
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2016

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1397

Culling Concurrency Theory

Reusable and trustworthy meta-theory, proof
techniques and separation results

JOHANNES ÅMAN POHJOLA

ISSN 1651-6214
ISBN 978-91-554-9639-5
urn:nbn:se:uu:diva-297488



Dissertation presented at Uppsala University to be publicly examined in ITC/2446,
Lägerhyddsvägen 2, Uppsala, Thursday, 22 September 2016 at 13:15 for the degree of Doctor
of Philosophy. The examination will be conducted in English. Faculty examiner: Professor
Uwe Nestmann (Technische Universität Berlin).

Abstract
Åman Pohjola, J. 2016. Culling Concurrency Theory. Reusable and trustworthy meta-theory,
proof techniques and separation results. Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology 1397. 113 pp. Uppsala: Acta
Universitatis Upsaliensis. ISBN 978-91-554-9639-5.

As concurrent systems become ever more complex and ever more ubiquitous, the need to
understand and verify them grows ever larger. For this we need formal modelling languages
that are well understood, with rigorously verified foundations and proof techniques, applicable
to a wide variety of concurrent systems.

Defining modelling languages is easy; there is a stupefying variety of them in the literature.
Verifying their foundations and proof techniques, and developing an understanding of their
interrelationship with other modelling languages, is difficult, tedious and error-prone. The
contributions of this thesis support these tasks in reusable and trustworthy ways, by results that
apply to a wide variety of modelling languages, verified to the highest standards of mathematical
rigour in an interactive theorem prover.

To this end, we extend psi-calculi - a family of process calculi with reusable foundations
for formal verification - with several new language features. We prove that the bisimulation
meta-theory of psi-calculi carries over to these extended settings. This widens the scope of
psi-calculi to important application areas, such as cryptography and wireless communication.
We develop bisimulation up-to techniques - powerful proof techniques for showing that two
processes exhibit the same observable behaviour - that apply to all psi-calculi. By showing how
psi-calculi can encode dynamic priorities under very strong quality criteria, we demonstrate that
the expressive power is greater than previously thought. Finally, we develop a simple and widely
applicable technique for showing that a process calculus adds expressiveness over another,
based on little more than whether parallel components may act independently or not. Many
separation results, both novel ones and strengthenings of known results from the literature,
emerge as special cases of this technique.

Johannes Åman Pohjola, Department of Information Technology, Computing Science, Box
337, Uppsala University, SE-75105 Uppsala, Sweden.

© Johannes Åman Pohjola 2016

ISSN 1651-6214
ISBN 978-91-554-9639-5
urn:nbn:se:uu:diva-297488 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-297488)



List of papers

This thesis is based on the following papers, which are referred to in the text
by their Roman numerals.

I Johannes Borgström, Shuqin Huang, Magnus Johansson, Palle
Raabjerg, Björn Victor, Johannes Åman Pohjola, and Joachim Parrow.
Broadcast Psi-calculi with an Application to Wireless Protocols. In
Software and Systems Modeling, volume 14(1), pages 201–216.
Springer-Verlag, 2015. Extended version of Paper VII.

II Joachim Parrow, Johannes Borgström, Palle Raabjerg, and Johannes
Åman Pohjola. Higher-order psi-calculi. In Mathematical Structures in
Computer Science, volume 24(2). Cambridge University Press, 2014.

III Johannes Borgström, Ramūnas Gutkovas, Joachim Parrow, Björn
Victor, and Johannes Åman Pohjola. A Sorted Semantic Framework for
Applied Process Calculi. In Logical Methods in Computer Science,
volume 12(1). 2016. Extended version of Paper VIII.

IV Johannes Åman Pohjola and Joachim Parrow. Priorities Without
Priorities: Representing Preemption in Psi-Calculi. In Proceedings
Combined 21st International Workshop on Expressiveness in
Concurrency and 11th Workshop on Structural Operational Semantics,
EXPRESS 2014, and 11th Workshop on Structural Operational
Semantics, SOS 2014, Rome, Italy, 1st September 2014, volume 160 of
EPTCS, pages 2–15. 2014.

V Johannes Åman Pohjola and Joachim Parrow. Bisimulation Up-To
Techniques for Psi-Calculi. In Proceedings of the 5th ACM SIGPLAN
Conference on Certified Programs and Proofs, Saint Petersburg, FL,
USA, January 20-22, 2016, pages 142–153. ACM, 2016.

VI Johannes Åman Pohjola and Joachim Parrow. The Expressive Power of
Monotonic Parallel Composition. In Proceedings of the 25th European
Symposium on Programming, ESOP 2016, volume 9632 of Lecture
Notes in Computer Science. Springer-Verlag, 2016.

Reprints were made with permission from the publishers. The following addi-
tional papers are subsumed by the papers above, and are therefore not included
in the thesis.



VII Johannes Borgström, Shuqin Huang, Magnus Johansson, Palle Raabjerg,
Björn Victor, Johannes Åman Pohjola, and Joachim Parrow. Broadcast
Psi-calculi with an Application to Wireless Protocols. In Gilles Barthe,
Alberto Pardo, and Gerardo Schneider, editors, Software Engineering
and Formal Methods: SEFM 2011, volume 7041 of Lecture Notes in
Computer Science, pages 74—89. Springer-Verlag, 2011.

VIII Johannes Borgström, Ramūnas Gutkovas, Joachim Parrow, Björn Victor,
and Johannes Åman Pohjola. A Sorted Semantic Framework for Applied
Process Calculi (Extended Abstract). In Martı́n Abadi and Alberto Lluch-
Lafuente, editors, Trustworthy Global Computing - 8th International
Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013,
Revised Selected Papers, volume 8358 of Lecture Notes in Computer
Science, pages 103–118. Springer-Verlag, 2013.

An earlier version of Paper VIII, entitled Sorted Psi-calculi with Generalised
Pattern Matching, was presented at the 5th Interaction and Concurrency Ex-
perience (ICE) 2012, Stockholm, Sweden. An earlier version of Paper V was
presented at the 1st International Workshop on Meta Models for Process Lan-
guages (MeMo) 2014, Berlin, Germany.



My contributions to co-authored papers

Paper I
I contributed about a third of the mechanical proofs of correctness of standard
structural properties of bisimilarity, including the laws of scope extension and
commutativity of binders. I have also done all the mechanical proofs pertain-
ing to the LUNAR model and higher-order broadcast psi-calculi.

Paper II
I contributed almost all of the mechanical proofs of correctness of standard
congruence and structural properties of bisimilarity. Mechanical proofs of all
theorems pertaining to higher-order bisimilarity, canonical instances and the
encoding of operators are wholly my work. I also came up with the idea of
canonical instances and worked out the precise conditions under which the
operator encodings are valid.

Paper III
I contributed mechanical proofs of correctness of standard congruence and
structural properties of bisimilarity, preservation of well-formedness and back-
wards compatibility of pattern matching. I have also contributed some pen-
and-paper proofs. These are the proofs pertaining to lifting of results about
bisimilarity from trivially sorted calculi to sorted calculi, as well as opera-
tional correspondences with the polyadic pi-calculus, value-passing CCS and
the polyadic synchronisation pi-calculus.

Papers IV-VI
I am the principal author and investigator in all parts of these papers.





Relationship with previous thesis

This PhD thesis can be seen as a continuation of my licentiate thesis [ÅP13]. In
the Swedish higher-education system the licentiate is a thesis similar in struc-
ture to a PhD thesis, that students are encouraged to write half-way through the
PhD program. Some of the material in this PhD thesis was already published
in my licentiate thesis:
• Papers I–II.
• An earlier version of Paper III, namely Paper VIII.
• A technical report [ÅPBP+13] outlining the extension of psi-calculi with

priorities used in Paper IV (but not its encoding back into psi-calculi
without priorities).
• An unpublished draft of the respectfulness-based approach to bisimu-

lation up-to techniques for psi-calculi, that we outline in Section 5 of
Paper V.

Additionally, the comprehensive summary is partially based on the compre-
hensive summary of the licentiate thesis.





Svensk sammanfattning

Moderna datorsystem är parallella system: de består av flera parallella del-
processer som kan pågå samtidigt, oberoende av varandra. Internet är ett
svindlande stort parallellt system. Datorer som till antalet vida överstiger jor-
dens mänskliga befolkning använder internet varje dag för att kommunicera
med varandra; det blir allt svårare att tänka sig hur samhället skulle kunna
fungera annars. Internettjänster som för användaren framstår som sammanhåll-
na är i själva verket storskaliga distribuerade system. De kan bestå av enorma
mängder datorer spridda över datacenter i hela världen; en enda Google-sökn-
ing kan hanteras av tusentals samspelande datorer. Du har sannolikt ett par-
allellt system din ficka — moderna telefoner tar emot sms, spelar musik och
visar webbsidor samtidigt. Var och en av dessa arbetsuppgifter utförs van-
ligtvis av flera samarbetande delprogram som körs samtidigt.

Parallella system styr över ständigt fler och ständigt viktigare aspekter av
våra liv. Därför blir det viktigt att verifiera systemen, dvs. förvissa sig om att
de verkligen beter sig som avsett.

När vi verifierar system använder vi modeller, som förhåller sig till da-
torsystem som en ritning förhåller sig till en byggnad. Man kan analysera
modellerna, för att göra förutsägelser om huruvida systemen kommer uppvisa
något oönskat beteende; till exempel säkerhetsläckor eller att systemet kan
låsa sig. Modellerna uttrycks med hjälp av särskilda modellspråk. Byggnad-
sritningar har sitt eget modellspråk, nämligen de konventioner som styr vilka
symboler, linjer, måttenheter osv. som används, och hur de ska utläsas. Sådana
konventioner gör det möjligt att beskriva ett datorsystem på ett sätt som är en-
tydigt, men som ändå abstraherar bort från ovidkommande detaljer.

Ett grundläggande modellspråk för verifiering av parallella system är pi-
kalkyl, som tack vare att det är enkelt och renodlat men ändå uttrycksfullt
haft ett stort inflytande på forskningen. Men när forskare ska studera ett nytt
fenomen eller verifiera ett nytt system använder vi sällan pi-kalkyl i sin ur-
sprungliga form. Detta eftersom den inte har de språkfinesser som behövs
för alla tänkbara tillämpningar. Istället skapar vi en mer eller mindre genom-
tänkt variant, skräddarsydd för tillämpningen ifråga. Det är nästan som om
pi-kalkylen förökar sig. En utomstående betraktare uppfattar lätt vetenskaps-
området som ett spretigt virrvarr av snarlika men distinkta modellspråk. Till
och med områdets anhängare liknar ofta situationen vid en djungel.

En viktig egenskap som en användbar processkalkyl bör ha är komposition-
alitet, dvs. att när ett stort system ska verifieras, kan man dela upp systemet i
mindre beståndsdelar som kan verifieras separat. Moderna datorsystem är så



ohemult stora att ingen människa själv kan bygga dem, eller ens förstå dem, i
sin helhet. Därför är de uppbyggda av flera mindre delsystem, som kan byggas
mer eller mindre separat, för att sedan sättas ihop till ett större system. Kom-
positionalitet är viktigt eftersom det möjliggör motsvarande uppdelning även
på verifieringsnivå. Även små och till synes oskyldiga ändringar i definitionen
av en kompositionell processkalkyl kan göra den icke-kompositionell.

Att definiera en ny processkalkyl är lätt, men en hel del arbete behöver
utföras för att visa att kalkylen är användbar. Kalkylens kompositionalitet
måste fastställas. Matematiska bevismetoder för att underlätta verifieringen
behöver utvecklas. Kalkylens uttrycksfullhet bör studeras, så att vi vet vad
den kan användas till, och huruvida den tillför något nytt. Var och en av dessa
uppgifter kräver svåra och arbetsintensiva matematiska bevis.

I den här avhandlingen presenterar vi följande bidrag, som alla syftar till att
underlätta arbetet med att visa att nya processkalkyler är användbara:
• Vi utökar psi-kalkylerna — en familj av kompositionella processkalkyler

— med flera nya språkfinesser. Vi visar att dessa utökningar bevarar kom-
positionalitet. Detta medför att psi-kalkyler kan användas för viktiga
tillämpningsområden såsom kryptografi och trådlösa nätverk.
• Vi utvecklar en kraftfull bevisteknik för att visa att två processer har

samma beteende. Tekniken är tillämpbar på alla psi-kalkyler.
• Vi visar att psi-kalkyler är mer uttrycksfulla än vad man hittills trott,

genom att visa hur de kan användas för att uttrycka modeller där vissa
beteenden prioriteras över andra.
• Vi utvecklar en metod för att visa att en processkalkyl är mer uttrycksfull

än en annan. Metoden är enkel och har många tillämpningar.
Vi måste kunna lita på verifiering. Därför måste vi också kunna lita på de grun-
der som verifieringen stödjer sig på, såsom kompositionalitet. Så det är viktigt
att vi inte gör några misstag när vi utvecklar våra teorier. I görligaste mån
maskinkollar vi därför alla våra resultat med en så kallad teorembevisare, ett
datorprogram som kan bevisa matematiska påståenden, och som inte lämnar
något som helst utrymme för att slarva med detaljer.

När man skriver ett matematiskt bevis för en mänsklig läsare brukar man
utelämna många detaljer. Det är bra: de behövs inte för att förmedla en över-
gripande förståelse för varför något är sant, och en kompetent läsare bör själv
kunna fylla i detaljerna i mån av intresse. Men om vi vill vara tvärsäkra på
att beviset är korrekt, då finns det uppenbara risker. Utelämnade bevissteg kan
te sig enkla och intuitiva vid en ytlig anblick, men svåra eller till och med
felaktiga om man tittar närmare. Att skriva bevis som inte utelämnar några
detaljer löser inte problemet — åtminstone inte så länge både upphovsman
och läsare är människor, felbara som vi ju är. Lösningen är att göra bevisen
maskinläsbara. Den datoriserade teorembevisaren godtar bara de härledningar
som följer matematiskens grundlagar; för den är inget enkelt eller intuitivt. Det
kan vara en arbetsintensiv metod; resultaten i den här avhandlingen understöds
av hundratusentals rader bevis. Men datorsystem hanterar idag arbetsuppgifter



där korrekt beteende är en fråga om liv eller död, så det är värt den extra mödan
att vara extra säker.





Acknowledgements

Thanks first and foremost to my supervisor, Joachim Parrow, for all his pa-
tience, care and generosity. None of this would have been possible without
him. He has set me free to meander about and learn from my own mistakes,
yet has always been there to offer guidance, hear out my latest half-baked idea,
or cover my writings in ink.

Björn Victor, my co-supervisor, has also been a consistent source of good
advice. Thanks to him, and the other past and present members of the mobility
group, for the many interesting discussions and fun times.

Thanks to the many anonymous reviewers who have rejected my papers
over the years, for teaching me the difference between a paper I want to write
and a paper you want to read.

Thanks to (in alphabetical order) Sofia Cassel, Camilla Malm, Joachim Par-
row, Martin Rynoson, and Björn Victor, for reading and commenting on drafts
of this thesis, or parts thereof.

Thanks again to Camilla for all the love, for helping me stay grounded, for
making me Laphroaig-flavoured ice cream even though she hates whisky with
a passion, and many such wifely contributions.

Thanks to to all my friends both at and outside work, and all my family,
who have without exception been very supportive.

Finally, a special thanks to Linnea, who — under the impression that it
is some kind of fairy tale anthology — has been by far the most enthusias-
tic reader of my licentiate thesis. If this PhD thesis has a readership half as
enthusiastic or half as cute, I will consider myself very lucky.





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Modelling concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Expressiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Relative expressiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Nominal sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Theorem proving in Isabelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.1 Extended example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6 Psi-calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.1 Parameters and requisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6.2 Syntax and semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.3 Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6.4 Congruence and algebraic laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1 Extensions of psi-calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.1 Broadcast communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.2 Higher-order data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.3 Generalised pattern matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1.4 Sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Bisimulation up-to techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3 Encoding priorities in psi-calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4 Expressiveness of monotonic parallel composition . . . . . . . . . . . . . . . . . . . . . 74
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1 Process calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Process calculi and theorem proving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Broadcast in process calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Higher-order process calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5 Sorts in process calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6 Pattern matching in process calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.7 Priorities in process calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



4.8 Bisimulation up-to techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.9 Monotonic parallel composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Weak equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.2 Full abstraction of the priority encoding . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.3 Protocol verification with psi-calculi and Isabelle . . . . . . . . 94
5.2.4 Monotonicity and distributability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.5 Culling psi-calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.6 An algebra of psi-calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



1. Introduction

Culling is a way of controlling the population of wild animals. Elk, for exam-
ple, have few natural predators; left to their own devices they would breed to
an unsustainably large population. Potentially, this may result in damage to
forests and crops, decreased biodiversity, and more frequent traffic accidents.
An annual culling of the Swedish elk population, namely the hunting season,
is motivated by precisely these concerns. But the reader need not worry; no
animals were harmed during the writing of this thesis. Rather, we consider
ways to achieve a more sustainable population of concurrency theories, or in
other words, ways of culling concurrency theory.

Concurrency is the phenomenon of events happening at the same time. In
computer science, a concurrent process is one that consists of several parts that
may go about their computations independently of each other. These parts may
also interact by e.g. passing messages to each other, and share resources. A se-
quential process, on the contrary, is characterised by events happening one at
a time, in a pre-defined order. At the dawn of the computer age, most comput-
ing was sequential; today, sequential computing is an increasingly endangered
species. The Internet is a concurrent process on a dizzying scale. Computing
devices far outnumbering the human population on earth use it every day to
communicate with each other, and it gets increasingly difficult to imagine how
society could possibly function without it. Internet services that present them-
selves to the user as a single, monolithic service are in fact often large-scale
distributed systems, comprising thousands of computing devices in multiple
datacenters all over the world; just a single Google search may involve thou-
sands of machines. There may well be a concurrent system in your pocket
— modern phones receive text messages, play music and display web sites
concurrently. Each of these tasks is usually accomplished by a multi-threaded
program, i.e. a program composed of several sequential sub-programs running
concurrently. In short, it is concurrent systems all the way down.

Concurrent processes are somewhat chaotic by nature, and hence signifi-
cantly more difficult to reason about than sequential systems. Picture yourself
blindfolded, seated by the dinner table, knife and fork in hand, with a bowl of
pasta in front of you. In this scenario, the task of eating the pasta is a lot like a
sequential process: first you take a bite, then you take another, and so on. Now,
picture ten more people seated around the table — each with their own knife,
fork and blindfold — concurrently eating pasta from the same bowl as you.
The difficulties of eating pasta introduced in this scenario, compared to when
you were seated alone, are largely the same as the added difficulties involved

17



with concurrent systems over sequential ones. The blindfold represents the
fact that a process is unaware of what other processes are doing concurrently,
unless it is explicitly communicated.

In the worst case, all your fellow eaters are selfish boors who abide by no
etiquette; to even grab a bite becomes almost impossible if you must first fight
your way through an unseen tangle of arms, hands and cutlery all trying to
fend you off. Hence the first order of business is to impose some etiquette —
or in computer science terms, a protocol — on the eaters. A simple protocol
might be to enforce that only one eater is active at a time, by requiring (1)
that when an eater begins to eat or finishes, she announces this to the other
eaters; and (2) that when one has announced that she is eating, others do not
attempt to eat. To guarantee that systems behave as intended, protocols must
be carefully designed and analysed to address concurrency issues such as the
following.
• In the above protocol, what happens when two or more eaters simultane-

ously announce that they begin eating?
• How can we be sure that everyone eventually gets to eat?
• How can we ensure that eaters do not get stuck waiting for one another

in perpetuity? What if while eating, an eater falls into a carbohydrate
coma before announcing she is finished?
• What happens if one or more eaters fail to hear an announcement?
• What happens if an eater fails to follow the protocol, whether intention-

ally or not? How can we prevent unauthorised third parties from access-
ing the pasta, or interfering with correct protocol execution?

Even for the relatively simple task of eating pasta, addressing such issues is
subtle and fraught with difficulty; our proposed protocol above is hardly sat-
isfactory. Real-world concurrent systems must handle tasks that are orders of
magnitude more complex, and failure to address the above issues can have life-
and-death consequences: one would rather not drive a car where these issues
are not well addressed.

Gaining confidence that such systems are indeed correct is clearly an im-
portant problem. There are two main ways to go about this: testing and formal
verification.

In testing, we run the system and see whether anything goes wrong. While
testing is an indispensable tool, its limitations become more apparent in a con-
current setting. For a sequential system, we can reasonably expect the same
test to always yield the same result. Because interactions between the parts
of a concurrent system may unfold in many different ways, a system where
testing found no errors today may still exhibit errors on the exact same test
runs tomorrow.

In formal verification, we construct a mathematical model of the system,
and show that the model exhibits no undesired behaviour through rigorous
mathematical proof. Where testing can justify the claim “we found no errors”,
formal verification can justify the claim “there are no errors”, at least up-to

18



the faithfulness of the system model. We distinguish between low-level veri-
fication and high-level verification. In low-level verification, we ask whether
a particular system implementation is correct. In high-level verification, we
ask whether a particular system design is correct, abstracting away from the
details of the implementation.

To verify concurrent systems, we need mathematical and logical tools to
help us reason formally about concurrency. Concurrency theory, then, is sim-
ply an umbrella term for such tools. In this thesis, the emphasis is on mod-
elling languages geared towards high-level verification of concurrent systems,
called process calculi or process algebras, and the reasoning tools associated
with them. A fundamental model of concurrency in this tradition is the pi-
calculus. It is simple and parsimonious, and its impact on the field has been
tremendous.

Yet when process calculists endeavour to study a new phenomenon or verify
a new system, we rarely use the pi-calculus. Instead, a more or less ad-hoc
variant of the pi-calculus is constructed specifically for the application at hand.
It is almost as if the pi-calculus breeds. Outside observers can be forgiven
for coming away with the impression that the field is a sprawling mess of
similar but distinct formalisms, whose interrelationship is poorly understood;
the jungle metaphor is frequently used to describe the situation, even by the
field’s adherents.

Does this situation call for culling measures? Yes, but not in quite the same
way or for quite the same reasons as with elk. The unsustainable population
that we wish to cull is the theory about process calculi, rather than the process
calculi themselves. Every time a new process calculus is defined, a certain
amount of theoretical groundwork is needed to show that it is useful. For-
mal verification of system models written in the calculus must rest on firm
foundations. Proof techniques to facilitate this formal verification need to be
developed. The expressiveness of the calculus should be studied, to under-
stand whether it adds something new over well-known languages such as the
pi-calculus. Each of these tasks requires mathematical proofs that are difficult,
tedious and error-prone; carrying them out for a new process calculus is the
subject of many PhD theses.

Theories cannot be culled from a population in the same way that elk can:
once a theory has been developed it cannot well be undeveloped. Instead,
we cull by subsumption. The idea is to develop reusable theory. We want
important results to be established once and for all to hold for many process
calculi, rather than over and over again for particular process calculi.

In this thesis, we address the challenge of culling concurrency theory in the
following main ways:
• We extend psi-calculi — a family of process calculi with reusable foun-

dations for formal verification, that encompasses the pi-calculus and
many of its extensions — with several new language features. This ex-

19



tends the scope of these foundations to encompass important application
areas, such as cryptography and wireless communication.
• We develop a powerful proof technique for showing that two processes

exhibit the same observable behaviour, that applies to all psi-calculi.
• We show that the expressive power of psi-calculi is greater than previ-

ously thought, by showing how it can encode prioritised behaviour.
• We develop a simple and widely applicable technique for showing that

a process calculus adds expressiveness over another.
An abundance of concurrency theories is unlikely to result in damage to forests
and crops, or decreased biodiversity. But it may well lead to more frequent traf-
fic accidents, if theory that is not carefully developed is used for verification
of automotive systems. Thus, it is important that there are no mistakes in our
theories. For this reason, we go to great lengths to make sure that as many of
our proofs as possible are machine-checked by an interactive theorem prover,
a computer program that proves mathematical theorems and leaves no room
whatsoever for skimping on details.

Mathematical proofs written for a human audience typically leave gaps in
the argumentation: inferences are made with vague and underspecified justifi-
cation, or none at all, under the tacit assumption that a competent reader could
fill in the missing details if so inclined. This style of proof is useful if we want
to convey an understanding of why something is true; when we want absolute
certainty that our proof is correct, it is somewhat unreliable. It may be that the
missing inference steps, while intuitively obvious at a glance, are in fact far
from obvious or even faulty.

We could write full proofs from first principles, but as long as both author
and audience are human, we have failed to eliminate the main source of error:
human fallibility. The remedy, then, is to write our proofs for a machine au-
dience. To a theorem prover, nothing is obvious, and a proof will be rejected
unless every last detail can be justified from first principles.

Of course, theorem provers need to be significantly more trustworthy than
the average computer program if we are to reap any benefit from them. In his
famous Turing Award lecture, Tony Hoare remarked that

[t]here are two ways to write code: write code so simple there are obviously no
bugs in it, or write code so complex that there are no obvious bugs in it.

Theorem provers are carefully designed so that the part that needs to be trusted
is in the former category; a luxury that concurrent systems rarely enjoy.

1.1 Outline
The remainder of this thesis is structured as follows.

20



Chapter 2: Background
This chapter recapitulates background material. It is intended for an audience
with a general orientation in computer science, but without expert knowledge
in process calculi or theorem proving.

Section 2.1 explains how we model concurrent processes and give them
meaning, through the example of Milner’s Calculus of Communicating Sys-
tems (CCS), an ancestor of the pi-calculus.

Section 2.2 introduces bisimilarity, the most studied behavioural equiva-
lence in concurrency theory. We explain and exemplify the associated proof
method for showing that processes are equivalent, give an alternate lattice-
theoretic characterisation, and discuss its relation to other behavioural equiva-
lences.

Section 2.3 reviews the literature on expressiveness, with emphasis on ex-
plaining and motivating the many different ways of answering the question:
what constitutes a good encoding of one concurrency model into another?

Section 2.4 recapitulates nominal logic, a formal approach for reasoning
about syntax with binders.

Section 2.5 introduces interactive theorem proving, an approach for devel-
oping highly trustworthy formal mathematical proofs with the aid of a com-
puter. In particular we emphasise Isabelle, our theorem prover of choice; we
explain the main principles behind it, and illustrate the proof development
process with an extended example about the aforementioned lattice-theoretic
characterisation of bisimilarity.

Section 2.6 recapitulates psi-calculi, a family of concurrency models in the
tradition of CCS and the pi-calculus whose bisimulation meta-theory has been
verified in Isabelle. We explain its syntax and semantics, and recapitulate the
main definitions and results pertaining to the bisimulation meta-theory.

Chapter 3: Contributions
This chapter summarises the novel contributions of this thesis. The reader will
need cursory knowledge of all areas discussed in Chapter 2.

Section 3.1 introduces four extensions of psi-calculi, in order to increase its
expressiveness and modelling convenience: broadcast communication, higher-
order data, generalised pattern matching, and a sort system.

Section 3.2 introduces a technique for simplifying bisimulation proofs in
psi-calculi, with particular emphasis on its benefits for proof engineering (the
practice of developing and maintaining large formal proofs).

Section 3.3 introduces priorities as another extension of psi-calculi, along
with an encoding of priorities into the original psi-calculi.

Section 3.4 introduces a simple and general method for showing that one
model of concurrency cannot encode another, based on little more than whether
the latter allows parallel components to act independently or not. Several non-
encodability results, both novel and from the literature, are shown to emerge
as special cases.

21



Chapter 4: Related work
In this chapter we review the scientific literature on topics that are related to
the contributions of this thesis.

Chapter 5: Conclusion
Here we conclude by discussing our contribution, future work and impact.

Back matter
Finally, Papers I–VI comprise the contributions that we summarised in Chap-
ter 3. They are written with an expert audience in mind, though my hope is
that non-experts should also find them accessible after reading the executive
summary.

22



2. Background

In this chapter, we recapitulate the background material necessary for under-
standing and contextualising the contributions of this thesis.

2.1 Modelling concurrency
A process is a system in which events may happen. Depending on the appli-
cation, these notions can be instantiated to be almost anything: molecules and
chemical reactions, networks and packages, CPUs and machine-code instruc-
tions, and so on. In this thesis we will often reason about processes and events
in the abstract, without being overly specific about what they might represent.

A simple formalism that encompasses both sequential and concurrent pro-
cesses is labelled transition systems [Kel75], often abbreviated LTS, where
transitions between the states of a system are labelled with events:

Definition 1 (Labelled transition systems). A labelled transition system is a
triple (Σ,→,A), where Σ is a set of states (or processes), A is a set of labels
(or actions), and→⊆ Σ×α×Σ is a set of transitions.

