This is the accepted version of a paper published in *Automatica*. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

Citation for the original published paper (version of record):

Kreiberg, D., Söderström, T., Yang-Wallentin, F. (2016)
Errors-in-variables system identification using structural equation modeling.
Automatica, 66: 218-230
http://dx.doi.org/10.1016/j.automatica.2015.12.007

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-277383
Errors-in-variables system identification using structural equation modeling

David Kreiberg a Torsten Söderström b Fan Yang-Wallentin c

aDepartment of Statistics, Uppsala University, Uppsala, Sweden (e-mail: David.Kreiberg@statistics.uu.se) and Norwegian Business School, Oslo, Norway (e-mail: David.Kreiberg@bi.no).

bDivision of Systems and Control, Department of Information Technology, Uppsala University, P O Box 337, SE-75105 Uppsala, Sweden (e-mail: Torsten.Soderstrom@it.uu.se).

cDepartment of Statistics, Uppsala University, Uppsala, Sweden. (e-mail: Fan.Yang@statistics.uu.se).

Abstract

Errors-in-variables (EIV) identification refers to the problem of consistently estimating linear dynamic systems whose output and input variables are affected by additive noise. Various solutions have been presented for identifying such systems. In this study, EIV identification using Structural Equation Modeling (SEM) is considered. Two schemes for how EIV Single-Input Single-Output (SISO) systems can be formulated as SEMs are presented. The proposed formulations allow for quick implementation using standard SEM software. By simulation examples, it is shown that compared to existing procedures, here represented by the covariance matching (CM) approach, SEM-based estimation provide parameter estimates of similar quality.

Key words: System identification, errors-in-variables models, linear systems, structural equation models.

1 Introduction

Several estimation methods have been proposed for identifying linear dynamic systems from noise-corrupted output measurements, see for example [1], [2]. On the other hand, estimation of the parameters of systems in which the input signal is also affected by noise, here referred to as “errors-in-variables” (EIV) models, is recognized as a more delicate problem. Studying such systems is of interest due to their potential usage in the engineering sciences and elsewhere.

Established techniques for handling the EIV problem include the Frisch estimator [3], [4] and various forms of bias-compensated least squares [5], [6], [7]. An overview of EIV system identification, containing various solutions from the literature, can be found in [8], [9], [10]. The topic is also treated from different points of view in the books [11], [12]. A more recent development is represented by the covariance matching (CM) approach introduced in [13], [14], [15] and [16]. This approach has been shown to be related to structural equation modeling (SEM) techniques. In [17], it is demonstrated how SEM can be applied to the problem of EIV system identification.

The objective of the present study is to further extend and refine the SEM approach. As compared to [17], we provide a more thorough analysis of how SEM can be applied to the EIV problem. Two different and quite general formulations of the EIV system within SEM are presented, and their relation is analyzed. To facilitate the SEM implementation of such systems, several extensions of the standard SEM framework are proposed. The suggested formulations are evaluated in terms of statistical and numerical performance using simulated data. Aspects concerning the implementation, which were only briefly considered in [17], are studied in greater detail. In the simulation examples, standard software developed for SEM-based estimation is used.

The study is organized as follows. First, in Section 2, we outline the background and introduce basic notation. In Section 3, the standard SEM framework for static systems is reviewed. In Section 4, it is shown how EIV systems can be formulated as SEMs, and in Section 5, simulation examples of the two formulations are presented. Finally in Section 6, concluding remarks are given.

1 This work was supported in part by The Swedish Research Council (VR) under the contract 421-2011-1727.
2 EIV system formulation

First, we define the signals entering the system, and then describe the general EIV problem for linear dynamic systems. The usual setup of the EIV problem is illustrated in figure 1.

![Diagram](image)

Fig. 1. Basic setup for the dynamic EIV problem.

Our interest lies in the linear Single-Input Single-Output (SISO) system described by

\[A(q^{-1})y_0(t) = B(q^{-1})u_0(t), \]

(1)

where \(y_0(t) \) and \(u_0(t) \) are the noise-free output and input signals, respectively, and \(A(q^{-1}) \) and \(B(q^{-1}) \) are polynomials in the backward shift operator \(q^{-1} \) of the form

\[A(q^{-1}) = 1 + a_1 q^{-1} + \cdots + a_{n_a} q^{-n_a}, \]

(2)

\[B(q^{-1}) = b_1 q^{-1} + \cdots + b_{n_b} q^{-n_b}. \]

(3)

We allow the noise-free signals to be corrupted by additive measurement noises \(\tilde{g}(t) \) and \(\tilde{u}(t) \). The available signals are in discrete time and given by

\[y(t) = y_0(t) + \tilde{g}(t), \]

(4)

\[u(t) = u_0(t) + \tilde{u}(t). \]

(5)

Since \(y_0(t) \) and \(u_0(t) \) are not directly observable, the signals are considered latent.

The assumptions related to the system and its components are as follows:

A1. All signals and disturbances are zero mean stationary processes.
A2. The polynomials \(A(q^{-1}) \) and \(B(q^{-1}) \) are coprime, and their degree are known. That is, the integers \(n_a \) and \(n_b \) are known.
A3. Data records of the noisy output and input signals \(\{y(t), u(t)\}_{t=1}^{N} \) are known.
A4. The noise-free input \(u_0(t) \) is unknown as well as its second order properties such as its spectrum \(\phi_{u_0}(\omega) \).
A5. The measurement noises \(\tilde{g}(t) \) and \(\tilde{u}(t) \) are white and mutually uncorrelated. Both \(\tilde{g}(t) \) and \(\tilde{u}(t) \) are uncorrelated with \(u_0(t - \tau) \) for all \(\tau > 0 \). Their unknown variances are denoted \(\psi_{\tilde{g}} \) and \(\psi_{\tilde{u}} \).

Our concern is to determine the system transfer function which is described by

\[G(q^{-1}) = \frac{B(q^{-1})}{A(q^{-1})} = \frac{b_1 q^{-1} + \cdots + b_{n_b} q^{-n_b}}{1 + a_1 q^{-1} + \cdots + a_{n_a} q^{-n_a}}. \]

(6)

It follows that the parameter vector to be estimated from the noisy data is

\[\theta_0 = (a_1 \ldots a_{n_a} b_1 \ldots b_{n_b})^T, \]

(7)

where the superscript \(T \) denotes the transpose. It may additionally be of interest to determine other system characteristics such as the measurement noise variances \(\psi_0 = (\psi_{\tilde{g}} \psi_{\tilde{u}})^T \).

3 Structural equation modeling

In multivariate statistics, SEM is a well established statistical technique which has become popular within many disciplines of social science research. The popularity of SEM stems from its versatility, in which estimation problems involving latent variables and measurement errors can be handled. The versatility is also seen from the fact that numerous types of statistical problems can be formulated within the SEM framework. In what follows, we only briefly summarize the basics of SEM. For a more thorough introduction, see [18], [19].

3.1 Model formulation

The basic framework of SEM is described by the following three equations

\[\eta = B\eta + \Gamma \xi + \delta, \]

(8)

\[x_1 = \Lambda_1 \eta + \epsilon_1, \]

(9)

\[x_2 = \Lambda_2 \xi + \epsilon_2. \]

(10)

The first equation is referred to as the structural equation, while the latter two equations are known as the measurement equations. The random vectors \(\eta \) and \(\xi \) consist of unobserved (or latent) quantities, whereas the vectors \(x_1 \) and \(x_2 \) consist of observed quantities.

The structural equation describes the relationship among the latent quantities, wherein \(\eta \) is endogenous and \(\xi \) is exogenous. The parameter matrices \(B \) and \(\Gamma \) consist of elements that represent the effect of \(\eta \) on \(\eta \) and \(\xi \) on \(\eta \), respectively. It is assumed that \(I - B \) is nonsingular such that \(\eta \) can be uniquely determined by \(\xi \) and the noise vector \(\delta \). It is further assumed that \(\delta \) has expectation zero and is mutually uncorrelated with \(\xi \).

