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A spin dynamics approach  
to solitonics
Konstantinos Koumpouras1, Anders Bergman1, Olle Eriksson1 & Dmitry Yudin2

In magnetic materials a variety of non-collinear ground state configurations may emerge as a result of 
competition among exchange, anisotropy, and dipole-dipole interaction, yielding magnetic states far 
more complex than those of homogenous ferromagnets. Of particular interest in this study are particle-
like configurations. These particle-like states, e.g., magnetic solitons, skyrmions, or domain walls, 
form a spatially localised clot of magnetic energy. In this paper we address topologically protected 
magnetic solitons and explore concepts that potentially might be relevant for logical operations and/
or information storage in the rapidly advancing filed of solitonics (and skyrmionics). An ability to easily 
create, address, and manipulate such structures is among the prerequisite forming a basis of “-onics 
technology”, and is investigated in detail here using numerical and analytical tools.

Low-dimensional magnetic systems remain a challenge, representing an exciting part of modern condensed 
matter physics. Tremendous progress in fabrication and characterization of magnetic nanostructures1 allows 
to approach experimental investigations of nonlinear phenomena, which previously were considered to form 
a purely theoretical research area. From both fundamental scientific and technological perspectives, consistent 
studies of controllable motion of spin textures, that emerge in magnetic materials2, pose many of the most inter-
esting scientific questions. Depending on distance between neighbour spins, hybridization effects and details of 
the electronic structure as well as the crystalline symmetry, various magnetic configurations may emerge. These 
configurations range from collinear ferromagnetic and antiferromagnetic states, to non-collinear helimagnets 
and more complicated textures. In chiral magnets, where magnetic spiral ordering with a given sense of rotation is 
present, a non-collinear configuration may result from the competition between symmetric Heisenberg exchange 
and anisotropic antisymmetric Dzyaloshinskii-Moriya (DM) coupling. Indeed, magnetocrystalline structures 
which support spiral ground states are characterized by the lack of inversion symmetry and, as a consequence, 
antisymmetric exchange DM interaction. The latter takes place e.g. in metallic MnSi3, insulating CuB2O4 4, and 
semiconducting Cr1/3NbS2

5.
Of particular interest for magnetic nano-objects are magnetic structures that are localized in space, i.e. soli-

tons. An example of this is the domain wall, where a lot of knowledge has been obtained, both as concerns static6 
and dynamic7 properties. Other magnetic solitons, like chiral spin-spirals and skyrmions8–10 have remained less 
explored, so far. Interestingly, the balance between Heisenberg exchange and DM interaction allows for nontriv-
ial topological spin-textures to exist as a ground state configuration of ferromagnets, that may develop towards 
two-dimensional chiral modulations, i.e. skyrmions. The skyrmion spin-configuration, with a fixed azimuthal 
angle, influenced by the underlying crystalline structure, might be stabilized in a non-centrosymmetric mag-
net11. Such a topological soliton may be stable both physically and topologically, i.e. it has a smooth defect-free 
core with a definite diameter that is characterized by material parameters only. Recently, the first experimental 
observation of a skyrmionic texture in a nano-sized, thin film structure were reported12, for FeGe and Fe0.5Co0.5Si. 
Experiments reported a stable skyrmion phase in a wide temperature window, well below the Curie point, by 
means of Lorentz transmission electron microscopy. In another, recent, work a soliton phase was reported, exper-
imentally, in an antiferromagnetic chain compound, KCuGaF6 13.

In general, the class of quasi-one-dimensional magnetics includes a variety of systems ranging from 
metal-organic complexes, consisting of weakly coupled spin chains, to helimagnets, in which magnetisation var-
ies in one spatial dimension. From practical aspects, the most interesting class of compounds is the one where 
there exists a possibility to manipulate non-trivial topological structures by means of an external field or current. 
Furthermore, chiral magnets attract a lot of attention not only for being interesting from a fundamental viewpoint 
but also as a promising candidate for future spintronic devices. As mentioned, the compound Cr1/3NbS2 5 is of 
interest, since a chiral soliton lattice has been proposed for its magnetic structure14. Its hexagonal structure is built 
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up from NbS2 layers intercalated by Cr ions. There are three basic magnetic interactions present in this structure: 
the ferromagnetic exchange within the Cr layers J⊥, another ferromagnetic interaction between such Cr layers, 
j||, and the DM interaction between the Cr ions. The latter two interactions belong to the two intercalating layers 
separated by NbS2 15,16, and the competition between them forms a helical structure.

