perplexity and the standard
deviation of perplexity output from the test runs. The parameters used to
produce these values can be found in Table 6. Note that Figure 11 to 14
have a maximum of 10 000 on the Y-axis while Figure 15 has a maximum of
20 000.
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Figure 11: Test run
data for 20 Topics
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Figure 12: Test run
data for 40 Topics

As Figure 11 and 12 show both of these runs perplexity drops very fast
after the first few mini-batches. Both series are close to a perplexity of 2 000
but the series with 20 topics has a more stable and lower standard deviation.
The same trend can be observed when looking at the runs with higher topic
counts in Figure 13 to 15.
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Figure 13: Test run
data for 60 Topics
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Figure 14: Test run
data for 80 Topics
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Figure 15: Test run data for 100 Topics. Note that this figure has
a higher maximum on the Y-axis compared to the other figures.

The parameters used in Figure 11 to 15 can be found in Appendix A.

7.3 Testing the ability of Latent Dirichlet Allocation to

classify known topics

A second test was set up to test how well Latent Dirichlet Allocation could
predict topics in tweets once trained. This was done by training the system on
170 000 tweets containing four major topics. Once the system was trained the
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precision, recall and F-measure were measured on a held-out test set of the data
containing 28 394 tweets.

7.3.1 Creating a dataset

In order to create a test set containing four topics Twitter handles (@-handle)

where used. An @-handle is a phrase that starts with an at (@) sign which
any user can use to make their tweet visible when searching for that handle.
These handles usually have a specific topic which they address. Four topics
were collected by fetching approximately 50 000 tweets from four different @-

handles:

1. @espn - as a topic about sports.

2. @charitywater - as a charity topic about water.

3. @president - as a topic about American politics concerning the president.

4. @TechCrunch - as a general technology topic.

When fetching tweets with an @-handle all the tweets received will contain
the search term somewhere in the tweet. Therefore each @-handle used was
added to the list of stop words. Once tweets from all @-handles were collected
these files where combined6 and each tweet was marked with the @-handle used.

Are these topics worth evaluating on? Since the tweets are not manu-
ally classified there might be some unrelated tweets inside each @-handle, there-
fore separate vocabularies were created for each @-handle. These vocabularies
were compared to see how different each @-handles word frequency spectrum
was. Table 3 shows the percentage of unique words when comparing two vocab-
ularies. Furthermore all words starting in http or digits where removed together
with words that occurred less than 6 times.

espn charitywater president TechCrunch Total no. of terms
espn 0 97% 96% 80% 3091
charitywater 59% 0 93% 57% 247
president 64% 95% 0 68% 328
TechCrunch 76% 96% 96% 0 2570

Table 3: Showing the percentage of unique terms when compar-
ing the generated dictionaries. Row one (espn) and column 2
(charitywater) shows that 97% of the espn dictionary is unique
when comparing it to the words in charitywater’s dictionary. Note
the difference in number of terms for charitywater and president
compared to TechCrunch and espn.

As shown in Table 3 the word frequency spectras are quite different from
each other. An interesting note is that both espn and TechCrunch almost have
ten times the number of terms compared to charitywater and president. Since

6. Combined file can be found at the Github repository
https://github.com/johanrisch/TwitterTopicMining
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the vocabularies were generated from approximately the same number of tweets
it suggests that president and charitywater are more narrow topics compared
to espn and TechCrunch.

This makes sense when looking at what topics these @-handles discuss. Pres-
ident and charitywater are both @-handles that discuss very specific topics,
political news regarding the president of the United states of America and news
about the charity foundation Charity: water.

Is this dataset adequate for evaluating the performance of Latent Dirichlet
Allocation on a stream of tweets? One could argue that it is advantageous
that the topics are of different width allowing the dataset to reflect some of the
variance in the Twitter medium. However, the dataset only contains four major
topics which is not representative of all the tweets posted. On the other hand,
if this dataset is used with a vocabulary created specifically for the tweets in
the dataset is compared to a vocabulary created for the perplexity measures in
Section 7.2 it will give us an indication on how important the vocabulary is
for Latent Dirichlet Allocation to work properly on a stream of tweets.

7.3.2 Test design

Firstly the system was run with 4, 8 and 16 topics on the dataset separately.
Once the model was trained on the dataset the held out data was classified. This
was done in two iterations. In the first iteration each tweet was classified to a
topic and the label of the tweet was added to the topic. After the first iteration
the purity for each topic can be calculated. This is done by normalising the
count of each label type in each of the 4, 8 and 16 topics; the purity is then the
value of the label with the highest value. For each topic count there were test
runs with different tokenisers, and level of spam injected into the stream.