The measurement equations describe how the observed quantities depend on the latent quantities. The parameter
matrices A_1 and A_2 are so-called loading matrices whose elements represent the effect of η on x_1 and ξ on x_2, respectively. The measurement noises ϵ_1 and ϵ_2 may or may not be correlated, but are assumed to be mutually uncorrelated with η, ξ and δ. Note that the measurement equations are modeling devices in their own right. When a measurement equation is implemented without considering the remaining equations, the model is referred to as a Confirmatory Factor Analysis (CFA) model. Additional details are given in [18], [19].

The dimensions of the parameter matrices in (8), (9) and (10) follow from the dimensions of the random vectors η, ξ, x_1 and x_2. Let n_η and n_ξ denote the number of elements in η and ξ, respectively. Similarly, let n_{x_1} and n_{x_2} denote the number of elements in x_1 and x_2. The dimensions are then

\[
B \left(n_\eta \times n_\eta\right), \quad \Gamma \left(n_\eta \times n_\xi\right), \\
A_1 \left(n_{x_1} \times n_\eta\right), \quad A_2 \left(n_{x_2} \times n_\xi\right).
\]

(11) \hspace{1cm} (12)

The model framework additionally include the following covariance matrices

\[
E \left\{ \delta \delta^T \right\} = \Psi_\delta, \quad E \left\{ \epsilon_1 \epsilon_1^T \right\} = \Psi_{\epsilon_1}, \quad E \left\{ \epsilon_2 \epsilon_2^T \right\} = \Psi_{\epsilon_2},
\]

(13) \hspace{1cm} (14)

where E is the expectation operator. The dimensions of the matrices in (13) and (14) follow immediately from the dimensions of the involved vectors. Depending on the noise structure, the matrices Ψ_δ, Ψ_{ϵ_1} and Ψ_{ϵ_2} may or may not be diagonal.

The elements of B, Γ, A_1, A_2, Φ, Ψ_δ, Ψ_{ϵ_1} and Ψ_{ϵ_2} are either free or constrained. An element is said to be constrained if it is assigned a specific value, or if it is a function (linear or non-linear) of other elements. In SEM, it is common to constrain a large number of elements to zero. An example is when any or all of the matrices Ψ_δ, Ψ_{ϵ_1} and Ψ_{ϵ_2} are restricted to be diagonal. Another form of constraint, which is commonly imposed, is to restrict two or more elements to be equal. Such constraints are referred to as equality constraints. By appropriately constraining the elements of the parameter matrices, various statistical problems can be formulated. An essential task in many applications of SEM is to assess the validity of the imposed constraints.

A parameter vector ϑ comprises the unique elements of B, Γ, A_1, A_2, Φ, Ψ_δ, Ψ_{ϵ_1} and Ψ_{ϵ_2}, for which no pre-assigned values have been specified. The entries of this vector are referred to as the 'free elements'.

3.2 Estimation

Suppose a set of data points on x_1 and x_2 are observed. Given the data, one would like to estimate the parameter vector $\hat{\vartheta}_0$. From the data, a sample covariance matrix is obtained by

\[
\hat{R} = \begin{pmatrix}
\hat{R}_{x_1x_1} & \hat{R}_{x_1x_2} \\
\hat{R}_{x_2x_1} & \hat{R}_{x_2x_2}
\end{pmatrix} \\
= \frac{1}{N} \sum_{i=1}^{N} \begin{pmatrix} x_{1i} \\ x_{2i} \end{pmatrix} \begin{pmatrix} x_{1i}^T \\ x_{2i}^T \end{pmatrix}. \quad (15)
\]

Another covariance matrix is derived from the model

\[
R(\vartheta) = \begin{pmatrix}
E \left\{ x_1 x_1^T \right\} & E \left\{ x_1 x_2^T \right\} \\
E \left\{ x_2 x_1^T \right\} & E \left\{ x_2 x_2^T \right\}
\end{pmatrix} \\
= \begin{pmatrix}
A_1 A (\Gamma \Phi \Gamma^T + \Psi_\delta) A^T \Lambda_1^T + \Psi_{\epsilon_1} & A_1 A \Gamma \Phi \Lambda_2^T \\
A_2 \Phi \Gamma^T A^T \Lambda_1^T + \Psi_{\epsilon_2} & A_2 \Phi \Lambda_2^T + \Psi_{\epsilon_2}
\end{pmatrix}, \quad (16)
\]

where $A = (I - B)^{-1}$. The matrix in (16) is known as the 'model implied covariance matrix'. The estimation problem is to determine the vector $\hat{\vartheta}$ that is 'compatible' with the observations in the sense that

\[
\hat{R} \approx R(\vartheta). \quad (17)
\]

One has to consider that both sides of (17) are symmetric matrices, and hence the effective number of covariance elements to approximate is (at most)

\[
n^* = \frac{1}{2} n (n + 1), \quad (18)
\]

where

\[
n = n_{x_1} + n_{x_2} \quad (19)
\]

is the total number of observed quantities. Depending on the problem, there are cases in which the number of unique elements in $R(\vartheta)$ is indeed smaller than n^*. For instance, if $R(\vartheta)$ is fully or partly Toeplitz. For the estimation problem to be feasible, it is required that n^* is at least as large as the number of elements in ϑ.

Assuming the estimation problem is feasible, one can define an estimation of ϑ_0 as the minimizing value of some criterion function, expressing how much \hat{R} differs from $R(\vartheta)$. Generally, one writes such a criterion function (typically called a 'fit function' in the SEM literature) as

\[
V(\vartheta) = f \left(\hat{R}, R(\vartheta) \right). \quad (20)
\]

There are several ways for how such criterion functions can be formulated. In the SEM literature, the most prominent criterion is

\[
V_1(\vartheta) = \log \left\{ \det \left(R(\vartheta) \right) \right\} + \text{tr} \left\{ \hat{R} R^{-1}(\vartheta) \right\}, \quad (21)
\]
If the data are Gaussian and independently distributed, minimizing \(V_1(\theta) \) gives the maximum likelihood (ML) estimator (based on the information in \(\hat{R} \)), see [20], [21], [22]. Note that \(V_1(\theta) \) may also be used for other distributions of the data, even if it no longer leads to the ML estimator. Some caution has to be exercised when applying \(V_1(\theta) \). It is necessary to constrain the elements of \(\hat{\theta} \) during the numerical minimization such that the matrix \(\hat{R}(\hat{\theta}) \) remain positive definite. If this is not considered, the numerical search may easily diverge and not lead to an appropriate estimate.

A second possibility is to consider the criterion

\[
V_2(\theta) = \text{tr} \left\{ (\hat{R} - R(\theta)) Q_3 (\hat{R} - R(\theta)) Q_2 \right\},
\]
(22)

where \(Q_3 \) and \(Q_2 \) are symmetric (user-chosen) positive definite weighting matrices that are either fixed or random. By suitable choices of \(Q_3 \) and \(Q_2 \), a few well-known estimators can be derived. For instance, when \(Q_3 = Q_2 = I \), the resulting estimator becomes Unweighted Least Squares (ULS), whereas the choice \(Q_3 = Q_2 = R^{-1} \) leads to an estimator known as Generalized Least Squares (GLS). An early treatment of the GLS estimator is provided in [23]. Yet, another estimator is obtained by letting \(Q_3 = Q_2 = \hat{R}^{-1} \) (\(\hat{\theta} \)), from which \(V_3(\hat{\theta}) \) forms a Re-weighted Least Squares (RLS) estimator. The term ‘re-weighted’ reflects that the weighting matrix is iteratively updated along with \(\hat{\theta} \) during the numerical search.

Finally, a third alternative is to vectorize the difference between the covariance matrices. This development is due to [24], where it is shown that (22) is a special case of a more generic criterion formed by

\[
V_3(\theta) = \hat{f}^T(\theta) W \hat{f}(\theta).
\]

(23)

In this expression,

\[
\hat{f}(\theta) = \text{vech} (\hat{R} - R(\theta)) = \mathbf{K}_n^T \text{vech} (\hat{R} - R(\theta)),
\]

(24)

and \(W \) is a positive definite weighting matrix of appropriate dimension. In (24), \(\text{vech} \) denotes the operation of vectorizing the lower triangular part (including the diagonal) of a square matrix, whereas \(\text{vec} \) denotes the operation of vectorizing the full matrix. Moreover, \(\mathbf{K}_n \) is a matrix of dimension \(n^2 \times n^* \) with rank \(n^* \). Due to its functional form, \(V_3(\theta) \) is often labeled Weighted Least Squares (WLS).