We will write P α−→ Q, meaning that from the state P we can do an action
α leading to the state Q, for (P,α,Q) ∈→. Note that we make no distinction
between a process and the state of a process: updating the state of a process
is the same as transitioning to a new process. When the successor state is
unimportant we write P α−→ to mean ∃P′.P α−→ P′. This notation extends to
sequences of labels in the natural way, so that e.g. P α−→ β−→means ∃P′.P α−→
P′∧P′ β−→. For the absence of transitions we write P

α−−6→ to mean ¬ P α−→.
As an example of a labelled transition system for modelling concurrency,

we will present a simplified version of Milner’s calculus of communicating
systems [Mil80], henceforth abbreviated CCS. In CCS, we model parallel pro-
cesses that may engage in one-on-one synchronisation on abstract communi-
cation mediums called ports.

We assume a set of ports, ranged over by a,b,c, . . . ,x,y,z. Further, we as-
sume a complement operation ·, which is a function from ports to ports such
that a = a for all ports a. Synchronisations in CCS are between a port and its
complement. The actions of CCS are the ports, plus the disjoint special sym-
bol τ (called the silent action). We use α,β to range over actions. In order to

23



drive the intuition, we may think of a as emitting a signal, and a as receiving a
signal. However, note that CCS makes no formal distinction between emission
and receipt. We might just as well have used the dual intuition, with the roles
of a and a interchanged; what matters is that they are two complementary ends
of a synchronisation action.

We proceed by defining the processes of CCS.

Definition 2. The processes of CCS are defined by the following grammar:

P,Q,R := α.P Prefix
0 Nil
P | Q Parallel
P+Q Choice
(νx)P Restriction

0 is a process that does nothing. α.P is a process that does the action α ,
then continues as P. We will often abbreviate α.0 as simply α . The parallel
execution of P and Q is denoted by P | Q. The sum P+Q may behave as
either P or Q. (νx)P means that x is restricted to P; hence, in Q | (νx)P no
interaction between Q and P on the port x is possible.

Example 3. A man lives alone in a house with a broken thermometer. The
thermometer (denoted T ) will — independently of the actual weather — non-
deterministically emit a temperature reading of either warm or cold:

T , warm+ cold

Before going from his house in the morning, the man (denoted M) obtains
a reading from his thermometer to determine whether to put on a jacket:

M , warm.go+ cold.jacket.go

Since the thermometer is inside the house (denoted H), readings may not
be obtained from outside:

H , (ν warm)(ν cold)(T |M)

The semantics (i.e. the transition relation) of CCS is given by means of
a structured operational semantics, often abbreviated as SOS. The technique
was first introduced by Plotkin [Plo81]. In an SOS, the transitions from a state
are defined inductively in terms of the transitions of its components.

Definition 4. The transitions of CCS are those that can be inferred by repeat-
edly applying the rules of Table 2.1.

24



PRE
a.P a−→ P

RES
P α−→ P′ α 6= b α 6= b

(νb)P α−→ (νb)P′

SUM
P α−→ P′

P+Q α−→ P′
COM

P a−→ P′ Q a−→ Q′

P | Q τ−→ P′ | Q′

PAR
P α−→ P′

P | Q α−→ P′ | Q

Table 2.1. Structured operational semantics of CCS. Symmetric versions of the rules
PAR and SUM are elided.

The rules are written with premises on top, and conclusions on the bottom.
The PRE rule means that the process a.P may always synchronise with the en-
vironment on the port a. The COM rule says that two parallel processes, each
offering synchronisation on the other’s complement, may synchronise; and
that this synchronisation is a silent action that third-party processes cannot
observe or interact with. The PAR rule means that either one of two parallel
processes may perform independent actions without synchronising with the
other. Note that with the symmetric version PAR elided from Table 2.1, we
may infer P | Q α−→ P′ | Q′ whenever we may infer Q | P α−→ Q′ | P′. The
RES rule enforces that in the process (νa)P, any synchronisation on a is an
internal synchronisation between two parallel components of P. Finally, the
SUM rule and its symmetric counterpart allows the process P+Q to do any-
thing that either P or Q may do. Once an action originating from e.g. P has
been performed, the option to act as Q is forfeit.

Example 5. We recall the processes M and H representing the man and house
of Example 3. If the man M obtains a warm reading from his thermometer T ,
we can use the rules of Table 2.1 to infer the following transition from T |M:

COM

SUM

PRE
warm warm−−−−→ 0

T warm−−−−→ 0
SUM

PRE
warm.go warm−−−−→ go

M warm−−−−→ go

T |M τ−→ 0 | go

By applying the RES rule twice we can extend this derivation to H:

H τ−→ (ν warm)(ν cold)(0 | go)

25



Through a similar derivation, we can infer that the man may then go:

(ν warm)(ν cold)(0 | go) go−−→ (ν warm)(ν cold)(0 | 0)

We can also infer a transition sequence

H τ−→ jacket−−−−→ go−−→

corresponding to the case where the thermometer emits a cold reading.

We will sometimes be interested in unlabelled transition relations, called
reduction relations. A reduction relation describes the independent behaviour
of a process, i.e. the behaviour that a process can engage in without needing
to synchronise with the outside world. For CCS the reductions are simply the
τ-labelled transitions:

P −→ P′ , P τ−→ P′

We will often be more interested in whether a particular state is reachable,
and less interested in how many transitions must be taken to do so. For this
purpose we introduce weak reductions, written P ==⇒ P′, meaning that there
is a way to start from P and end up in P′ after some number of reductions.
Formally, ==⇒ is the reflexive and transitive closure of −→.

The two main points so far are as follows. First, that CCS is a compositional
model of concurrency: models of smaller systems can easily be composed to
form larger systems by means of algebraic operators such as + and |. Second,
that CCS is a formal model of concurrency: the transition relation unambigu-
ously defines exactly the set of all possible behaviours that a CCS process
may exhibit. This flavour of concurrency model is called a process calculus
or process algebra. While the term is rather broad, process calculi typically
emphasise interaction, compositionality and algebraic reasoning techniques.
The work in this thesis is in the tradition of process calculi that originates with
CCS.

However, there are countless other models of concurrency, stressing dif-
ferent aspects of concurrency at different levels of abstraction and formality.
To cite just a few examples, Petri nets [Pet66] de-emphasise compositionality
while putting a greater emphasis on control flow, the Actor model [HBS73]
emphasises message passing and how processes may respond upon receiv-
ing messages, and temporal logics such as LTL [Pnu77] and TLA [Lam94]
strongly emphasise how events are structured in time. Even within process
calculi there is a long and diverse history, with three main branches stemming
from CCS, CSP [BHR84] and ACP [BK84]; for an historical overview we
refer to Baeten [Bae05].

26



2.2 Bisimilarity
A natural question to ask is what it means for two processes to have the same
behaviour, leading to the topic of behavioural equivalences. Intuitively, a be-
havioural equivalence equates two processes if and only if they have the same
behaviour. The exact nature of the equivalence of course depends on what we
mean by “behaviour”. Here we take the view that the behaviour of a process
is described by the labels that its transitions may exhibit. One of the canoni-
cal behavioural equivalences is then bisimulation, which was first considered
by Park [Par81] as an equivalence relation between various kinds of automata.
Adapted to arbitrary labelled transition systems, the definition is as follows:

Definition 6 (Bisimulation). A bisimulation relation for an LTS (Σ,→,α) is a
set R ⊆ Σ×Σ such that for all (P,Q) ∈R:

1. For all P′, α such that P α−→ P′, there exists Q′ such that Q α−→ Q′ and
(P′,Q′) ∈R.

2. For all Q′, α such that Q α−→ Q′, there exists P′ such that P α−→ P′ and
(P′,Q′) ∈R.

Intuitively, two processes are related by a bisimulation if for each transition
that one of them can take, the other can take a transition with the same label,
and the resulting processes are again related by the bisimulation.

We are interested in whether pairs of processes are related by some bisimu-
lation relation, and somewhat less interested in which particular bisimulation
relations that might be. The notion of bisimilarity is useful for reasoning on
this level of abstraction.

Definition 7 (Bisimilarity). Bisimilarity, denoted .∼, is a binary relation on
processes. Two processes P,Q are bisimilar, written P .∼ Q, if there exists a
bisimulation relation R such that (P,Q) ∈R.

The importance of bisimulation relations, then, is that they offer a proof
technique for bisimilarity- In order to establish P .∼ Q, we exhibit a bisimula-
tion relation that includes the pair (P,Q). By this proof method, it is straight-
forward to establish that bisimilarity enjoys the following basic properties:

Theorem 1.
1. Bisimilarity is a bisimulation relation.
2. Bisimilarity is reflexive, symmetric and transitive.
3. CCS parallel composition is commutative and associative:

P | Q .∼ Q | P P | (Q | R) .∼ (P | Q) | R

Proof.

27



1. For any P,Q,α such that P .∼Q and P α−→ P′, we must find Q′ such that
Q α−→ Q′ and P′ .∼ Q′. By definition of .∼ there exists a bisimulation
R such that (P,Q) ∈R. Since P α−→ P′, by Definition 6 there exists Q′

such that Q α−→ Q′ and (P′,Q′)∈R. Since R is a bisimulation relation,
P′ .∼ Q′.

2. By showing that the following are bisimulation relations:

{(P,P) : true} {(P,Q) : Q .∼ P} {(P,Q) : ∃R. P .∼ R ∧ R .∼ Q}

To see that {(P,P) : true} is a bisimulation relation, note that proof obli-
gation arising from Definition 6 is that every process can take the same
transitions as itself.
For symmetry, let (R,S)∈ {(P,Q) : Q .∼ P}with R α−→ R′. We must find

S′ such that S α−→ S′ and (R′,S′) ∈ {(P,Q) : Q .∼ P}. We have S .∼ R
and, since .∼ is a bisimulation relation, by Definition 6 there exists S′

such that S α−→ S′ and S′ .∼ R′. Hence (R′,S′) ∈ {(P,Q) : Q .∼ P}.
A similar argument applies to the transitivity proof.

3. By showing that the following are bisimulation relations:

{(P | Q,Q | P) : true} {(P | (Q | R),(P | Q) | R) : true}

For any transition P | Q α−→ P′, we may derive Q | P α−→ Q′ where
Q′ is exactly P′ with its two outermost parallel components swapped, by
taking the derivation of P | Q α−→ P′ and changing the last rule appli-
cation as follows. If the last rule is PAR we apply instead its symmetric
counterpart; if it is COM, we apply COM with the places of P and Q
switched.
A similar argument applies to the associativity proof.

Bisimilarity often makes distinctions that are too fine for practical purposes.
For example, consider again the broken thermometer scenario of Example 3.
Since the temperature reading is unobservable from outside the house, and in-
dependent of the actual weather, we might argue that the observable behaviour
of the system would be the same if the man, after some introspection, non-
deterministically decides whether to put on a jacket or not without checking
the thermometer. In this scenario, we model the man as:

M′ , τ.(jacket.go+go)
and the house as

H ′ , (ν warm)(ν cold)(T |M′)
With bisimilarity, we may prove that in this setting, the house and the man

are bisimilar: H ′ .∼M′. We might also expect both house models H and H ′ to

28



H H ′

τ τ

go jacket

go

τ

go jacket

go

Figure 2.1. The transition behaviour of the processes H and H ′.

be bisimilar, but this is not the case. The difference in transition behaviour is il-
lustrated by Figure 2.1. After taking an initial τ transition, H will reach a state
where the man is committed to either wearing a jacket or not; H ′ however re-
mains uncommitted. This leads to an observable difference in behaviour since
in an environment that declines to offer a jacket, the man might be trapped in
H but not in H ′. Other equivalences may relate H and H ′. For an example,
they are trace equivalent, which means that the sequences of labels that runs
of H and H ′ may exhibit are the same. Formally, two processes P and Q are
trace equivalent if for all α0,α1, . . . ,αn

P α0−→ α1−→ . . .
αn−→ iff Q α0−→ α1−→ . . .

αn−→
Even when we are primarily concerned with a coarser equivalence, bisimi-

larity may still be of interest. It turns out that bisimilarity is included in prac-
tically all other behavioural equivalences [vG90]. Hence, establishing that P
and Q are bisimilar also establishes that they are e.g. trace equivalent, and we
may use the bisimulation proof method as an (incomplete) technique for prov-
ing trace equivalence. For an example, since we showed that CCS parallel
composition is associative and commutative, we obtain for free the fact that
scores of coarser behavioural equivalences satisfy the same equations. The
fact that we chose to work with bisimilarity saves us the trouble of having to
re-prove the result in these settings.

While the above presentation of bisimilarity has the advantage of being stan-
dard and fairly straightforward, there are many others. The following lattice-
theoretic definition appears to originate with Milner and Park [San09], and
will prove useful when we consider improvements of the bisimulation proof
method in Section 3.2. We first define the auxiliary function b, called the bisim-

29



ilarity functional. Intuitively, b(R) is the set of process pairs from whence all
outgoing transitions lead to pairs in R.

Definition 8 (Bisimilarity functional). The bisimilarity functional, denoted b,
is a function from relations on processes to relations on processes, and is
defined as

b(R) , {(P,Q) :

∀P′,α. P α−→ P′ ⇒ ∃Q′. Q α−→ Q′ ∧ (P′,Q′) ∈R
∧
∀Q′,α. Q α−→ Q′ ⇒ ∃P′. P α−→ P′ ∧ (P′,Q′) ∈R}

For a CCS example, b({(0,0)}) is the set of process pairs that can transition
only to 0, in single steps with the same labels. These pairs are (a,a), (b,b),
(a+a,a), (a,a+(νb)b), (a+b,b+a), and so on.

The object of interest here is not the functional itself, but its greatest fixed
point, denoted gfp(b). Without diving too deep into lattice theory, it suffices
to know that a fixed point of b is any relation R such that R = b(R). The
greatest fixed point of b is the union of all fixed points. We then have that:

Theorem 2.
1. R is a bisimulation relation iff R ⊆ b(R).
2. gfp(b) = .∼

Proof. This theorem will be proved in Section 2.5.1.

In this thesis, we will use bisimulation for three main purposes.
First, to justify algebraic laws about processes, such as the associativity and

commutativity of parallel composition in CCS. These can be regarded as fun-
damental, natural and obvious properties of parallelism. We might postulate
them rather than deriving them, as is often done by building them into the se-
mantics [BB92, Mil92]. A philosophical justification for not doing so is found
in Bertrand Russell’s view on postulates: that the advantages of postulating
“are the same as the advantages of theft over honest toil” [Rus19, p. 72]. A
more practical consideration is that postulating algebraic laws can complicate
proofs by induction over the derivation of transitions: an inner induction over
the definition of the postulated process equivalence is often needed.

Second, to justify compositional reasoning. It turns out that bisimilarity is
a congruence wrt. all the operators of CCS, which means that we may swap
bisimilar processes for bisimilar processes in any context while preserving
bisimilarity. Hence CCS is compositional not only on the level of process
descriptions, but on the level of proofs about process behaviour. Like many

30



process calculists we will take great pains to define languages where bisimilar-
ity satisfies reasonable congruence properties.

Third, to reason about correctness of encodings. If we claim that a process
P of language L can be encoded as a process P′ of language L ′, it is reason-
able to expect some notion of behavioural equivalence to hold between P and
P′. Finer equivalences correspond to more behaviour being preserved by the
encoding. A more thorough discussion of the correctness of encodings can be
found in Section 2.3.

There exists a plethora of variants of bisimulation in the literature, accom-
modating different formalisms and different notions of which behaviour should
be distinguished. To disambiguate it from the others, the variant presented
above is called strong labelled bisimulation. Of the many existing variants
we mention only weak labelled bisimulation [Mil89], which differs from the
strong version in that silent actions (denoted τ) are considered internal and
unobservable. Weak labelled bisimulation then distinguishes processes by ex-
ternally observable behaviour only: instead of matching the transitions exactly,
action for action, τ actions can be imitated by zero or more τ actions, and ob-
servable actions can be imitated by the same observable action plus any num-
ber of τ actions. For further reading on the topic of bisimulation, Sangiorgi’s
book [San12] is a good starting point. For other behavioural equivalences we
refer to the excellent surveys by van Glabbeek [vG90, vG93].

2.3 Expressiveness
Given the massive proliferation of models of concurrency in general, and of
process calculi in particular, it is natural to wonder how they are related. More
precisely, are there system behaviours that can be expressed in one model but
not another? If we find such behaviour, we say that it separates the models. To
give the question a precise answer, we must first define what exactly we mean
by “express”. Unsurprisingly, concurrency theorists do not agree on a single
definition. Measures of expressiveness are almost as proliferated as models of
concurrency are. Hence, the original question of how two models relate can
be given many different answers depending on which measures we apply.

This rather confusing state of the art has some unfortunate consequences;
for an example, it is difficult to compare expressiveness results from the lit-
erature if they are obtained under different measures. Efforts to ameliorate
the situation include surveys [Par08], standard criteria [Gor10b] and methods
for comparing criteria [PvG15]. While such efforts are valuable, the current
proliferation is not necessarily a cause for regret.

Milan Kundera [Kun80] famously wrote about the Czech word litost that

as for the meaning of this word, I have looked in vain in other languages for an
equivalent, though I find it difficult to imagine how anyone can understand the

31



human soul without it. [. . . ] Litost is a state of torment created by the sudden
sight of one’s own misery.

Assume for the sake of argument that there is indeed no equivalent word in
other languages. Is litost, then, not expressible in English? The answer will
depend on what we want to achieve. If we wish to translate a poem that uses
the word, exactly preserving both meaning and meter, we will fall short. If
we wish to write a dictionary entry on it, the number of syllables used by the
translation becomes unimportant, and Kundera’s definition above will do the
job.

We should feel no litost over the proliferation of expressiveness measures,
for it is with models of concurrency as with natural languages: different mea-
sures are appropriate for different purposes, and the purposes of concurrent
systems are manifold. Hence, this section endeavours to offer a brief overview
of how concurrency theorists measure expressiveness and why, without cham-
pioning any one measure as superior to the others.

We distinguish between absolute and relative expressiveness. In absolute
expressiveness, we pose a problem and ask whether a given language can solve
it or not. In relative expressiveness, we ask whether one language can be trans-
lated into another. Since the latter area is where this thesis’ contributions to
expressiveness are, our survey follows suit by focusing exclusively on relative
expressiveness.

2.3.1 Relative expressiveness
In relative expressiveness we ask whether, given two modelling languages L1
and L2, there exists an encoding function that translates processes of L1 into
processes of L2. We will use P,S to range over processes of L1, and Q,R to
range over processes of L2. Encoding functions will be written with semantic
brackets, so JPK denotes the encoding of the process P. The main source
of proliferation here is the many different criteria imposed on J·K found in
the literature. The rest of this section is a catalogue of such criteria, each
measuring different notions of expressiveness in different ways.

Full abstraction
An encoding is fully abstract [Plo77] if it translates equivalent processes into
equivalent processes, i.e. if for all P,S it holds that

P�1 S ⇐⇒ JPK�2 JSK

where �1 and �2 are some appropriate behavioural equivalences of L1
and L2. Fully abstract encodings are of practical interest in many settings. If
�2 is endowed with a powerful proof technique, full abstraction lets us use
the same technique for proofs about �1; this approach is taken by Madiot et

32



al. [MPS14]. If �1 and �2 respect some security properties of interest, fully
abstract encodings can be used to achieve secure compilation [Aba99], where
security features of the high-level language cannot be bypassed in the low-
level language.

The use of full abstraction to measure of expressiveness, though widespread,
is controversial [GN14, Par16]. The issue is that the preservation of equiva-
lence does not imply the preservation of meaning. For an example, consider an
encoding from the set {apples,oranges} to itself that maps apples to oranges
and vice versa. This encoding is fully abstract wrt. any reasonable equivalence
on fruit, but does not preserve meaning. We conclude that full abstraction must
be combined with other criteria to be a useful measure.

Operational correspondence
An encoding satisfies operational correspondence if it preserves and reflects
transition behaviour. This can be formulated in different ways depending on
how tight we want the correspondence to be. The tightest correspondence one
could reasonably hope for is strong operational correspondence, when there
is a one-to-one correspondence between transitions in the source and target
language.

Definition 9 (Strong operational correspondence). An encoding J·K satisfies
strong operational correspondence wrt. �2 if

1. For all P,P′, if P −→ P′ then ∃Q′. JPK −→ Q′ ∧ Q′ �2 JP′K; and

2. for all P,Q′, if JPK −→ Q′ then ∃P′. P −→ P′ ∧ JP′K�2 Q′.

Intuitively, an encoding satisfies strong operational correspondence if for
every reduction step from a source language process there is a matching reduc-
tion step from its encoding, and vice versa.

The purpose of the relation �2 here is to allow for garbage collection. In
practice most encodings tend to leave behind junk: residuals of auxiliary mech-
anisms that facilitate the imitation of a transition, but are afterwards just inert
clutter in the process description. It also moves the emphasis from syntax to se-
mantics: we ask not whether the encoding can reach exactly JP′K, but whether
it can reach some semantically equivalent process.

A practical benefit of strong operational correspondence is that it preserves
effectiveness. For an example, suppose L2 is endowed with a powerful tool for
analysing processes by following transitions. An encoding from L1 to L2 that
satisfies operational correspondence allows us to reuse this tool for L1. If the
operational correspondence is strong, we can be sure that the encoding itself
will not introduce a state-space explosion that renders the analysis impractical.

If we ask whether we may imitate the transition behaviour at all, and not
whether we may do so effectively, strong operational correspondence is none-

33



theless rather draconian. A more commonly used variation is weak operational
correspondence, whose earliest use that I am aware of is by Walker [Wal95].

Definition 10 (Weak operational correspondence). An encoding J·K satisfies
weak operational correspondence wrt. �2 if

1. For all P,P′, if P ==⇒ P′ then ∃Q′. JPK ==⇒ Q′ ∧ Q′ �2 JP′K; and

2. for all P,Q′, if JPK ==⇒ Q′ then

∃Q′′P′. Q′ ==⇒ Q′′ ∧ P ==⇒ P′ ∧ JP′K�2 Q′′

In weak operational correspondence, a reduction sequence and its imita-
tion need not use the same number of reduction steps. This allows the encod-
ing to use protocols whereby several transitions are used to imitate a single
source language transition. Such protocols may result in an encoding hav-
ing intermediate states that do not directly correspond to any source language
states. Hence, we cannot expect that every target language transition sequence
leads to a state that has a corresponding source language state. Whereas
Clause 9.2 requires that Q′ itself corresponds to a reachable source language
state, Clause 10.2 requires only that Q′ may eventually reach such a state.

Observable behaviour
The astute reader will have noticed that the discussion of operational corre-
spondence above only considers the internal, unobservable behaviour of a
process. It is reasonable to expect that encodings also respect observable
behaviour to some degree. Without committing to any particular notion of
observables, we can surely agree that observables are a property of processes.
Hence we let an observable, ranged over by O, be a processes predicate L1]
L2→ B. Let O range over sets of observables.

Definition 11 (Preserving and reflecting observations). An encoding J·K is
1. O-preserving if for all P ∈L1 and all O ∈ O , O(P) implies O(JPK).
2. O-reflecting if for all P ∈L1 and all O ∈ O , O(JPK) implies O(P).

An encoding is O-sensitive if it is O-preserving and O-reflecting.

By instantiating O in various ways we obtain criteria for different kinds of
observables. Below we briefly discuss two popular ways of instantiating O .

Gorla [Gor10b] proposes analysing encodings in a setting where only two
observables are considered: whether a process can succeed, and whether it is
divergent. In order to succinctly define success, assume that both L1 and L2
have a parallel operator | and a special successful process X. We may then
define a predicate

OX(P) , ∃P′.P ==⇒ X|P′

34



which intuitively means that P may reach a successful state, and require en-
codings to be OX-sensitive.

A divergent process is one that has an infinite sequence of outgoing transi-
tions

P−→ P′ −→ P′′ −→ . . .

We write O∞(P) to mean that P is divergent. Gorla proposes that encodings
should be O∞(P)-reflecting, meaning that an encoding may not introduce infi-
nite behaviour where none was present originally. Note that the ability to ob-
serve divergence implies stronger discriminatory power than what is granted
by weak bisimulation: an inert process is weakly bisimilar to one that can do
infinitely many internal actions. Sometimes, encodings are also required to be
O∞(P)-preserving [Gor10a], meaning that if a process can diverge then so can
its encoding.

The main advantage of Gorla’s approach to observables is economy: since
we make rather few assumptions about what must be present in the languages
under consideration, it is applicable to languages whose transition labels are
of very different nature. If on the other hand we are comparing two languages
whose transition labels are similar or even identical, an approach is to compare
those directly. This leads to the notion of barbs [MS92], which are abstract
descriptions of the interface that a process exposes to its environment.

Definition 12 (Barbs). A process P exposes the barb α , denoted P ↓α , if α 6= τ

and there exists P′ such that P α−→ P′.

Thus, a more fine-grained approach to observable behaviour than Gorla’s
is to require that the encoding is sensitive to barbs. In practice, this is usually
weakened in several ways. First, we may restrict attention to only a subset of
the barbs, in order to allow some labels to play a special role in the encoding.
Second, we may restrict attention to some component of the labels, rather than
whole labels. Third, we may require only that the label in question is exhibited
eventually, as opposed to immediately; this is achieved by replacing −→ with
==⇒ in Definition 12.

Computational correspondence
If we require both operational correspondence and sensitivity to some observ-
ables, the result is a set of criteria that is sensitive to the causal dependency
between internal and observable behaviour. Computational correspondence is
an alternative that is less sensitive to the order in which observable events hap-
pen. Rather than compare observables pointwise at every process pair (P,JPK),
we take a global view and compare the set of observables seen through an
entire run of the process. Intuitively, this can be thought of as allowing the en-
coding to introduce a greater degree of asynchrony. The earliest use of compu-
tational correspondence as a criterion is by Palamidessi [Pal97a] (where such

35



encodings are called “reasonable”); the definitions below follow Phillips and
Vigliotti [PV04] (where such encodings are called “observation-respecting”).

A computation from P is a finite or infinite sequence of processes

P0,P1,P2, . . .

such that P0 = P and Pi −→ Pi+1 for all i. Let C range over computations. A
computation is maximal if it is infinite, or if the last element of the sequence
cannot be further reduced. We extend observables to computations: O(C )
holds iff O(Pi) holds for some Pi ∈ C .

Definition 13 (Computational correspondence). An encoding J·K satisfies com-
putational correspondence wrt. O if for all P ∈L1 it holds that

1. for all maximal computations C from P, there exists a maximal compu-
tation C ′ from JPK such that for all O ∈ O , O(C ) = O(C ′); and

2. for all maximal computations C ′ from JPK, there exists a maximal com-
putation C from P such that for all O ∈ O , O(C ) = O(C ′).

Sometimes, Clause 13.1 is weakened by replacing O(C ) = O(C ′) with
O(C ) ⊇ O(C ′) [VBG07]. We may think of this as allowing encodings that
may deadlock or livelock before managing to mimic all the source language
behaviour. Since this formulation does not guarantee that the encoding pre-
serves any useful behaviour at all, it is mainly used for separation results.

Compositionality
So far we have only considered semantic criteria on encodings, that measure
whether the processes of L1 are expressible in L2. In this section, we instead
focus on syntactic criteria that measure whether the operators of L1 are ex-
pressible in L2. Broadly speaking, we say that an encoding of an operator
is compositional if it is structurally defined in terms of the encodings of the
operands. The first to consider the expressibility of operators in such terms
was probably de Simone [dS85]; the definitions below follow Parrow’s sur-
vey [Par08].

To formalise this idea, we need the notion of process context. A context,
ranged over by C, is a process with a hole. C[P] means the result of filling the
hole in C with P. For an example, if C = P | (Q+ ·) (where · denotes a hole)
then C[R] = P | (Q+R). This definition can be generalised to contexts with
arbitrarily many holes, where C[P̃] denotes the result of filling the i:th hole of
C with Pi for all i.

Definition 14 (Compositionality). Let op be an n-ary operator of L1. An
encoding J·K translates op compositionally if there is a context C such that for
all P0, . . . ,Pn

Jop(P0, . . . ,Pn)K=C[JP0K, . . . ,JPnK]

36



We say that J·K is compositional if it translates all operators of L1 compo-
sitionally.

As the reader has no doubt guessed, many variants of this definition are in
use. For an example, the context C may be allowed to depend on some proper-
ties of the operands, and not just the operator. The most common approach is
to let the context depend on the free names of the operands [Gor10b].