There are two ways to drive the motion of a chiral soliton lattice: either by injecting a spin-polarised current 
into a sample (incoherent method), or by twisting the phase angle of the magnetic order parameter which directly 
couples to a magnetic field (coherent method). For example, one may envision the latter scenario using a rotating 
magnetic field, that is applied to one end of the sample, and that is sufficiently strong to orient the magnetisation 
parallel to it. Because of the stiffness of the spin system, the spin rotation at one end is transmitted to the other end 
of the sample, even if it is not subject to the direct effect of the applied rotating magnetic field. Transmission of the 
torque through the sample hence presents a spin current. The incoherent current injection method to drive the 
sliding dynamics has already been proposed17, whereas chiral helimagnets are promising candidates to realise the 
coherent method18. It has been pointed out19,20 that once a sliding motion of helimagnets is triggered, the soliton 
lattice maintains its persistent motion assisted by a generation of inertial mass. Another observable consequence 
of the coherent motion is the appearance of a spin motive force21, when the time dependence of the longitudinal 
magnetic field manifests itself in the temporal regime of the spin motive force. Remarkably, the chiral soliton 
lattice is a macroscopically ordered object, which contains macroscopic amounts of magnetic solitons (kinks). 
Due to the very large number of solitons, the spin motive force of this lattice is expected to be strongly amplified 
as compared with that caused by a single magnetic domain wall in a ferromagnet19,20.

In this paper we present a detailed and systematic analysis of a quasi-one-dimensional chiral soliton lattice, 
e.g. as has been recently observed in Cr1/3NbS2

14, and the soliton-soliton interaction. We combine our numer-
ical findings, obtained from atomistic spin dynamics simulations, with analytical results, performed for a 
one-dimensional helical structure which is known to support a soliton lattice as a ground state, when an external 
magnetic field perpendicular to helical axis is applied. Interestingly, in contrast to a uniformly polarized ground 
state configuration the formation and propagation of solitons on top of a kink crystal leads to a macroscopic 
translation of magnetic texture which should be experimentally detectable. Numerical results are found to be in 
good agreement with the analytical theory and this allows us to touch upon nonlinear dynamics of solitons and 
spin waves in spin-spiral structures, opening thus a way for solitonics.

Results
Analytical model.  Detailed theoretical study of nonlinear magnetization dynamics is rarely to be accom-
plished in closed analytical form, however before we present the results of our numerical simulations we elaborate 
a simple toy model which allows us to include all relevant interactions and make predictions which will be shown 
to be qualitatively correct. We examine the behaviour of a quasi-one-dimensional ferromagnet with lack of inver-
sion symmetry located along z-axis placed in the transverse magnetic field H =  (H, 0, 0): The Hamiltonian (per a 
unit volume) of such a system

= + + +h h h h h (1)ex DM an Z

is known to incorporate the terms due to exchange = ∂h A M( ) /2zex
2 ,  Dzyaloshinskii-Moriya 

= ⋅ ∇ ×h DM M( )DM , and Zeeman = − ⋅h M HZ  interaction. We have also included =h BM /2zan
2 , a compo-

nent which stands for easy-plane (xy-plane) anisotropy in the expression (1). In the following we assume the 
magnetisation is determined by a vector field M(z, t), so that = =MM const2

0
2 , while z and t are coordinates of 

space and time; the parameters A, D, and B represent exchange and DM couplings, and magnetic anisotropy 
respectively. In the absence of an external field DM favours the formation of a spiral structure along the Z-axis, 
which is incommensurate with the underlying crystalline structure, whereas the magnetic field H, applied in the 
x-direction, tends to align the spins in this direction. The delicate interplay between these two interactions may 
lead to the formation of elongated domains of width L (see below in the text) in which magnetisation is uniform. 
There exists a critical field Hc, where as long as H >  Hc the system is collinear, ferromagnetic.