It follows from (24) that the construction of \(\mathbf{K}_n \) is such that \(\hat{f}(\theta) \) only contains the \(n^* \) non-duplicated elements of \(\hat{R} - R(\theta) \). By this, the redundancy owing to the symmetry of \(\hat{R} - R(\theta) \) is effectively removed. Since \(\mathbf{K}_n \) has full column rank, a left inverse can be obtained by

\[
(\mathbf{K}_n^T \mathbf{K}_n)^{-1} \mathbf{K}_n^T. \quad \text{A desirable property of } \mathbf{K}_n \text{ is}
\]

\[
\text{vech}(\hat{R} - R(\theta)) = \mathbf{K}_n^T \text{vech}(\hat{R} - R(\theta)). \quad \text{(25)}
\]

Remark 3.1 If the considered matrix is symmetric and no other restrictions have been placed on its elements, the result from applying \(\text{vech} \) operation is an \(n^* \)-dimensional vector consisting of the non-duplicated elements. If the considered matrix is also Toeplitz, it is characterized by fewer non-duplicated elements. For later purposes, it will be useful if (not required) to switch to a more general notation represented by \(\text{vecnd} \). We define \(\text{vecnd} \) as the operation of vectorizing only the non-duplicated elements. It follows that \(\mathbf{K}_n \) may have to be modified. In Appendix A, we derive expressions for \(\mathbf{K}_n \) for various forms of the considered matrix.

The following example demonstrates the use and properties of \(\mathbf{K}_n \) when the considered matrix is symmetric.

Example 3.1 Let \(R \) be a matrix of dimension \(n = 3 \). Vectorizing the non-duplicated elements of \(R \) gives

\[
\text{vecnd}(R) = \mathbf{K}_3^T \text{vec}(R) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \alpha_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \alpha_2 & 0 & 0 & 0 \\ 0 & 1-\alpha_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \alpha_3 & 0 \\ 0 & 0 & 0 & 1-\alpha_2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1-\alpha_3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}. \quad \text{(26)}
\]

Let \(\mathbf{K}_3 \) be written in the rather general form

\[
\mathbf{K}_3 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}. \quad \text{(27)}
\]

Note that any value of \(\alpha_1, \alpha_2 \) and \(\alpha_3 \) will produce (26), but only \(\alpha_1 = \alpha_2 = \alpha_3 = 0.5 \) will lead to the property described in (25). Then it also holds that

\[
\mathbf{K}_3^{-T} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}. \quad \text{(28)}
\]

The generality of \(V_3(\theta) \) is largely due to the various forms the weighting matrix \(W \) can take. We now demonstrate
how \(V_2(\theta) \) and \(V_2(\bar{\theta}) \) are related through the choice of \(W \). Before doing so, it is be useful to introduce the following lemma:

Lemma 3.1 Let \(A, B, C \) and \(D \) be matrices such that \(ABCD \) is well defined and square. Then it holds that

\[
\text{tr}(ABCD) = \text{vec}^T(D)(A \otimes C^T)\text{vec}(B^T).
\]

(29)

Proof. See [25]. \(\square \)

Consider the following expression for the weighting matrix

\[
W = K_n^{-}(Q_1 \otimes Q_2)K_n^{-T}.
\]

(30)

By applying the lemma stated in (29), it can be shown that \(V_2(\theta) \) coincides with \(V_2(\bar{\theta}) \). It immediately follows that ULS, GLS and RLS are all special cases of WLS, obtained from specific choices of \(W \). As a matter of implementation, the quadratic form of the WLS criteria allows it to be formulated as a Separable Least Squares (SLS) problem, cf. [26], [27]. In Appendix B, we demonstrate how this can be done when the considered model takes the form of a CFA model.

Below, we briefly summarize some important statistical properties of the listed criteria. If the covariance structure is correctly specified and the conditions for identifiability are satisfied, the following general results are reported to hold, see also [18], [19]:

- Parameters are consistently estimated.
- Asymptotic efficiency is obtained when the data are Gaussian and independently distributed.
- The WLS estimator is asymptotically efficient without the Gaussian assumption provided that the weighting matrix takes the form

\[
W = \left(\text{cov}(\tilde{r})\right)^{-1}.
\]

(31)

The WLS estimator in the non-Gaussian case is treated in [28].

3.3 *Estimation algorithms*

Different non-linear optimization schemes may be considered for minimizing the various criterion functions. Numerical procedures such as *Quasi-Newton* methods are frequently used. An introduction to the algorithmic aspects of SEM-based estimation with examples can be found in [29]. A number of commercial and free software solutions that apply these algorithms are available.

4 *Applying structural equation modeling for EIV system identification*

Although SEM is typically applied to static problems, frequent attempts have been made to fit dynamic models into SEM. For instance, in [30], [31] it is demonstrated how ARMA processes can be formulated as SEMs. An extension of this work to the multivariate case is given in [32]. Another development, which has been growing in interest in recent years, is represented by the Dynamic Factor Analysis (DFA) model. This development is mainly due to [33], [34], [35], [36]. The DFA model allows for time dependent latent factors, a feature shared with the type of models considered here. Also in [37], a frequency domain approach to CFA modeling is presented.

The usual implementation of dynamic models in SEM involves using a sample covariance matrix \(\hat{R} \) which is fully or partly Toeplitz. Models are then fitted into SEM by appropriately constraining the elements of the parameter matrices. In what follows, we consider two different formulations of the EIV SISO system as SEMs.

4.1 *First formulation*

In the first formulation, it suffices to work with only part of the SEM framework. The parameterization represented by this formulation is closely related to the covariance matching approach, as it is derived from the same set of equations, cf. [13].

For later use, let the covariance function for the general random process \(x(t) \) be defined as

\[
r_x(\tau) = E \{x(t + \tau)x(t)\}. \tag{32}
\]

To further simplify notation, it is useful to introduce the random vectors

\[
y(t) = (y(t) \ldots y(t - n_y + 1))^T, \tag{33}
\]

\[
u(t) = (u(t - 1) \ldots u(t - n_u))^T. \tag{34}
\]

wherein (33), \(n_y \) denotes the number of \(y \)-elements starting at lag 0, and in (34), \(n_u \) denotes the number of \(u \)-elements starting at lag 1. Note that \(n_y \) and \(n_u \) values are to be chosen by the user. Vectors of the undisturbed signals, denoted \(y_0(t) \) and \(u_0(t) \), and vectors of the measurement noises, denoted \(\tilde{y}(t) \) and \(\tilde{u}(t) \), are formed by expressions similar to (33) and (34).

Now, define the auxiliary process

\[
z_0(t) = \frac{1}{A(q^{-1})}u_0(t). \tag{35}
\]

Using (35), \(y(t) \) and \(u(t) \), as given in (4) and (5), can be expressed as

\[
y(t) = B(q^{-1})z_0(t) + \tilde{y}(t), \tag{36}
\]

\[
u(t) = A(q^{-1})z_0(t) + \tilde{u}(t). \tag{37}
\]
To facilitate the SEM representation of the system, expand (36) and (37) into a system of equations

\[
y(t) = B(q^{-1})z_0(t) + \tilde{y}(t) = B(q^{-1})z_0(t) + y(t - n_y + 1) + \tilde{y}(t - n_y + 1) \\
u(t - 1) = A(q^{-1})z_0(t - 1) + \tilde{u}(t - 1) \\
u(t - n_u) = A(q^{-1})z_0(t - n_u) + \tilde{u}(t - n_u).
\]

The system in (38) can be written as a CFA model in the form of (10) (here given without subscripts, but with time indexing on the random vectors)

\[
x(t) = \Lambda \xi(t) + \epsilon(t).
\]

To do so, let the vector of the observed quantities be described by

\[
x(t) = \left(y^T(t) \ u^T(t) \right)^T,
\]

where the dimension of \(x(t)\) equals the total number of observed quantities

\[
n = n_y + n_u.
\]

Moreover, let the vectors of the unobserved quantities be

\[
\xi(t) = \left(z_0(t - 1) \ ... \ z_0(t - k - 1) \right)^T,
\]

\[
\epsilon(t) = \left(\tilde{y}^T(t) \ \tilde{u}^T(t) \right)^T,
\]

wherein (42), \(k\) is determined by

\[
k = \max(n_y + n_b - 1, n_u + n_a) - 1.
\]

The parameter matrix \(\Lambda\) takes the form of a Sylvester matrix written as

\[
\Lambda = \begin{pmatrix} M_b \\ M_a \end{pmatrix},
\]

where the partitions \(M_b\) and \(M_a\) depend on the relative magnitude of \(n_y + n_b - 1\) and \(n_u + n_a\). To further describe \(\Lambda\), let

\[
v = n_y - n_u - 1,
\]

such that the difference between \(n_y + n_b - 1\) and \(n_u + n_a\) equals

\[
v^* = v + n_b - n_a.
\]

Two cases of (45) are relevant to consider.