Compositionality allows us to introduce local coordinators at every operator
for coordinating the operands, but it does not allow the introduction of a global
coordinator for all processes. For an example, suppose we want to encode a
conversation between n people sitting in a room as a Facebook conversation.
The acts of speaking and listening can be encoded as sending and receiving
messages to and from the Facebook server. A room P0 | . . . | Pn, where each Pi
is a person, can then be encoded as F | JP0K | . . . | JPnK, where F denotes the
Facebook server. This encoding seems sensible and of clear practical value,
but it is not compositional since F does not arise from the encoding of any one
operator. To address this we may use weakly compositional encodings [Par08],
that admit an otherwise compositional encoding to be wrapped in an outermost
context.

Definition 15 (Weak compositionality). An encoding J·K is weakly composi-
tional if there is a context C and a compositional encoding J·Kc such that for
all P it holds that JPK=C[JPKc].

Another common concern is whether encodings preserve the degree of dis-
tribution of the source language, i.e. the degree to which components of a
system may be run at different locations. The most common criterion used
for this purpose is to insist on homomorphic translation of the parallel opera-
tor [Pal97a]:

JP | QK= JPK | JQK

2.3.2 Summary
We have reviewed a selection of correctness criteria on encodings that occur
in the literature. The criteria can be broadly categorised as either semantic,
i.e. concerned with the preservation of behaviour; or syntactic, i.e. concerned
with the preservation of structure. So which criteria should we impose on our
encodings?

The (perhaps disappointing) answer is that there are no hard and fast rules;
it is a matter of taste, and more importantly of what properties are important
for the intended application. However, there are some rules of thumb:

37



• Any one criterion taken on its own will typically fail to rule out useless
encodings. For example, an encoding into CCS that maps every pro-
cess to 0 will satisfy weak operational correspondence. Hence, a mix of
several criteria should be considered.
• An encoding is more convincing if it satisfies stronger criteria. A sepa-

ration result is more convincing if it is derived under weak criteria.

2.4 Nominal sets
Most process calculi have scoping mechanisms that allow processes to hide
information from their environment. In Section 2.1 we saw the (νx) construct
of CCS, used to restrict the scope of ports. More advanced process calculi may
allow e.g. cryptographic keys to be restricted in the same way. If processes can
receive input, this calls for locally scoped placeholders, analogous to function
parameters in programming languages.

When we reason formally about syntax with scoping mechanisms, such as
within a theorem prover, we must consider the problem of alpha-equivalence.
For an illustrating example, consider the following elementary facts about the
natural numbers:

∀x ∈ N : x≥ 0 ∀y ∈ N : y≥ 0

Clearly the two expressions above state the same logical fact: that every
natural number is greater than or equal to zero. But if we view them syn-
tactically, they differ slightly. One uses x to quantify over N while the other
uses y. Intuitively, the names x and y are local within the scope of their re-
spective ∀ quantifiers; we say that they are bound by the quantifiers. Names
that are not bound will be called free. Intuitively we view the expressions
above as one and the same, and we can express this intuition by saying that
they are alpha-equivalent. Somewhat informally, we say that two expressions
are alpha-equivalent if they differ only in the choice of bound names. An
alpha-conversion is the act of substituting one alpha-equivalent expression for
another.

In informal proofs that reason about bound variables, a common practice
is to use Barendregt’s variable convention [Bar81], stating that “all bound
variables are chosen to be different from the free variables”. While useful
since it allows informal proofs to avoid getting bogged down in tedious alpha-
conversion arguments, Urban et al. demonstrate that it can result in faulty
proofs when used carelessly in inductive arguments [UBN07]. Hence it will
not do for our purposes: we will rely heavily on inductive proofs over syn-
tax with bound variables, and need a formal treatment of alpha-conversion
ironclad enough for a theorem prover formalisation. We turn instead to the
nominal sets of Gabbay and Pitts [GP01, Pit03], an approach where a formal

38



treatment of bound names is built from a notion of what it means to exchange
names.

We assume a countably infinite set of names1 N , ranged over by a,b,c,x,y,
z. A permutation, ranged over by p, is a sequence of name pairs. A nominal set
is a set equipped with a permutation action ·which applies name permutations
to elements of the set. Intuitively, applying a permutation (ab) ·X exchanges
all occurrences of a for b in X , and vice versa. Formally, a permutation action
is any function · satisfying

p · (p′ ·X) = (p◦ p′) ·X i ·X = X

where p, p′ range over permutations of N , and i is the identity permutation.
This machinery allows us to define what it means for a name to occur in an el-
ement of a nominal set independently of the concrete structure of the element:
a name occurs in an element if it can be affected by permutations. Formally,
we say that a set S of names supports X iff

∀a,b 6∈ S : (ab) ·X = X

Intuitively, S supports X if all names occurring in X are in S. If a finite
set of names supports X , there exists a unique least S such that S supports X ,
which we call the support of X and denote n(X). Henceforth, we will only be
concerned with nominal sets such that all their elements have finite support,
unless otherwise noted. We also introduce the notation a#X , pronounced “a is
fresh in X”, as shorthand for a 6∈ n(X).

Using these tools, we can construct a formal justification for alpha-equiva-
lence. If X belongs to a nominal set, we can define a new nominal set [a]X by
taking (a,X) quotiented by alpha-conversions of a:

[a]X , {(b,(ba) ·X) : b = a∨b#X}
This construct corresponds to X with a bound. When we define syntax with

binding constructs, such as in the example with the ∀ quantifier at the begin-
ning of this section, we will implicitly be using this quotient construct un-
less otherwise noted. This technique allows a restricted form of Barendregt’s
variable convention to be recovered in inductive arguments, leading to formal
proofs where many explicit alpha-conversions can be avoided [UBN07].

Another useful concept is that of equivariance. A function symbol f is
equivariant if for all p it holds that p · f (X) = f (p ·X). A constant symbol
X is equivariant if for all p it holds that p ·X = X . Intuitively, something is
equivariant if it treats all names equally.

This somewhat terse treatment of nominal techniques only covers the small
part thereof that we apply in this thesis. A good starting point for a reader

1Names are sometimes called atoms in the literature.

39



interested in more details is a survey by Gabbay [Gab11], which treats the
more foundational work underlying the application to syntax with binders.

For the purposes of formal treatment of syntax with binders, alternatives
to nominal sets include de Bruijn indexes [dB72], higher-order abstract syn-
tax [PE88] and locally nameless representation [Cha12]. With de Bruijn in-
dexes, names are represented by natural numbers indicating the distance be-
tween a bound name and its binder in the syntax tree, so e.g. ∀x.∃y.x > y
becomes ∀∃2 > 1. The main advantage of this representation is that alpha-
equivalence and syntactic equality coincides. Disadvantages include low read-
ability, and that explicit arithmetic on indexes tends to creep into the statement
of definitions and theorems [Hir97, Bri08]. The locally nameless approach
uses de Bruijn indexes, but only for bound names: free names represent them-
selves. This change largely removes the need for arithmetic on indexes, at
the cost of making it difficult to formulate statements where the same name
occurs both free and bound, such as inductive definitions. In the higher-order
abstract syntax approach, binders are represented by functions in a metalan-
guage. This yields alpha-conversion and substitution essentially for free, but
does not admit explicit manipulation of bound names.

2.5 Theorem proving in Isabelle
Interactive theorem provers are computer programs that can formally prove
mathematical theorems. They can check that proofs written by a user really
are correct. Most provers also have proof procedures that can automate the
more tedious parts of proofs.

Isabelle [NPW02] is an interactive theorem prover that was originally devel-
oped by Lawrence Paulson in the mid-80s [Pau86], and remains under active
development and use to this day. Most of the main results presented in Pa-
pers I-VI have been formally proven using Isabelle.

Proofs in Isabelle are highly trustworthy, since Isabelle uses the approach
introduced by Milner in the LCF theorem prover [Mil79], where theorems
are represented by an abstract datatype thm. The constructors of the thm

datatype are the inference rules of the logic. In a strongly typed program-
ming language2, this method enforces the correctness of all theorems proved
in the system (up to correctness of the implementation of the interface for
thm), since the only way to construct a theorem’s representation as thm is to
perform its proof. This approach also entails that Isabelle can be extended
with new proof procedures, definitions, user interfaces etc. on top of this core
without endangering soundness, even in the presence of programming errors
in the extensions.

There are many other theorem provers besides Isabelle, such as Coq [BC04]
and HOL [GM93]. The choice of Isabelle for this work is motivated primarily

2LCF and Isabelle are implemented in Standard ML [MTH90].

40



locale LTS =

fixes trans :: "’state ⇒ ’label ⇒ ’state ⇒ bool"

begin

Figure 2.2. Locale preamble.

by the existence of the HOL/Nominal package (sometimes called Nominal Is-
abelle) by Urban et al. [Urb08, UB06, UT05, HU10], which implements tech-
niques for reasoning about the nominal sets introduced in Section 2.4. Features
include support for inductive datatype definitions modulo alpha-equivalence,
and primitive recursive definitions over such datatypes. We also benefit from
automated proof procedures for reasoning about freshness and equivariance.

Many other tools available in Isabelle are of great value to our work. We
write our proofs in Wenzel’s Isar language [Wen99] for human-readable proof
scripts, in which proofs are structured with a syntax that mimics the way
proofs are written in natural language, so as to be readable by someone who is
not an Isabelle expert. Ballarin’s locale construct [Bal03, Bal14] is a section-
ing concept allowing theories to be parametrised on arbitrary but fixed types,
terms and functions that satisfy certain assumptions. Concrete instantiations
of a locale can be obtained by simply proving that the concrete types, terms
and functions satisfy the assumptions.

2.5.1 Extended example
In this section we aim to give the uninitiated reader a front seat view of what
an Isabelle development might look like. For our development we will re-
visit the discussion of bisimulation from Section 2.2. Building on top of the
extensive library support for standard mathematical notions such as sets and
lattices, we begin by defining labelled transition systems, bisimulation, bisim-
ilarity and the bisimilarity functional. The development then culminates in a
proof of Theorem 2, where we claimed a correspondence between the standard
definition of bisimilarity and its lattice-theoretic definition via the bisimilarity
functional. Figures 2.2–2.7 show the full Isabelle code corresponding to these
definitions and theorems. At 58 lines of code, it is quite close to the exposition
from Section 2.2 in size; to a reader who is comfortable with functional pro-
gramming notation as well ordinary mathematical notation, it is quite close in
readability also. The LATEX code for typesetting the figures has been automati-
cally generated from the Isabelle sources, using the built-in document prepara-
tion system. This safeguards against gaps between what has been proven and
what is presented.

Figure 2.2 defines the locale LTS that we will be working in. We assume
an arbitrary but fixed constant trans satisfying the given type signature, that
models our transition relation. The idea is that the proposition trans P α P’

41



definition bisimulation :: "(’state × ’state) set ⇒
bool"

where "bisimulation R ≡
(∀ P Q α P’. ((P,Q) ∈ R ∧ trans P α P’) −→ (∃ Q’.

trans Q α Q’ ∧ (P’,Q’) ∈ R))

∧ (∀ P Q α Q’. ((P,Q) ∈ R ∧ trans Q α Q’) −→ (∃ P’.

trans P α P’ ∧ (P’,Q’) ∈ R))"

definition bisimilarity :: "(’state × ’state) set"

where "bisimilarity ≡ {(P,Q) | P Q. ∃ R. (P,Q) ∈ R ∧
bisimulation R}"

Figure 2.3. Definitions of bisimulation and bisimilarity

lemma bisim_is_bisim:

shows "bisimulation bisimilarity"

unfolding bisimilarity_def bisimulation_def

by blast

Figure 2.4. Proof that bisimilarity is a bisimulation.

corresponds to P α−→ P′. Note that ’state and ’label are type variables,
that can be instantiated to be any Isabelle type in a concrete setting.

In Figure 2.3 we define the predicate bisimulation, which returns True

iff its argument is a bisimulation relation; and bisimilarity, the set of all
process pairs that are related by some bisimulation. These correspond exactly
to Definitions 6 and 7.

We prove our first lemma in Figure 2.4. The first line declares the name
of our lemma to be bisim_is_bisim. The second line states the proposition
we are proving, namely that bisimilarity is a bisimulation relation. The third
and fourth lines constitute the proof, which in this case instructs Isabelle to
unfold the definitions of bisimulation and bisimilarity, and then invoke the
built-in automatic proof procedure blast. Isabelle comes with many such
proof procedures — in this section we use blast, auto and metis — each with
its own strengths and weaknesses. blast [Pau99] perform classical reasoning,
and is geared towards proofs that mainly involve introduction and elimination
of e.g. logical connectives, set constructors and quantifiers. auto relies on
term rewriting interleaved with proof search; the Isabelle developers find that
“it is impossible to describe succinctly what auto does due to its heuristic,
ad hoc nature” [BBN11, p. 14]. It is suitable for proofs involving a mix of
classical reasoning and equational reasoning. metis3 [Hur03] is similar to
blast ; it is often faster and more reliable when the number of inference rules
used in the proof is small. Knowing which to apply when, and with what
parameters, is a matter of experience and guesswork.

3In ancient Greek religion, Metis is the mother of wisdom.

42



definition b :: "(’state × ’state) set ⇒ (’state ×
’state) set"

where
"b R ≡
{(P,Q) | P Q.

(∀ α P’. trans P α P’ −→ (∃ Q’. trans Q α Q’ ∧
(P’,Q’) ∈ R))

∧ (∀ α Q’. trans Q α Q’ −→ (∃ P’. trans P α P’ ∧
(P’,Q’) ∈ R))}"

Figure 2.5. The bisimilarity functional.

lemma bisimulation_iff_in_fun:

shows "bisimulation R ←→ (R ⊆ b R)"

by(auto simp add: bisimulation_def b_def)

lemma mono_b:

shows "mono b"

by(rule monoI) (force simp add: b_def)

Figure 2.6. Proofs of Theorem 1.1 and that b is monotonic.

The definition of the bisimilarity functional b in Figure 2.5 corresponds
exactly to Definition 8. In Figure 2.6 we prove the first half of Theorem 1,
and also that b is monotonic. Monotonicity is important here since it implies
that b has a greatest fixed point; this detail was glossed over in Section 2.2.
Note that since we have not defined a constant named R, the use of R in the
statement of the first lemma is implicitly all-quantified. We may elide its type
since Isabelle infers the types of variables automatically. The proofs are again
by invoking automatic proof procedures, though with one explicit use of the
introduction rule for monotonicity to begin the latter proof.

A proof with more interesting structure is found in Figure 2.7, where we
show that bisimilarity is the greatest fixed point of b. The keyword proof sig-
nals the beginning of a structured proof. Since we are proving an equality
between sets, we may use the strategy of showing that membership in one im-
plies membership in the other, and vice versa. The arguments supplied to proof
constitute a formal justification for this proof structure, by explicitly citing the
introduction rules for set and predicate equality. In the left-to-right direction,
we fix two states P and Q, and assume they are related by gfp b. By an elemen-
tary fact about fixed points we know that gfp b ⊆ b(gfp b). By Theorem 2.1
this is equivalent to gfp b being a bisimulation relation. Hence P and Q are
related by a bisimulation relation, which suffices for them to be bisimilar. By
the keyword next we signal to Isabelle that we move on to proving the next
goal, namely the right-to-left direction. By the principle of coinduction, we
may prove (P,Q) ∈ gfp b by finding a relation R that includes (P,Q) and is

43



theorem "gfp b = bisimilarity"

proof(rule set_eqI, rule prod_cases[OF iffI])

fix P Q

assume "(P,Q) ∈ gfp b"

have "gfp b ⊆ b(gfp b)"

by(rule gfp_lemma2[OF mono_b])

hence "bisimulation(gfp b)"

by(subst bisimulation_iff_in_fun)

thus "(P,Q) ∈ bisimilarity"

using ‘(P,Q) ∈ gfp b‘

by(auto simp add: bisimilarity_def)

next
fix P Q

assume "(P,Q) ∈ bisimilarity"

moreover have "bisimilarity ⊆ b bisimilarity"

by(metis bisimulation_iff_in_fun bisim_is_bisim)

ultimately show "(P,Q) ∈ gfp b"

by(coinduct rule: weak_coinduct)

qed

Figure 2.7. Proof of Theorem 2.2.

a post-fixed point of b (meaning that b R can be no smaller than R ). Bisimilar-
ity is such a relation. qed signals the end of the proof.

Comparing the prose of the previous paragraph with the proof script of
Figure 2.7 reveals that the structure of the formal proof closely mirrors the in-
formal proof idea. The level of abstraction is also similar. The main difference
is that in the Isabelle code, every intermediate step is justified.

2.6 Psi-calculi
Psi-calculi is a family of process calculi, in the tradition of CCS and the pi-
calculus [MPW92]. It provides as an easy way to obtain a custom modelling
language for concurrent systems, with precisely the features useful for the
application in question.

We may also think of psi-calculi as a powerful proof technique for standard
meta-theoretical results, along the following lines. Suppose that a calculus
P is a psi-calculus. Then it follows that standard algebraic and congruence
properties of strong and weak bisimulation hold in P [BJPV09, JBPV10],
by proofs that are machine-checked in Nominal Isabelle. In this view, the
relation between psi-calculi and a psi-calculus is roughly analogous to the
relation between group theory and arithmetic on the natural numbers. For this
reason, psi-calculi represents a major contribution to the endeavour of culling
concurrency theory.

44



A psi-calculus is created by instantiating parameters corresponding to what
notions of data terms and logical dependencies are needed. The parameters are
taken as nominal sets, which lets us reason formally about what it means to
bind into them even though we assume nothing about their concrete structure.

In this section, we will recapitulate definitions and results pertaining to psi-
calculi that are relevant to the scope of this thesis. Since psi-calculi under-
pins all but one of the papers comprising the thesis, we will go into consid-
erably more detail here than in previous sections. We also endeavour to give
some intuition, though we recommend Johansson’s PhD thesis [Joh10] for a
treatment of psi-calculi with more motivation and examples. Other develop-
ments of and for psi-calculi that we do not use in this thesis include a sym-
bolic semantics [JVP10], algorithms for computing strong and weak bisimula-
tions [JVP12], a workbench implemented in PolyML based on them [Gut11,
BGRV13], several type systems [Hüt11, Hüt13], and representations of event
structures [NPH14] and actor networks [Pri14].

2.6.1 Parameters and requisites
A psi-calculus is obtained by supplying a notion of terms, corresponding to
both communication channels and the messages that can be sent on them, as
well as a logic with assertions and conditions. Assertions can be thought of
as facts about the environment in which a process executes, and conditions as
logical statements that may be true or false in any given assertion environment.

The terms T ranged over by M,N,L,T , the assertions A ranged over by
Ψ, and the conditions C ranged over by ϕ can be chosen to be any finitely
supported nominal sets. The precise relationship between assertions and con-
ditions is given by an entailment relation ` ⊆ A×C. Among the conditions
there can be channel equivalence clauses M .↔ N, meaning that the terms M
and N represent the same communication channel.

For each of T,A,C, a corresponding notion of substitution must also be
supplied as a parameter. Intuitively, the substitution X [x̃ := T̃ ] simultaneously
replaces all occurrences of x̃ in X with the corresponding element of T̃ . In
practice, substitution can be chosen to be any function that satisfies certain
requisites (see Table 2.2). Intuitively, the requisites are that the substitution
function must treat all names equally; that for purposes of alpha-conversion,
the names x̃ may be treated as if they bind into X in X [x̃ :=T̃ ]; and that when X
is a term containing x̃, the names of T̃ must occur in the result of the substitu-
tion. Hence substitution may have behaviour that runs counter to the intuition
of a simultaneous substitution — in this way, “substitution” is perhaps a mis-
nomer. A substitution [x̃ := T̃ ] is well-formed if |x̃|= |T̃ | and the names x̃ are
pairwise distinct. Henceforth we will only consider well-formed substitutions
unless otherwise noted. We will use σ to range over sequences of substitutions,
and use Xσ to mean their successive application to X .

45



Parameters Requisites

T All M ∈ T finitely supported.
A All Ψ ∈ A finitely supported.
C All Φ ∈ C finitely supported.
1 ∈ A n(1) = /0
` ⊆ A×C ` equivariant.
↔ : T×T⇒ C ↔ equivariant.

Ψ `M↔ N ⇒ Ψ ` N↔M
Ψ `M↔ N ∧ Ψ ` N↔ L
⇒ Ψ `M↔ L

⊗ : A×A⇒ A ⊗ equivariant.
Ψ⊗1'Ψ

Ψ⊗Ψ′ 'Ψ′⊗Ψ

(Ψ⊗Ψ′)⊗Ψ′′ 'Ψ⊗ (Ψ′⊗Ψ′′)
Ψ'Ψ′ ⇒ Ψ⊗Ψ′′ 'Ψ′⊗Ψ′′

[ := ] : X×N ?×T?⇒ X [ := ] equivariant
x̃, ỹ distinct ∧ ỹ#x̃,X
⇒ X [x̃ := T̃ ] =
((ỹ x̃) ·X)[(ỹ x̃) · x̃ := T̃ ]

X ∈ T ∧ x̃ distinct ∧ x̃⊆ n(X)

⇒ n(T̃ )⊆ n(X [x̃ := T̃ ])
Table 2.2. Parameters and requisites. X ranges over T,A,C. The relation ' equates
two assertions iff they entail the same conditions.

A notion of what it means to compose two assertions, denoted by ⊗, is
also a parameter. It can be chosen to be any equivariant function that forms
an abelian monoid with respect to 1, which is called the unit assertion and is
another parameter. ⊗ can be thought of as logical conjunction of assertions
and 1 as the least informative assertion, though again it is possible to choose
them in a way that runs counter to this intuition, e.g. by using a non-monotonic
logic.

One more requisite needs to be mentioned: we require the channel equiva-
lence relation .↔ to be symmetric and transitive. Note however that reflexivity
is not required. Symmetry and transitivity entails that if a term is channel
equivalent to something, it is channel equivalent to itself. Omitting reflexivity
allows there to be terms that are not usable as communication channels.

2.6.2 Syntax and semantics
We will explain the syntax and semantics of psi-calculi through a running ex-
ample where A , Pfin(C) and ` , 3 (i.e. where an assertion is the finite set
of conditions that are currently true), where .↔ is syntactic equality on terms,

46



and where ⊗ , ∪ and 1 , /0. Substitution is the standard capture-avoiding
syntactic replacement.

From these parameters, we construct a psi-calculus using the structured op-
erational semantics approach that we used for CCS in Section 2.1. We will
introduce the syntax and semantics on an operator by operator basis; some of
the operators will be familiar from CCS. The agents P of a psi-calculus are
ranged over by P,Q,R. Actions are ranged over by α . Transitions are of kind
Ψ � P α−→ P′, meaning that in the assertion environment Ψ, P can do α and
evolve to P′.

Note that the semantic rules as presented here apply to all psi-calculi, and
do not rely on any particulars of the running example.

Nil
The simplest process construct is nil, denoted 0, which is a process that does
nothing and can be thought of as denoting termination. No semantic rules
describe its behaviour, since it has none.

Output
The output prefix M N.P sends the message N on the channel M, and then
proceeds as P. Its behaviour is defined by the single inference rule

OUT
Ψ `M .↔ K

Ψ � M N.P KN−−→ P

where the action KN signals readiness to send a message. Note that the sub-
ject on the label need not be the same as in the prefix, but by the precondition
they must be equivalent in the current environment. In our running example
.↔ is syntactic equality and hence we will always have M = K where the pre-

condition holds by default.

Input
The input prefix M(λ x̃)N.P, where x̃ binds into N and P, receives a message
on channel M that matches the pattern (λ x̃)N. Pattern matching is defined in
terms of substitution, as seen in the derivation rule

IN
Ψ `M .↔ K

Ψ � M(λ x̃)N.P K N[x̃:=L̃]−−−−−→ P[x̃ := L̃]

where we require x̃⊆ n(N) and for x̃ to be distinct.
For an example, suppose that among the terms there are pairs of terms,

written (M,N). A process that receives a pair of names, and then sends the
first along the second, can be written

47



M(λx,y)(x,y).xy.0

Since (x,y)[x,y :=1,2] = (1,2), we can use the IN rule to derive the transi-
tion

Ψ � M(λx,y)(x,y).xy.0 M (1,2)−−−−→ 12.0

Moreover, note that this agent cannot receive a message that is not a tuple,
since no substitution can produce such a message from the tuple pattern.

Case
Case statements denote condition-guarded, non-deterministic choice. For an
example, the agent case ϕ : M N.0 [] ϕ ′ : M(λε)N.0 can send N on M in an
environment where ϕ is true, can receive N on M in an environment where
ϕ ′ is true, can do either of the above in an environment where both hold, and
neither if neither hold. When either branch is chosen, the process commits to
that branch and the option to execute the other branch is forfeit. The semantics
is defined as follows:

CASE
Ψ � Pi

α−→ P′ Ψ ` ϕi

Ψ � case ϕ̃ : P̃ α−→ P′

If the psi-calculus under consideration has a condition > that is true in
every environment, we will use P+Q as an abbreviation for case> : P []> : Q,
allowing us to recover the familiar choice construct from CCS.

Restriction
In a restriction (νa)P, a binds into P. This means that the name a is local to P,
and cannot be used outside the scope of the ν binder. An example application
is cryptographic models, where bound names typically represent private keys
or random nonces. The behaviour of restrictions is captured by two rules. The
SCOPE rule intuitively states that scopes have no effect on actions that do not
use the bound name:

SCOPE
Ψ � P α−→ P′

Ψ � (νb)P α−→ (νb)P′
b#α,Ψ

In particular, note that the freshness side conditions prevent bound names
from being used outside their scope boundaries. Bound names may however
be sent as part of messages across scope boundaries via the OPEN rule. This
corresponds to sharing a secret, and causes the scope to be extended to cover
also the receiver. This feature is traditionally called scope extrusion [MPW92].

48



OPEN
Ψ � P M (ν ã)N−−−−−→ P′

Ψ � (νb)P M (ν ã∪{b})N−−−−−−−→ P′
b#ã,Ψ,M
b ∈ n(N)

The action M (ν ã)N is called a bound output, where the names ã bind into
both N and the residual process P′. We identify M (νε)N and M N. The
expression ã∪{b} means the sequence ã with b inserted anywhere.

Parallel composition and assertion
The parallel composition P | Q is a process that executes both P and Q con-
currently. Two processes composed in this manner can interact in two distinct
ways. The first is by revealing assertions to each other, thus changing the
current assertion environment at runtime. For this purpose there is a process
construct LΨM that asserts Ψ to its environment. This assertion may influence
which channel equivalence clauses hold, and which branches of case state-
ments may be executed. We achieve this by the parallel composition rule

PAR
ΨQ⊗Ψ � P α−→ P′

Ψ � P | Q α−→ P′ | Q
bn(α)#Q

where ΨQ denotes the composition of the top-level assertions that Q asserts
to its environment. For an example, if

Q = LΨM | LΨ′M |M N.LΨ′′M

then ΨQ = Ψ⊗Ψ′. A symmetric version of the PAR rule is elided. bn(α)
denotes the binding names of α . As an example of the kind of interactions
possible, consider the agents P = case flag : M N.0 and Q = K N.L{flag}M and
the execution of P | Q in the environment /0. The assertion {flag} in Q occurs
under an input or output prefix; we call such assertions guarded. Only the
unguarded assertions of Q are considered part of ΨQ, so ΨQ = /0. Hence the
transition from P is not enabled from the start, since flag is not set. However,
we can derive the following:

PAR

OUT
/0∪ /0 � Q KN−−→ L{flag}M

/0 � P | Q KN−−→ P | L{flag}M

After the output on K, flag is no longer guarded and we can infer the transi-
tion from P by the following derivation:

49



PAR

CASE

OUT
{flag}∪ /0 � M N.0 MN−−→ 0 flag ∈ {flag}∪ /0

{flag}∪ /0 � P MN−−→ 0

/0 � P | L{flag}M MN−−→ 0 | L{flag}M

The interaction of restrictions and assertions in processes is captured for-
mally by the notion of frames, ranged over by F,G. A frame F = (ν b̃F)ΨF is
an assertion ΨF with a list of names b̃F that bind into it. The frame of a process
P, denoted F (P), is its unguarded binders and the capture-avoiding composi-
tion of all its unguarded assertions, or 1 if there are no unguarded assertions.
For an example, F (LΨM | (νa)LΨ′M) = (νa)(Ψ⊗Ψ′) if a#Ψ.

The parallel composition operator also enables processes to send messages
to each other. As a simple example, suppose that names are terms, and con-
sider the agent P = a(λx)x.bx.0 which receives a message on channel a and
then passes it along on channel b, and Q = ay.0. Since P is ready to receive
a message on a, and Q is ready to send one, they may communicate, resulting
in a transition

Ψ � P | Q τ−→ by | 0

where τ is the internal action familiar from CCS, denoting that P | Q en-
gage in an internal communication which the environment cannot interact with.
Note that the x in P has been instantiated to the y that was received from Q.