The vector field M(z, t) allows a parametrisation with polar Φ ≡ Φ z t( , ) and azimuthal Θ ≡ Θ z t( , ) angles: 
= Θ Φ Θ Φ Θz t MM( , ) (sin cos , sin sin , cos )0 . There are many magnetic materials where the magnetic anisot-

ropy is very high, so that ≤ H M D A B/ /0
2 22. For such systems one can use π θΘ = +/2 , where θ  1. If this 

is the case, the Landau-Lifshitz equation, combined with the Hamiltonian in Eqn. 1, leads to the following equa-
tions for the leading order terms for θ:

θ
γ

=
Φ
M B

,
(2)

t

0

γ
θ− + Φ − Θ =

M
A H

M
1 sin 0,

(3)t zz
0 0

where γ is the gyromagnetic ratio. Note that substituting (2) into (3) and introducing dimensionless variables 
γ=t̃ t M BH0  and =z z H AM/( )0  one arrives at the celebrated sine-Gordon model (see, e.g.23,24):

Φ − Φ + Φ = .


˜˜ sin 0 (4)tt zz

With the help of (2) we can rewrite energy density (1) as follows:
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where the pitch vector =q D M AH/( )0  coincides with its standard notation if we switch back to z and t, i.e. 
= =q q H AM D A/( ) /0 . Depending on q, stationary solutions to Eqn. 4 are either a ferromagnetic state Φ ≡ 0 

(mod 2π) or a spiral structure ϕ πΦ ≡ = −z u n( ) 2am( , )0 , with =u z n/ . Note that am(u, v) is the amplitude of 
an elliptical integral, and n is the modulus of the elliptic function. It should be noted that n can be thought of as a 
parameter of the theory and should be determined by minimising the total energy (5) of the system, resulting in

π − = .nq E n4 ( ) 0 (6)

Equation (6) does not have any solution as long as q < 4/π, so that the ground state is ferromagnetic, whereas 
for q  > 4/π the system is in a spiral state, i.e. ϕ z( )0  changes by 2π with period L =  2nK(n) [here we have used ellip-
tical integrals of the first K(n) and second E(n) kind, respectively]. In the latter case, the minimisation procedure 
leads to
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p

0

where = −′n n1 2 . In general, ϕ z( )0  changes in a tiny region around =z npK n2 ( )p  with a characteristic length-
scale π= ′l nK n2 ( )/ , so that ϕ z( )0  can be approximated with a constant over large regions of space. Therefore, the 
ground state ϕ z( )0  represents a lattice of 2π-kinks separated by elongated regions L (an example is shown in 
Fig. 1).

As we have just seen, under certain physically motivated conditions the Landau-Lifshitz equation for magnet-
ically ordered systems can be reduced to the well-known sine-Gordon problem, equation (4), where Φ defines 
magnetic order in a structure. All the solutions to equation (4) with uniform asymptotic behaviour at → ±∞z  
have been analysed with the inverse scattering method25. Interestingly, equation (7) with nontrivial ground state 
configuration can not be integrated out with standard methods. It is also reasonable to expect that the propaga-
tion of a soliton throughout the lattice of kinks differs from that with a homogeneous magnetisation24. The 
sine-Gordon equation (4) can be solved by means of Bäcklund auto-transformations leading in general to an 
n-solitonic solution26. These transformations are known to link one solution to another, often linear, equation. It 
is noteworthy that the obtained solutions determine nonlinear superposition principle and in general allow to 
derive an infinite family of exact solutions, using straightforward algebra only.

The formation of solitons is associated with local translation of the magnetic structure by < ∆ <n L0 2 . One 
can classify the general solution to belong to one of the following groups, discussed below. First we consider a 
structure characterized by the following asymptotic behaviour:

ϕ
πσ ϕ

Φ =





→ ∞
+ + ∆ → −∞

z t
z z
z n z

( , )
( ),

2 ( ), (8)
0

0

where σ =  ± 1: at σ =  1 an extra kink of the same chirality emerges and the background structure (a lattice of 
2π-kinks) is shifted by nΔ  along the helical axis. Note that this shift is smaller than a period of the kink crystal 
L. At σ =  −1 the kink crystal grows by a period and an extra kink of the opposite chirality appears. Provided the 
expression (8) takes place, one can expect the existence of an odd number of domain walls with mutually opposite 
chirality and an arbitrary number of breathers, which can be thought of as pulsatile soliton, i.e. a bound state of 

Figure 1.  Schematic visualisation of the soliton (this represents a zoomed-in picture of the system). The 
direction of the external magnetic field is on x-axis, the direction of the blue magnetic moments are parallel to 
it and the moments of the red region are antiparallel. L stands for the period of the soliton and L′  is the centre of 
the period. All the atomic magnetic moments are in x-y plane.
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two kinks with opposite chiralities. The magnetic structure in this case allows propagation of spin waves which 
does not lead to the local translation, i.e. spin waves do not affect the nontrivial background structure.