Case 1: When \(v^* \geq 0\), the matrix relating \(\xi(t)\) to \(x(t)\) takes the form

\[
\Lambda = \begin{pmatrix} b_1 & \ldots & b_{n_b} & 0 & \ldots & 0 \\ 0 & \ddots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ldots & 0 & b_1 & \ldots & b_{n_b} \\ 1 & \ldots & a_{n_a} & 0 & \ldots & 0 \\ 0 & \ldots & 0 & \ldots & \ddots & \vdots \\ 0 & \ldots & 0 & 1 & \ldots & a_{n_a} \end{pmatrix},
\]

where the last column of the lower partition \(M_a\) consists of row vectors of zeros.

Case 2: In the reversed case when \(v^* \leq 0\), we have

\[
\Lambda = \begin{pmatrix} b_1 & \ldots & b_{n_b} & 0 & \ldots & 0 \\ 0 & \ddots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ldots & 0 & b_1 & \ldots & b_{n_b} \\ 1 & \ldots & a_{n_a} & 0 & \ldots & 0 \\ 0 & \ldots & 0 & \ldots & \ddots & \vdots \\ 0 & \ldots & 0 & 1 & \ldots & a_{n_a} \end{pmatrix},
\]

where the last column of the upper partition \(M_b\) consists of \(v^*\)-dimensional row vectors of zeros.

To fully describe the system, we include the following covariance matrices

\[
\Phi = \begin{pmatrix} r_{z_0}(0) & \ldots & r_{z_0}(k) \\ \vdots & \ddots & \vdots \\ r_{z_0}(k) & \ldots & r_{z_0}(0) \end{pmatrix},
\]

\[
\Psi_\epsilon = \begin{pmatrix} \psi_\tilde{y} I_{n_y} & 0 \\ 0 & \psi_\tilde{u} I_{n_u} \end{pmatrix},
\]

from which the dimensions immediately follow. Since \(\Phi\) is Toeplitz, the vector of non-duplicated elements is formed by

\[
r_\xi = \left(r_{z_0}(0) \ ... \ r_{z_0}(k) \right)^T.
\]

The parameter vector to be estimated from the data is then

\[
\vartheta_0 = \left(\theta_0^T \ r_{\xi,0} \ \psi_0^T \right)^T.
\]
and the system implied covariance matrix from (16) simplifies to
\[R(\theta) = \Phi A^T + \Psi. \] (54)

We finalize the description by adding a few observations:

- Due to its block Toeplitz form, \(R(\theta) \) contains \(2n - 1 \) unique elements.
- When estimation is performed using \(V_j(\theta) \), the redundancy originating from the block Toeplitz form of \(R(\theta) \) can be eliminated by appropriately modifying \(K_\kappa \) (see Appendix A for additional details).
- With reference to the previous point, to have at least as many covariance elements to approximate as there are free parameters to estimate, \(n_y \) and \(n_u \) must be chosen such that \(2n - 1 \geq n_\theta = n_0 + k + 3 \).

This completes the first formulation of the EIV SISO system as a SEM.

4.2 Second formulation

We now consider a formulation in which the noise-free output and input signals \(y_0(t) \) and \(u_0(t) \) comprise the latent quantities in the specification. The second formulation is first derived using the complete SEM. It is then shown how the resulting expressions can be simplified to admit a CFA representation in the form of (39). As before, let \(n_y \) and \(n_u \) be parameters chosen by the user.

First, we describe the structural equation. Expand (1) to obtain a system of equations
\[A(q^{-1})y_0(t) = B(q^{-1})u_0(t) \]
\[\vdots \]
\[A(q^{-1})y_0(t-n_y+1) = B(q^{-1})u_0(t-n_y+1). \] (55)

The system in (55) is now written as a structural equation in the form of (8). To this aim, let \(\delta(t) \) be an \(n_y \)-dimensional vector of zeros so that (8) becomes
\[\eta(t) = B\eta(t) + \Gamma \xi(t), \] (56)
where
\[\eta(t) = y_0(t), \quad \xi(t) = (u_0^T(t) \nu^T(t))^T . \] (57)

In the latter expression of (57),
\[\nu(t) = (\nu_1(t) \ldots \nu_n(t))^T \] (58)
denotes a sequence of auxiliary processes which capture the dynamics of the undisturbed output and input signals prior to \(t-n_y+1 \) and \(t-n_u \), respectively. The appropriate number of auxiliary processes to include is
\[n_\nu = \max(n_y - n_u - 1 + n_b, n_u) \]
\[= \max(n^*, 0) + n_u. \] (59)

Recall that \(n^* \) is determined by (47). The auxiliary processes must take a form such that the structural equation becomes consistent with the system in (55). Introduce
\[\kappa_j = n_y - n_\nu + j - 1, \quad j = 1, \ldots, n_\nu. \] (60)

The auxiliary processes are then obtained using
\[\nu_j(t) = \sum_{i=1}^{n_b} \mathbb{I}_{\{\kappa_j+i \geq n_y\}} a_i y_0(t-\kappa_j-i) \]
\[+ \sum_{i=1}^{n_b} \mathbb{I}_{\{\kappa_j+i \geq n_u+1\}} b_i u_0(t-\kappa_j-i), \] (61)
where \(\mathbb{I}_{\{A\}} \) is the indicator function of the set \(A \), which takes the value 1 if \(A \) is true and 0 otherwise.

The specification of the structural equation additionally involves describing the parameter matrices \(B \) and \(\Gamma \). Consider the \(n_y \)-dimensional square matrix relating \(\eta(t) \) to itself
\[
\begin{pmatrix}
0 & -a_1 & \ldots & -a_{n_u} & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & \ldots & 0 \\
\end{pmatrix},
\] (62)
\[
\Gamma = \begin{pmatrix}
\Gamma_b & 0_{(n_y-n_\nu \times n_u)} \\
0_{n_\nu \times n_u} & I_{n_\nu}
\end{pmatrix},
\] (63)
where the partition \(\Gamma_b \) is a matrix of dimension \(n_y \times n_u \) whose form depends on the difference between \(n_y \) and \(n_u \). It follows that \(\Gamma \) has dimension \(n_y \times (n_u + n_\nu) \).

Two cases of \(\Gamma_b \) are relevant to consider.
where the observed quantities are given by the form of (9) and (10)

The equation systems in (66) and (67) are now written in

where the last row consists of column vectors of zeros with dimension \(n_y - n_u \).

Case 2: In the reversed case when \(n_y - n_u \leq 0 \), we have

where \(v \) is given by (46). In the special case when \(n_y = n_u \), the expressions in (64) and (65) coincide to form the same matrix.

Second, the measurement equations can be obtained by expanding (4) and (5) into the following two equation systems

Second, the measurement equations can be obtained by expanding (4) and (5) into the following two equation systems

The equation systems in (66) and (67) are now written in the form of (9) and (10)

where the observed quantities are given by

and the noise vectors are

As before, the total number of observed quantities is found in (41). The parameter matrices relating the latent and observed quantities are simply

The description include the following covariance matrices. Let \(R_{u_0} \) denote the covariance matrix of the latent input signal sequence \(u_0(t) \), and let \(R_{\nu t} \) denote the covariance matrix of the auxiliary processes \(\nu(t) \). Then,

Let \(r_z \) be a column vector composed of the non-duplicated elements of \(\Phi \). If the Toeplitz form of \(R_{u_0} \) is the only restriction placed on \(\Phi \), the dimension of \(r_z \) is

The parameter vector to be estimated from the data is

Since the complete SEM framework is used, the system implied covariance matrix \(R(\tilde{\theta}) \) takes the general form of (16), but with the slight simplification that \(\Psi = 0 \).