Formally, the semantic rule for communication is as follows:

COM

ΨQ⊗Ψ � P M (ν ã)N−−−−−→ P′

ΨP⊗Ψ � Q K N−−→ Q′ Ψ⊗ΨP⊗ΨQ `M .↔ K

Ψ � P | Q τ−→ (ν ã)(P′ | Q′)
ã#Q

A symmetric version is elided, and we assume that F (P) = (ν b̃P)ΨP and
F (Q) = (ν b̃Q)ΨQ where b̃P is fresh for all of Ψ, b̃Q,Q,M and P, and that b̃Q
is correspondingly fresh. In the rule PAR introduced previously, we assume
that F (Q) = (ν b̃Q)ΨQ where b̃Q is fresh for Ψ,P and α .

We show an example illustrating the interaction of the COM and OPEN rules.
Let P and Q be as follows:

P = x(λ z)z.za.0 Q = (νy)xy.y(λ z)z.0

P receives a term on channel x and then sends a along the received channel.
Q sends the private name y along x, and then receives a message along the

50



Process syntax Well-formedness requisites

0
LΨM
M N .P P well-formed.
M(λ x̃)N .P P well-formed, x̃ distinct and x̃⊆ N.
case ϕ̃ : P̃ All P ∈ P̃ well-formed and guarded.
P | Q P and Q well-formed.
(νx)P P well-formed.
!P P well-formed and guarded.

Table 2.3. Process syntax and well-formedness

private name. Their parallel composition can act as follows, where we elide
the frames since they will not impact the derivation:

COM

IN
P x y−→ ya.0

OPEN

OUT
xy.y(λ z)z.0 xy−→ y(λ z)z.0

Q x (νy)y−−−−→ y(λ z)z.0

P | Q τ−→ (νy)(ya.0 | y(λ z)z.0)

This enables a communication (νy)(ya.0 | y(λ z)z.0) τ−→ (νy)(0 | 0) along
the local name y, whose derivation we do not show.

Replication
Finally, replication !P is a means of expressing infinite behaviour, such as
loops and recursion. Intuitively, it behaves as an infinite parallel composition
P | P | . . . — this is captured by the rule

REP
Ψ � P | !P α−→ P′

Ψ� !P α−→ P′

51



IN
Ψ `M .↔ K

Ψ � M(λ ỹ)N.P K N[ỹ:=L̃]−−−−−→ P[ỹ := L̃]
OUT

Ψ `M .↔ K

Ψ � M N.P KN−−→ P

CASE
Ψ � Pi

α−→ P′ Ψ ` ϕi

Ψ � caseϕ̃ : P̃ α−→ P′

COM

ΨQ⊗Ψ � P M (ν ã)N−−−−−→ P′

ΨP⊗Ψ � Q K N−−→ Q′ Ψ⊗ΨP⊗ΨQ `M .↔ K

Ψ � P | Q τ−→ (ν ã)(P′ | Q′)
ã#Q

PAR
ΨQ⊗Ψ � P α−→ P′

Ψ � P | Q α−→ P′ | Q
bn(α)#Q

SCOPE
Ψ � P α−→ P′

Ψ � (νb)P α−→ (νb)P′
b#α,Ψ

OPEN
Ψ � P M (ν ã)N−−−−−→ P′

Ψ � (νb)P M (ν ã∪{b})N−−−−−−−→ P′
b#ã,Ψ,M
b ∈ n(()N)

REP
Ψ � P | !P α−→ P′

Ψ� !P α−→ P′

Table 2.4. Operational semantics. Symmetric versions of COM and PAR are elided.
In the rule COM we assume that F (P) = (ν b̃P)ΨP and F (Q) = (ν b̃Q)ΨQ where b̃P

is fresh for all of Ψ, b̃Q,Q,M and P, and that b̃Q is correspondingly fresh. In the rule
PAR we assume that F (Q) = (ν b̃Q)ΨQ where b̃Q is fresh for Ψ,P and α . In OPEN the
expression ã∪{b} means the sequence ã with b inserted anywhere.

2.6.3 Bisimulation
An attentive reader may have noticed that our way of defining the transition
relation differs from the labelled transition systems introduced in Section 2.1
in two ways. First, it is parametrised on an assertion environment. This is
in itself a rather innocent change: one could imagine an alternative presenta-
tion where the label is a cross-product of an assertion and an action, writing
P (Ψ,α)−−−→ P′ for Ψ � P α−→ P′. A more drastic change is that the label binds
into the process after the arrow. This is common in process calculi with mobil-
ity, and means that our semantics is more closely related to the Nominal SOS
approach of Cimini et al. [CMRG12] than Plotkin’s original approach, though
psi-calculi predate [CMRG12].

52



These differences from the LTS approach suggest a different definition of
bisimulation than the one introduced in Section 2.2. The definition is as fol-
lows, where the static equivalence relation ' relates frames if and only if they
entail the same conditions.

Definition 16 (Strong bisimulation). A relation R ⊆ A×P×P is a strong
bisimulation iff for every (Ψ,P,Q) ∈R

1. Ψ⊗F (P) ' Ψ⊗F (Q) (static equivalence)
2. (Ψ,Q,P) ∈R (symmetry)
3. ∀Ψ′.(Ψ⊗Ψ′,P,Q) ∈R (extension of arbitrary assertion)

4. If Ψ � P α−→ P′ and bn(α)#Ψ,Q, then there exists Q′ such that Ψ �

Q α−→ Q′ and (Ψ,P′,Q′) ∈R (simulation)
We define bisimilarity .∼ to be the largest bisimulation, and write Ψ � P .∼

Q, or P .∼Ψ Q, to mean (Ψ,P,Q) ∈ .∼.

We give the intuition behind the clauses in reverse order. Clause 16.4 is
essentially the first clause of Definition 6, amended with freshness conditions.
They ensure that the choice of concrete representatives for the bound names of
α does not impact the derivation of the matching transition in Q. Clause 16.3
says that for two processes to be bisimilar in an environment Ψ, they must also
be bisimilar in every extension of Ψ. Without this requisite, bisimilarity would
not be preserved by the parallel operator. Clause 16.2 is simply a convenience
that lets us avoid having two simulation clauses. Finally, Clause 16.1 states
that two bisimilar processes must have equivalent frames. Hence we regard
the frame of a process as part of its behaviour, in addition to its transition
behaviour.

It is desirable for bisimilarity to be a congruence, i.e. closed under all oper-
ators of the language. Unfortunately, bisimilarity is not closed under the input
construct in psi-calculi, for the same reason as in the pi-calculus. Suppose
ϕ is a condition which is true in every environment. Then P .∼Ψ case ϕ : P.
However, suppose that an input prefix α may yield a substitution σ such that
Ψ 6` ϕσ when consumed. Then α.P 6 .∼Ψ α.case ϕ : P

The standard solution to such problems in name-passing calculi is to obtain
a congruence by closing bisimilarity under all substitutions:

Definition 17 (Strong congruence). Strong congruence ∼ is defined as:

P∼Ψ Q , ∀σ . Pσ
.∼Ψ Qσ

We write P∼ Q to mean P∼1 Q.

Finally we mention weak bisimilarity, denoted
.≈, which is a notion of

bisimilarity that abstracts away from the internal behaviour of processes. The
intuition is that processes should only be considered equivalent if they can-

53



not be distinguished by another process observing them. This is achieved
by refining the definition of bisimulation so that when a process imitates the
behaviour of another process, it may perform any number of τ steps along
with the matching behaviour. The precise definition of weak bisimilarity for
psi-calculi is technically complicated, and will not be presented here. The in-
terested reader will find it in Paper III; for a more thorough discussion we refer
to [JBPV10, Joh10].

The main source of complications is that we allow non-monotonic assertion
logics, where adding assertions to the environment may falsify conditions that
held previously. Let τ be shorthand for a prefix whose only action is an internal
action.4 A reader might expect weak bisimulation to satisfy the following
equation, as is the case in CCS:

τ.P
.≈ P

After all, τ.P will unlock all the behaviour of P after just one internal tran-
sition. Alas, the equation is invalid. For an example, suppose the frame of P
asserts ¬ϕ for some condition ϕ that is initially true. Then consider

R , case ϕ : Q | τ.P S , case ϕ : Q | P

The process R may behave as Q since ϕ holds, but since the frame of P
falsifies the guard ϕ , S cannot. Hence the parallel context case ϕ : Q may
distinguish τ.P from P, so they cannot be bisimilar. However, the law τ.P

.≈ P
will still hold in interesting special cases, such as when the assertion logic is
monotonic, or when P is assertion guarded. There are also other related laws
that hold in the general case, such as

τ.τ.P
.≈ τ.P

For the same reasons as in the pi-calculus, it turns out that weak bisimu-
lation is not a congruence wrt. input and case. We obtain weak congruence,
denoted ≈, in the standard manner: by closing weak bisimilarity under substi-
tutions, and requiring that initial τ actions can be simulated by a non-empty
sequence of τ actions.

2.6.4 Congruence and algebraic laws
The following results from [BJPV09, JBPV10] demonstrate that the notions
of bisimulation discussed in Section 2.6.3 are useful, in the sense that they jus-
tify compositional and algebraic reasoning about processes. Establishing such

4For an example, this can be encoded as Jτ.PK = (νa)(aa.JPK | a(λε)a.0) in a psi-calculus
where channel equivalence is identity on names and names are terms.

54



results for a process calculus is often difficult, tedious and error-prone work;
if the process calculus is a psi-calculus these results are already established.

First, strong bisimulation is a congruence with respect to all operators save
for input (note the closure under substitutions in the premise of Clause 3.6):

Theorem 3 (Congruence properties of strong bisimulation).
1. Ψ � P .∼ Q ⇒ Ψ � P | R .∼ Q | R
2. Ψ � P .∼ Q ⇒ Ψ � (νx)P .∼ (νx)Q if x#Ψ

3. Ψ � P .∼ Q ⇒ Ψ � !P .∼ !Q if P and Q are guarded
4. ∀i.Ψ � Pi

.∼Qi ⇒ Ψ � case ϕ̃ : P̃ .∼ case ϕ̃ : Q̃ if P̃, Q̃ are guarded
5. Ψ � P .∼ Q ⇒ Ψ � M N.P .∼M N.Q
6. ∀T̃ .Ψ � P[x̃ := T̃ ] .∼ Q[x̃ := T̃ ] ⇒ Ψ � M(λ x̃)N.P .∼M(λ x̃)N.Q

if x̃#Ψ

Theorem 4. ∼Ψ is a congruence for all Ψ.

The following structural laws about strong bisimulation and congruence
show that parallel composition forms an abelian monoid with 0 as unit, and
that the scope of restrictions can be extended in a capture-avoiding manner.

Theorem 5 (Structural laws of strong congruence).
1. Ψ � P∼ P | 0
2. Ψ � P | (Q | R)∼ (P | Q) | R
3. Ψ � P | Q∼ Q | P
4. Ψ � (νa)0∼ 0
5. Ψ � P | (νa)Q∼ (νa)(P | Q) if a#P
6. Ψ � M N.(νa)P∼ (νa)M N.P if a#M,N
7. Ψ � M(λ x̃)N.(νa)P∼ (νa)M(λ x̃)N.P if a#x̃,M,N

8. Ψ � case ϕ̃ : (̃νa)P∼ (νa)case ϕ̃ : P̃ if a#ϕ̃ and P̃ are guarded
9. Ψ � (νa)(νb)P∼ (νb)(νa)P

10. Ψ� !P∼ P | !P if P is guarded

Finally, similar results apply also to weak bisimulation and congruence.

Theorem 6. All congruence properties of .∼ established in Theorem 3, except
for Clause 3.4 pertaining to the case construct, also hold for

.≈.

Theorem 7. ≈ is a congruence.

Theorem 8. All structural laws of ∼ established in Theorem 5 also hold for
≈.

55



A strong point of psi-calculi is that all theorems presented in this section
have been formally proven using Nominal Isabelle. At roughly 35000 lines of
Isabelle proof scripts [Ben12], this represents a cyclopean investment of labour
by Bengtson that we adapt and re-use to formalise new results throughout this
thesis.

56



3. Contributions

In this chapter, we summarise the novel contributions of this thesis. A major
part of my contributions to joint papers are the Isabelle formalisations, but
with the exception of Paper V they are rarely discussed explicitly in the papers
themselves. For this reason, we will discuss the nature of the formalisations
and the main challenges involved at a level of detail beyond that of the original
papers.

3.1 Extensions of psi-calculi
This section summarises the content of Papers I–III. They share a common
theme, which is to increase the expressiveness and modelling convenience of
psi-calculi by extending its syntax and semantics.

3.1.1 Broadcast communication
In this section we summarise Paper I.

If we want to apply psi-calculi to reason about wireless communication, we
immediately discover two rather awkward gaps between reality and modelling
language. First, psi-calculi are based on point-to-point communication, where
each message sent is received by exactly one process. Wireless communica-
tion is broadcast communication, where each transmission may be received
by any number of processes, and possibly lost. Second, connectivity between
nodes in wireless communication may be asymmetric, if some nodes have
weaker transmitter than others; and intransitive, if the transmission range of
my neighbours reaches beyond my own. Channel equivalence is ill-suited to
model such connectivity, since we require it to be symmetric and transitive.

Broadcast psi-calculi extend psi-calculi to close the above gaps. It is a
conservative extension since the existing mechanisms for point-to-point com-
munication are kept, and play by the same rules as before. No change to the
process syntax is needed; the existing input and output prefixes may now ad-
ditionally denote broadcast input and broadcast output. Whether a particular
prefix can be used for broadcasting is determined by the connectivity judge-
ments Ψ � M

.
≺ K, meaning that in the environment Ψ, messages may be

transmitted from M on the medium K. Conversely Ψ�K
.
≺ N means that in

Ψ, messages transmitted on the medium K may be received by N. By thus

57



Ψ�M | N.P | N.Q

P | N.Q

N.P | Q

P | Q

N.P | N.Q

Figure 3.1. The possible behaviours of an unreliable broadcast action, assuming
Ψ `M

.
≺ K

.
� N. Dashed lines indicate transitions that are unavailable with point-to-

point communication.

decoupling the ability to send from the ability to receive, we no longer need to
impose symmetric and transitive connectivity. This comes at a price: for tech-
nical reasons related to scope extension, we require that a medium contains no
more names than the transmitters and receivers that are connected to it.

The semantics of broadcast communication comprises five new rules added
to the operational semantics; it is defined so that output is non-blocking, i.e. an
output may fire at any time, regardless of whether anyone listens to the trans-
mission. When an output fires, it may be received by unboundedly many lis-
teners. The broadcast is unreliable, in the sense that a potential receiver may
always fail to hear a transmission. Figure 3.1 shows the possible outcomes
of broadcast communication in a simple system with one sender and two re-
ceivers.

The meta-theory pertaining to strong bisimulation from the original psi-
calculi carry over to broadcast psi-calculi, and formal proofs in Isabelle have
been carried out:

Theorem 9 (Theorems 8–10 of Paper I). All results about strong bisimulation
and strong congruence described in Section 2.6 also apply to broadcast psi-
calculi.

We illustrate how broadcast psi-calculi can be used by applying it to analyse
a routing protocol for mobile ad-hoc networks, namely LUNAR [TGRW04].
A tailored psi-calculus is defined, where the terms correspond to the type of
messages under consideration in the LUNAR protocol, and the assertions de-
scribe the network topology as well as the routes that are currently established.
It is shown that this modelling language is a psi-calculus, and we use it to
prove a basic reachability property of the protocol.

58



Definitions
6%

Equivariance and freshness

9%
Substitution

52%

Logic and connectivity

25%

Boilerplate and other
8%

Figure 3.2. Anatomy of the LUNAR psi-calculus instantiation in Isabelle, (1297 LoC
in total).

Formalising broadcast psi-calculi
Broadcast psi-calculi is, to the best of my knowledge, the first broadcast calcu-
lus with a machine-checked meta-theory. The treatment of syntax, semantics
and meta-theory consists of approximately 33,000 lines of proof script, repre-
senting a substantial investment of labour. Fortunately, since it is a conserva-
tive extension of the original psi-calculi we did not have to start from scratch.
The corresponding part of the original psi-calculi formalisation, which we re-
use almost in entirety, comprises about 21,000 lines of code.

To a large extent, the task of extending the old proof scripts introduces diffi-
culties that are more quantitative than qualitative in nature. Five new inference
rules are added to the semantics, meaning five more cases to consider in ev-
ery rule induction. This is largely grunt work, but some interesting challenges
do present themselves in the bisimulation proofs. Among these, the foremost
challenge is the proof that commuting binders preserves bisimilarity; for an
account of the proof idea we refer to Paper I.

Beyond the meta-theoretical proofs, we also construct the most substantial
instance of psi-calculi to date, namely the calculus in which we model the
LUNAR protocol. We formally prove that this instantiation satisfies the req-
uisites for being a psi-calculus. Through the locale interpretation mechanism,
we then obtain mechanised syntax, semantics and bisimulation meta-theory
for free. By studying the anatomy of this development, we may gain insight
into what kind of effort is currently required to obtain a custom psi-calculus
tailored for high-level protocol verification.

59



The total size of the development is 1297 lines of code. The contents of
these lines are subdivided as in Figure 3.2. 6% of the lines comprise defini-
tions of datatypes and functions, with a further 9% dedicated to establishing
that these definitions behave well wrt. permutations and freshness. 52% of
the code goes towards establishing that the substitution functions on the terms,
assertions and conditions satisfies the three laws of substitution in Table 2.2.
26% go towards establishing the remaining requisites about the assertion logic
and channel connectivity predicates: abelian monoid laws and compositional-
ity of ⊗, symmetry and transitivity of .↔, and support constraints on

.
� and.

≺.
It is interesting to note that outside a theorem proving environment, only

the 31% that comprises definitions, logic and connectivity are likely to re-
ceive any explicit treatment at all; technicalities about names and substitutions
are tacitly treated according to the maxim “what could go wrong?” But oc-
casionally, something does go wrong. For example, the polyadic pi-calculus
instance as defined in the very first paper on psi-calculi [BJPV09] has no sen-
sible definition of term substitution that satisfies the requisites. This suggests
that substitution deserves to be treated carefully, and it is good that Isabelle
forces us to do so. On the other hand, 52% seems excessive: the problem is
not that deep. An interesting direction for future work would be proof automa-
tion to partially alleviate this burden. Initial efforts in this direction direction
are reported in [ÅP10], though with the recent Eisbach tactics language for Is-
abelle [MWM14] the problem should now be amenable to a more lightweight
approach.

3.1.2 Higher-order data
Here we summarise Paper II.

A process calculus is higher-order if processes are first-class citizens, i.e. if
processes may be sent and received just like data terms. In this sense, psi-
calculi are already higher-order: nothing prevents us from instantiating the
parameters so that the processes are among the terms. Hence we can use pro-
cesses as messages or communication channels, and do pattern matching on
them, just like any other terms. What is missing is a mechanism for executing
a process that has been received as a message. Higher-order psi-calculi fill
this gap by making very small changes to the definition of psi-calculi; small
enough so that we can give a complete account in just the following paragraph.

We introduce the run construct into the process syntax, where the process
run M may act as any process that M is an alias for. What it means for M to be
an alias for P is formalised by clauses of the form M⇐ P, where we require
that n(P) ⊆ n(M) and that P is assertion guarded. The entailment relation is
extended so that assertions may entail clauses in addition to conditions. A
single new rule is introduced into the operational semantics:

60



INVOKE
Ψ � P α−→ P′ Ψ `M⇐ P

Ψ � run M α−→ P′

To obtain a process-passing calculus where received processes can be exe-
cuted, it suffices to include processes among the terms, and let every process
be an alias for itself: let Ψ ` P⇐ P hold for all Ψ,P. A process that receives
another process on the channel N and then runs it can then be written

N(λx)x.run x

and to run an arbitrary process P we may pair it with a sender N P. But the
main source of novelty and expressive power here is that we do not need to
do this. A more flexible approach is to pass arbitrary terms as aliases, while
asserting a clause for the corresponding process. The sender in the above
example can then be written as:

N M | LM⇐ PM

This opens up several possibilities. We can describe non-determinism, since
N⇐ P is not necessarily the only clause that pertains to the alias N. If N⇐Q
also holds, the process run N behaves exactly as P +Q. We can describe
recursion, since the process P in N ⇐ P may of course contain run N as a
subprocess. Since the assertion environment may change, we can alter the
behaviour of a particular alias by revealing new assertions pertaining to it.
Hence, the binding between N and P in N⇐ P is a dynamic binding.

For every (first-order) psi-calculus we may define a canonical higher-order
instance, which extends the original calculus so that parameterised clauses
may be asserted. Hence we lift every psi-calculus to higher-order in one go.

Under certain natural requisites on the psi-calculus, we prove in Isabelle
that the + and ! operators can be encoded without using + and ! in the same
calculus. The encoding is compositional, and source and target are strongly
bisimilar. Along similar lines, we also show that we can encode the n-ary case
operator using only a unary case operator. In fact we may go further and drop
case entirely, though this is not elaborated upon in Paper II: if the assertion
logic under consideration features implication (denoted→), unary case ϕ : P
may be represented as

(νa)(run Ma | Lϕ → (Ma⇐ P)M)

where a is a fresh name and Ma is a term that contains a and the names of
P.

We show in Isabelle that all results from Section 2.6 about strong and weak
bisimulation carry over to higher-order psi-calculi. However, this equivalence

61



is somewhat unsatisfactory in a higher-order language. From previous work
on higher-order equivalences [Tho89, Tho93, San93] we have come to expect
that if e.g. P and Q are bisimilar, then so is N P and N Q. This fails to hold for
our (first-order) equivalences since their output labels will be syntactically dif-
ferent. Intuitively, the reason such a law holds in many previous higher-order
calculi is that the only thing one can do with processes is to send, receive
and run them. Due to the generality of psi-calculi, processes can be used
in many ways that allow bisimilar but distinct processes to be distinguished
when passed as messages For an example, an input pattern may decompose a
received process into its outermost operands, or a case statement may compare
two processes for syntactic equality. Hence, if we insist that sending syntac-
tically distinct but semantically equivalent processes as messages constitutes
equivalent behaviour, there can be no sensible higher-order equivalence that
applies to all psi-calculi.

In alias-passing calculi, this issue is somewhat besides the point; there is
no need to equate the sending of equivalent process since we send aliases,
not processes. Thus, we propose a notion of strong higher-order bisimilarity
(henceforth HO-bisimilarity) that is more suited to the alias-passing paradigm.
The idea is that if P and Q are HO-bisimilar, we also want LM⇐ PM and LM⇐
QM to be HO-bisimilar. We obtain such an equivalence by slightly changing
the static equivalence clause of Definition 16, and prove in Isabelle that the
resulting equivalence satisfies all the algebraic and congruence laws familiar
from Section 2.6.

Formalising higher-order psi-calculi
All theorems about higher-order psi-calculi reported on in Paper II are formally
proven in Isabelle. In total, the development consists of 55,497 lines of code
and represents many man-months of labour.1 The contents of these lines is
subdivided as shown in Figure 3.3.

55% of the development goes towards showing that the results about strong
and weak bisimulation, and their induced congruences, are still valid in higher-
order psi-calculi. This work represents nowhere near 55% of the development
effort; it was completed in a matter of days. Similarly to broadcast psi-calculi,
the work was done by starting from Bengtson’s proofs and making changes
as the need arises — usually all that is needed is to add an extra case for
the INVOKE rule to inductive proofs. These new cases present few problems,
for two reasons. First, the simplicity of the rule. Second, the rule is largely
irrelevant to the most difficult proofs: those about transitions emanating from
the parallel, restriction and replication operators. By comparison, the new
rules for broadcast have complexity on par with the COM rule, and are relevant
to all proofs about the aforementioned operators. We are also aided by our

1Paper II reports a figure of 63,334. This appears to be an error caused by including irrelevant
files in the tally, that happened to reside in the same directory.

62



Reproving old results

55%

Canonical instances

7%

Operator encodings

21% HO-bisimilarity

17%

Figure 3.3. Anatomy of the Isabelle formalisation of higher-order psi-calculi (55,497
LoC total).

design decision to treat clauses as a subset of the conditions, similarly to how
channel equivalence is treated, rather than as new syntactic constructs. This
makes the old proof scripts more reusable by e.g. circumventing the need to
redefine static equivalence.

17% of the proof scripts, but several man-months of labour, go towards
defining HO-bisimilarity and showing that the algebraic and congruence prop-
erties of (first-order) bisimilarity carry over. The bulk of the effort here goes
towards proving that HO-bisimilarity is preserved by parallel. On a high level,
this proof turns out to require significant new ideas when compared to the first-
order case, involving the use of sophisticated bisimulation up-to techniques.
On a lower level, many new technical difficulties regarding the treatment of
bound names present themselves. For an example, in several places we need
to reason about the transitive closure of relations within inductive proofs where
it is necessary to avoid clashes with certain bound names. Suppose that some
names are appropriately fresh in P and Q. Suppose further that P and Q are
related by the transitive closure of R, so that for some R̃ we have

P R R0 R . . . R Rn R Q

The difficulty is that freshness in P and Q does not imply freshness in Ri.
To overcome this difficulty we define a notion of name-avoiding transitive clo-
sure, which is a notion of transitive closure parameterised on a set of names
that intermediate processes must avoid. This set of names must be carefully
massaged to be large enough to guarantee freshness, yet small enough to guar-

63



antee inclusion in the relation under consideration. In performing this work,
Isabelle has been an indispensable tool in discovering the precise formulation
of technical lemmas and induction hypotheses. I surmise that without a proof
assistant, finding e.g. which assumptions are needed for Lemma 4.29 from
Paper II to hold, is beyond the reach of mere mortals.

21% of the proof scripts, and again several man-months of labour, go to-
wards showing that the encodings of replication, choice and n-ary case are
valid. While the encodings look natural and obvious to the human observer, it
turns out that their correctness depends on many implicit assumptions about
the assertion logic of the psi-calculus under consideration; for an example, that
assertions in the outside environment cannot disable locally scoped clauses.
Again, we believe that discovering precisely which assumptions are needed
would have been very difficult without a proof assistant. In our bisimulation
proofs, these assumptions manifest themselves as 10–15 additional requisites
for membership in the candidate relation, making it very tedious to show mem-
bership in the candidate relation for derivative processes. The replication proof
is further bogged down by a candidate relation that is closed under restriction
and parallel composition; in Paper V we show how to significantly improve
this proof by using bisimulation up-to context techniques.

The final 7% of the proof scripts concern canonical higher-order instances.
We define them, prove that they satisfy the requisites for being a higher-order
psi-calculus, and the requisites for the encodings discussed in the previous
paragraph to be valid. The main complication here is, perhaps surprisingly,
to define them. While canonical instances are rather simple to define on
paper, we must resolve ambiguities in the paper definition, and circumvent
several technical restrictions of the nominal logic package to define them in
Isabelle. The way Definition 3.4 of Paper II is presented makes it unclear
whether a canonical instance is second-order (where clauses may only contain
first-order processes) or ω-order (where clauses may contain higher-order pro-
cesses). The former would be easier to implement, but for increased generality
we prefer instead the latter interpretation. As for the technical complications,
we may not define nominal datatypes inside a locale. Even if we could, nom-
inal datatypes may not have recursion beneath type constructors, so e.g. the
following is not allowed:

nominal datatype name_btree = Leaf name | Node "name_btree list"

To circumvent these limitations we define, before the locale, seven polymor-
phic mutually inductive datatypes that respectively encode: higher-order as-
sertions, higher-order conditions, clauses, binding sequences in parameterised
clauses, higher-order processes, input binding sequences in higher-order pro-
cesses, and case expressions of higher-order processes. Since we could not
reuse the existing type constructors for lists and processes, bijections between
these pre-existing datatypes and our local copies must be manually defined
and managed in proofs. Further, the support for defining functions on nominal

64



datatypes is quite limited: only structural recursion on the first argument, with
the other arguments unchanged in recursive calls, is supported. The result is
a formalisation that is difficult to read and clumsy to reason about. We be-
lieve this tedium could be partially alleviated if recent advances in datatype
representation [BHL+14] and local type definitions [KP] for Isabelle could be
integrated with the nominal package.

3.1.3 Generalised pattern matching
This section is based on Paper III.

As described in Section 2.6, pattern matching in the original psi-calculi
is defined in terms of substitution, an approach that is common in the litera-
ture [Gel85, HJ06] but inconvenient in e.g. cryptographic applications.