Another scenario is realized for the following asymptotic behaviour:

ϕ
ϕ

Φ =





→ ∞
+ ∆ → −∞

z t
z z

z n z
( , )

( ),
( ), (9)

0

0

which allows an even number of kinks with mutually opposite chirality and an arbitrary number of breathers, 
while nΔ  stands for the local translation due to soliton formation. To convince oneself that the expressions (8) 
and (9) do make physical sense one in general maps nonlinear differential equation to an equivalent system of 
differential equations (in mathematics this strategy is known as Lax transformation). For the sine-Gordon model 
(4) one can construct a solution which corresponds to translations of the background structure (see, e.g., ref. 24). 
When the analytical solution has been determined one can observe (see Supplementary Movies) that the forma-
tion of a soliton is associated with local translations of a lattice of 2π-kinks which needs to be taken into account 
via asymptotic behavior (8) and (9). In fact, a newly created soliton interacts with surrounding kinks pushing 
them away.

Remarkably, in each case the background helical structure readjusts itself to counteract the formation of a 
soliton. This causes the soliton to move through a kink crystal resulting in local translation of the spiral structure 
by nΔ  in a direction opposite to that in which the soliton travels. Interestingly, the scalar field Φ fluctuates when 
the soliton interacts with kinks of the background structure. In the vicinity of a commensurate-incommensurate 
phase transition ( →n 1) ∆ ≈ K n( ). The collision of two solitons with opposite chiralities leads to partial annihi-
lation and local magnetisation fluctuations determined by Δ . Summarising, a wide class of helical magnets with 
inhomogeneous ground state configuration (spin spiral) promotes propagation of multisolitonic structure, so that 
it shifts the spin spiral slightly past the original position. This finding is as we will see in the following section, in 
good agreement with numerical simulations utilising an atomistic, discrete model.

Numerical simulations.  Meaningful information on the nature of the ground and excited states can be 
extracted from studying magnetisation dynamics by numerical methods. This is typically done by finding solu-
tions of phenomenological Landau-Lifshitz equation equipped with Gilbert term27, that stands for dissipation, and 
a Slonczewski contribution responsible for current-driven phenomena. Both Gilbert damping and spin-transfer 
torque have to be treated on equal footing and can be microscopically derived28; while spin-polarised electronic 
structure calculations, may be used to evaluate relevant parameters of an effective spin-Hamiltonian29. Hence 
exchange and DM interaction may be evaluated and used in an atomistic description of the spin-system, where 
also a dynamical description is possible.

In the present study, we are interested in the current induced soliton dynamics in a one-dimensional lat-
tice. Under the influence of an external magnetic field the spin structure is expected to change into kink crys-
tal according to equation (7), as discussed above. To study the motion of the solitons in 1D structure in the 
presence of a spin polarised current, we have performed atomistic spin dynamics simulations based on the 
Landau-Lifshitz-Gilbert (LLG) equation with additional terms to describe the spin transfer torque effect. The 
investigation of dynamics of the solitons introduced in the system is performed in terms of atomistic spin dynam-
ics method30, as implemented in the UppASD package31 (see Method).

Stabilisation and soliton structure.  Using models which are defined in Methods (equations (10), (11)), 
we now turn to the task of describing the microscopic structure of the solitons considered earlier, as they result 
from numerical simulation based on an atomistic approach. In order to describe a soliton structure from the LLG 
simulations, we consider a one-dimensional chiral magnet with 1000 magnetic moments along the z-direction 
with periodic boundaries conditions. In the system the Heisenberg ferromagnetic exchange interactions and the 
DM interactions are considered between nearest neighbours only, so that in continuous limit the Hamiltonian (1) 
is recovered. In the first calculation the strength of the ferromagnetic exchange interaction is J =  1.88 mRy and the 
strength of the DM interaction is D =  0.08 mRy. The magnetic moments are treated as classical vectors with fixed 
length and the magnitude 1 μB, and values of the dimensionless damping parameter were set to α =  0.1 or 
α =  0.01. As discussed below, the choise of damping parameter influenced the results only marginally.