Before iteration two each of the 4, 8 and 16 topics is labeled according to
the dominant classification found when calculating the purity. However, when
running the test on 4 topics charitywater never became the dominant one. Table
4 shows the purity table together with the top five words for each topic.

Topic Purity Main label Top 5 words
0 0.388 president water, clean, hous, white, peopl
1 0.395 TechCrunch report, vote, annual, tech, pretti
2 0.308 espn app, googl, launch, livelokai, play
3 0.310 president watch, meet, stewart, secret, amaz

Table 4: Purity table with the top five words for each topic for the
test run with four topics. As can be observed president occurs two
times and charitywater is missing. Since each label must have a
topic one of the president topics will have to set to charitywater.

While topic 0 has a higher purity for the label president as can be observed
in Table 4 the top two words for topic 0 are water and clean. Therefore the
label of topic 0 was manually set to charitywater. On the test runs with 8 and
16 topics each label was represented and the purity label was used to label each
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topic.

7.3.3 Spam injection

Several executions with different amount of spam were run. In the first half of
the runs both the training data and held out test set were injected with spam,
and in the second half only the held out test set was injected with spam. By
only injecting the held out test set with spam we effectively emulate previously
unknown types of spam coming into the model. If the spam was present during
the training the mode would recognise the spam; and thus a good metric on how
Latent Dirichlet Allocation handles known spam versus unknown spam might
be achieved.

The spam injected was taken from the data set used when measuring per-
plexity. The tweets contained in that data is a good mix of all types of tweets
since there were fetched using the sampled Twitter streaming endpoint7.

One important aspect with spam in this test is that we can not guarantee
that the training set is completely spam free since they are automatically fetched
and each tweet is not reviewed individually to assert that it is in fact a correctly
labeled tweet. Therefore the percentage of spam in Figure 17 and Figure 18
should be seen as a minimum amount of spam in the data set. In other words;
if the percentage of spam is set to 50% at least 50%, maybe more, of the tweets
processed were spam.

7.3.4 Precision, recall and F-measure

Precision, recall and F-measure will be calculated in the same way that Ra-
jagopal et al. do in their paper [10], the formulas used can be found in Eq
19. Before precision, recall and F-measure is calculated true positive, Tp, true
negative, Tn, false positive, Fp, and false negative,Fn, must be defined.

1. Tp - When a tweet with label A is assigned to a topic with label A

2. Tn - When a tweet that is not labeled A is not assigned to a topic with
label A

3. Fp - When a tweet with label A is assigned to a topic that is not labeled
A

4. Fn - When a tweet with label A is not assigned to a topic with label A

precision =
Tp

Tp + Fp
recall =

Tp

Tp + Fn

F-measure = 2 ∗ precision ∗ recall
precision + recall

(19)

7. https://dev.Twitter.com/streaming/reference/get/statuses/sample accessed September 2015
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7.3.5 Test result

The precision, recall and F-measure were recorded and put into Appendix B.
The exact data used in these figures can also be found in Appendix B. The
labels could be grouped into two groups, the first one could be TechCrunch as
the only label to get better performance with 16 or 4 topics; and the rest in the
second group. The second group had a peak performance with 8 topics.

In order to test how dependent Latent Dirichlet Allocation is on an up-
to-date vocabulary the test was run with the dictionary used when measuring
perplexity from Section 7.2. The results from this run can be seen in Figure
16. The raw data used in these figures can be found in Appendix B.
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Figure 16: Figure 16a to 16b compares the average precision,
recall and F-measure together with the standard deviation when
using the vocabulary generated from the data set compared to
when using the old vocabulary generated from the perplexity test
data. Furthermore the test was ran using a basic tokenizer splitting
the tweets into tokens on all non-alpha-numeric characters and also
using a tokenizer specialized on tweets TT

Comparing vocabularies When comparing the results from the vocab-
ulary generated specifically for the test set with the old vocabulary there are
some interesting observations to be made. The average precision, recall and
F-measure over all the labels for each topic count is consistently higher or equal
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to when using the old vocabulary compared to the one created for the data
set. Standard deviation is lower for precision, recall and F-measure in all topic
counts except for precision and F-measure with 4 topics.

One could argue that the old vocabulary generated from the perplexity test
data is not an issue from the results in Figure 16. The vocabulary generated
over the actual data-set, which contains all words present in the data set, per-
formed poorer than the old vocabulary. Of course, there is one issue that remain
with an old vocabulary; a model using it will not be able to pick up new phrases
and words that might become one of the defining words for a topic.