In calculi for cryptography, encryption and decryption are often modelled
using binary function symbols enc and dec, respectively. Here enc(m,k) rep-
resents the encryption of message m with key k, and dec(c,k) represents the
decryption of ciphertext c with key k. This seems easy to accommodate in psi-
calculi by simply adding these constructs into the term language, but a closer
look reveals that psi-calculi has some undesirable properties for this scenario.
First, it would be nice to incorporate a rewrite rule dec(enc(m,k),k)→ m for
decrypting encrypted messages into the term language. Such rewrites could
be performed as a subroutine of the substitution function. But if the key car-
ries names, this would violate the name preservation law of term substitution
which states that all names in T̃ must occur in X [x̃ := T̃ ] if x̃ ⊆ n(X). As an
example, consider the substitution dec(x,k)[x :=enc(m,k)] = m where k does
not occur in the result.

Moreover, the pattern matching facility of psi-calculi is such that every term
is a pattern, and every name in a pattern can be considered a pattern variable.
For an example, the input prefix M(λx)enc(m,x).P receives an encrypted mes-
sage and uses pattern matching to extract the key from it, which is clearly not
the intention of a cryptographic model.

We address these shortcomings by decoupling terms from patterns, and de-
coupling pattern matching from substitution. Hence we introduce the patterns
X, ranged over by X , as a new parameter of psi-calculi. Input prefixes are now
of kind M(λ x̃)X . When defining a psi-calculus, we may impose custom restric-
tions on which names in a pattern may be λ -bound. Through this mechanism
we may repair the degenerate cryptographic example above, by disallowing
the λ -binding of k in enc(m,x).

The indirect definition of pattern matching via substitution is supplanted
by a direct definition of precisely which substitutions may arise when an in-
put pattern interacts with a received message. Formally this is captured by
a predicate MATCH, which given a pattern X , input binders x̃, a message M,
and a term sequences T̃ , is true iff the substitution [x̃ := T̃ ] may arise when

65



M is received by (λ x̃)X . In particular, if there are no substitutions that may
arise through interaction of a particular message and pattern, the message may
not be received. For an example, suppose messages are tuples (d,c) of da-
tums d and MD5 checksums c. A calculus where an input prefix M(λx)x
will receive the datum iff the checksum is correct can be obtained by letting
MATCH(x,x,(d,c),e) hold iff d = e and d = MD5(c).

This allows for very fine-grained control of pattern matching when defining
a psi-calculus. Moreover, we no longer need the name preservation law of
substitution, since its only use was to ensure that pattern matching satisfies
certain name preservation properties. With pattern matching and substitution
decoupled, we are no longer barred from incorporating the above example of
term rewriting into the substitution function.

The usual meta-theory of bisimulation carries over:

Theorem 10 (Theorem 3.13 of Paper III). All the results in Section 2.6 also
apply to psi-calculi with generalised pattern matching.

In Paper III, several examples demonstrate how these features can be in-
stantiated to capture notions of both deterministic and non-deterministic com-
putation such as Peano arithmetic, Dolev-Yao message algebras [DY83], and
the lambda calculus with an ambiguous choice operator [McC63]. We also
show a kind of subject reduction property: the set of well-formed processes
is preserved by the transition relation, which is not necessarily the case in the
original psi-calculi.

Formalising generalised pattern matching
The proof of Theorem 10 is mechanised in Isabelle. This effort presented little
difficulty: the changes to the language are mostly local to the rule for input,
and the majority of the proofs require no change at all. The bulk of the effort
was to prove formally that the new notion of pattern matching is well-behaved
wrt. the treatment of bound names. Scenarios like these, where existing proofs
must be re-checked under small changes to the definitions, are among those
where interactive theorem provers truly shine: through a very small labour in-
vestment we obtain complete certainty that under the new definitions, nothing
broke.

3.1.4 Sorts
This section is based on Paper III.

In the polyadic pi-calculus [Mil91], names are channels on which sequences
of names can be transmitted. At first glance, this seems easy to represent as a
psi-calculus by letting T=N ? and setting channel equivalence to be syntactic
equality on names. However, note that substitutions in psi-calculi are total

66



functions that replaces names with arbitrary terms — hence substitutions such
as

〈x1, . . . ,xn〉[xi :=〈y1, . . . ,ym〉]

must be accounted for, even though no input prefix in the polyadic pi-
calculus could give rise to it. A solution is to extend the set of terms from
sequences of names to n-ary trees with names as leaves. But if our intention
is to exactly capture the polyadic pi-calculus, this solution is unattractive; we
have introduced “junk” into the term language that bears no relation to any-
thing in the polyadic pi-calculus.

In sorted psi-calculi, we refine the notion of names so that there is a count-
able set of name sorts SN . For each sort s ∈SN there is a countably infinite
set of names, disjoint from the names of all other sorts. Terms and patterns
are also assigned sorts (not necessarily disjoint from the name sorts). Let
SORT(M) denote the sort of M. When defining a psi-calculus, we may restrict
the set of well-formed processes by instantiating the following compatibility
predicates:

∝ ⊆ S ×S Can be used to receive
∝ ⊆ S ×S Can be used to send
� ⊆ S ×S Can be substituted by

Sν ⊆ S Can be bound by name restriction

For an example, the process M N.0 is well-formed iff SORT(M) ∝ SORT(N).
The substitutability relation � does not directly impact the process syntax, but
is used to restrict the set of admissible substitutions. Returning to the polyadic
pi-calculus, we can now remedy the problem of junk terms. Let SORT(x) =
name and SORT(〈x1, . . . ,xn〉) = seq. By defining � = {(name,name)} we
make sure that names cannot be substituted by sequences of names, so we
need not account for substitutions that generate junk. If we also let ∝ =
∝= {(name,seq)} the well-formed input and output prefixes will be precisely
those of the polyadic pi-calculus, namely those where channels are names and
messages are sequences of names.

With such fine-grained control over which processes are well-formed and
which are not, we are able to encode existing process calculi with very strong
quality criteria; so strong that we prefer to call them representations rather
than encodings. A representation is an encoding that is compositional and
satisfies strong operational correspondence of labelled transitions. A complete
representation is one where for every process Q of the target language, JPK∼
Q for some P. Intuitively, this requisite captures junk freedom, in the sense that
the target language contains no behaviour that is absent in the source language.
We obtain a complete representations of both sorted and unsorted polyadic pi-
calculus, and of value-passing CCS [Mil89]. We also obtain a representation
of the polyadic synchronisation pi-calculus [CM03].

67



Formalising sorts
Unfortunately, formalising this sort system in its entirety is currently beyond
the reach of Nominal Isabelle. While there is support for having multiple
name sorts, each name sort must be individually declared before use. For an
example, if we want to distinguish between names and variables we may begin
our development as follows:

atom decl name

atom decl variable

In our case this is of little use, since the set of sorts under consideration is
a (locale) parameter rather than a priori knowledge. Even if we had a mecha-
nism for taking a set of sort names, and issuing atom decl commands for each
of them, further problems arise. When defining the inductive datatype repre-
senting process syntax, the disjointness of the name sorts means that rather
than a single restriction operator, we would need one distinct restriction op-
erator per name sort under consideration. Even worse, the set of sorts may
be infinite, meaning that we would need to issue infinitely many atom decl
commands, and define inductive datatypes with infinitely many constructors.
Clearly this is not the way forward, and we should seriously consider whether
Nominal Isabelle needs further development, or whether it is the right tool for
the job in the first place. We could make some progress if we migrate to ver-
sion 2 of Nominal Isabelle [HU10], where there is experimental support for
multi-sorted atoms. Unfortunately, the set of sorts must then be countable and
fixed in advance, so we would not have as much parametricity as we would
like.

In the meantime, we formalise a manageable subset of the sort system.
This subset admits arbitrarily many term sorts, but only a single name sort.
Of the previously discussed calculi, this subset suffices to represent the un-
sorted polyadic pi-calculus and the polyadic synchronisation pi-calculus, but
not value-passing CCS or the sorted polyadic pi-calculus. The usual results
about bisimulation require no new effort since the semantics is unchanged.
However, the proofs about bisimulation congruence change slightly since we
only consider well-sorted substitutions. The main property of interest we
prove is subject reduction: that derivatives of well-formed processes are well-
formed; at 170 lines, this is a relatively straightforward development.

3.2 Bisimulation up-to techniques
In this section we summarise Paper V.

Bisimulation up-to techniques are methods for reducing the size of relations
needed in bisimulation proofs. Without up-to techniques, showing that a rela-
tion R is a bisimulation essentially boils down to showing that the leftmost
diagram in Figure 3.4 commutes for all pairs (P,Q) ∈R.

68



P R Q

α

y yα

P′ R Q′

P R Q

α

y yα

P′ f (R) Q′

Figure 3.4. Illustrations of the bisimulation proof method (left), and the bisimulation
up-to f proof method (right).

Note that the same relation is used as both the source and target of the
transition, corresponding to the upper and lower parts the diagram. Small
relations are desirable since it means fewer transitions to follow in the upper
part. Large relations are desirable since it makes it easier to close the diagram
in the lower part. So should we choose R to be small or large? With up-to
techniques we can have it both ways, by using functions to enlarge R. A sound
up-to technique is a function f on relations such that the rightmost diagram in
Figure 3.4 suffices to prove R ⊆ .∼.

As extensions of psi-calculi grow in complexity, so does the bisimulation
up-to techniques used to prove their meta-theory, and of course each new such
proof technique must be proven to be sound. Since the up-to techniques used
often share many elements, some proof re-use would be desirable, but it is
not clear how to combine old soundness results to derive new ones in general.
This leads to duplicated effort in both the soundness proofs themselves, and in
the bisimulation proofs in lieu of more advanced proof techniques.

Sangiorgi [San98] and Pous [Pou07a] have singled out subsets of the sound
up-to techniques that enjoy nice compositionality properties; these are respec-
tively called the respectful and the compatible functions. They are both closed
under useful constructors such as union, composition and chaining. Hence, the
soundness of elaborate up-to techniques follows immediately from the sound-
ness of smaller building blocks. The compatible functions allow us to consider
arbitrary coinductive objects and not just bisimulation. This turns out to be
helpful in the case of psi-calculi since our definition of bisimulation is differ-
ent from standard LTS bisimulation. Below we only present the special case
where the objects under consideration are relations.

Let f ,g,h range over functions from relations to relations. We define an
ordering on functions pointwise, so that f ≤ g holds if for every relation R
we have that f (R) ⊆ g(R). Recall from Sections 2.2 and 2.5.1 that gfp(g)
denotes the greatest fixed-point of g, and that a post-fixed point of g is any
relation R satisfying R ⊆ g(R). A function f is g-compatible wrt. the mono-
tone function g iff f semi-commutes with g, i.e. if

f ◦g ≤ g◦ f

69



Every g-compatible function f enjoys the property that whenever a relation
satisfies R ⊆ g( f (R)), then R ⊆ gfp(g). In the special case of b-compatible
functions, where b is the bisimilarity functional from Section 2.2, this is pre-
cisely soundness of the rightmost diagram in Figure 3.4.

Without specifying g, one can prove that the identity function, and the con-
stant functions that always return post-fixed points of g, are g-compatible;
and that function composition and union preserve g-compatibility. In the spe-
cial case of b, we further have that chaining and transitive closure preserve
b-compatibility. In CCS, the context closure

{(C[P],C[Q]) : (P,Q) ∈R}

also preserves b-compatibility.
Our contribution is to apply this theory of compatible functions to psi-

calculi, where the main difference from previous work on up-to techniques
involves the treatment of assertions. Getting started is easy: all we need is a
functional b whose greatest fixed point is precisely bisimilarity on psi-calculi,
as seen in Definition 16, and we get the general results above for free. How-
ever, this b is not unique. Different choices of b will lead to different notions of
sound functions, compatible functions, compositionality properties, and differ-
ent proof obligations in bisimulation proofs. Choosing a b that strikes a good
balance between these aims is the main design decision involved. A natural
first candidate to consider is the one implicitly used in Definition 16, whose
post-fixed points are the bisimulation relations. While a workable choice, it
is somewhat inflexible: the symmetry clause makes it difficult to reason about
asymmetric candidate relations in proofs, and it is unclear whether closure un-
der parallel contexts is compatible. The functional we prefer makes trade-offs
that result in pros and cons as follows:
+ Admits candidate relations that are asymmetric, non-equivariant and not

closed under extension of the assertion environment.
+ Chaining, transitive closure, and most context closures are compatible, in-

cluding the practically important cases of restriction and parallel con-
texts.

+ Name permutations, and rewriting of frames modulo static equivalence, are
compatible.

− The proof obligation for the simulation case of bisimulation proofs is
strengthened, so that instead of the derivative processes being related
by the current environment, they must be related in every extension of
the current environment.

− The closure of a relation under extension is not sound. Hence singleton
relations of the form {(Ψ,P,Q)} are rarely admissible in practice; it is
usually necessary to consider instead relations with arbitrary environ-
ments, i.e.

70



⋃
Ψ

{(Ψ,P,Q)}

The two negative points seem more like annoyances than serious problems.
For the first negative point, in our case studies we find that the cost of dis-
charging the extra proof obligation is a handful of lines at worst. For the
second negative point, though one relation is singleton and the other infinite,
the difference in practice between their associated bisimulation proofs is just
one extra universal generalisation.

We formalise all our definitions and theorems in Nominal Isabelle, includ-
ing compatibility of the important bisimulation up-to context techniques. Com-
patibility proofs involve a simulation case which is similar to that of bisimu-
lation proofs, but uses different relations in the top and bottom parts of the
diagram. Here we benefit greatly from Bengtson’s foresight when develop-
ing the original psi-calculi formalisation: simulation proofs are factored out
of the congruence proofs for bisimulation, so as to be reusable in other con-
texts. For example, Bengtson proves a lemma2 that given a triple of the form
(Ψ,P | R,Q | R) and a relation R satisfying side-conditions that are too many
to mention here, all transitions from (Ψ,P | R,Q | R) lead to R. Often, these
lemmas are directly applicable to our setting. Sometimes the side-conditions
turn out to be overly tuned to bisimulation proofs, and we must find other side-
conditions that hold in our setting; the most technically challenging proof is to
derive such a simulation lemma for triples as above with an outermost parallel
operator.

As case studies, we show two examples where the use of up-to techniques
has simplified our proofs of known results. The most drastic simplification
is obtained in the correctness proof for the encoding of replication discussed
in Section 3.1.2, where bisimulation up-to context techniques allows us to
shorten the proof from 8788 lines to 3263 lines. We also prove a few structural
laws about the replication operator.

From a proof engineering perspective, a measure of our success is that
adding up-to techniques to the formalisation actually decreases its overall size,
when we account for the simplifications to existing bisimulation proofs they
enable. Deriving the new proof techniques adds about 3750 lines of code to
the psi-calculi formalisation. This is smaller than the decrease in size of just
the correctness proof for the replication encoding.

3.3 Encoding priorities in psi-calculi
In this section we summarise Paper IV.

Priorities allow certain actions to take precedence over others. This is use-
ful when modelling systems because it admits more fine-grained control over

2Lemma 27.38 of [Ben10].

71



the model’s behaviour. Phenomena that exhibit prioritised behaviour include
e.g. interrupts in operating systems, and exception handling in programming
languages.

A common approach to implementing priorities in the literature is to explic-
itly annotate prefixes with a priority level [CH88, BGLG93, Pra94]; we call
this action priorities. Low priority actions are only available if no synchroni-
sation between high priority actions is possible. This is a static approach to
priority, in that the priority level of a particular action is not subject to change.
Dynamic priorities, by contrast, allow the priority level of particular actions to
change as the system evolves.

We show that augmenting psi-calculi with dynamic action priorities adds
no expressive power.

First, we define an extension of psi-calculi with priorities, where the en-
tailment relation is extended to judgements Ψ ` prio(M) = p, meaning that
communication on the channel M has priority level p ∈ N in the environment
Ψ. We use the convention that 0 denotes the highest priority. We make appro-
priate changes to the semantics to make sure the priorities are enforced. We
show how the extension with priorities can be instantiated to capture the π@
calculus [Ver07], and prove in Isabelle that the structural and algebraic laws of
strong bisimulation from Section 2.6 remain valid under the new semantics.

Second, we show that the expressive power of this extension is already
available without it. For each psi-calculus with priorities we construct a psi-
calculus without priorities, and an associated encoding function from the for-
mer to the latter. The key insight behind the translation is that since channel
equivalence depends on the assertion environment, all transitions involving
any particular channel M can be disabled by making sure the environment en-
tails no channel equivalences M .↔ N involving it. Priorities disable certain
transitions based on what prefixes are on offer at the top level. Hence, if we
let the assertion environment include information about what the top level pre-
fixes are, then the channel equivalence judgement can defined so that it allows
actions only on the highest-priority channels currently available; thus, we can
have prioritised behaviour without endowing psi-calculi with an explicit no-
tion of priorities.

A main technical difficulty with the encoding is that after a transition has
been taken, the assertion environment must be updated to reflect the absence
of the thus consumed prefixes. Otherwise, high-priority prefixes long since
consumed will block low-priority prefixes forever. This necessitates a non-
monotonic assertion logic, which is difficult to define in a compositional man-
ner. We address this by an approach based on multisets of prefixes with nega-
tive occurrence. While this leads to a rather involved definition of entailment,
the translation function is very simple and satisfies strong correspondence
properties. The encoding is homomorphic on all operators except prefixes,
which are encoded as follows

72



Jα.PK= LαM | α.(L−αM | JPK)
In other words, in parallel to every prefix we add a positive occurrence of it

to the assertion environment. In parallel with its continuation, we add a nega-
tive occurrence to cancel the previous positive occurrence once the transition
has been taken.

For an example of how the encoding operates, consider a prioritised psi-
calculus where the channels are names annotated with a priority level ap such
that Ψ ` prio(ap) = p, and where channel equivalence is syntactic equality.
Consider the process

P , a0 | a0 | b1

Initially we have that P
b1−−6→, since the high-priority synchronisation on a

takes precedence. The encoding of P is as follows, modulo some garbage
collection:

JPK= La0M | a0.L−a0M | La0M | a0.L−a0M | Lb1M | b1.L−b1M

We have that F (JPK) = {a0,a0,b1}, i.e. precisely the multiset of top-level
prefixes in P. There is no initial b1-transition from JPK because in order to
derive one, b1 must be channel equivalent to something in the environment
{a0,a0,b1}. Since F (JPK) contains two matching prefixes that can synchro-
nise at the highest priority level 0, channels with lower priority are not channel
equivalent to anything. However, there is a transition JPK τ−→ Q′ for

Q′ , La0M | L−a0M | La0M | L−a0M | Lb1M | b1.L−b1M

By unguarding the negative occurrences of the consumed prefixes, the frame
evolves to

F (Q′) = {a0,−a0,a0,−a0,b1} ' {b1}

Hence F (Q′) ` b1
.↔ b1 holds, and we may derive a transition Q′ b1−→ Q′′

for some Q′′.
This encoding enjoys very strong quality criteria; for an example, it satisfies

every criterion discussed in Section 2.3 save for full abstraction. In particular
we have strong operational correspondence of labelled transitions wrt. struc-
tural congruence. By contrast, most encodings studied in the literature tend to
introduce a protocol that uses many target language transitions to encode one
source language transition.

Formalising priorities
When implementing the semantics of psi-calculi with priorities in Isabelle,
the main technical challenge is how deal with negative premises [Gro93] in

73



the operational semantics, i.e. rules where the absence of some transitions are
premises for others. Such premises arise naturally in a setting with priorities.
For an example, consider a CCS-like language where τ is a high priority in-
ternal action, and τ is low priority. A communication rule for low-priority
actions can be written

P a−→ P′ Q a−→ Q′ P | Q τ−−6→

P | Q τ−→ P′ | Q′

The third premise makes sure we cannot derive a low priority action if there
is a high priority action available. While this is arguably the most natural
way to define prioritised semantics, it is difficult to reason about. Because
of the negative premise the rule is not monotonic, and the semantics cannot
be read as an inductive definition in the usual sense. The problem of giving
meaning to operational semantics with negative premises has been treated by
several approaches in the literature [Gro93, BG96, vG04], and we could base
our Isabelle implementation on them. But doing so would create a significant
gap between our formalisation and the pre-existing psi-calculi formalisation
by Bengtson; a gap that we would like to keep as small as possible in order to
facilitate proof re-use. For an example, stratifying our semantics as in [Gro93]
would imply that wherever Bengtson may proceed by induction on the depth
of inference, we need to use (possibly transfinite) induction on strata.

Our solution is that whenever a negative premise P
α−−6→would occur in the

semantics, we use instead a premise P
α−−6→U on the auxiliary transition relation

−→U . This relation is defined by precisely the rules of −→, but without the
negative premises. Thus all premises are positive, and both −→U and −→ are
proper inductive definitions. The disadvantage of this approach is, of course,
that we need to implement two transition relations instead of one. The cost
of doing so, however, is quite low because of their similarity to each other.
In particular, re-use is facilitated by the fact that −→U is almost exactly the
original psi-calculi semantics, and that−→⊆−→U . That this approach defines
the same semantics as the approach with explicit negative premises is shown
in [ÅPBP+13].

3.4 Expressiveness of monotonic parallel composition
In this section, we take a step back from psi-calculi and consider instead arbi-
trary transition systems endowed with a notion of parallel composition. It is
based on Paper VI.

We say that a parallel operator | is monotonic if one operand cannot con-
strain the behaviour of the other; or in other words, if the following rule holds:

74



PAR
P −→ P′

P | Q −→ P′ | Q

We offer a simple and general method for obtaining separation results be-
tween models of concurrency, based on little more than whether the parallel
operator is monotonic or not. The separation is obtained by considering solv-
ability of a consensus problem, that can be intuitively stated as follows:

n observationally equivalent greasers walk into a bar. The greasers may,
possibly after conferring with each other, non-deterministically declare that
either Elvis Presley or Jerry Lee Lewis is the greatest singer of all time. Once
either Elvis or Jerry has been declared, the other may not be declared; other-
wise a bar fight will break out. A solution to the consensus problem is to find
a process P, representing a greaser, such that no matter what n is, both Elvis
and Jerry are possible outcomes and it can be guaranteed that a fight will never
break out. Such a solution we call a consensus process.

The main insight is that with monotonic parallel composition, there cannot
exist a consensus process. Because of the PAR rule the greasers may always
split into two cliques that independently reach different outcomes. It follows
immediately that a model of concurrency that contains a consensus process
cannot be encoded into one that has monotonic parallel composition, if we
require that the encoding translates consensus processes into consensus pro-
cesses.

There are similar separation results to be found in the literature [EM99,
Phi01, VBG07]; these are formulated for particular process calculi, and are
derived from the impossibility of solving a certain kind of the leader election
problem with the monotonic parallel operators of CCS and the pi-calculus.
Our work improves on this state of the art in two main ways.
• Leveraging consensus instead of leader election admits a simpler prob-

lem statement. This allows us to strengthen the results of [EM99, Phi01,
VBG07], since the criteria on encodings needed to preserve consensus
processes are weaker than those needed to preserve electoral systems.
• We abstract away from the particulars of any one process calculus, giv-

ing a general separation result. From the general result, many particu-
lar separation results follow immediately as special cases. We illustrate
this point by showing applications to calculi across a wide spectrum of
application domains: broadcast communication, priorities, concurrent
constraints, time, name fusion, and psi-calculi.

The abstract result goes as follows. A composition ⊗ is an associative and
communicative binary function on the processes of a transition system. A
composition is monotonic if P ==⇒ P′ implies P⊗Q ==⇒ P′⊗Q for all P,P′,Q.
Let Pn

⊗ denote n copies of P composed using ⊗, so e.g. P2
⊗ = P⊗P.

75



Pn
⊗

elvis jerry6

Figure 3.5. Illustration of a consensus process.

Let elvis, jerry be two process predicates. We say that P is a consensus
process over ⊗ if for all n > 1, Pn

⊗ behaves as illustrated in Figure 3.5: from
Pn, states where elvis holds and states where jerry holds are both reachable;
but elvis is not reachable from jerry, and vice versa. We also assume that the
set of states satisfying elvis, jerry is closed under composition with derivatives
of Pn.

The above two paragraphs contain all the background we need to state our
main result:

Theorem 11. There are no consensus processes over monotonic composition
operators.

In order to derive relative expressiveness results from this theorem, we
define two sets of criteria on encodings, and prove that they both map con-
sensus processes to consensus processes. The first kind of encoding satis-
fies weak operational correspondence and is elvis, jerry-sensitive. The sec-
ond kind satisfies computational correspondence. Both sets of criteria use the
novel compositionality-style requisite

JP⊗S QK= JPK⊗T JQK

Where⊗S,⊗T are the compositions used to compose greasers in the source
and target language, respectively. This is weaker than homomorphism since
the compositions need not be operators in the language, and orthogonal to
compositionality since compositions need not be contexts and contexts need
not be associative, commutative or monotonic.

Formalising monotonic parallel composition
We formalise all results from Paper VI that are independent of particular pro-
cess calculi. Our mechanisation consists of 1000 lines of code and took less
than a week in total to develop, meaning that the marginal cost of mechanis-
ing these results has been rather small. Since binders are irrelevant to these
proofs, we may work in Isabelle/HOL rather than Nominal Isabelle. In fact,
the setting of our proofs is just the LTS locale of Section 2.5.1, augmented so

76



that it also assumes the existence and algebraic properties of the composition
function ⊗.

Perhaps surprisingly, the most challenging work was the proof of a techni-
cal lemma concerning computations: namely, that for every process P there is
a maximal computation starting from P. We have chosen to mechanise com-
putations using Lochbihler’s formalisation of coinductive lists [Loc10]. This
allows us to handle finite and infinite computations in a uniform way. In partic-
ular we can do coinductive proofs about list predicates, similarly to the coin-
ductive proofs about bisimulation relations in Sections 2.2 and 2.5.1. Since
we do not have a concrete transition system to work with, obtaining a witness
to the existence of a maximal computation is problematic. We achieve this
using iteration over the Hilbert choice function ε , which given a predicate A
returns an arbitrary witness to the predicate if one exists (using the axiom of
choice). We then prove by coinduction that the sequence P0,P1, . . . is a max-
imal computation from P, where P0 = P, and Pn+1 = ε(λP′. Pn −→ P′), and
the candidate predicate is the set of all such iterations from P. It is unclear to
us if a proof exists that avoids using the axiom of choice, at least if we insist
on carrying out the proof in an abstract setting.

3.5 Summary
In summary, the main contributions of this thesis are the following.
• Extensions of psi-calculi with several new language features: broadcast

communication, higher-order data, priorities, a sort system, and better
pattern matching.
• Formal proofs in Isabelle that these extensions preserve the bisimulation

meta-theory of psi-calculi, and formal proofs of some new results con-
cerning meta-theory, expressiveness and applications.
• A high quality encoding from the extension of psi-calculi with priorities

to the original psi-calculi.
• Compositional techniques for simplifying bisimulation proofs that apply

to all psi-calculi, with applications to making the Isabelle proof archive
more maintainable.
• A simple and widely applicable method for establishing separation re-

sults between languages, based on whether parallel components may be-
have independently or not.
• Applying this method to strengthen four separation results from the lit-

erature, and derive four novel separation results.

77



4. Related work

In this chapter we discuss related work. The reader may also consult Papers I–
VI, where more detailed comments on some of these works, and others not
mentioned here, can be found.

4.1 Process calculi
The field of process calculi has a long history, and the earliest calculi go
back to the 1970’s and 1980’s, with three main branches originating from
CCS [Mil80], CSP [BHR84] and ACP [BK84]; ours is the CCS branch. For a
historical overview we refer to Baeten [Bae05].

Psi-calculi has its roots in the pi-calculus [MPW92] by Milner, Parrow and
Walker. It is a fundamental calculus for concurrent processes in much the
same way as the λ -calculus is a fundamental calculus for sequential processes.
The communication model is one-to-one synchronous communication, and
the only messages that can be exchanged are channel names. The number of
variants and extensions of the pi-calculus that have been proposed are far too
many to mention here. We focus only on two that are particularly relevant,
namely the spi calculus and the applied pi-calculus.

The spi calculus [AG97] by Abadi and Gordon is an early example of a
pi-calculus extension, intended to model cryptographic protocols at a more
concrete level than pure pi-calculus. To this end, term constructs such as pairs
and integers are added along with primitives for cryptographic operations —
the exact formulation varies depending on the application under consideration.
The focus is on using testing equivalences between processes to verify authen-
ticity and secrecy properties of protocols.

A successor to the spi calculus is the applied pi-calculus [AF01] by Abadi
and Fournet. It has many features that are similar to, and indeed has inspired,
features in psi-calculi. There is a notion of active substitutions, substitutions
waiting to be applied, that are part of the process environment much like as-
sertions in psi-calculi. Unlike assertions, active substitutions can only occur
at the top level. Message terms in the applied pi-calculus are generated by
names, variables and function symbols taken from an arbitrary finite signature.
This signature, as well as an equational theory over it, can be seen as parame-
ters of the applied pi-calculus. In psi-calculi, the terms can be taken from any
finitely supported nominal set regardless of the concrete structure of terms,
and any equational theory over them can be expressed through the entailment
relation. Overall, we find that psi-calculi capture both of these phenomena
using mechanisms that are simpler yet more generally applicable [BJPV11].