The spin configuration in Fig. 1 is stabilised by applying an external magnetic field B =  0.1 T in the x-direction 
at zero temperature, and the period of the soliton L is 174 nm. The size is determined by the D/J ratio and the 
strength of the applied external magnetic field, in full agreement with our analytical findings described in equa-
tion (7), which gives a period of 177.8 nm. In this work the period of the soliton L is determined by the distance 
between the magnetic moments with mx =  1 (centre of the blue domains) and L′  is determined by the distance 
between the magnetic moments at the edges of the red region with mx =  0 (see Fig. 1). By performing atomistic 
spin dynamics simulations we can keep track of the characteristic size of the soliton’s centre: It is known that on 
approaching the commensurate-incommensurate phase transition it collapses. The results of our simulations 
are shown in Fig. 2 for two choise of damping parameter (α =  0.1 and α =  0.01) at zero temperature. For finite 
temperature (T =  2K), we only used one value of the damping parameter (α =  0.1). One can easily see that the 
systems with different damping are almost identical and upon increasing the external field, the size of the solitons 
decreases almost linearly with respect to the magnitude of the applied field. For the system which is held at finite 
temperature we observe that fluctuations are more pronoucned, but it follows the tendency of the zero tempera-
ture simulations. For sufficiently large fields, the external field dominates over the internal exchange interactions 
and as a result, the soliton lattice breaks down and we observe a phase transition to a commensurate ferromag-
netic ordering.
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The data in Fig. 2 show that the soliton is stable also at elevated temperatures, albeit with slightly different 
characteristics compared to the soliton at T =  0 K. In order to study the possibility of stabilizing solutions depicted 
in Fig. 1 at even higher temperatures we note that in agreement with theoretical predictions, increased values 
of J and D should not influence the size of the soliton, as long as the ratio D/J ratio is fixed. For this reason we 
increased the value of J to 3.76 mRy and D to 0.16 mRy, and investigated the stability as a function of applied field 
and temperature. We find that the soliton is stable at temperatures at least up to 10 K, and that at this temperature 
it takes an applied field of Bex =  3.2 T to destabilize the soliton. Parameters of exchange and DM interaction of 
this strength are not atypical32, and hence this exercise shows that the soliton proposed here should be possible to 
study experimentally, not only at sub-Kelvin temperatures. The period of spiral structure can be tuned by adjust-
ing the external magnetic field. Furthermore, our simulations fit well with the experimental results on Cr1/3NbS2, 
where magneto-optical measurements were made in the presence of external field, perpendicular to the spiral 
axis14. These experiments are furthermore in line with the analytical results presented here.

Soliton dynamics and technology.  Soliton dynamics was studied for stable soliton configurations in the 
presence of a spin polarised current. In this case, the spin polarised current had a flux of angular momentum 
which gives rise to a net torque on the soliton that can be driven along the current direction through the spin 
transfer torque. In the LLG equations we used a current density of j =  0.19 ×  1012 A/m2 and the non-adiabatic 
parameter, which determines the strength of the non-adiabatic torque, was set to be β =  2α =  0.2. With these 
simulations we evaluated the speed of the solitons of Fig. 1, as a function of time. The relationship between the 
soliton velocity and time is shown in Fig. 3. Here, we observe that the velocity is increasing very fast during the 
first 0.2 ns, then it levels off up to 0.4 ns and after that is almost constant until the end of the simulation, at a 
time of 1 ns. For the same set of parameters, we perform calculations by changing the non-adiabatic parameter  
β (β =  0.0, β =  0.5, β =  0.1 and β =  0.2) and investigate how the velocity is influenced by this change. The results 

Figure 2.  Size of the centre of one soliton (L′) as a function of the external magnetic field. This calculations 
are performed with parameters J= 1.88 mRy, D =  0.08 mRy and D/J =  0.042 fot two different temperatures  
(0 and 2 K) and different values of damping (0.1 and 0.01). The dotted lines are used as guides for the size.

Figure 3.  Velocities as a function of time for three different D/J ratios. The same parameters were used for all 
of the systems with j =  0.19 ×  1012 A/m2 and β =  0.2.
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we extract from these calculations are presented in Table 1 and we observe that the soliton is moving even when 
β =  0, in other words it seems that β is not essential for moving the soliton, although as Table 1 shows, the precise 
value of the velocity depends on β.