It may additionally be of interest to present the second formulation in a simpler form. Consider the reduced form of (56) given by

Substituting (77) into (68) gives

Stacking \(x_1(t) \) and \(x_2(t) \) allows us to write

(79)
from which it follows that the second formulation can be presented as a CFA model
\[x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \Lambda \xi(t) + \epsilon(t). \]
(80)

Of course, when the system is described by (80), the use of (54) provides the same system implied covariance matrix as when the complete SEM and (16) is used.

As previously, we finalize the description by adding a few observations:

- Estimation using \(V_2(\theta) \) involves \(n^* > 2n - 1 \) covariance functions. Thus, the redundancy due to the block Toeplitz form of \(R(\theta) \) is preserved.
- To have at least as many covariance elements to approximate as there are free parameters to estimate, \(n_y \) and \(n_u \) must be chosen so that \(n^* \geq n_y = n_0 + n_e + 2 \) is satisfied.
- The choice of \(n_y \) and \(n_u \) should additionally satisfy
\[n_y - n_a - 1 \geq 0, \quad n_u - n_b \geq 0, \]
(81)
\[n_y - 1 \geq n_u - n_b. \]
(82)
The conditions in (81) ensure that all the parameters are present in the specification. The condition in (82) ensures that all \(u_0 \)-elements in \(\xi(t) \) are related to at least one \(y_0 \)-element in \(\eta(t) \).
- Improved parsimony can be achieved by additionally constraining the elements of \(\Phi \). In Appendix C, it is demonstrated how such constraints can be imposed.

This completes the second formulation of the EIV SISO system as a SEM.

4.3 The relation between the two formulations

The difficulty of applying SEM to the EIV problem is to account for the transient effects of the undisturbed output and input signals prior to \(t - n_y + 1 \) and \(t - n_u \), respectively. As shown, this difficulty can be handled by introducing latent auxiliary processes into the specification. The proposed formulations are distinguished by the way these auxiliary processes are specified. In the first formulation, the auxiliary process of (35) imposes additional structure on the parameterization such that \(\Phi \) becomes Toeplitz. This is in contrast to the second formulation where the auxiliary processes are allowed to freely correlate with any other process in \(\xi(t) \), leading to a larger number of free elements in \(\Phi \). Despite these differences, the auxiliary processes are such that the two formulations are covariance equivalent given the same choice of \(n_y \) and \(n_u \). That is, the expressions for the covariance functions which comprise the elements of \(R(\theta) \) map the same system covariance matrix. Assuming that \(\theta_0 \) is uniquely identifiable, i.e., the covariance functions are injective, it follows that the two formulations are asymptotically equivalent.

Imposing similar structure on the parameterization of the second formulation as on the first one, it is possible to show the connection between them. To show this, let \(\xi^{(1)}(t) \) and \(\xi^{(2)}(t) \) denote \(\xi(t) \) of the first and second formulation, respectively. Then for a given choice of \(n_y, n_u \), and using
\[y_0(t) = B(q^{-1})z_0(t), \quad u_0(t) = A(q^{-1})z_0(t), \]
(83)
it follows that
\[\eta(t) = M_s \xi^{(1)}(t), \quad u_0(t) = M_s \xi^{(1)}(t). \]
(84)
The measurement equations given in (67) and (68) become
\[x_1(t) = \Lambda_1 M_s \xi^{(1)}(t) + \epsilon_1(t) \]
\[= M_s \xi^{(1)}(t) + \epsilon_1(t), \]
(85)
\[x_2(t) = \Lambda_2 \left(M_s \xi^{(1)}(t) \right) + \epsilon_2(t) \]
\[= M_s \xi^{(1)}(t) + \epsilon_2(t), \]
(86)
and it is clear that
\[x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \Lambda \xi^{(1)}(t) + \epsilon(t), \]
(87)
where \(\Lambda \) takes the form of (45).

It may additionally be of interest to see how the elements of \(\xi^{(2)}(t) \) can be expressed in terms of the elements of \(\xi^{(1)}(t) \). Before we present the final result, it is useful to introduce some intermediate results.

First, note that \(\xi^{(1)}(t) \) and \(\xi^{(2)}(t) \) are vectors of equal dimension. This is verified by considering (44) and (59) in the following way
\[n_{\xi^{(1)}} = k + 1 = \max(n_y + n_b - 1, n_a + n_u) = \max(v^*, 0) + n_a + n_u = n_{\xi^{(2)}}. \]
(88)

Second, as an alternative to (61), the auxiliary vector \(\nu(t) \) can be obtained from the structural equation
\[\eta(t) = B \eta(t) + \Gamma \xi^{(2)}(t) \]
\[= B \eta(t) + \Gamma_{\nu} u_0(t) + \begin{pmatrix} 0 \\ \nu(t) \end{pmatrix}, \]
(89)
which is re-arranged to give

\[
\begin{pmatrix}
0 \\
\nu(t)
\end{pmatrix} = (I - B)\eta(t) - \Gamma_b u_0(t).
\] (90)

Let \((I - B)^*\) and \(\Gamma_b^*\) denote two matrices composed of the last \(n_u\) rows of \(I - B\) and \(\Gamma_b\), respectively. Then from (90), one can write

\[
\nu(t) = (I - B)^*\eta(t) - \Gamma_b^* u_0(t).
\] (91)

It is straightforward to verify the correspondence between (61) and (91).

We are now in a position to establish the direct relationship between \(x_1(t)\) and \(x_2(t)\). Define

\[
J_1 = \begin{pmatrix}
0_{(n_u \times n_u)} \\
(I - B)^*
\end{pmatrix}, \quad J_2 = \begin{pmatrix}
I_{n_u} \\
-\Gamma_b^*
\end{pmatrix}.
\] (92)

Then,

\[
x_2(t) = J_1\eta(t) + J_2u_0(t)
\]

\[
= (J_1M_b + J_2M_u)\xi(t)
\]

\[
= \Phi\xi(t),
\] (93)

where the second equality follows from the use of (84). The dimensions of the involved matrices are such that \(\Phi\) has dimension \(n_x \times n_x\).

5 Simulation examples

By simulation examples, we evaluate the performance of the different SEM-based estimators discussed in Section 3 for the two formulations presented in Section 4. As a reference, we include the CM-based estimator introduced in [13]. The SEM-based estimators are computed using the commercial software LISREL, cf. [38], whereas the CM-based estimator is programmed in Matlab. Some algorithmic aspects of the implementation will also be considered.

5.1 Simulation setup

The default minimization routine in LISREL is the Davidon-Fletcher-Powell (DFP) algorithm. If needed, the implementation of the algorithm allows the user to optimize performance by adjusting the default settings (details are given in [38]). Minimization in Matlab is performed using the Nelder-Mead simplex algorithm (NMS), cf. [39]. Initial values are derived by first applying the Frisch estimator to obtain \(\theta^{(0)}\), cf. [3]. Then in a second step, the complete vector \(\theta^{(0)}\) is found by the procedures outlined in Appendix B.

The LISREL software comes with several built-in features to ensure the stability (or admissibility) of the final solution. These features may cause the program to issue warning statements, indicating either non-convergence (NC) or problems of identifying specific system parameters. Warnings may also be related to the definiteness of the model covariance matrices. In the simulation setup, warning statements are handled according to the rules: if convergence is not reached within a fixed number of iterations, or if \(\Psi_e\) (alternatively, \(\Psi_{e1}\) and \(\Psi_{e2}\)) is negative definite, the solution is deemed improper and is discarded. We treat the elements of \(\Phi\) as auxiliary parameters and ignore any warnings related to the definiteness of this matrix. Note that even if the estimate of \(\Phi\) is not positive definite, the remaining parameter estimates may still be of sufficient quality. The Matlab implementation of the CM approach is equipped with similar features.