Measuring the effect of spam on Latent Dirichlet Allocation. The
data in Figure 17 and Figure 18 is quite expected. The F-measure and pre-
cision is directly affected by the amount of spam in the stream. However, the
recall is not as affected as F-measure and precision. Recall that precision was
defined as the number of correct classifications, true positives, divided by the
number of true positives with the number of false positives. Each spam message
added will be classified as one of the four topics which leads to a false posi-

tive. This means that the precision should be directly correlated to the amount
of spam injected in the stream; which can be seen in Figure 18a. Since F-
measure is a weighted measurement between recall and precision it makes sense
that spam decreased the F-measure value as well.

What at first could be called unexpected is that the recall did not get affected
much by the percentage of spam injected. Figure 17b shows the that the recall
is much more affected by the number of topics compared to the amount of spam
injected. Figure 18b shows us that recall roughly stayed the same, the standard
deviation of the recall on the three data points is 0.22, no matter what amount
of spam was injected. Recalling the definition of recall which was the number of
true positives divided by the sum of number of true positives and false negatives

explains this phenomena; since spam will only affect the test outcome by adding
false positives which is not included in the calculations of recall.
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Figure 17: Figure 17a to 17c compares the impact of spam on
precision, recall, and F-measure. (1) means that the model was
trained on a data set containing spam while (2) means that it was
trained on a spam free data set. Both (1) and (2) used a held out
test set where 70% of all tweets were injected spam
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Figure 18: Figure 18a to 18c compares the impact of spam on
precision, recall, and F-measure. (1) means that the model was
trained on a data set containing spam while (2) means that it was
trained on a spam free data set. The model used eight topics in
each test run and the spam was decreased by 20% between each
test run.
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7.4 Throughput of the system

While the theory of how well Online learning for Latent Dirichlet Allocation
is covered in Section 3.2 the number of documents processed per second was
recorded for 2, 20, 50, 100, and 200 topics. The measurements was made on
a 2014 Macbook pro retina 13” with a 3 GHz Inte Core i7 and 16GB 1600
MHz DDR3 ram. Table 5 lists to number of tweets processed per second for
each topic count and as it shows it does really scale linearly with the number
of topics. However, when looking at how many tweets are posted per second,
roughly 10 000 tweets per second8, it becomes clear that it might still be a
problem. Read more on this in Section 8.2.

Table 5: Table showing number of tweets processed per second for
2, 20, 50, 100 and 200 topics.

Number of topics Tweets processed per second
2 5556
20 1176
50 520
100 243
200 132

8. http://www.internetlivestats.com/one-second/ can be used to check, september 2015 there
usually was around 10 000 tweets per second
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8 Discussion and Future work

While both the perplexity test and the precision, recall and F-measure tests
yielded promising results. There are issues remaining when using Latent Dirich-
let Allocation on a stream of tweets.

8.1 Removing spam

Since spam affected the performance of Latent Dirichlet Allocation it is im-
portant to be aware of this when using the model in an application. If the
application is tolerant to false positives less effort could be made when trying to
remove spam from the stream compared to an application that is very sensitive
to false positives. One could consider leaving room for spam in the model by
expanding the number of topics in the model to allow for some of the topics to
detect spam messages.

8.2 Acquiring high enough throughput

The number of topics in all the tweets posted is probably a lot higher than 100
topics. When the system ran the perplexity tests on 100 topics it managed to
process around 330 tweets per second. While the algorithm used fits all the
criteria needed to be called a streaming algorithm it is still quite slow and the
stream of tweets would have to be reduced into a size that the model can handle.

One approach would be to query the Twitter streaming api with phrases
that would limit the number of topics returned in the stream. This could be
done similar to the test in Section 7.3. However, the work needed to get the
model to work on a data set with four topics was cumbersome and it would be
hard to get the model working on a new set of topics without a lot of manual
work.

If a hierarchy of computers were used to successively split up the stream in
smaller and smaller chunks, the system might be able to handle the throughput
of Twitter. Imagine that the first level in the hierarchy simply filtered away spam
and sent the tweets labeled as not spam further down the hierarchy. The next
level could split the stream into two different topics, Science and Not science,
which in turn would be sent down one more level to two separate systems that in
turn would split up the incoming topics. The results from Section 7.2 shows that
Latent Dirichlet Allocation converges faster with lower topic count which further
supports this approach. As long as each level can handle the incoming stream
this set-up should be able to model a large stream with a lot of topics. The
drawback would be that the latency to get the identified topics would increase
since there will be a transmission time between each level in the hierarchy.