We performed additional simulations for the time evolution of the spin’s texture velocity, tuning the strength 
of the exchange interaction J and the Dzyaloshinskii-Moriya interaction. In this way, two more systems were 
examined, the parameters chosen in the first set of simulations were J =  1.96 mRy and D =  0.05 mRy with D/J ratio 
0.025 and the spin texture is stabilised under the influence of an external magnetic field 0.2 T at zero temperature. 
The parameters chosen in the second set were J =  1.91 mRy, D =  0.065 mRy and the D/J ratio 0.034, where an 
external magnetic field of 0.3 T is applied for stabilising the soliton at zero temperature. The time evolution of the 
velocities are shown in Fig. 3 and in both cases the parameters of the spin polarised current are the same as above. 
The trends of these two last systems are the same as in the first case; the velocity increases very fast for 0.1 ns, 
then the increase is smoother and the only difference with the first case is that they reache a saturation earlier at 
approximately 0.5 ns.

Comparing the results obtained with the different choices of D/J ratios we see that initially the dynamics 
differs a bit between the different systems. It is observed that at the beginning, for t =  0.01 ns, the velocities are 
different which implies that an increasing strength of the ferromagnetic nearest-neighbour interaction causes 
a reduced acceleration of the soliton motion. Eventually, the three different systems obtain a more steady-state 
motion with a constant velocity. The observed acceleration phase of the solitons is close compared with what is 
normally observed in regular ferromagnetic domain wall motion33.

One way of moving these kind of spin textures is to use a spin polarised current. After investigating the 
current-driven dynamics of isolated solitons we now turn our attention towards direct manipulation of inter-
acting solitons. In our case after the stabilisation of two solitons at the beginning and at the end of our system 
(Fig. 4a) by applying a local magnetic field (Supplementary Movie 1, is an example of creating one soliton), two 
spin polarised currents are applied in the system in opposite directions and the solitons start moving towards 
each other. A suggestion for an experimental setup is shown in Fig. 5, and initially the two solitons are located in 
region A and region B). At the moment of their collision (region C), the currents are removed from the system. In 
the absence of an external driving force, the repulsive interaction between the solitons dominate their dynamics 
and as a result the solitons move backwards, from each other, and relax after some time (Supplementary Movie 
2 and Fig. 4c). If we apply larger spin currents into the system then the driving force overcomes the repulsive 
soliton-soliton interactions and as a result the solitons are forced to collide (see Fig. 4d,e). This results in an anni-
hilation mechanism and during the annihilation process, spin waves are emitted (Supplementary Movie 3). At the 
moment of annihilation the spin currents are turned off and we find that after a while new solitons may emerge. 
The emergence of new solitons is driven by the previously emitted spin waves which causes small fluctuations of 
the magnetisation. Since the simulations are performed at a small but finite temperature, stochastic fluctuations 
are also present in the system and as a result, the position of the newly created soliton/solitons is then not deter-
ministically controllable. However, Fig. 3 shows the interesting possibility to control the number of solitons in the 
system. We started with the presence of two solitons (Fig. 4a) and after applying and removing the two opposite 
spin currents we end up with only one soliton (Fig. 4e).

If now only one soliton is stabilised at the centre of the system (region C, in Fig. 5) and the spin-currents are 
reversed, we find that a new soliton is created which results in two stable solitons. This process is shown in Fig. 6 
and in Supplementary Movie 4. The reversed currents, with current density j =  6.1 ×  1012 A/m2 and β =  0.2, are 

Current density (×1012 A/m2) β Velocity (m/s)

0.19 0.0 365

0.19 0.05 1191

0.19 0.1 2178

0.19 0.2 3447

Table 1.   Velocities of the soliton with parameters J = 1.88 mRy, D = 0.08 mRy and D/J = 0.042 by applying 
spin polarised current with different values of the non-adiabatic parameter β. The velocities are calculated 
for t =  0.1 ns.

Figure 4.  Collision (b,c) and annihilation (d,e) of two solitons when they are moving in the opposite direction. 
(a) The initial positions of the stabilised solitons. (b) Snapshot of the position of the solitons at the moment of 
their collision when spin polarised current is applied with j =  0.19 ×  1012 A/m2 and β =  0.2. (c) Relaxed position 
of the solitons after the removal of the spin current. (d) Snapshot during the annihilation of solitons after 
applying spin current with j =  0.38 ×  1012 A/m2 and β =  0.2. and (e) creation of one soliton after the annihilation 
and turn off the spin current.
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acting on the single soliton (Fig. 6a), dragging it in opposite directions (Fig. 6b) and this results in the defor-
mation of the soliton. This is caused by the spin transfer torque imposed by the spin-current and the magnetic 
moments are forced to flip. After very short time we stop the flow of the current and the system minimises its 
energy and in this process some of the atomic moments are flipping back. The perturbation which is caused by 
the current is big enough for the system to stabilise two solitons (Fig. 6c) when the system is recovering after the 
removal of the spin current.