The considered system is second order and takes the form

\[
y_0(t) = \frac{1.0q^{-1} + 0.5q^{-2}}{1 - 1.5q^{-1} + 0.7q^{-2}}u_0(t).
\] (94)

The input signal is described by the ARMA process

\[
u_0(t) = \frac{1 + 0.7q^{-1}}{1 - 0.5q^{-1}}e(t),
\] (95)

where \(e(t)\) is a zero mean white noise process with unit variance. The variance of the white measurement noises are

\[
\psi_y = 10, \quad \psi_u = 1,
\] (96)

and the user choices are

\[
n_y = 6, \quad n_u = 5.
\] (97)

It follows from (46) and (47) that \(v^* = v = 0\). The user choices for the CM approach are

\[
p_y = p_2 = 5, \quad p_u = -p_1 = 4,
\] (98)

cf. [13]. This choice ensures that the same covariance elements are used across the two approaches.

The estimators considered in the examples are summarized as follows:

- The minimizer of the criterion \(V_1(\theta)\) from (21), implemented in LISREL. This estimator is labeled \(V_1\) (note that ML is not an appropriate label since the data are not independent).
- The minimizer of the criterion \(V_2(\theta)\) from (23) using \(Q_1 = Q_2 = R^{-1}\) in (30), implemented in LISREL. This estimator is labeled GLS.
- The minimizer of the criterion \(V_3(\theta)\) from (23) using \(Q_1 = Q_2 = I\) in (30), implemented in LISREL. This estimator is labeled ULS.
The CM estimator, implemented in Matlab. For simplicity no weighting is applied. This estimator is labeled CM.

To obtain the empirical means and variances (or standard deviations) of the parameter estimates, the system is simulated \(n_{Rep} = 1000 \) times with sample length \(N = 1000 \). All estimators are subject to the same data records.

5.2 Examples

Example 5.1 In the first example, we consider the implementation of the first formulation. For this case, we have \(k = 6 \), and hence the number of auxiliary processes in \(\xi(t) \) is 7.

The results of the simulations are summarized in Table 1. From the table, it is evident that the different estimation procedures behave rather similarly. In all cases, the mean parameter estimates are close to the true parameter values, and the biases are considerably smaller than the standard deviations. Though, it is observed that the realized accuracy of the estimates, as measured by the standard deviation, tend to be marginally better for ULS and CM. For any of the estimation procedures, no negative estimates of \(\psi_{\gamma}, \psi_{\delta} \) were recorded.

We briefly comment on the numerical performance of the minimization algorithms applied in this study. No occurrences of NC for any of the estimators were detected. However, some initial trials for the SEM-based estimators showed that in a few instances the algorithm failed to satisfy the convergence criteria. Note that the DFP algorithm involves obtaining a step-length parameter between iterations. The problem of NC was solved by changing the default settings, allowing for more accurate computations of the step-length parameter. It was additionally noticed that numerical performance somewhat depends on the choice of \(\theta^{(0)} \).

Example 5.2 In the second example, the implementation of the second formulation is considered. For this case, we have \(n_x = n_u = 2 \). Using (61), with \(n_x = 3 + j \) for \(j = 1, 2 \), the auxiliary processes become

\[
\begin{align*}
\nu_1(t) & = -a_2y_0(t - 6) + b_2u_0(t - 6), \\
\nu_2(t) & = -a_1y_0(t - 6) - a_2y_0(t - 7) + b_1u_0(t - 6) + b_2u_0(t - 7).
\end{align*}
\]

The simulations are summarized in Table 2. To ensure convergence in all cases, we applied the same settings to the minimization algorithm as in the previous example. As can be seen from Table 2a, the results for the main parameters are close to those obtained in the previous example. Clearly, the estimates of these parameters appear to be of similar quality across the two formulations. Considering the auxiliary parameters, the results in Table 2b show some tendency to underestimate the covariation among the latent processes. Again, no occurrences of the estimated \(\psi_{\gamma}, \psi_{\delta} \) being negative were recorded.

It was noted that the second formulation showed to be less sensitive to the choice of \(\theta^{(0)} \), and therefore had a smoother implementation.

Example 5.3 In the following example, we investigate to what extent the parameter estimates obtained from the two formulations deviate. To do so, it is useful to introduce

\[
\phi' = (\theta^T \psi^T)^T.
\]

Moreover, let \(s_{\phi_h}^{(1)} \) denote the standard deviation of the \(h \)-th element of \(\phi' \) for \(h = 1, \ldots, 6 \). For smaller deviations, we expect that

\[
s_{\phi_h^{(1)}} - s_{\phi_h^{(2)}} \ll s_{\phi_h^{(1)}} \approx s_{\phi_h^{(2)}}.
\]
Note that our approach is rather conservative in the sense that (102) is expressed in terms of standard deviations instead of variances. The computations of \(s_{\vartheta_h^{(1)}} - \vartheta_h^{(2)} \) are presented in Table 3, while \(s_{\vartheta_h^{(1)}} - \vartheta_s^{(2)} \) are found in Table 1a and Table 2a, respectively. As can be observed from the tables, the general pattern is that \(s_{\vartheta_h^{(1)}} - \vartheta_h^{(2)} \) is shown to be quite a bit smaller than \(s_{\vartheta_h^{(1)}} - \vartheta_s^{(2)} \). This observation supports the conjecture that the estimates obtained from the two formulations are in close agreement. It is additionally noticed that among the three estimators, the agreement is closer for \(V_1 \) and GLS than for ULS.

Example 5.4 In the final example, we consider the empirical variance of the transfer function for the various SEM-based estimators. Let the empirical variance be given by

\[
s_G^2(\omega) = \frac{1}{n_{Rep}} \sum_{i=1}^{n_{Rep}} (|\hat{G}_i| - |G|)^2, \quad 0 \leq \omega \leq \pi, \quad (103)
\]

where \(G = G(e^{j\omega}) \) follows from (6) with \(n_a = n_h = 2 \). Evaluating the estimation performance using (103) is useful since \(s_G^2(\omega) \) is influenced not only by the variance of the individual estimates in \(\hat{\vartheta} \) but also their covariances. The results of the computations are summarized in Figure 2.

As clearly seen from the figure, the variance is nearly identical across the various estimation procedures. Moreover, no noticeable differences between the two formulations are evident. Thus, the results are shown to be well in line with those reported in the previous examples.

6 Concluding remarks

EIIV identification using SEM has been examined. More specifically, two formulations of the EIIV SISO system leading to the same covariance structure were presented.
First formulation

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{first_formulation}
\caption{Empirical variance of the transfer function.}
\end{figure}

Second formulation

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{second_formulation}
\caption{Empirical variance of the transfer function.}
\end{figure}

proposed formulations allow for quick implementation using standard statistical software. To make the SEM framework specific for the EIV problem, several extensions were proposed. First, for the sake of parsimony, it was shown how to eliminate the redundancy originating from the block Toeplitz form of the considered covariance matrix. Second, when the system admits a CFA representation, the estimation problem can be formulated as a SLS problem.

Statistical performance was evaluated using simulated data. The main conclusion from the simulation examples is that SEM-based estimation of dynamic EIV systems works well. Performance across the two formulations showed to be nearly identical in terms of bias and accuracy. As compared to existing procedures, here represented by the CM approach, SEM-based estimators provide estimates of similar quality. Algorithmic aspects were briefly considered. Although the minimization algorithm in LISREL performed well in the simulations, we cannot exclude that other algorithms may be better suited for the type of models and data considered in this study.

It is clear that more work is needed to fully understand the potential of applying SEM to the EIV problem. Future research should include a rigorous investigation of the accuracy of the SEM-based estimators. It is additionally of interest to extend the present work to include formulations of Multiple-Input Multiple-Output (MIMO) systems.

Acknowledgments

The authors would like to thank Professor Johan Lyhagen, Associate professor Gillian Warner-Söderholm and the reviewers for their valuable comments and suggestions.

Appendix A Deriving K

We now provide a treatment of how to obtain the matrix \(K_n \) for various forms of \(R \), where \(R \) denotes an \(n \)-dimensional symmetric matrix. Let \(L_n \) denote a selection matrix of dimension \(n^2 \times n^* \) consisting of ones and zeros such that

\[
\text{vec}(R) = L_n \text{vecnd}(R),
\]

where

\[
\text{vec}(R) = (r_{11} \ldots r_{n1} \ r_{12} \ldots r_{n2} \ldots, r_{1n} \ldots r_{nn})^T,
\]

and \(n^* \) denotes the number of non-duplicated elements in \(R \). The matrix \(K_n \) is then chosen as

\[
K_n = L_n (L_n^T L_n)^{-1}.
\]

In this form, \(K_n \) possesses the property described in (25). The matrices in (A.3) are typically derived using double subscript notation, see for instance [12], [24]. Next, we demonstrate how to apply this type of notation to obtain \(L_n \) for various forms of \(R \).