78



4.2 Process calculi and theorem proving
The first formalisation of a process calculus in a theorem proving environment
appears to be due to Cleaveland and Panangaden [CP88], who describe a for-
malisation of CCS in the Nuprl system, though the authors focus on an earlier
step, namely developing a denotational semantic model of concurrency that
they then implement CCS on top of as a case study.

Another early formalisation of CCS is due to Nesi [Nes92], who formalises
its syntax and axiomatisation in HOL. Operational semantics and bisimulation
are not considered (and hence the axiomatisation is postulated rather than de-
rived), as the emphasis is on using induction over the process syntax to reason
about system descriptions.

The first theorem prover formalisation of the pi-calculus is due to Mel-
ham [Mel94], who uses HOL. The treatment of bound names is not dependent
on a particular representation: the definitions are parametrised on a free type
variable representing the type of names, and a choice function that given a set
of such names always returns a fresh name is assumed. The process syntax is
raw, in the sense that it does not identify alpha-equivalent terms. Instead, prov-
ing that alpha-equivalence is a bisimulation appears to be the idea, although
the author does not mention actually doing so. In fact, the only bisimulation
proofs that appear to have been completed at the time of publication are the
abelian monoid laws of summation. These are not proofs where the treatment
of bound names play any significant role, making it difficult to assess the prac-
ticality of Melham’s approach.

Hirschkoff [Hir97] has formalised the pi-calculus using Coq. This is the
first formalisation of the polyadic pi-calculus, and utilises de Bruijn-indices
to represent names. In this representation, alpha-equivalent terms have the
same syntactic representation, in contrast with nominal data where syntax is
quotiented by alpha-equivalence. This results in a simple treatment of bound
names, at the cost of often having to do arithmetic on the indices represent-
ing free names, both in technical lemmas and in the statements of the main
definitions and theorems. Bisimulation up-to techniques are used to prove the
standard congruence and structural equivalence results, as well as the so-called
replication theorems [Mil91].

The Ph.D. thesis of Briais [Bri08] contains a formalisation of the spi calcu-
lus in Coq. Since the thesis considers several spi calculus dialects and Briais
strives to give them a uniform treatment, the formalisation is parametrised on
the type and behaviour of guards and actions; the dialects under consideration
emerge through different ways of instantiating these parameters. Unlike psi-
calculi, there are no general results about bisimulation gained through such
instantiation. Aside from technical lemmas and definitions, the only general
result appears to be that structural congruence is preserved by reduction for
instantiations that “satisfy some conditions” (it is not made explicit which
conditions). The other main result is derived separately for every instantiation,

79



and shows a correspondence between the symbolic and labelled transition re-
lations. Names are represented by de Bruijn-indices similarly to Hirschkoff’s
approach, with the novelty of a general notion of so-called “de Bruijn-types”
that characterises what it means for a type to use a de Bruijn representation —
this is roughly analogous to the notion of nominal datatypes that we employ,
and is used to alleviate the burden of having to prove the many technical lem-
mas related to arithmetic on de Bruijn-indices separately for every type under
consideration.

Boulier and Schmitt have developed a Coq formalisation of HOCore [BS12].
Predating the first formal publication of higher-order psi-calculi in Raabjerg’s
licentiate thesis [Raa12] by nine months, it earns the distinction of being the
first published theorem prover formalisation of a higher-order process calcu-
lus. The main results are soundness of IO-bisimilarity with regards to barbed
congruence, as well as decidability of IO-bisimilarity. Bound names are rep-
resented in the locally nameless style, meaning that explicit reasoning about a
well-formedness predicate is required. A follow-up paper by Maksimović and
Schmitt [MS15] expands this work by considering many variants of strong
bisimilarity that are all shown to coincide; an axiomatisation is also shown to
be sound and complete.

Finally, the most closely related work is by Bengtson and Parrow on for-
malising the pi-calculus [BP07a, BP07b] and psi-calculi [BP09, BPW16] us-
ing Nominal Isabelle. The work on psi-calculi, and the foundations it is built
upon, has been amply discussed in Sections 2 and 3. It largely subsumes the
pi-calculus formalisation, though the latter contains some results not available
in the more general setting of psi-calculi. Notably these include late equiv-
alences and a sound and complete axiomatisation of strong late bisimilarity.
Though Johansson defines a late semantics [Joh10], there is as yet no work on
axiomatisations or late equivalences for psi-calculi.

4.3 Broadcast in process calculi
Calculi with global synchronisation mechanisms go back to the 1980’s. CSP,
due to Brookes, Hoare and Roscoe [BHR84], features an interface parallel
operator ‖ such that P ‖ Q can engage in an action only if both P and Q can
do so. Milner’s SCCS [Mil83] is a generalisation of CCS where the set of
actions is taken to be an arbitrary abelian group. The parallel composition
(here called “product” and denoted ×) is such that if P α−→ P′ and Q β−→
Q′, then P×Q αβ−−→ P′×Q′, where αβ is the result of applying the group
operator to the actions; Holmer shows that broadcast communication emerges
as a special case of this synchronisation mechanism [Hol93].

The first proposed calculus to feature broadcasts in the sense of one-to-
many communication is Prasad’s CBS [Pra91, Pra93, Pra95]. Though Prasad

80



employs process algebraic methods, the main focus is on using broadcasts as
a programming paradigm for settings such as local area networks.

Ene and Muntean introduce the bπ calculus in [EM99], which is an adap-
tation of the pi-calculus to use broadcast communication instead of point-to-
point communication. The main focus is on establishing a separation result,
namely that the pi-calculus cannot uniformly encode bπ up to any “reason-
able” equivalence. The intention is to capture reliable broadcasts (the authors
state that “a process which [listens] on a channel a, cannot ignore any value
[sent] on this channel”). The purported formalisation of this is to use an aux-
iliary “discard” relation that characterises when a process is allowed to dis-
card a message, but since the discard relation is written so that every process
can discard every input action, the semantics fails to capture the intended be-
haviour. Consider the process a|(a|a) (where we elide input and output ob-
jects). Since a may discard the action a, the parallel rule may be used to infer
a|a a−→ 0|a, and the communication rule to infer a|(a|a) a−→ 0|(0|a), which
is an example of unreliable broadcast behaviour. a|a, however, exhibits reli-
able behaviour. In [EM01], an alternative formulation of the discard relation
is presented which does not suffer from this issue. In [Ene01], a version with
polyadic communication and an LTS semantics without structural congruence
is presented.

In the last decade, the widespread adoption of wireless networks has re-
sulted in a renewed interest in calculi for broadcast communication [NH06,
MS06, God07, God10, LS10, SRS10, GFM08]. A thorough comparison of
broadcast psi-calculi and all of these calculi can be found in Paper I; we shall
briefly discuss a few calculi that are absent in that comparison.

A main feature of Merro and Sibilio’s aTCWS [MS10] is the inclusion of
time in the model. The time model is such that when no nodes wish to broad-
cast a message, a timeout event is propagated through the network and all
pending message receptions time out. In psi-calculi, the same behaviour could
be achieved by modelling the timeout event as a low-priority reliable broad-
cast [ÅPBP+13].

The Applied Quality Calculus by Vigo, Nielson and Nielson [VNN13] fo-
cuses on reasoning about unsolicited messages, with explicit notions of failed
and unwanted communication. A feature of this calculus that is reminiscent of
psi-calculi is restrictions of the form (ν ã;W )P, where W is a world containing
facts about the names in ã and the relation between them. The derivation of
transitions from P is parametrised on this world, in a manner that is similar to
the way assertions influence execution in psi-calculi. It would be interesting
to further study the relationship between worlds and assertions.

The Secure Broadcast Ambients of Gunter and Yasmeen [GY09] feature
ambients [CG98] combined with broadcast communication. The aim is to
achieve a calculus where broadcasts occur within dynamically reconfigurable
domains. Like broadcast psi-calculi, Secure Broadcast Ambients have been

81



implemented using Nominal Isabelle [YG08], though the work appears to
be limited to formalising the definitions rather than proving properties about
them.

Finally we mention AWN [FvGH+12], the Algebra of Wireless Networks.
The aim is to define a process algebra with the necessary features to model
“real life” wireless mesh networks. The resulting language can hardly be de-
scribed as parsimonious: it has syntax and semantics in three layers, respec-
tively corresponding to sequential processes, parallel processes and networks;
an explicit treatment of locally stored data structures within processes; and
distinct primitives for broadcast, unicast, groupcast and node-internal com-
munication. Despite the richness of the language, it is carefully designed so
that it generates the same transition system — modulo strong bisimilarity —
as a variant that is in de Simone format [dS85]. That strong bisimilarity is
a congruence follows immediately from the fact that all operators in de Si-
mone format preserve bisimilarity. As a major case study, AWN is used to
verify the AODV routing protocol [PBRD03]. This extensive verification ef-
fort, including an Isabelle implementation and an extension with explicitly
modelled time, is detailed over several follow-up papers [HvGT+12, BvGH14,
BvGH16a, BvGH16b].

4.4 Higher-order process calculi
Higher-order process calculi probably originate with Thomsen’s Calculus of
Higher Order Communicating Systems (CHOCS for short) [Tho89]. CHOCS
extends CCS by treating processes as first class objects that may be passed as
values. It is demonstrated that CHOCS can simulate the untyped λ -calculus,
and that recursion can be encoded using process passing. A more recent formu-
lation called Plain CHOCS [Tho93] refines the way bound names are treated.
The resulting calculus is shown to be able to simulate the pi-calculus, and
vice versa. Sangiorgi obtains a fully abstract encoding of pi-calculus in his
higher-order pi-calculus [San93], which unlike CHOCS is ω-order rather than
second-order. A similar result is obtained for asynchronous variants of the
calculi in [San01].

The idea of defining a notion of higher-order bisimulation by allowing pro-
cesses occurring on labels to be mimicked by bisimilar labels appears to have
been independently discovered by Astesiano, Giovini and Reggio [AGR88],
and by Boudol [Bou89]. Sangiorgi obtains a less discriminatory equivalence
called context bisimulation [San94] by introducing a universal quantification
over contexts in which the processes on the label may be put. He further stud-
ies a more efficient characterisation of context bisimulation, a topic which is
investigated further by Jeffrey and Rathke [JR05].

Schmitt and Stefani’s Kell calculus [SS04] introduce a feature called passi-
vation, which allow running processes to be consumed as messages by other

82



processes that occurs above it in a locality hierarchy. The intended applica-
tion area is wide-area distributed systems, and the main results are that strong
context bisimulation congruence is a congruence, and that it coincides with
barbed congruence.

Lanese et al. study a minimal higher-order calculus called HOCore as a ve-
hicle for exploring the expressiveness of higher-order calculi. An interesting
result is that the calculus is Turing complete (and hence termination is unde-
cidable), yet bisimulation is decidable [LPSS11]. Termination in higher-order
process calculi has since been explored: Demangeon, Hirschkoff and San-
giorgi study type systems for termination [DHS10]; and Lago, Martini and
Sangiorgi study a particular class of processes that are guaranteed to terminate
in polynomial time [LMS10].

Sato and Sumii introduce a higher-order version of the applied pi-calculus,
which like the first-order applied pi-calculus is parametrised on a term algebra
and a corresponding term rewriting system for messages [SS09]. Unlike the
original formulation of the applied pi-calculus, active substitutions are absent;
instead, encrypted messages are sent as-is on labels. The focus is on the in-
terplay between process-passing and cryptographic operations expressed with
such terms, and the main result is the soundness of an up-to context technique
that makes the authors’ notion of bisimulation more tractable. A let-like
process construct for decomposing terms is present, and since processes may
occur among terms, this mechanism can be used to decompose the syntax of
received processes much like the pattern matching facilities in higher-order
psi-calculi. Decomposition of encrypted messages is prevented by explicitly
differentiating unapplied function symbols (that may be decomposed) from ap-
plied ones (that may not). A process construct run(M) for executing received
processes is also present, and can proceed as any process that the term M eval-
uates to according to the term rewriting system. Unlike our run construct, the
environment has no influence on this evaluation. The main purpose of the run
construct appears to be that it forces invocation of a received process to take a
τ step.

4.5 Sorts in process calculi
A sort system for the pi-calculus was first introduced by Milner [Mil91], as a
means of ensuring that the arities of polyadic inputs and outputs would match.
This initial effort has inspired a plethora of work on type systems for process
calculi, of which we mention only a few that are geared towards a general
account of type systems.

Honda [Hon96] gives such an account for so-called rooted process struc-
tures, where the focus is on using types to control how processes may be com-
posed.

83



Igarashi and Kobayashi [IK04] propose an abstract notion of type systems
for the pi-calculus, where types are taken to be slightly more abstract descrip-
tions of processes. It is parametrised on a subtyping relation and a consistency
condition that can be instantiated differently depending on what kind of prop-
erties (e.g. arity matching, deadlock freedom) the type system is intended to
check.

Hüttel introduces a general method of equipping psi-calculi with type sys-
tems [Hüt11]. It is parametrised on a nominal datatype representing types,
and a set of rules for making type judgements for terms, assertions and condi-
tions. From certain requisites on these parameters, general subject reduction
and channel safety results are derived. Hüttel makes stronger assumptions on
the psi-calculi parameters than what we do in this thesis. In particular, Hüttel’s
terms, assertions and conditions must be algebraic datatypes such that substi-
tution distributes over the constructors, whereas we admit arbitrary nominal
sets where substitution may include computation on data.

A commonality between all of the above is that they are intended for con-
trolling the behaviour of processes. Sorted psi-calculi is primarily intended
for an earlier step, namely controlling the construction of calculi so that they
more accurately reflect the intention of the calculus designer.

4.6 Pattern matching in process calculi
Haack and Jeffrey introduce the pattern-matching spi calculus [HJ06], which
has a pattern matching input construct that is similar to the original psi-calculi.
Specifically, input patterns have the form ∃x̃.M[A];P, where the pattern vari-
ables x̃ bind into the term M, which is taken from a fixed algebraic datatype
of messages. A relates to the type system and is ignored by the operational
semantics, and P is the continuation. A message N matches the pattern M if
N = M[x̃ := L̃] for some L̃, exactly as in the original psi-calculi. The prob-
lem where pattern matching can be used to bypass encryption discussed in
Section 3.1.3 is avoided by restricting attention to “implementable” patterns,
where secrets may be bound only if they can be synthesised from the non-
secret, non-bound components of the pattern. Our VARS function is a more
general solution to the same problem.

The calculus LYSANS by Buchholtz, Nielson and Nielson [BNN04] features
patterns over a spi calculus-like term language where variables occurring in a
pattern bind later occurrences of the same variable. For an example, consider
a message T(a,b) that is simply a tuple of names, where T is the datatype
constructor. T(a,b) matches the pattern T( , ), where the wildcard pattern
matches anything. The construct p%x binds x to the value matched by pattern
p in the rest of the pattern. Hence T(a,b) does not match the pattern T( %x,x),
but T(a,a) does. Similarly to the pattern-matching spi calculus and motivated
by the same concerns, a syntactic restriction on how patterns are constructed

84



is imposed: namely, no wildcards may occur in encryption key position. The
semantics of pattern matching is then defined so that the cleartext within an
encrypted message cannot be pattern matched against unless the key is known.

Schmitt and Stefani’s Kell calculus [SS04] is parametric on a language of
input patterns taken from a grammar. A relation match is defined, similarly
to ours, where the pattern ξ matches the message M yielding the substitution
Θ iff Θ ∈ match(ξ ,M). Unlike our work, the substitutions thus generated
are the usual syntactic replacement and cannot encode computation on data.
While the construction of patterns is rather constrained when compared to psi-
calculi, the only requisite on the match relation appears to be decidability. In
particular, there does not appear to be any requisites on the support of the
resulting substitution or anything akin to equivariance, so nothing prevents a
substitution from inventing fresh names on the right-hand side of transition
arrows. It would be interesting to give the Kell calculus a thorough nominal
reading in order to fully examine the ramifications of this.

4.7 Priorities in process calculi
Priorities for process calculi were first considered in an ACP setting by Baeten,
Bergstra and Klop [BBK86], where a unary priority operator Θ over processes
is defined that selects which of its subprocesses may act according to an arbi-
trary partial order over processes. It is given meaning by formulating axioms
describing its algebraic properties.

The first process calculus to give an operational semantics with prioritised
actions is due to Cleaveland and Hennessy [CH88], where a set of prioritised
actions is added to the usual CCS actions, the idea being that prioritised τ

actions pre-emt unprioritised actions. This is captured by a two-layered se-
mantics: the “a priori semantics” defines what transitions would be possible
ignoring priorities, and the second layer encodes negative premises in terms
of the a priori semantics. Deprioritisation and prioritisation operators, whose
semantics are reminiscent of CCS relabelling, are also considered.

A detailed survey of the subject of priorities in process calculi has been
conducted by Cleaveland, Lüttgen and Natarajan [CLN01]. Approaches are
classified according to two criteria: static vs. dynamic priorities, and global
vs. local pre-emption. With static priorities, the priority level of labels are
fixed as the system evolves, whereas in a dynamic approach they may change.
In global pre-emption, a prioritised action has pre-emptive power throughout
the whole system, whereas with local pre-emption priorities only apply locally
as dictated by some scoping mechanism. In this taxonomy, our priority system
for psi-calculi can be classified as dynamic and global. It would be interesting
to develop a system of local priorities for psi-calculi, where priorities can be
bound by name restrictions.

85



The first mobile calculus with priorities appears to have been introduced
in the field of systems biology, in the form of Versari’s π@ calculus [Ver07].
The main use of priority in this context is to use high priority levels to enable
sequences of actions to be completed atomically, with no interleaving of other
actions from the environment; for these purposes, the global and static priority
system employed suffices. This atomicity is then exploited, along with struc-
tured channels, to obtain encodings of several biologically inspired pi-calculus
variants.

More recently, John et al. introduce the attributed pi-calculus with prior-
ities [JLNU10], a pi-calculus extension where prefixes are decorated with a
general notion of interaction constraints called “attributes”, that are shown to
subsume priorities via an encoding of π@.

The expressiveness of priorities is not as widely studied as the expressive-
ness of other language features, such as mobility and choice. Still, a few scat-
tered results can be found in the literature. Most of these are negative results,
to the effect that priorities cannot be encoded in some formalism without pri-
orities.

The most comprehensive study on the relative expressiveness of priorities
in process calculi is due to Versari et al. [VBG07]. The authors consider two
extensions of CCS with global and local priority, respectively. First, CCS
with local priorities cannot be encoded into CCS with global priorities or into
the pi-calculus. These results are obtained through possibility/impossibility
of solving leader election; in Paper VI we strengthen the latter result by our
approach based on solvability of consensus. Second, neither flavour of priori-
tised CCS can be encoded into the pi-calculus or in bπ . The proof strategy
for these results are based on possibility/impossibility of solving the last man
standing problem, where n processes must determine whether n = 1 or n > 1.

Bliudze and Sifakis [BS08] study the expressive power of glue operators
in component-based systems. An n-ary glue operator op takes n components
with behaviour, and returns a composite component with new behaviour, ob-
tained by performing memoryless synchronisation between the behaviours of
its components. In this terminology, CCS parallel composition is a binary glue
operator and restriction is a unary glue operator. Choice is not a glue operator
since it is not memoryless; after a transition has been taken it remembers which
branch was taken. The authors show that the glue operators of the BIP model
for behaviour composition [BBS06] — where BIP stands for Behaviour, Inter-
action and Priority) — are strictly more expressive than the glue operators in
the subset of BIP without priority operators. This is not in contradiction with
our results on encoding priorities in psi-calculi, since our encoding function is
not a glue operator. For encodings between process calculi, the requisite that
the encoding context must be a glue operator implies at least that

Jop(P1, . . . ,Pn)K=C[P1, . . . ,Pn]

86



for some memoryless context C; intuitively, the glue must treat each compo-
nent as a black box, and may not modify the components themselves. This is a
significant strengthening of the standard compositionality requisite in process
calculi [Par08, Gor10b] where the encoding distributes onto sub-processes:

Jop(P1, . . . ,Pn)K=C[JP1K, . . . ,JPnK]

A similar result is due to Aceto and Ingólfsdóttir [AI08], who show that the
priority operator Θ cannot be expressed by operators in the tyft/tyxt [GV89]
or tree rules [FvG96] formats. In contrast to our work on encoding priori-
ties in psi-calculi, Aceto and Ingólfsdóttir are concerned with definability of
operators, rather than with the existence of translation functions.

An interesting commonality between the latter works is that the same coun-
terexample is used for both the BIP and tyft/tyxt results, namely the inability
of any positive glue operator or tyft/tyxt operator, respectively, to distinguish
between the following processes:

a.(a+b) a.(a+b)+a.a

where b takes priority over a.

4.8 Bisimulation up-to techniques
The first bisimulation up-to technique is Milner’s bisimulation up-to bisimilar-
ity [Mil89], which allows ∼R ∼ to be used in place of R in the lower part of
the bisimulation diagram. Sangiorgi generalised this to the notion of respectful
functions [San98], which is a family of functions that enjoy nice composition-
ality properties, and soundness: if f is respectful then f (R) may be used to
close lower part of the bisimulation diagram in place of R. These develop-
ments apply to strong bisimulation on labelled transition systems, and to the
pi-calculus. Hirschkoff implemented respectful functions for the pi-calculus
as part of the pi-calculus formalisation [Hir97] discussed in Section 4.2.

As discussed in Section 3.2, Pous was the first to abstract away from bisim-
ulation and derive, instead, compositional up-to techniques for arbitrary coin-
ductive objects [Pou07b], where bisimulation emerges as a special case. Since,
up-to techniques have been given much attention, with many recent papers
about refinements of the general method [HNDV13, Pou16, PW16] and its ap-
plication to new settings [RBR13, BPPR14, BPPR15, RBR16, BH16, SV16].
A highlight is an algorithm for checking NFA equivalence [BP13] by Bonchi
and Pous, where leveraging bisimulation up-to techniques leads to drastic
speedups. In the following discussion we will focus our attention on recent
works about up-to techniques and name-passing calculi.

87



Madiot et al. [MPS14] suggest to recover up-to techniques for higher-order
calculi by translating them to first-order transition systems (i.e. where the tran-
sition labels do not carry binders). This is a promising idea, but for our pur-
poses it would only be beneficial if the difficulty of developing up-to tech-
niques is less than the difficulty of (a) defining a first-order transition system,
(b) proving full abstraction and (c) deriving bisimulation up-to context in the
first-order transition system. It seems unlikely that this would hold in the gen-
eral case of psi-calculi, so we prefer our more direct approach. Staying in a
setting similar to the existing psi-calculi formalisation also has the advantage
that we may leverage the tremendous effort invested by Bengtson in develop-
ing infrastructure for reasoning about it in Isabelle.

Chaudhuri et al. [CCM15] formalise bisimulation up-to techniques for CCS
and the pi-calculus with replication in the Abella theorem prover. The pi-
calculus formalisation treats bound names with Abella’s built-in O quantifier
for generic judgements, i.e. Ox.P means that P holds for all x when nothing is
assumed about x. A comparison between this specification style and Nominal
Isabelle can be found in [GMN09]; a comparative disadvantage of Nominal
Isabelle is that a notion of substitution must be defined by the user, while it
comes for free in Abella. Their main results are: the soundness of bisimulation
up-to union, bisimilarity, and context for CCS, and the soundness of bisimula-
tion up-to bisimilarity for the pi-calculus. Bisimulation up-to context for the
pi-calculus is deferred to future work, with a main hurdle being that “defining
the notion of a process context in the π-calculus is tricky, because contexts are
allowed to capture free names” [CCM15, p. 164]. We do not know enough
about Abella to understand the precise technical difficulties involved in that
setting, but in Nominal Isabelle defining contexts is straightforward. The key
insight is that names must be treated as non-binding when occurring in a con-
text, but as binding once the hole has been filled; for more details on how to
set this up in Nominal Isabelle see Paper V.

Differences between settings aside, our work goes beyond that of Chaud-
huri et al. in several ways: first, we consider compatibility whereas they only
consider soundness; hence they lack a method for combining up-to techniques.
Second, we go beyond the pi-calculus and derive, once and for all, up-to tech-
niques for all pi-calculus extensions that fall within psi-calculi.

4.9 Monotonic parallel composition
There is a long-standing tradition in process calculi, originating with the work
of Bougé [Bou88] and Palamidessi [Pal97b], of deriving separation results
through possibility/impossibility of solving leader election. The idea that aban-
doning leader election can lead to stronger separation results has been pursued
by Peters and Nestmann [PN10]. They revisit Palamidessi’s result that mixed
choice π-calculus is more expressive than separate choice π-calculus [Pal03],

88



derived using leader election-based techniques. Peters and Nestmann achieve
a stronger version of the same result by abstracting away from leader election
and focusing instead on the problem of breaking symmetries in general [PN10].
Similarly to our work, Peters and Nestmann can then drop Palamidessi’s re-
quirement that the translation respects substitutions, i.e. that for all P,σ it
holds that JPKσ = JPθK for some substitution θ . Another similarity is that
the ability to break symmetries and the ability to solve consensus can both be
seen as non-confluence properties.

Another paper that is concerned with general conditions for confluence is
due to Keller [Kel75]; Plotkin gives this paper credit for introducing the notion
of labelled transition systems [Plo81]. Three simple criteria on the transition
system are identified as sufficient to guarantee global confluence, in the sense
that any two states reachable from some initial state have a common successor.
The criteria are determinism (transitions with the same source and label have
the same successor), commutativity (if the process can take an α transition fol-
lowed by β , it can also do β then α), and persistence (if a process can take an
α-labelled transition, it can still do so after taking a differently labelled tran-
sition). While these criteria rule out any applications to concurrency, several
results in the field of parallel computing are shown to emerge as special cases
of this general result.

Banti et al. [BPT10] study an abstract criterion for separating process cal-
culi called replacement freeness, meaning that processes with no observable
behaviour can be plugged into any context without impacting the observable
behaviour of the context. Formally, a process calculus is strongly replacement
free if for every P with no observable behaviour and every C,Q, we have that

∃α.C[P] ↓α ⇒ ∃β .C[Q] ↓β

Weak replacement freeness is as above, but where P must additionally have
empty support. This gives rise to a three-tiered expressiveness hierarchy. Lan-
guages that are not replacement free, such as CCS and pi-calculus without
matching, cannot be encoded into weakly replacement free languages, such as
pi-calculus with name matching, polyadic synchronisation or pattern match-
ing. The latter languages, in turn, cannot be encoded into the various lan-
guages with priorities that exemplify replacement free languages. The criteria
used are quite weak: compositionality, preservation and reflection of the ex-
istence of observables, and (for some results) that the encoding of processes
with non-overlapping support have non-overlapping support. The first two are
orthogonal to our requisites. As for the latter, we impose no constraints at all
on how the encoding treats names. Showing that a calculus is not replacement
free is about as easy as exhibiting a consensus process in our setting, since
we only need to exhibit C,P,Q violating the above definition. Establishing
replacement freeness, however, can be quite involved because of the universal
quantification over contexts. The preferred proof technique of the authors is

89



through proving that ω-simulation, i.e. the intersection of all finite approxi-
mations of the standard simulation preorder, satisfies congruence properties
wrt. all operators of the language. By contrast, establishing that parallel com-
position is monotonic requires just a quick glance at the operational semantics.

Traditionally, homomorphism of the parallel operator has often been used
as a criterion to state that encodings should preserve the degree of distribu-
tion. Our criterion that JP | QK= JPK⊗ JQK for some monotonic composition
⊗ is weaker, and can be seen as a less syntactic way to state that the degree
of distribution should be preserved. Another way to obtain a weaker crite-
rion that still guarantees preservation of the degree of distribution has been
proposed by Peters et. al [PNG13]. Their approach is more focused on syn-
tactic distributability, and more specifically tailored towards process calculi.
It assumes that the process languages have a syntax where subprocesses can
be composed with operators in an algebraic manner, and have capabilities,
i.e. operators that are consumed when a transition is taken (such as prefixes
in process calculi). Distributability is then a syntactic property of processes,
where (roughly stated) a process is distributable into its set of top-level capa-
bilities. An encoding preserves distributability if whenever a source process is
distributable into some components, the target process is distributable into the
same number of components, where each component of the target process is
behaviourally equivalent to a corresponding component of the source process.

Hence our approach offers more flexibility in the kind of languages it can
be applied to, and in designing encodings that are semantically but not syn-
tactically distributable. For example, a normal form of a π-calculus process
P is an equivalent process on the form Σi αi.Pi, where each Pi is also on nor-
mal form. An encoding that translates every agent of the finite fragment of
the π-calculus to its normal form would satisfy our criterion that parallel must
be translated by monotonic composition, but does not preserve the degree of
distribution in the sense of Peters et. al. On the other hand, they do not insist
on associativity and commutativity of the contexts that parallel translates into,
which offers some flexibility in designing encodings that is not available with
our criteria.