A suggested device for how to realize experimentally soliton collisions that are discussed around Fig. 4, is 
outlined in Fig. 5. Other geometries and realizations of the results found in Fig. 4 or Fig. 6 may be possible, but we 
discuss here some requirements that would be needed to realize an experiment based on the geometry of Fig. 5. 
The solitons are initially located at region A and region B. The location of solitons at these regions can be realized 
by imposing local modifications of the materials parameters in these regions, e.g. by reducing the diameter of the 
nano-device in this region. This is experimentally realized for domain walls. Also, from Figs 2 and 3 we note that 
typical sizes and velocities of the solitons discussed here are in the range of 40–80 nm, respectively 2000–4000 m/s. 
A relevant time scale for a successful experimental realization of Fig. 5 would be set by the time a soliton would 
take before it leaves a region of space equal to its own size. This puts a temporal limit of the electronics needed to 
control the spin-currents driving the colliding solitons, as discussed in Fig. 4. With the size and speed mentioned 
above we estimate that electronics in the frequency range 25–100 GHz is needed, which is within current techno-
logical abilities34. For the event when one solition, located at region C, turns in to two solitons, by reversal of the 
current (simulations in Fig. 6), it is possible to ensure that the initial location of the singular soliton is at region C, 
by a local modification of the parameters of the nano-device, e.g. by changing the diameter, as discussed above.

We have discussed here possible ways to both annihilate and create solitons with the use of spin polarised cur-
rents, in a controlled way, and we have proposed a potential devise which has technological relevance since it eas-
ily to create and destroy bits (solitons). A two state device can hence be realised, where the presence of one or two 
solitons in the device is simply detected by the resistance of the device. Our results are comparable with results 
of domain wall motion, albeit the soliton solution is shown here to be particularly useful for the device outlined 
in Fig. 5. For comparison we note that a micro magnetic study for domain wall motion by spin polarised cur-
rent in a nanowire35 shows that the threshold current density for moving the domain wall is j =  8.5 ×  1012 A/m2  
and in our case we are measuring the soliton velocities with current density j =  0.19 ×  1012 A/m2. The domain wall 
in order to reach a velocity of 1400 m/s current density of j =  22.8 ×  1012 A/m2 is needed, on the other hand in our 
case with much smaller current density we reach velocities of approximately 4200 m/s. Thus, technology proposed 
in our work has advantage and happens because of soliton in our case propagates through kink crystal in contrast 
to domain walls which spreads through uniformly polarised ferromagnet.

Figure 5.  Schematic visualisation of a suggestion for applying two opposite currents in experiment. With 
the presence of the grounding at the centre of the sample we are able to apply these opposite currents in order 
to accomplish the collision of solitons, shown in Fig. 4 and the supplementary videos. Regions A, B and C 
discussed in the text.

Figure 6.  Creation of two solitons by applying a reversed spin polarised current at the centre of one soliton. 
(a) The initial position of the stabilised soliton at the centre. (b) Snapshot of the deformation of the soliton at 
the moment of applying the reversed spin polarised current with j =  6.1 ×  1012 A/m2 and β =  0.2. (c) Relaxed 
position of the solitons after the removal of the spin current.
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In the end of this section we would like to point out that LLG allows a certain class of analytical solutions, e.g., 
propagating domain wall or Walker’s dynamical solution. The latter is known to describe domain wall motion 
in an infinite medium that is characterized by uniaxial anisotropy36. Such a solution was shown to survive under 
applied uniform magnetic field below a critical value which is purely determined by Gilbert damping α37. The 
idea to use propagating domain walls for future spintronics applications looks promising and has been recently 
addressed from different perspective, e.g., spin waves emission induced domain wall propagation in a magnetic 
nanowire with easy axis along the wire was studied for a finite transverse magnetic anisotropy38. In the mean-
while, it turns out that Walker’s solution is not stable with respect to spin waves emission38,39, making numerical 
simulations indispensable in studying soliton propagation. Interestingly, spin waves emitted by one domain wall 
traveling through another domain wall can lead to attraction between them via spin transfer38. In line with our 
results the authors40 showed that DM exerts an extra torque which rotates domain wall plane when spin waves 
pass through it, whereas the presence of the effective easy plane anisotropy suppresses this rotation resulting in a 
faster domain wall motion.