Case 1: First, consider the case when \(R \) is symmetric and no other restrictions are placed on its elements. The vector of non-duplicated elements is in this case

\[
\text{vecnd}(R) = (r_{11} \ldots r_{n1} \ r_{22} \ldots r_{nn})^T,
\]

where the number of elements is given by (18). It follows that \(L_n \) is a matrix of dimension \(n^2 \times 2^{-1}n(n + 1) \).

Applying double subscript notation involves indexing the elements of \(L_n \) using the same subscripts as for the elements of \(\text{vec}(R) \) and \(\text{vecnd}(R) \). The indexing scheme is illustrated...
In order to describe the individual elements of (A.5), let \(i, j = 1, \ldots, n \) and \(u \geq v = 1, \ldots, n \). The elements are then determined by

\[
\begin{align*}
L_{ij,uv} &= \begin{cases}
1 & \text{if } (i, j) = (u, v) \\
1 & \text{if } (i, j) = (v, u) \\
0 & \text{otherwise}
\end{cases}
\end{align*}
\]
\((A.6)\)

Example 3.1 illustrates the case when \(n = 3 \), in which \(\mathbf{L}_3 \) takes the form of (28). Using (A.3), we obtain (27) with \(\alpha_1 = \alpha_2 = \alpha_3 = 0.5 \).

Case 2: In the second case, \(\mathbf{R} \) is a matrix that is both symmetric and Toeplitz. The vector of non-duplicated elements simplifies to the first column of \(\mathbf{R} \)

\[
\text{vecnd}(\mathbf{R}) = (r_{11} \ldots r_{n1})^T.
\]
\((A.7)\)

The dimension of \(\mathbf{L}_n \) then becomes \(n^2 \times n \). Before describing the elements of this matrix, it is useful to introduce the following general notation. Let \(H_u = \{0, \ldots, i_u\} \) denote a set of integer values. Now, define the set

\[
\{(u + h, v + h)\}_{h \in H_u} = \{(u, v), \ldots, (u + i_u, v + i_u)\}.
\]
\((A.8)\)

Then, if \(i, j, u = 1, \ldots, n, v = 1 \) and \(v = n - u \),

\[
l_{ij,uv} = \begin{cases}
1 & \text{if } (i, j) \in \{(u + h, v + h)\}_{h \in H_u} \\
1 & \text{if } (i, j) \in \{(v + h, u + h)\}_{h \in H_u} \\
0 & \text{otherwise}
\end{cases}
\]
\((A.9)\)

As indicated, the set \(\{(u + h, v + h)\}_{h \in H_u} \) additionally depends on \(u \) through \(H_u \). Thus, columns further to the right in \(\mathbf{L}_n \) are characterized by fewer non-zero elements. Note that the first column is a special case for which the first two conditions in (A.9) coincide.

Using (A.6) and (A.9), either separately or in combination, allows one to handle a variety of matrices. This is further demonstrated in the remaining two cases.

Case 3: In the third and more involved case, \(\mathbf{R} \) is a matrix with a block Toeplitz structure

\[
\mathbf{R} = \begin{pmatrix}
\mathbf{R}_{11} & \mathbf{R}_{12} \\
\mathbf{R}_{21} & \mathbf{R}_{22}
\end{pmatrix},
\]
\((A.10)\)

where \(n = n_1 + n_2 \). Let \(\mathbf{R}_{ij} \) denote the \(uv \)-th element of the \(i,j \)-th block of \(\mathbf{R} \). The vector of non-duplicated elements is then written as

\[
\text{vecnd}(\mathbf{R}) = \left([\mathbf{R}_{11}]_{11} \ldots [\mathbf{R}_{11}]_{n1} \ [\mathbf{R}_{21}]_{11} \ldots [\mathbf{R}_{21}]_{n1} \ [\mathbf{R}_{12}]_{21} \ldots [\mathbf{R}_{12}]_{n1} \ [\mathbf{R}_{22}]_{11} \ldots [\mathbf{R}_{22}]_{n1} \right)^T.
\]
\((A.11)\)

It will be convenient to let \(\mathbf{L}_n \) be a matrix composed of four partitions, where each partition corresponds to a block in \(\mathbf{R} \). The selection matrix then takes the general form

\[
\mathbf{L}_n = \begin{pmatrix}
\mathbf{L}_{11} & \mathbf{L}_{12} & \mathbf{L}_{13} & \mathbf{L}_{14} \\
& & & \\
& & & \\
\end{pmatrix},
\]
\((A.12)\)

with overall dimension \(n^2 \times (2n - 1) \). As before, let \(i, j = 1, \ldots, n \). By appropriately specifying the range of \(u \) and \(v \), one obtains the individual elements of \(\mathbf{L}_n \) by its partitions. This is accomplished by

\[
\begin{align*}
\mathbf{L}_{11} & : (A.9), \text{ using } u = 1, \ldots, n_1, v = 1 \\
\text{and } i_u &= n_1 - u, \\
\mathbf{L}_{12} & : (A.9), \text{ using } u = n_1 + 1, \ldots, n, v = 1 \\
\text{and } i_u &= \min(n_1 - 1, n - u), \\
\mathbf{L}_{13} & : (A.9), \text{ using } u = 2, \ldots, n_1, v = n_1 + 1 \\
\text{and } i_u &= \min(n_2 - 1, n_1 - u), \\
\mathbf{L}_{14} & : (A.9), \text{ using } u = n_1 + 1, \ldots, n, v = n_1 + 1 \\
\text{and } i_u &= n - u.
\end{align*}
\]

Case 4: In the final case, \(\mathbf{R} \) is written in the form of (A.10), but only \(\mathbf{R}_{11} \) has a Toeplitz structure. An example of such a matrix is the one given in (73). The vector of non-duplicated elements is given by

\[
\text{vecnd}(\mathbf{R}) = \\
\begin{pmatrix}
[\mathbf{R}_{11}]_{11} \ldots [\mathbf{R}_{11}]_{n1} \\
[\mathbf{R}_{21}]_{11} \ldots [\mathbf{R}_{21}]_{n1} \\
[\mathbf{R}_{12}]_{21} \ldots [\mathbf{R}_{12}]_{n1} \\
[\mathbf{R}_{22}]_{21} \ldots [\mathbf{R}_{22}]_{n1} \end{pmatrix}^T.
\]
\((A.13)\)

The selection matrix is written as

\[
\mathbf{L}_n = \begin{pmatrix}
\mathbf{L}_{11} & \mathbf{L}_{12} \\
& & \\
& & \\
\end{pmatrix},
\]
\((A.14)\)
which has overall dimension \(n^2 \times (n_1 + n_2 n_1 + n_2) \), where \(n_2 = 2^{-1} n_2 (n_2 + 1) \). As in the previous cases, let \(i, j = 1, \ldots, n \). The individual elements of \(L_i \) are now obtained by

\[
L_{11} : (A.9), \text{ using } u = 1, \ldots, n_1, v = 1 \\
\text{and } \iota = n_1 - u.
\]

\[
L_{12} : (A.6), \text{ using } u = n_1 + 1, \ldots, n \\
\text{and } u \geq v = 1, \ldots, n.
\]

Appendix B WLS as a separable least squares problem

In this study, it has been demonstrated how the EIV problem can be handled using SEM-based estimation. Applying the WLS estimator involves

\[
\hat{\theta} = \arg \min_{\hat{\theta}} V_3(\hat{\theta}) , \tag{B.1}
\]

where

\[
V_3(\hat{\theta}) = \tilde{r}^T(\theta) W \hat{r}(\theta)
\]

is the criterion function described in (23). The functional form of (B.2) allows the minimization problem in (B.1) to be formulated as a SLS problem.