90



5. Conclusion

In this chapter, we conclude by discussing our contribution, related work, fu-
ture work and impact.

5.1 Discussion
We have seen how psi-calculi can be extended with several new language fea-
tures in order to broaden its applicability, without sacrificing generality or
the associated machine-checked meta-theory. We have then studied the ex-
pressiveness of psi-calculi, and addressed the proof engineering challenge of
keeping the formal proof archive maintainable. These endeavours are closely
connected, in a way that may not be immediately apparent; we shall elaborate
this point in the following extended discussion on the state of the proof archive
and its future.

The original psi-calculi formalisation by Bengtson consists of about 30,000
lines of code. Add to that figure the recent developments described in this
thesis and elsewhere [ÅPBP+13], and the result is about ten times Bengtson’s
figure. The main reason for this size explosion is excessive forking: each
extension described here constitutes a fork of Bengtson’s proof scripts.

One fork per extension is not enough, however: we sometimes need to inte-
grate the extensions. For an example, the LUNAR model of Paper I uses both
broadcast communication and process definitions. Hence we implement it in
higher-order broadcast psi-calculi — and higher-order broadcast psi-calculi
we implement by forking our proofs yet again. In the short term, the cost
of thus combining two pre-existing extensions is low. In this case it took no
more than an afternoon of work; a really nice perk of having invested in formal
proofs is that it is cheap to obtain near-absolute certainty that small changes
cause no unforeseen problems.

In the long term, this is hardly a sustainable practice; implementing every
possible combination of the extensions in this manner would result in a com-
binatorial explosion. The set of possible extensions of psi-calculi that can be
obtained by combination of the extensions described in this thesis can be de-
picted as a lattice (Figure 5.1). The bottom element is the original psi-calculi.
Traversing the lattice upwards corresponds to piling on more extensions, until
we reach the top element: sorted higher-order broadcast prioritised psi-calculi,
abbreviated by the tongue twister SHoBPΨ. Unbroken lines denote extensions
that we have implemented, including the verified meta-theory. Dotted lines are

91



SHoBPΨ

SBPΨSHoPΨSHoBΨ HoBPΨ

SHoΨ SBΨ SPΨ HoBΨ HoPΨ BPΨ

SΨ HoΨ PΨBΨ

Ψ

Figure 5.1. The lattice of possible combinations of our extensions to psi-calculi.

paths untravelled: extensions that should be straightforward albeit tedious to
implement, should the need arise.

Ideally, we want current and future developments of psi-calculi in a form
that is well integrated and easy to maintain. The encoding that we present in
Paper IV, from psi-calculi with priorities into the original psi-calculi, suggests
a way forward: rather than extending the semantics with new features, we
may encode them using the existing features. Because the encoding satisfies
such strong quality criteria, there are no strong arguments for maintaining the
extension with priorities. Any psi-calculus with priorities could instead be
obtained as an original psi-calculus through the encoding. Hence, the impact
of the encoding on maintainability is to render half the lattice of Figure 5.1
superfluous.

One question remains open: how do we handle extensions where no good
encoding is known or possible? Clearly the path forward is not to to pop-
ulate every element of the lattice with an Isabelle implementation. A more
attractive strategy would be to develop and maintain only the (current) top el-
ement. While this idea seems worth exploring in more detail, a number of
arguments against it are immediately apparent. First, extensions (and combi-
nations thereof) are not necessarily conservative, so we may lose expressive-
ness in doing so. Second, it may be difficult to do so in a way that maintains
backwards-compatibility with previous developments. Third, the top element
would be cumbersome to reason about and instantiate, with its myriad param-
eters, derivation rules, and multi-layered semantics. The resulting tedium may
seriously bog down further development.

The separation between monotonic and non-monotonic parallel composi-
tion is of independent interest outside the context of psi-calculi, as we demon-
strate by the many applications in Paper VI. In the context of psi-calculi it

92



helps shed light on why psi-calculi can encode priorities. It turns out that non-
monotonic assertion logics are crucial, and that the restriction of psi-calculi
to monotonic assertion logics considered in e.g. [JVP10] is significantly less
expressive.

5.2 Future work
In this section we discuss some avenues for future work.

5.2.1 Weak equivalences
Weak bisimulation is important for applications. Since it abstracts from in-
ternal behaviour, it allows descriptions of a system at different levels of ab-
straction to be formally related. For an example, a way to show that a system
correctly implements a specification is to show that the two are weakly bisim-
ilar.

Currently, we have shown that the meta-theory pertaining to weak bisimula-
tion for the original psi-calculi carries over to the higher-order, pattern match-
ing and sorted extensions. We would of course like to do the same for the
extensions with broadcast and priorities. Bisimulation up-to techniques for
our weak equivalences would also be an interesting direction to explore.

5.2.2 Full abstraction of the priority encoding
As mentioned in Section 3.3, our encoding of priorities in psi-calculi satis-
fies virtually any reasonable quality criterion, save for full abstraction. Intu-
itively, the main reason for this is that with action priorities, a prefix is a single
component that serves two purposes: to enable interaction with dual prefixes,
and to block interaction between other, lower-priority prefixes. In our target
language, enabling and blocking are decoupled into two components, so that
prefixes enable interaction, and assertions block lower-priority interactions.
This leads to the target language having more discriminatory observers that
can interact with only the blocking component in unexpected ways. For an
example, suppose α is an output prefix, α is an input prefix that can commu-
nicate with α , and β is a lower priority prefix. We have that α.α ∼ α | α yet
Jα.αK 6∼ Jα | αK. The reason is that the observer

P , LαM | L−αM | β
that disables the blocking component of one α-prefix can tell the difference.

From P | Jα.αK, there is an initial β -transition because the blocking power
of the one top-level α is cancelled. From P | Jα | αK there is no initial β -
transition because the blocking assertion of one of the two top-level α prefixes
will remain in force.

93



A simple idea that may well suffice to make the encoding fully abstract is
to use restrictions to localise the power to disable. The idea is to tag blocking
assertions with a fresh restricted name. Then, assertion composition can be
defined so that blocking assertions may only be disabled by assertions carrying
the same tag. This would prevent a malicious environment from interfering
with the intended behaviour of the encoding in the above manner, without
otherwise introducing significant complications.

5.2.3 Protocol verification with psi-calculi and Isabelle
In Paper I, we apply broadcast psi-calculi to verify a basic reachability prop-
erty of the LUNAR protocol [TGRW04] for ad-hoc routing in wireless net-
works. Our proof is currently a pen-and-paper proof which involves tedious
and error-prone manual following of transitions.

We do, however, have an Isabelle proof showing that the psi-calculus which
we use to model LUNAR is indeed a psi-calculus (i.e. that the parameters
satisfy the requisites). Thanks to the locale mechanism of Isabelle [Bal03],
this means we also have a fully developed infrastructure for reasoning about
the semantics of this calculus. We would like to use this infrastructure to
formalise our reachability proof, for two reasons. First, it is a way to obtain
added confidence in our results. Second, it is a way to evaluate how useful psi-
calculi are for protocol verification in Isabelle, and seeing how it compares to
e.g. Paulson’s inductive approach [Pau98]. Our proposed approach would be
complementary to protocol verification in the psi-calculi workbench [Gut11,
BGRV13], offering less automation but greater trustworthiness, though they
could also be combined by e.g. using the workbench as an oracle for inferring
transitions in Isabelle.

5.2.4 Monotonicity and distributability
In Section 4.9 we discuss the differences between the distributability-preserva-
tion criterion of Peters et al. [PNG13], and our criterion that parallel is trans-
lated by a monotonic composition. An interesting direction for future work
would be to investigate if the separation results derived under the latter crite-
rion in Paper VI can also be derived under the former. This would strengthen
the separation results, and offer more insight into the relationship between the
criteria.

As a starting point for this investigation, we offer a simple proof that at least
one of our separation results carries over. First we recapitulate the relevant
definitions from [PNG13].

Definition 18 (Distributability). P is distributable into P1, . . . ,Pn if there exists
P′ ≡ P such that:

94



1. For all 1≤ i≤ n, Pi is an unguarded subterm of P that contains at least
one capability or constant other than 0.

2. In P1, . . . ,Pn there are no two occurrences of the same capability.
3. Each guarded subterm and each constant (different from 0) of P′ is a

subterm of at least one of the terms P1, . . . ,Pn.

Definition 19 (Preservation of distributability). An encoding J·K preserves dis-
tributability if whenever S distributes into S1, . . . ,Sn, there exists T1, . . . ,Tn that
JSK distribute into, such that for all 1≤ i≤ n, JSiK≈ Ti.

Theorem 12. There exists no success-respecting, operationally corresponding
and distributability-preserving encoding of CCS with priorities [CH88] into
the π-calculus modulo success-respecting weak bisimulation.

Proof. (Sketch) By contradiction. Assume J·K is such an encoding. Let P =
fix X .(τ.X) and Q = τ.X. The process P | Q in CCS with priorities can-
not reach success since τ always takes priority over τ . Since P | Q is dis-
tributable into P and Q, JP | QK must be distributable into R,S such that
R ≈ JPK and S ≈ JQK; since the only non-guards in the π-calculus are par-
allel and restriction it must be the case that JP | QK ≡ (ν x̃)(R | S | C) for
some x̃,C. Hence JP | QK≈ (ν x̃)(R | JQK |C). By operational correspondence

and success sensitivity there must be Q′ such that JQK ==⇒ X | Q′. Hence

(ν x̃)(R | JQK | C) ==⇒ (ν x̃)(R | X | Q′ | C); since ≈ is success-respecting
JP | QK can reach success, contradicting success sensitivity of J·K.

It is unclear whether the setting of Peters et al. also admits a widely appli-
cable separation result for monotonic parallel composition to be formulated in
the abstract. The proof above relies on many details that are specific to the
particular languages under consideration, and a smooth generalisation to other
languages is not immediately apparent. A stronger proof that relies only on
simple and abstract properties of languages, such as monotonicity of parallel
composition, would be desirable.

5.2.5 Culling psi-calculi
Does psi-calculi have any superfluous operators, that we can remove without
sacrificing expressiveness? More precisely, we ask whether there is an oper-
ator op which is redundant in the following sense: for every psi-calculus P ,
there is a uniform way to construct a psi-calculus Pop and a high-quality
encoding J·K from P to Pop, such that for all P ∈P , JPK contains no occur-
rence of op.

Any answer to this question would advance our understanding of the ex-
pressive power of psi-calculi. A negative answer would imbue psi-calculi as

95



they have so far been presented with a certain air of canonicity. A positive
answer would have practical benefits: fewer operators would make psi-calculi
less cumbersome to reason about.

Which operators are likely candidates for culling? It cannot possibly be
replication, since without it we cannot express unbounded behaviour. Nor can
it be the assertions, since without them parallel composition becomes mono-
tonic.

The likeliest candidate seems to be case, which functions both as choice
operator and as conditional operator. Conditionals could be emulated as pre-
conditions for channel equivalence statements to hold. As for choice, there is
plenty of previous work on choice encodings for the pi-calculus [NP00, Nes00,
HP02, Pal03]. The encodings considered typically introduce elaborate proto-
cols, and satisfy quality criteria that are too weak for our purposes. For ex-
ample, all choice encodings for the pi-calculus satisfy only weak operational
correspondence. It seems reasonable to expect that with assertions at our dis-
posal we could achieve strong operational correspondence. An idea that seems
promising is to mimic the conflict operator of Busi and Gorrieri [BG94] using
assertions.

Culling case would render conditions a superfluous parameter, and enable
some further simplifications to definitions and proofs.

5.2.6 An algebra of psi-calculi
Suppose we have two psi-calculi. A natural question to ask is then: can we
combine them in a useful way to obtain a third, more expressive psi-calculus?

One way to approach this question is to study functions that operate on psi-
calculi (henceforth called functors). In fact, this thesis already contains three
examples of unary functors: the functor U used in the meta-theoretical proofs
in Paper III, the functor H that maps a psi-calculus to its canonical higher-
order extension from Paper II, and the (anonymous) functor used in Paper IV
to encode psi-calculi with priorities. Binary functors could also be used to
compose psi-calculi in different ways. Developing a library of such functors
would be a worthwhile endeavour — it would essentially yield a toolbox of off-
the-shelf components that can be used to construct complex psi-calculi from
simpler building blocks, without having to redo the proofs that the parameters
satisfy the requisites every time. It would also be interesting to study alge-
braic properties of such functors under some reasonable notion of equivalence
between psi-calculi.

5.3 Impact
The original psi-calculi makes it easy to obtain a custom process calculus with
a machine-checked meta-theory, at least for applications where the pi-calculus

96



extended with structured terms and arbitrary logical tests suffices. This thesis
brings the gospel of reusable machine-checked meta-theory to new applica-
tion areas where the language features we introduce are important, such as
wireless networks, systems biology, cryptography and computer architecture.
If a formal methods practitioner wishes to conduct a process algebraic study
in one of these application areas, supporting the analysis with the rigour of an
interactive theorem prover is now easier than ever before: man-months of ar-
duous labour to obtain standard results can be saved by interpreting our locales
instead of building a formalisation from scratch.

Existing process calculi that we show to be psi-calculi, such as bπ , π@ and
the pi-calculus with polyadic synchronisation, now enjoy significantly higher
confidence in the correctness of their meta-theoretical results thanks to our
machine-checked proofs. This translates into added confidence that formal
verification of models written in these languages is based on sound principles.

Bisimulation-based verification in psi-calculi can be made significantly eas-
ier and more trustworthy by using our bisimulation up-to techniques. As our
case studies in Paper V demonstrate, they yield drastically shorter proofs; and
shorter proofs, in turn, means less time must be spent on their development
and maintenance.

The expressiveness of disparate language features such as priority, time,
broadcast communication, fusion, assertions and concurrent constraints is bet-
ter and more uniformly understood. Deriving formal separation results in pro-
cess calculi is typically arduous work; using our method, the labour involved
is almost nil. Such results are helpful for language designers, who gain in-
sight into what the impact of including or excluding features is. They can
also save language users the futile effort of trying to implement something
unimplementable.

97



References

[Aba99] Martı́n Abadi. Protection in programming-language translations.
In Jan Vitek and Christian Damsgaard Jensen, editors, Secure In-
ternet Programming, Security Issues for Mobile and Distributed
Objects, volume 1603 of Lecture Notes in Computer Science,
pages 19–34. Springer, 1999.

[AdF15] Luca Aceto and David de Frutos-Escrig, editors. 26th Inter-
national Conference on Concurrency Theory, CONCUR 2015,
Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[AF01] Martı́n Abadi and Cédric Fournet. Mobile values, new names,
and secure communication. In Proceedings of POPL ’01, pages
104–115. ACM, 2001.

[AG97] Martı́n Abadi and Andrew D. Gordon. A calculus for crypto-
graphic protocols: The spi calculus. In Fourth ACM Conference
on Computer and Communications Security, pages 36–47. ACM
Press, 1997.

[AGR88] Egidio Astesiano, Alessandro Giovini, and Gianna Reggio. Gen-
eralized bisimulation in relational specifications. In Robert Cori
and Martin Wirsing, editors, STACS, volume 294 of Lecture
Notes in Computer Science, pages 207–226. Springer, 1988.

[AI08] Luca Aceto and Anna Ingólfsdóttir. On the expressibility of pri-
ority. Inf. Process. Lett., 109(1):83–85, 2008.

[ÅP10] Johannes Åman Pohjola. Verifying Psi-calculi. M. Sc. thesis, De-
partment of Information Technology, Uppsala University, 2010.

[ÅP13] Johannes Åman Pohjola. Bells and Whistles: Advanced Lan-
guage Features in Psi-Calculi. Licentiate thesis, Department of
Information Technology, Uppsala University, October 2013.

[ÅPBP+13] Johannes Åman Pohjola, Johannes Borgström, Joachim Parrow,
Palle Raabjerg, and Ioana Rodhe. Negative premises in applied
process calculi. Technical Report 2013-014, Department of Infor-
mation Technology, Uppsala University, June 2013.

[Bae05] Jos C. M. Baeten. A brief history of process algebra. Theor.
Comput. Sci., 335(2-3):131–146, May 2005.

[Bal03] Clemens Ballarin. Locales and locale expressions in Isabelle/Isar.
In Stefano Berardi, Mario Coppo, and Ferruccio Damiani, editors,
Types for Proofs and Programs, International Workshop, TYPES

98



2003, Torino, Italy, April 30 – May 4, 2003, Revised Selected Pa-
pers, volume 3085 of Lecture Notes in Computer Science, pages
34–50. Springer-Verlag, 2003.

[Bal14] Clemens Ballarin. Locales: A module system for mathematical
theories. J. Autom. Reasoning, 52(2):123–153, 2014.

[Bar81] Hendrik P. Barendregt. The lambda calculus : its syntax and
semantics. North-Holland Pub. Co, 1981.

[BB92] Gérard Berry and Gérard Boudol. The chemical abstract machine.
Theoretical Computer Science, 96:217–248, 1992.

[BBK86] Jos C. M. Baeten, Jan A. Bergstra, and Jan Willem Klop. Syn-
tax and defining equations for an interrupt mechanism in process
algebra. Fundamenta Informaticae, IX(2):127–168, 1986.

[BBN11] Jasmin Christian Blanchette, Lukas Bulwahn, and Tobias Nip-
kow. Automatic proof and disproof in Isabelle/HOL. In Frontiers
of Combining Systems, pages 12–27. Springer, 2011.

[BBS06] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling het-
erogeneous real-time components in BIP. In Fourth IEEE Inter-
national Conference on Software Engineering and Formal Meth-
ods (SEFM 2006), 11-15 September 2006, Pune, India, pages
3–12. IEEE Computer Society, 2006.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving
and Program Development. Coq’Art: The Calculus of Inductive
Constructions. Texts in Theoretical Computer Science. Springer-
Verlag, 2004.

[Ben10] Jesper Bengtson. Formalising process calculi. PhD thesis, Upp-
sala University, June 2010.

[Ben12] Jesper Bengtson. Psi-calculi in Isabelle. Archive of Formal
Proofs, 2012, 2012.

[Bes93] Eike Best, editor. CONCUR ’93, 4th International Conference on
Concurrency Theory, Hildesheim, Germany, August 23-26, 1993,
Proceedings, volume 715 of Lecture Notes in Computer Science.
Springer, 1993.

[BG94] Nadia Busi and Roberto Gorrieri. Distributed conflicts in com-
municating systems. In Paolo Ciancarini, Oscar Nierstrasz,
and Akinori Yonezawa, editors, Object-Based Models and Lan-
guages for Concurrent Systems, ECOOP’94 Workshop on Models
and Languages for Coordination of Parallelism and Distribution,
Bologna, Italy, July 5, 1994, Selected Papers, volume 924 of Lec-
ture Notes in Computer Science, pages 49–65. Springer, 1994.

[BG96] Roland N. Bol and Jan Friso Groote. The meaning of negative
premises in transition system specifications. J. ACM, 43(5):863–
914, 1996.

[BGLG93] Patrice Brémond-Grégoire, Insup Lee, and Richard Gerber.
ACSR: An algebra of communicating shared resources with

99



dense time and priorities. In Eike Best, editor, CONCUR’93, vol-
ume 715 of Lecture Notes in Computer Science, pages 417–431.
Springer Berlin Heidelberg, 1993.

[BGRV13] Johannes Borgström, Ramunas Gutkovas, Ioana Rodhe, and
Björn Victor. A parametric tool for applied process calculi.
In Josep Carmona, Mihai T. Lazarescu, and Marta Pietkiewicz-
Koutny, editors, 13th International Conference on Application of
Concurrency to System Design, ACSD 2013, Barcelona, Spain,
8-10 July, 2013, pages 180–185. IEEE Computer Society, 2013.

[BH16] Henning Basold and Helle Hvid Hansen. Well-definedness and
observational equivalence for inductive–coinductive programs.
Journal of Logic and Computation, abs/1605.04136, 2016. Ad-
vance Access published April 12, 2016.

[BHL+14] Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbih-
ler, Lorenz Panny, Andrei Popescu, and Dmitriy Traytel. Truly
modular (co)datatypes for Isabelle/HOL. In Gerwin Klein and
Ruben Gamboa, editors, Interactive Theorem Proving - 5th In-
ternational Conference, ITP 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings, volume 8558 of Lecture Notes in Computer Science,
pages 93–110. Springer, 2014.

[BHR84] Stephen D. Brookes, Charles Antony Richard Hoare, and
A. William Roscoe. A theory of communicating sequential pro-
cesses. J. ACM, 31(3):560–599, 1984.

[BJPV09] Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Björn
Victor. Psi-calculi: Mobile processes, nominal data, and logic. In
Proceedings of LICS 2009, pages 39–48. IEEE, 2009.

[BJPV11] Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Björn
Victor. Psi-calculi: A framework for mobile processes with nom-
inal data and logic. Logical Methods in Computer Science, 7(1),
2011.

[BK84] Jan A. Bergstra and Jan Willem Klop. The algebra of recursively
defined processes and the algebra of regular processes. In Jan
Paredaens, editor, Automata, Languages and Programming, vol-
ume 172 of Lecture Notes in Computer Science, pages 82–94.
Springer Berlin Heidelberg, 1984.

[BNN04] Mikael Buchholtz, Hanne Riis Nielson, and Flemming Nielson.
A calculus for control flow analysis of security protocols. Int. J.
Inf. Sec., 2(3-4):145–167, 2004.

[Bou88] Luc Bougé. On the existence of symmetric algorithms to find
leaders in networks of communicating sequential processes. Acta
Inf., 25(2):179–201, 1988.

[Bou89] Gérard Boudol. Towards a lambda-calculus for concurrent and
communicating systems. In Josep Dı́az and Fernando Orejas, ed-

100



itors, TAPSOFT, Vol.1, volume 351 of Lecture Notes in Computer
Science, pages 149–161. Springer, 1989.

[BP07a] Jesper Bengtson and Joachim Parrow. A completeness proof for
bisimulation in the pi-calculus using Isabelle. Electr. Notes Theor.
Comput. Sci., 192(1):61–75, 2007.

[BP07b] Jesper Bengtson and Joachim Parrow. Formalising the pi-calculus
using nominal logic. In Proceedings of FoSSaCS 2007, vol-
ume 4423 of Lecture Notes in Computer Science, pages 63–77.
Springer-Verlag, 2007.

[BP09] Jesper Bengtson and Joachim Parrow. Psi-calculi in Isabelle. In
Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius
Wenzel, editors, Proc. of TPHOLs 2009, volume 5674 of Lecture
Notes in Computer Science, pages 99–114. Springer-Verlag, Au-
gust 2009.

[BP13] Filippo Bonchi and Damien Pous. Checking NFA equivalence
with bisimulations up to congruence. In Giacobazzi and Cousot
[GC13], pages 457–468.

[BPPR14] Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot.
Coinduction up-to in a fibrational setting. In Thomas A. Hen-
zinger and Dale Miller, editors, Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL)
and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July
14 - 18, 2014, pages 20:1–20:9. ACM, 2014.

[BPPR15] Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot.
Lax bialgebras and up-to techniques for weak bisimulations. In
Aceto and de Frutos-Escrig [AdF15], pages 240–253.

[BPT10] Federico Banti, Rosario Pugliese, and Francesco Tiezzi. A cri-
terion for separating process calculi. In Fröschle and Valencia
[FV10], pages 16–30.

[BPW16] Jesper Bengtson, Joachim Parrow, and Tjark Weber. Psi-calculi
in isabelle. J. Autom. Reasoning, 56(1):1–47, 2016.

[Bri08] Sébastien Briais. Theory and tool support for the formal verifi-
cation of cryptographic protocols. PhD thesis, EPFL, Lausanne,
2008.

[BS08] Simon Bliudze and Joseph Sifakis. A notion of glue expressive-
ness for component-based systems. In Franck van Breugel and
Marsha Chechik, editors, CONCUR 2008 - Concurrency Theory,
19th International Conference, CONCUR 2008, Toronto, Canada,
August 19-22, 2008. Proceedings, volume 5201 of Lecture Notes
in Computer Science, pages 508–522. Springer, 2008.

[BS12] Simon Boulier and Alan Schmitt. Formalisation de HOCore en
Coq. In JFLA - Journées Francophones des Langages Applicatifs
- 2012, Carnac, France, February 2012.

101



[BvGH14] Timothy Bourke, Rob J. van Glabbeek, and Peter Höfner. A
mechanized proof of loop freedom of the (untimed) AODV rout-
ing protocol. In Franck Cassez and Jean-François Raskin, edi-
tors, Automated Technology for Verification and Analysis - 12th
International Symposium, ATVA 2014, Sydney, NSW, Australia,
November 3-7, 2014, Proceedings, volume 8837 of Lecture Notes
in Computer Science, pages 47–63. Springer, 2014.

[BvGH16a] Timothy Bourke, Rob J. van Glabbeek, and Peter Höfner. Mech-
anizing a process algebra for network protocols. J. Autom. Rea-
soning, 56(3):309–341, 2016.

[BvGH16b] Emile Bres, Rob J. van Glabbeek, and Peter Höfner. A timed
process algebra for wireless networks with an application in rout-
ing - (extended abstract). In Peter Thiemann, editor, Program-
ming Languages and Systems - 25th European Symposium on
Programming, ESOP 2016, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, vol-
ume 9632 of Lecture Notes in Computer Science, pages 95–122.
Springer, 2016.

[CCM15] Kaustuv Chaudhuri, Matteo Cimini, and Dale Miller. A
lightweight formalization of the metatheory of bisimulation-up-
to. In Xavier Leroy and Alwen Tiu, editors, Proceedings of the
2015 Conference on Certified Programs and Proofs, CPP 2015,
Mumbai, India, January 15-17, 2015, pages 157–166. ACM,
2015.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Mau-
rice Nivat, editor, FoSSaCS, volume 1378 of Lecture Notes in
Computer Science, pages 140–155. Springer, 1998.

[CH88] Rance Cleaveland and Matthew Hennessy. Priorities in process
algebras. In LICS, pages 193–202. IEEE Computer Society,
1988.

[Cha12] Arthur Charguéraud. The locally nameless representation. Jour-
nal of Automated Reasoning, 49(3):363–408, 2012.

[CLN01] Rance Cleaveland, Gerald Lüttgen, and V. Natarajan. Priority in
process algebra. In Jan A. Bergstra, Alban Ponse, and Scott A.
Smolka, editors, Handbook of Process Algebra, pages 711–765.
Elsevier Science Publishers, February 2001.

[CM03] Marco Carbone and Sergio Maffeis. On the expressive power of
polyadic synchronisation in π-calculus. Nordic Journal of Com-
puting, 10(2):70–98, 2003.

[CMRG12] Matteo Cimini, Mohammad Reza Mousavi, Michel A. Reniers,
and Murdoch J. Gabbay. Nominal SOS. Electr. Notes Theor.
Comput. Sci., 286:103–116, 2012.

[CP88] Rance Cleaveland and Prakash Panangaden. Type theory and

102



concurrency. International Journal of Parallel Programming,
17(2):153–206, 1988.

[dB72] Nicolaas G. de Bruijn. Lambda calculus notation with nameless
dummies. A tool for automatic formula manipulation with appli-
cation to the Church-Rosser theorem. Indagationes Mathemati-
cae, 34:381–392, 1972.

[DHS10] Romain Demangeon, Daniel Hirschkoff, and Davide Sangiorgi.
Termination in higher-order concurrent calculi. J. Log. Algebr.
Program., 79(7):550–577, 2010.

[dS85] Robert de Simone. Higher-level synchronising devices in Meije-
SCCS. Theoretical Computer Science, 37:245 – 267, 1985.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory, 29(2):198–
208, 1983.

[EM99] Cristian Ene and Traian Muntean. Expressiveness of point-to-
point versus broadcast communications. In Gabriel Ciobanu and
Gheorghe Paun, editors, Proceedings of FCT’99, volume 1684
of Lecture Notes in Computer Science, pages 258–268. Springer-
Verlag, 1999.

[EM01] Cristian Ene and Traian Muntean. A broadcast-based calculus for
communicating systems. In Proceedings of the 15th International
Parallel & Distributed Processing Symposium, IPDPS ’01, pages
149–, Washington, DC, USA, 2001. IEEE Computer Society.

[Ene01] Cristian Ene. Un Modèle formel pour les systèmes mobiles a
diffusion. Phd thesis, Université de la Méditerranée – Marseille,
2001.

[FV10] Sibylle B. Fröschle and Frank D. Valencia, editors. Proceedings
17th International Workshop on Expressiveness in Concurrency,
volume 41 of EPTCS, 2010.