Discussion
There basically exist two classes of independent solutions of the sine-Gordon equation, describing nonlinear 
excitations of spiral magnetic structure. They are stable solitons (extra kinks or breathers) and spin-wave pulses. 
In the former case, the individual motion of a soliton is always associated with a local translation of a mag-
netic spiral, as one can observe from our numerical simulations. A direct analytical relation between the soliton’s 
parameters, and local translation, can be used to control solitons or for logical switch operation. In principle, 
macroscopic translation of solitons in spiral structures might be visualised with magneto-optical measurements 
or magnetic force microscopy. In the proximity of a commensurate-incommensurate transition, the solitonic 
motion can be easily controlled by tuning temperature or by an applied external magnetic field, which is per-
pendicular to the helical axis. In addition, the presence of breathers can be investigated by applying microwave 
pulses corresponding to eigenfrequencies of the breather. The second class of nonlinear excitations is comprised 
of spin-wave pulses. The formation of such pulses does not lead to macroscopic translation of the background 
structure. In fact, magnetisation in propagating spin waves fluctuates around a nonuniform spiral state, which 
corresponds to an equilibrium magnetic structure. In this case the interaction is not sufficient to stabilise the 
pulses, and pulses that initially are localised, spread in time thanks to dispersion. Small-amplitude pulses can be 
approximated with a superposition of linear spin waves corresponding to helical structure.

By combining analytical and numerical work, we have established stability criteria for these magnetic solitons. 
The parameter space relevant for the soliton solutions is, rewardingly, the same in the analytical and numerical 
work, and is an internal test of the robustness of our theory. We have in addition shown that it is possible to anni-
hilate and create solitons by means of a spin-polarised current, which couples to the magnetic sub-system via a 
spin-transfer torque. Concrete suggestions of magnetic devices have been proposed, and it is demonstrated that 
with experimentally realistic currents, two state solutions can be induced on a time-scale of 325 ps for the anni-
hilation and of 255 ps for the creation. This creates a basis for new technologies in magnetic storage as well as for 
logical operations using magnetism. Our work hence establishes magnetic solitons as useful technology enablers, 
and as proposed here, can be useful in the emerging field of solitonics.

Methods
Model Hamiltonian.  The considered one-dimensional lattice is described by the following atomistic 
Hamiltonian
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where i and j are atomic indices, mi is the classical atomic moment, Jij is the strength of the exchange interaction, 
Dij is the anisotropic DM interaction due to spin-orbit coupling, and the last term stands for the external applied 
magnetic field. It should be noted at this point that the anisotropy term is neglected in the Hamiltonian, due to the 
fact that this term is the less important compared with the other three terms (exchange interaction, DM interac-
tion and Zeeman term). In the following we use model parameters.

Atomistic spin dynamics.  To study the motion of the solitons in 1D structure in the presence of a spin 
polarised current, we have performed atomistic spin dynamics simulations based on the Landau-Lifshitz-Gilbert 
(LLG) equation with additional terms to describe the spin transfer torque effect. The resulting equation of motion 
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where α is the Gilbert damping coefficient, γ the gyromagnetic ratio, mi the magnitude of the magnetic moment, 
Bi

eff  the effective field resulting from the spin-Hamiltonian in equation (10), β the so-called non-adiabatic param-
eter and ux the velocity term. The resulting effective field is given by:

= + tB B b ( ) (12)i i i
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where = −∂ ∂HB m/i i and H refers to the Hamiltonian (10). The temperature effects on the spin system are taken 
into account through Langevin dynamics; the thermal fluctuations are represented here by tb ( )i  which can be 
modelled by Gaussian correlators

α δ δ δ

γ α
= =

−

+
µ µ ν µν′

′

b t b t b t
k T t t

m
( ) 0, ( ) ( )

2 ( )
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i B ij

i0
2

where μ, ν are the indexes of Cartesian coordinates.
The velocity term is in units of velocity (m/s) and is related to the magnitude and the direction of the current 

j, is proportional to the applied current and is equal to:

µ
=u

g Pj
eM2 (14)x

B

s

where j is the current density, P the spin polarisation of the current and Ms the saturation magnetisation per unit 
cell.
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