From (24), write

\[
\tilde{r}(\hat{\theta}) = \tilde{r} - r(\hat{\theta}) \\
= \tilde{r} - F(\theta) r_{\xi,\psi}, \tag{B.3}
\]

where

\[
r_{\xi,\psi} = (r_{\xi}^T \psi)^T. \tag{B.4}
\]

In what follows, it is assumed that \(F(\theta) \) is a matrix of full column rank. Using (B.3), the WLS criteria can be written in the form

\[
V_3(\theta, r_{\xi,\psi}) = \| \tilde{r} - F(\theta) r_{\xi,\psi} \|^2_W. \tag{B.5}
\]

For a given \(\theta \), and using that \(r_{\xi,\psi} \) enters linearly into (B.5), the minimizing problem with respect to \(r_{\xi,\psi} \) is solved by linear least squares

\[
\hat{r}_{\xi,\psi} = (F^T(\theta) W F(\theta))^{-1} F^T(\theta) W \tilde{r}, \tag{B.6}
\]

which in turn leads to the modified criterion function

\[
\tilde{V}_3(\theta) = \tilde{r}^T W \hat{r} - \tilde{r}^T W F(\theta) \times \\
(F^T(\theta) W F(\theta))^{-1} F^T(\theta) W \tilde{r}. \tag{B.7}
\]

The minimization of (B.7) describes a variable projection problem that can be solved using standard optimization routines.

To make (B.6) and (B.7) applicable, one must obtain an expression for \(F(\theta) \). Recall that both formulations described in Section 4 have a CFA representation. The simple form of the system implied covariance matrix, as given in (54), greatly simplifies the problem of determining \(F(\theta) \). It is useful to introduce the following Lemma:

Lemma B.1 Let \(A, B \) and \(C \) be matrices such that the product \(ABC \) is well defined. Then it holds that

\[
vec(ABC) = (C^T \otimes A) vec(B). \tag{B.8}
\]

Proof. See [25]. □

Applying the Lemma to the covariance matrix in (54) gives

\[
vec(R(\hat{\theta})) = (A \otimes A) vec(\Phi) + vec(\Psi_\xi). \tag{B.9}
\]

Use that

\[
vec(R(\hat{\theta})) = K_n \tilde{r}(\hat{\theta}), \quad vec(\Phi) = K_n r_{\xi}, \tag{B.10}
\]

which allows (B.9) to be written as

\[
r(\hat{\theta}) = K_n^T \left((A \otimes A) K_n \tilde{r}_{\xi} + vec(\Psi_\xi) \right). \tag{B.11}
\]

Moreover, note that

\[
vec(\Psi_\xi) = (t_y, t_u) \psi, \tag{B.12}
\]

where \(t_y \) and \(t_u \) are vectors obtained from

\[
t_y = vec \left(I_{n_y} \begin{bmatrix} 0_{(n_y \times n_u)} \\ 0_{(n_y \times n_u)} \end{bmatrix} \right), \tag{B.13}
\]

\[
t_u = vec \left(0_{(n_y \times n_u)} \begin{bmatrix} I_{n_y} \\ 0_{(n_y \times n_u)} \end{bmatrix} \right). \tag{B.14}
\]

It now follows that

\[
r(\hat{\theta}) = K_n^T \left((A \otimes A) K_n \tilde{r}_{\xi} + vec(\Psi_\xi) \right) = F(\theta) r_{\xi,\psi}. \tag{B.15}
\]

Note that the exact form and dimension of \(F(\theta) \) depends on \(K_n \) and \(K_{n_\xi} \). The relevant matrices are found by the procedures outlined in Appendix A. Considering the first formulation, one obtain

\[
K_n^{(1)} : \text{ by Case 3 using } n_1, n_2 = n_y, n_u.
\]

\[
K_{n_\xi}^{(1)} : \text{ by Case 2 using } n_\xi = k + 1.
\]

The dimension of \(F(\theta) \) is then \((2n - 1) \times (k + 3)\). For the second formulation, the relevant matrices become
Appendix C Imposing additional constraints on the elements of Φ

It is possible to achieve a more parsimonious implementation of the second formulation by further constraining the elements of Φ.

As defined in (32), let $r_{\nu u_0}(\tau)$ denote the covariance function of the undisturbed input signal $u_0(t)$. Further, define

$$r_{y_0 u_0}(\tau) = E \{ y_0(t + \tau) u_0(t) \}, \quad (C.1)$$
$$r_{\nu y_0 U_0}(\tau) = E \{ \nu_j(t + \tau) u_0(t) \}, \quad (C.2)$$

where $\nu_j(t)$ is the auxiliary process obtained from (61). For $j = 2, \ldots, \nu_u$, one can modify (61) such that

$$\nu_j(t) = - \sum_{i=1}^{n_u} \prod_{\nu_u+i=n_u} a_i y_0(t-n_y)$$
$$+ \sum_{i=1}^{n_u} \prod_{\nu_u+i=n_u+1} b_i u_0(t-n_u-1)$$
$$+ \nu_{j-1}(t-1). \quad (C.3)$$

Note that (C.3) becomes applicable for $j = 1$ by canceling the last term.

By the use of (C.3), and letting $h = 2, \ldots, n_u$, we can express the elements of $R_{\nu u_0}$ as

$$[R_{\nu u_0}]_{j_{\nu}} = r_{\nu_{j-1} u_0}(h)$$
$$= - \sum_{i=1}^{n_u} \prod_{\nu_u+i=n_u} a_i r_{y_0 u_0}(h-n_y)$$
$$+ \sum_{i=1}^{n_u} \prod_{\nu_u+i=n_u+1} b_i r_{u_0}(h-n_u-1)$$
$$+ r_{\nu_{j-1} u_0}(h-1), \quad (C.4)$$

where $[R_{\nu u_0}]_{j_{\nu}}$ denotes the j_{ν}-th element of $R_{\nu u_0}$. As before, canceling the last term makes (C.4) applicable for $j = 1$. To make use of (C.4), one must obtain an expression for $r_{y_0 u_0}(h-n_y)$. To do so, consider

$$y_0(t-n_y + 1) = \sum_{i=1}^{n_u} \prod_{\nu_u+i<n_u+1} b_i u_0(t-\nu_u-i)$$
$$+ \nu_{\nu u_0}(t). \quad (C.5)$$

Multiplying both sides of (C.5) by $u_0(t-h + 1)$ and taking expectations, while using that $\nu_{\nu u_0} = n_y - 1$, we obtain

$$r_{y_0 u_0}(h-n_y) = \sum_{i=1}^{n_u} \prod_{\nu_u+i<n_u+1} b_i r_{u_0}(h-n_y - i)$$
$$+ \nu_{\nu u_0}(h-1). \quad (C.6)$$

In (C.6), when the condition in the indicator function is satisfied, $r_{u_0}(h-n_y-i)$ for $h = 2, \ldots, n_u$ are guaranteed to be contained in R_{u_0}. It follows that $r_{y_0 u_0}(h-n_y)$ can be obtained from the elements of ν, R_{u_0}, and $R_{\nu u_0}$. The expressions in (C.4) and (C.6) implies that the complete set of constraints can be obtained by recursive substitution.

After imposing the constraints, the dimension of R_{ν} becomes

$$n_{\nu} = n_u + n_v + \frac{1}{2} n_u (n_u + 1)$$
$$= n_u + \frac{1}{2} n_u (n_u + 3). \quad (C.7)$$

As an illustration, consider the system used in Example 5.2. Using (C.3), we have

$$\nu_1(t) = -a_2 y_0(t-6) + b_2 u_0(t-6) \quad (C.8)$$
$$\nu_2(t) = -a_1 y_0(t-6) + b_1 u_0(t-6) + \nu_1(t-1). \quad (C.9)$$

The choice of n_y and n_u are such that (C.5) simplifies to

$$y_0(t-n_y + 1) = y_0(t-5) = \nu_2(t). \quad (C.10)$$

and from the use of (C.4) and (C.6), we obtain

$$[R_{\nu u_0}]_{1,h} = - a_2 [R_{\nu u_0}]_{2,h-1} + b_2 [R_{u_0}]_{5,h-1} \quad (C.11)$$
$$[R_{\nu u_0}]_{2,h} = - a_1 [R_{\nu u_0}]_{2,h-1} + b_1 [R_{u_0}]_{5,h-1}$$
$$+ [R_{\nu u_0}]_{1,h-1}. \quad (C.12)$$

The desired covariance elements for $h = 2, \ldots, 5$ are now found by applying recursive substitution to (C.11) and (C.12).

References