[FvG96] Wan Fokkink and Rob J. van Glabbeek. Ntyft/Ntyxt rules reduce
to ntree rules. Inf. Comput., 126(1):1–10, 1996.

[FvGH+12] Ansgar Fehnker, Rob J. van Glabbeek, Peter Höfner, Annabelle
McIver, Marius Portmann, and Wee Lum Tan. A process alge-
bra for wireless mesh networks. In Helmut Seidl, editor, Pro-
gramming Languages and Systems - 21st European Symposium
on Programming, ESOP 2012, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS
2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings,
volume 7211 of Lecture Notes in Computer Science, pages 295–
315. Springer, 2012.

[Gab11] Murdoch J. Gabbay. Foundations of nominal techniques: logic
and semantics of variables in abstract syntax. Bulletin of Sym-
bolic Logic, 17(2):161–229, 2011.

[GC13] Roberto Giacobazzi and Radhia Cousot, editors. The 40th Annual

103



ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013.
ACM, 2013.

[Gel85] David Gelernter. Generative communication in Linda. ACM
TOPLAS, 7(1):80–112, January 1985.

[GFM08] Fatemeh Ghassemi, Wan Fokkink, and Ali Movaghar. Restricted
broadcast process theory. In Antonio Cerone and Stefan Gruner,
editors, Proceedings of SEFM 2008, pages 345–354. IEEE Com-
puter Society, 2008.

[GM93] Michael J. C. Gordon and Tom F. Melham, editors. Introduction
to HOL: a theorem proving environment for higher order logic.
Cambridge University Press, New York, NY, USA, 1993.

[GMN09] Andrew Gacek, Dale Miller, and Gopalan Nadathur. Reasoning
in Abella about structural operational semantics specifications.
Electr. Notes Theor. Comput. Sci., 228:85–100, 2009.

[GN14] Daniele Gorla and Uwe Nestmann. Full abstraction for expres-
siveness: history, myths and facts. Mathematical Structures in
Computer Science, FirstView:1–16, 11 2014.

[God07] Jens Christian Godskesen. A calculus for mobile ad hoc networks.
In Proceedings of COORDINATION 2007, volume 4467 of Lec-
ture Notes in Computer Science, pages 132–150. Springer-Verlag,
2007.

[God10] Jens Christian Godskesen. Observables for mobile and wireless
broadcasting systems. In Proceedings of COORDINATION 2010,
volume 6116 of Lecture Notes in Computer Science, pages 1–15.
Springer-Verlag, 2010.

[Gor10a] Daniele Gorla. A taxonomy of process calculi for distribution
and mobility. Distributed Computing, 23(4):273–299, 2010.

[Gor10b] Daniele Gorla. Towards a unified approach to encodability and
separation results for process calculi. Inf. Comput., 208(9):1031–
1053, 2010.

[GP01] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to
abstract syntax with variable binding. Formal Aspects of Com-
puting, 13:341–363, 2001.

[Gro93] Jan Friso Groote. Transition system specifications with nega-
tive premises. Theor. Comput. Sci., 118(2):263–299, September
1993.

[Gut11] Ramūnas Gutkovas. Exercising Psi-calculi: A Psi-calculi work-
bench. M.Sc. thesis, Department of Information Technology, Up-
psala University, June 2011.

[GV89] Jan Friso Groote and Frits Vaandrager. Structured operational se-
mantics and bisimulation as a congruence. In Giorgio Ausiello,
Mariangiola Dezani-Ciancaglini, and Simonetta Ronchi Rocca,
editors, Automata, Languages and Programming, volume 372

104



of Lecture Notes in Computer Science, pages 423–438. Springer
Berlin Heidelberg, 1989.

[GY09] Elsa Gunter and Ayesha Yasmeen. Secure broadcast ambients.
In Pierpaolo Degano, Joshua Guttman, and Fabio Martinelli, edi-
tors, Formal Aspects in Security and Trust, volume 5491 of Lec-
ture Notes in Computer Science, pages 257–271. Springer Berlin
/ Heidelberg, 2009.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal mod-
ular actor formalism for artificial intelligence. In Proceedings of
the 3rd international joint conference on Artificial intelligence,
pages 235–245. Morgan Kaufmann Publishers Inc., 1973.

[Hir97] Daniel Hirschkoff. A full formalisation of pi-calculus theory in
the calculus of constructions. In TPHOLs ’97: Proceedings of the
10th International Conference on Theorem Proving in Higher Or-
der Logics, pages 153–169, London, UK, 1997. Springer-Verlag.

[HJ06] Christian Haack and Alan Jeffrey. Pattern-matching spi-calculus.
Information and Computation, 204:1195–1263, 2006.

[HNDV13] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis.
The power of parameterization in coinductive proof. In Gia-
cobazzi and Cousot [GC13], pages 193–206.

[Hol93] Uno Holmer. Interpreting broadcast communication in SCCS. In
Best [Bes93], pages 188–201.

[Hon96] Kohei Honda. Composing processes. In Hans-Juergen Boehm
and Guy L. Steele Jr., editors, POPL, pages 344–357. ACM Press,
1996.

[HP02] Oltea Mihaela Herescu and Catuscia Palamidessi. A randomized
distributed encoding of the pi-calculus with mixed choice. In
Ricardo A. Baeza-Yates, Ugo Montanari, and Nicola Santoro, ed-
itors, IFIP TCS, volume 223 of IFIP Conference Proceedings,
pages 537–549. Kluwer, 2002.

[HU10] Brian Huffman and Christian Urban. A new foundation for Nomi-
nal Isabelle. In Matt Kaufmann and Lawrence C. Paulson, editors,
ITP, volume 6172 of Lecture Notes in Computer Science, pages
35–50. Springer, 2010.

[Hur03] Joe Hurd. First-order proof tactics in higher-order logic theo-
rem provers. In Myla Archer, Ben Di Vito, and César Muñoz,
editors, Design and Application of Strategies/Tactics in Higher
Order Logics (STRATA 2003), number NASA/CP-2003-212448
in NASA Technical Reports, pages 56–68, September 2003.

[Hüt11] Hans Hüttel. Typed ψ-calculi. In Joost-Pieter Katoen and Bar-
bara König, editors, CONCUR, volume 6901 of Lecture Notes in
Computer Science, pages 265–279. Springer, 2011.

[Hüt13] Hans Hüttel. Types for resources in ψ-calculi. In Martı́n Abadi
and Alberto Lluch-Lafuente, editors, Trustworthy Global Com-

105



puting - 8th International Symposium, TGC 2013, Buenos Aires,
Argentina, August 30-31, 2013, Revised Selected Papers, vol-
ume 8358 of Lecture Notes in Computer Science, pages 83–102.
Springer, 2013.

[HvGT+12] Peter Höfner, Rob J. van Glabbeek, Wee Lum Tan, Marius Port-
mann, Annabelle McIver, and Ansgar Fehnker. A rigorous analy-
sis of AODV and its variants. In Albert Y. Zomaya, Björn Land-
feldt, and Ravi Prakash, editors, The 15th ACM International
Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, MSWiM ’12, Paphos, Cyprus, October 21-
25, 2012, pages 203–212. ACM, 2012.

[IK04] Atsushi Igarashi and Naoki Kobayashi. A generic type system for
the pi-calculus. Theor. Comput. Sci., 311(1-3):121–163, 2004.

[JBPV10] Magnus Johansson, Jesper Bengtson, Joachim Parrow, and Björn
Victor. Weak equivalences in psi-calculi. In LICS, pages 322–331.
IEEE Computer Society, 2010.

[JLNU10] Mathias John, Cédric Lhoussaine, Joachim Niehren, and
Adelinde Uhrmacher. The attributed pi-calculus with prior-
ities. Transactions on Computational Systems Biology XII,
5945/2010:13–76, 2010.

[Joh10] Magnus Johansson. Psi-calculi: a framework for mobile process
calculi: Cook your own correct process calculus - just add data
and logic. PhD thesis, Uppsala University, Division of Computer
Systems, 2010.

[JR05] Alan Jeffrey and Julian Rathke. Contextual equivalence for
higher-order pi-calculus revisited. Logical Methods in Computer
Science, 1(1), 2005.

[JVP10] Magnus Johansson, Björn Victor, and Joachim Parrow. A fully
abstract symbolic semantics for psi-calculi. In Proceedings of
SOS 2009, volume 18 of EPTCS, pages 17–31, 2010.

[JVP12] Magnus Johansson, Björn Victor, and Joachim Parrow. Comput-
ing strong and weak bisimulations for psi-calculi. Journal of
Logic and Algebraic Programming, 81(3):162–180, 2012.

[Kel75] Robert M Keller. A fundamental theorem of asynchronous paral-
lel computation. In Parallel processing, pages 102–112. Springer-
Verlag, 1975.

[KP] Ondřej Kunčar and Andrei Popescu. From types to sets in Is-
abelle/HOL. Isabelle Workshop 2014.

[Kun80] Milan Kundera. The Book of Laughter and Forgetting. Alfred A.
Knopf, New York, first edition, 1980.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Trans-
actions on Programming Languages and Systems (TOPLAS),
16(3):872–923, 1994.

[LMS10] Ugo Dal Lago, Simone Martini, and Davide Sangiorgi. Light log-

106



ics and higher-order processes. In Fröschle and Valencia [FV10],
pages 46–60.

[Loc10] Andreas Lochbihler. Coinductive. Archive of Formal Proofs,
2010, 2010.

[LPSS11] Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi, and Alan Schmitt.
On the expressiveness and decidability of higher-order process
calculi. Inf. Comput., 209(2):198–226, 2011.

[LS10] Ivan Lanese and Davide Sangiorgi. An operational semantics for
a calculus for wireless systems. Theoretical Computer Science,
411(19):1928–1948, 2010.

[McC63] John McCarthy. A basis for a mathematical theory of computa-
tion. Computer Programming and Formal Systems, pages 33–70,
1963.

[Mel94] Thomas F. Melham. A mechanized theory of the pi-calculus in
HOL. Nordic Journal of Computing, 1(1):50–76, 1994.

[Mil79] Robin Milner. LCF: A way of doing proofs with a machine. In
Jirı́ Becvár, editor, MFCS, volume 74 of Lecture Notes in Com-
puter Science, pages 146–159. Springer, 1979.

[Mil80] Robin Milner. A Calculus of Communicating Systems. Num-
ber 92 in Lecture Notes in Computer Science. Springer-Verlag,
1980.

[Mil83] Robin Milner. Calculi for synchrony and asynchrony. Theoretical
Computer Science, 25(3):267 – 310, 1983.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall,
Inc., 1989.

[Mil91] Robin Milner. The polyadic pi-calculus: a tutorial. Technical
report, Logic and Algebra of Specification, 1991.

[Mil92] Robin Milner. Functions as processes. Journal of Mathematical
Structures in Computer Science, 2(2):119–141, 1992. Previous
version as Rapport de Recherche 1154, INRIA Sophia-Antipolis,
1990, and in Proceedings of ICALP ’91, LNCS 443.

[MPS14] Jean-Marie Madiot, Damien Pous, and Davide Sangiorgi. Bisim-
ulations up-to: Beyond first-order transition systems. In Paolo
Baldan and Daniele Gorla, editors, CONCUR 2014, volume 8704
of Lecture Notes in Computer Science, pages 93–108. Springer
Berlin Heidelberg, 2014.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of
mobile processes, I/II. Inf. Comput., 100(1):1–77, 1992.

[MS92] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In
W. Kuich, editor, Proceedings of ICALP ’92, volume 623 of
LNCS, pages 685–695. Springer, 1992.

[MS06] Nicola Mezzetti and Davide Sangiorgi. Towards a calculus for
wireless systems. Electronic Notes in Theoretical Computer Sci-
ence, 158:331–353, 2006.

107



[MS10] Massimo Merro and Eleonora Sibilio. A timed calculus for wire-
less systems. In Farhad Arbab and Marjan Sirjani, editors, Funda-
mentals of Software Engineering, volume 5961 of Lecture Notes
in Computer Science, pages 228–243. Springer Berlin Heidel-
berg, 2010.

[MS15] Petar Maksimovic̀ and Alan Schmitt. HOCore in Coq. In
Christian Urban and Xingyuan Zhang, editors, Interactive The-
orem Proving - 6th International Conference, ITP 2015, Nanjing,
China, August 24-27, 2015, Proceedings, volume 9236 of Lecture
Notes in Computer Science, pages 278–293. Springer, 2015.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. Definition of
Standard ML. MIT Press, 1990.

[MWM14] Daniel Matichuk, Makarius Wenzel, and Toby Murray. An Is-
abelle proof method language. In Interactive Theorem Proving,
pages 390–405. Springer, 2014.

[Nes92] Monica Nesi. Mechanizing a proof by induction of process alge-
bra specifications in higher order logic. In Kim G. Larsen and
Arne Skou, editors, Computer Aided Verification, volume 575
of Lecture Notes in Computer Science, pages 288–298. Springer
Berlin Heidelberg, 1992.

[Nes00] Uwe Nestmann. What is a ‘good’ encoding of guarded choice?
Journal of Information and Computation, 156:287–319, 2000.
An extended abstract appeared in the Proceedings of EXPRESS
’97, volume 7 of ENTCS.

[NH06] Sebastian Nanz and Chris Hankin. A framework for security anal-
ysis of mobile wireless networks. Theoretical Computer Science,
367(1-2):203–227, 2006.

[NP00] Uwe Nestmann and Benjamin C. Pierce. Decoding choice encod-
ings. Journal of Information and Computation, 163:1–59, 2000.
Also available as report BRICS-RS-99-42, Universities of Aal-
borg and Århus, Denmark, 1999. An extended abstract appeared
in the Proceedings of CONCGUR ’96, LNCS 1119, pages 179–
194.

[NPH14] Håkon Normann, Cristian Prisacariu, and Thomas T. Hildebrandt.
Concurrency models with causality and events as psi-calculi.
In Ivan Lanese, Alberto Lluch-Lafuente, Ana Sokolova, and
Hugo Torres Vieira, editors, Proceedings 7th Interaction and
Concurrency Experience, ICE 2014, Berlin, Germany, 6th June
2014., volume 166 of EPTCS, pages 4–20, 2014.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL: a Proof Assistant for Higher-Order Logic, volume
2283 of Lecture Notes in Computer Science. Springer-Verlag,
2002.

[Pal97a] Catuscia Palamidessi. Comparing the expressive power of the

108



synchronous and the asynchronous π-calculus. In Proceedings
of POPL ’97, pages 256–265. ACM, January 1997.

[Pal97b] Catuscia Palamidessi. Comparing the expressive power of the
synchronous and the asynchronous π-calculus. In Proceedings
of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’97, pages 256–265, New York,
NY, USA, 1997. ACM.

[Pal03] Catuscia Palamidessi. Comparing the expressive power of the
synchronous and asynchronous pi-calculi. Mathematical Struc-
tures in Computer Science, 13(5):685–719, 2003.

[Par81] David Park. Concurrency and automata on infinite sequences.
In Proceedings of the 5th GI-Conference on Theoretical Com-
puter Science, pages 167–183, London, UK, UK, 1981. Springer-
Verlag.

[Par08] Joachim Parrow. Expressiveness of process algebras. Electr.
Notes Theor. Comput. Sci., 209:173–186, 2008.

[Par16] Joachim Parrow. General conditions for full abstraction. Mathe-
matical Structures in Computer Science, 26(4):655–657, 2016.

[Pau86] Lawrence C. Paulson. Natural deduction as higher-order resolu-
tion. The Journal of Logic Programming, 3(3):237–258, 1986.

[Pau98] Lawrence C. Paulson. The inductive approach to verifying crypto-
graphic protocols. Journal of Computer Security, 6(1-2):85–128,
1998.

[Pau99] Lawrence C. Paulson. A generic tableau prover and its integration
with Isabelle. Journal of Universal Computer Science, 5(3):73–
87, 1999.

[PBRD03] C. Perkins, E. Belding-Royer, and S. Das. Ad Hoc On-Demand
Distance Vector (AODV) Routing. RFC 3561, RFC Editor, 2003.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax.
In Richard L. Wexelblat, editor, PLDI, pages 199–208. ACM,
1988.

[Pet66] Carl Adam Petri. Communication with automata, 1966. DTIC
Research Report AD0630125.

[Phi01] Iain Phillips. CCS with priority guards. In Kim G. Larsen and
Mogens Nielsen, editors, CONCUR 2001 — Concurrency The-
ory, volume 2154 of Lecture Notes in Computer Science, pages
305–320. Springer Berlin Heidelberg, 2001.

[Pit03] Andrew M. Pitts. Nominal logic, a first order theory of names
and binding. Information and Computation, 186:165–193, 2003.

[Plo77] Gordon D. Plotkin. LCF considered as a programming language.
Theor. Comput. Sci., 5(3):223–255, 1977.

[Plo81] Gordon D. Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, University of Aarhus,
1981.

109



[PN10] Kirstin Peters and Uwe Nestmann. Breaking symmetries. In
Fröschle and Valencia [FV10], pages 136–150.

[PNG13] Kirstin Peters, Uwe Nestmann, and Ursula Goltz. On dis-
tributability in process calculi. In Matthias Felleisen and Philippa
Gardner, editors, Programming Languages and Systems - 22nd
European Symposium on Programming, ESOP 2013, Held as
Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Pro-
ceedings, volume 7792 of Lecture Notes in Computer Science,
pages 310–329. Springer, 2013.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual
Symposium on Foundations of Computer Science, Providence,
Rhode Island, USA, 31 October - 1 November 1977, pages 46–
57. IEEE Computer Society, 1977.

[Pou07a] Damien Pous. Complete lattices and up-to techniques. In Zhong
Shao, editor, APLAS, volume 4807 of Lecture Notes in Computer
Science, pages 351–366. Springer, 2007.

[Pou07b] Damien Pous. New up-to techniques for weak bisimulation.
Theor. Comput. Sci., 380(1-2):164–180, 2007.

[Pou16] Damien Pous. Coinduction all the way up. In Thirty-
First Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence (LICS), New York City, USA, July 5-8, 2016, Proceed-
ings, 2016. To appear, preliminary version at https://hal.
archives-ouvertes.fr/hal-01259622.

[Pra91] K. V. S. Prasad. A calculus of broadcasting systems. In Samson
Abramsky and T. S. E. Maibaum, editors, TAPSOFT, Vol.1, vol-
ume 493 of Lecture Notes in Computer Science, pages 338–358.
Springer, 1991.

[Pra93] K. V. S. Prasad. A calculus of value broadcasts. In IN PARLE’93,
pages 69–4. Springer Verlag LNCS, 1993.

[Pra94] K. V. S. Prasad. Broadcasting with priority. In Donald Sannella,
editor, ESOP, volume 788 of Lecture Notes in Computer Science,
pages 469–484. Springer, 1994.

[Pra95] K. V. S. Prasad. A calculus of broadcasting systems. Science of
Computer Programming, 25(2-3):285–327, 1995.

[Pri14] Cristian Prisacariu. Actor network procedures as psi-calculi
for security ceremonies. In Barbara Kordy, Sjouke Mauw, and
Wolter Pieters, editors, Proceedings First International Workshop
on Graphical Models for Security, GraMSec 2014, Grenoble,
France, April 12, 2014., volume 148 of EPTCS, pages 63–77,
2014.

[PV04] Iain Phillips and Maria Grazia Vigliotti. Electoral systems in
ambient calculi. In Igor Walukiewicz, editor, Foundations of
Software Science and Computation Structures, 7th International

110



Conference, FOSSACS 2004, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2004,
Barcelona, Spain, March 29 - April 2, 2004, Proceedings, vol-
ume 2987 of Lecture Notes in Computer Science, pages 408–422.
Springer, 2004.

[PvG15] Kirstin Peters and Rob J. van Glabbeek. Analysing and compar-
ing encodability criteria. In Silvia Crafa and Daniel Gebler, edi-
tors, Proceedings of the Combined 22th International Workshop
on Expressiveness in Concurrency and 12th Workshop on Struc-
tural Operational Semantics, and 12th Workshop on Structural
Operational Semantics, EXPRESS/SOS 2015, Madrid, Spain,
31st August 2015., volume 190 of EPTCS, pages 46–60, 2015.

[PW16] Joachim Parrow and Tjark Weber. The largest respectful function.
Logical Methods in Computer Science, 12(2), 2016.

[Raa12] Palle Raabjerg. Extending Psi-calculi and their Formal Proofs.
Licentiate thesis, Department of Information Technology, Upp-
sala University, November 2012.

[RBR13] Jurriaan Rot, Marcello M. Bonsangue, and Jan J. M. M. Rutten.
Coalgebraic bisimulation-up-to. In Peter van Emde Boas, Frans
C. A. Groen, Giuseppe F. Italiano, Jerzy R. Nawrocki, and Har-
ald Sack, editors, SOFSEM 2013: Theory and Practice of Com-
puter Science, 39th International Conference on Current Trends
in Theory and Practice of Computer Science, Špindlerův Mlýn,
Czech Republic, January 26-31, 2013. Proceedings, volume 7741
of Lecture Notes in Computer Science, pages 369–381. Springer,
2013.

[RBR16] Jurriaan Rot, Marcello M. Bonsangue, and Jan Rutten. Proving
language inclusion and equivalence by coinduction. Inf. Comput.,
246:62–76, 2016.

[Rus19] Bertrand Russell. Introduction to mathematical philosophy.
George Allen and Unwin, 1919.

[San93] Davide Sangiorgi. From pi-calculus to higher-order pi-calculus
- and back. In Marie-Claude Gaudel and Jean-Pierre Jouannaud,
editors, TAPSOFT, volume 668 of Lecture Notes in Computer
Science, pages 151–166. Springer, 1993.

[San94] Davide Sangiorgi. Bisimulation in higher-order process calculi.
In Ernst-Rüdiger Olderog, editor, PROCOMET, volume A-56 of
IFIP Transactions, pages 207–224. North-Holland, 1994.

[San98] Davide Sangiorgi. On the bisimulation proof method. Mathe-
matical Structures in Computer Science, 8(5):447–479, October
1998.

[San01] Davide Sangiorgi. Asynchronous process calculi: the first- and
higher-order paradigms. Theor. Comput. Sci., 253(2):311–350,
2001.

111



[San09] Davide Sangiorgi. On the origins of bisimulation and coinduc-
tion. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 31(4):15, 2009.

[San12] Davide Sangiorgi. An introduction to bisimulation and coinduc-
tion. Cambridge University Press, Cambridge, New York, 2012.

[SRS10] Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. A pro-
cess calculus for mobile ad hoc networks. Science of Computer
Programming, 75(6):440–469, 2010.

[SS04] Alan Schmitt and Jean-Bernard Stefani. The Kell Calculus: A
family of higher-order distributed process calculi. In Corrado Pri-
ami and Paola Quaglia, editors, Global Computing, volume 3267
of Lecture Notes in Computer Science, pages 146–178. Springer,
2004.

[SS09] Nobuyuki Sato and Eijiro Sumii. The higher-order, call-by-value
applied pi-calculus. In Zhenjiang Hu, editor, APLAS, volume
5904 of Lecture Notes in Computer Science, pages 311–326.
Springer, 2009.

[SV16] Davide Sangiorgi and Valeria Vignudelli. Environmental bisim-
ulations for probabilistic higher-order languages. In Rastislav
Bodı́k and Rupak Majumdar, editors, Proceedings of the 43rd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2016, St. Petersburg, FL, USA, Jan-
uary 20 - 22, 2016, pages 595–607. ACM, 2016.

[TGRW04] Christian Tschudin, Richard Gold, Olof Rensfelt, and Oskar Wib-
ling. LUNAR: a lightweight underlay network ad-hoc routing
protocol and implementation. In Proceedings of NEW2AN’04, St.
Petersburg, February 2004.

[Tho89] Bent Thomsen. A calculus of higher order communicating sys-
tems. In POPL, pages 143–154, 1989.

[Tho93] Bent Thomsen. Plain CHOCS: A second generation calculus for
higher order processes. Acta Inf., 30(1):1–59, 1993.

[UB06] Christian Urban and Stefan Berghofer. A recursion combinator
for nominal datatypes implemented in Isabelle/HOL. In Ulrich
Furbach and Natarajan Shankar, editors, IJCAR, volume 4130
of Lecture Notes in Computer Science, pages 498–512. Springer,
2006.

[UBN07] Christian Urban, Stefan Berghofer, and Michael Norrish. Baren-
dregt’s variable convention in rule inductions. In Proc. of the
21th International Conference on Automated Deduction (CADE),
volume 4603 of LNAI, pages 35–50. Springer, 2007.

[Urb08] Christian Urban. Nominal techniques in Isabelle/HOL. Journal
of Automated Reasoning, 40(4):327–356, May 2008.

[UT05] Christian Urban and Christine Tasson. Nominal techniques in
Isabelle/HOL. In Robert Nieuwenhuis, editor, Proceedings of

112



CADE 2005, volume 3632 of Lecture Notes in Computer Science,
pages 38–53. Springer-Verlag, 2005.

[VBG07] Cristian Versari, Nadia Busi, and Roberto Gorrieri. On the ex-
pressive power of global and local priority in process calculi. In
CONCUR, pages 241–255, 2007.

[Ver07] Cristian Versari. A core calculus for a comparative analysis of
bio-inspired calculi. In Rocco De Nicola, editor, ESOP, vol-
ume 4421 of Lecture Notes in Computer Science, pages 411–425.
Springer, 2007.

[vG90] Rob J. van Glabbeek. The linear time-branching time spectrum
(extended abstract). In Jos C. M. Baeten and Jan Willem Klop,
editors, CONCUR ’90, Theories of Concurrency: Unification and
Extension, Amsterdam, The Netherlands, August 27-30, 1990,
Proceedings, volume 458 of Lecture Notes in Computer Science,
pages 278–297. Springer, 1990.

[vG93] Rob J. van Glabbeek. The linear time - branching time spectrum
II. In Best [Bes93], pages 66–81.

[vG04] Rob J. van Glabbeek. The meaning of negative premises in tran-
sition system specifications II. J. Log. Algebr. Program., 60-
61:229–258, 2004.

[VNN13] Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson.
Broadcast, denial-of-service, and secure communication. In
Einar Broch Johnsen and Luigia Petre, editors, IFM, volume
7940 of Lecture Notes in Computer Science, pages 412–427.
Springer, 2013.

[Wal95] David Walker. Objects in the π-calculus. Journal of Information
and Computation, 116(2):253–271, 1995.

[Wen99] Markus Wenzel. Isar - a generic interpretative approach to read-
able formal proof documents. In Theorem Proving in Higher Or-
der Logics, pages 167–184, 1999.

[YG08] Ayesha Yasmeen and Elsa L. Gunter. Implementing Secure
Broadcast Ambients in Isabelle using Nominal Logic. In Emerg-
ing Trends Report of the 21st International Conference on Theo-
rem Proving in Higher Order Logics (TPHOLs 2008), pages 123–
134, 2008.

113



Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1397

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-297488

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2016


	Abstract
	List of papers
	My contributions to co-authored papers
	Paper I
	Paper II
	Paper III
	Papers IV-VI

	Relationship with previous thesis
	Svensk sammanfattning
	Acknowledgements
	Contents
	1. Introduction
	1.1 Outline

	2. Background
	2.1 Modelling concurrency
	2.2 Bisimilarity
	2.3 Expressiveness
	2.3.1 Relative expressiveness
	2.3.2 Summary

	2.4 Nominal sets
	2.5 Theorem proving in Isabelle
	2.5.1 Extended example

	2.6 Psi-calculi
	2.6.1 Parameters and requisites
	2.6.2 Syntax and semantics
	2.6.3 Bisimulation
	2.6.4 Congruence and algebraic laws


	3. Contributions
	3.1 Extensions of psi-calculi
	3.1.1 Broadcast communication
	3.1.2 Higher-order data
	3.1.3 Generalised pattern matching
	3.1.4 Sorts

	3.2 Bisimulation up-to techniques
	3.3 Encoding priorities in psi-calculi
	3.4 Expressiveness of monotonic parallel composition
	3.5 Summary

	4. Related work
	4.1 Process calculi
	4.2 Process calculi and theorem proving
	4.3 Broadcast in process calculi
	4.4 Higher-order process calculi
	4.5 Sorts in process calculi
	4.6 Pattern matching in process calculi
	4.7 Priorities in process calculi
	4.8 Bisimulation up-to techniques
	4.9 Monotonic parallel composition

	5. Conclusion
	5.1 Discussion
	5.2 Future work
	5.2.1 Weak equivalences
	5.2.2 Full abstraction of the priority encoding
	5.2.3 Protocol verification with psi-calculi and Isabelle
	5.2.4 Monotonicity and distributability
	5.2.5 Culling psi-calculi
	5.2.6 An algebra of psi-calculi

	5.3 Impact

	References