8.3 Tweets that link to other websites

One other problem with this approach is how many tweets are structured. Many
tweets are just a short comment followed by a link. These links is what would
define the topic in the tweet but the cost of fetching these links while mining the
stream would probably take too much time. A possible solution to this could
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be to attempt to identify as many main topics from top domains as possible
and simply skip those which there is not enough time to process. This approach
could probably work quite well when the links are to specialised web pages that
focus on one or a few topics.

8.4 Looking at the sender of a tweet

The goal was to evaluate Latent Dirichlet Allocation when modelling tweets
using only the textual body. However, tweets contain a lot of meta data such as
the user who wrote it. For instance, the probability of @espn to post something
about the house prices in Sweden would probably be very low. So a user who
follows @espn and other users that are classified as sports in the US posts a
tweet chances are higher that the topic is related to sports rather than house
pricing in Sweden.

This can be done by analysing a Twitter user’s follower and who they follow.
Suppose a follower is treated as an incoming link and a follow as an outgoing
link; and we apply a page index algorithm such as the HITS algorithm the users
who were classified as the biggest authorities could be manually classified if they
have a very specific topic they address. Once these users have been classified
users could be given a topic distribution based to the users they follow by mea-
suring how far away in the graph they are from the manually classified users.
This could in turn be used to weight the distribution of topics on a tweet from
a specific user.

In the beginning of this thesis this was attempted. However, due to the
limitation in requests of user profiles in the Twitter API it was not feasible
to create the graph of users. The Twitter API has a rate limit on how many
requests of user profiles are allowed within 15 minutes which made it infeasible
to create a large enough graph to use it.

8.5 Conclusion

In Section 7 it is shown that an outdated vocabulary does not necessarily mean
that Latent Dirichlet Allocation will perform poorly. However, there are a few
issues that remain when mining a stream of tweets using Latent Dirichlet Al-
location. Since Twitter contains numerous topics the throughput of an online
version of Latent Dirichlet Allocation that tries to model every topic might be
too low. In Section 8.2 an outline of a hierarchal system structure could allow
for a larger throughput at the expense of higher latency.

Future work could be done to improve the use of Twitter meta data, such as
extending the model to use the sender of the tweet. As discussed in Section 8.4
one could use page-indexing on the user graph to find authorities on different
topics. These authorities can be used to modify the topic distribution of a tweet
based on how far its sender is from these authorities.
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A Optimal parameters found from script

Parameters 20-topics 40-topics 60-topics 80-topics 100-topics
Mini batch-size 200 100 100 100 100
tau 0.9 0.9 0.9 0.9 0.9
kappa 1.0 1.0 1.0 1.0 1.0
alpha 0.15 0.15 0.15 0.15 0.15
eta 0.15 0.15 0.15 0.15 0.15
Avg. Perplexity 1768 2340 2951 3992 5723
St. Dev 937 1636 2791 6857 9471

Table 6: The optimal parameters found in the test runs described
in Seciton 7. The best parameters where found by running the
program over the same set of 200 000 tweets and varying each
parameter between specified ranges. The best parameters where
selected as the combination that yielded the lowest average per-
plexity and Standard deviation combined after 200 000 tweets.

B Tables for precision recall and F-measure test

Topic Label Precision Recall F-measure
0 charitywater 0.241 0.451 0.314
1 TechCrunch 0.395 0.339 0.365
2 espn 0.309 0.235 0.267
3 president 0.373 0.310 0.338

Table 7: Result for the test when run with 4 topics. Note that
the manually set topic was the one with the highest recall.

Topic Label Precision Recall F-measure
0 charitywater 0.386 0.365 0.375
1,6 espn 0.498 0.541 0.519
2,3,5,7 president 0.443 0.645 0.525
4 techcrunch 0.517 0.263 0.349

Table 8: Result for the test when run with 8 topics. The recall is
overall higher.
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Topic Label Precision Recall F-measure
6 charitywater 0.317 0.166 0.218
1,2,3,9 espn 0.507 0.400 0.448
0,10,11,13 president 0.510 0.488 0.499
4,5,7,8, techcrunch 0.442 0.663 0.530
12,14,15

Table 9: Result for the test when run with 16 topics. The recall
is overall higher.

B.1 Graphical representation of the test result
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Figure 19: 19a show the Precision for each of the known topics,
19b show the recall and 19c shows the F-measure.
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