
IT 16 049

Examensarbete 30 hp
Juni 2016

CLOUD-METRIC: A Cost Effective
Application Development Framework
for Cloud Infrastructures

Alieu Jallow

Institutionen för informationsteknologi
Department of Information Technology

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

CLOUD-METRIC: A Cost Effective Application
Development Framwork for Cloud Infrastructures

Alieu Jallow

Classic application development model primarily focuses on two key objectives:
scalable system architecture and best possible performance. However, This model of
application development works well on the private resources, but with the growing
amount of public IaaS it is essential to find a balance between the cost and the
performance of an application. In this thesis, we have proposed CLOUD-METRIC: A
Cost Effective Application Development for Cloud Infrastructures. The framework
allows users to estimate the cost of running applications on public cloud
infrastructures during the development phase. We will consider two major cloud
services providers, Amazon AWS and Google Cloud Platform. The provided
estimates can be very useful to make improvements in the users' application
architecture. In addition to cost estimation, the framework allows users to monitor
resources utilized by their applications. Finally, we will provide users with
recommendation of instances on AWS and GCP based on resources utilized by the
applications over a period of time.

Tryckt av: Reprocentralen ITC
IT 16 049
Examinator: Edith Ngai
Ämnesgranskare: Sverker Holmgren
Handledare: Salman Toor

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
This dissertation is my own work and contains nothing which is the outcome of work
done in collaboration with others, except as specified in the text and Acknowledgements.

Alieu Jallow
June 2016

Acknowledgements

I express my sincere gratitude to my supervisor, Salman Toor for his valuable guidance
and insights through out the project. I am sincerely thankful to Prof. Sverker Holmgren
for being my reviewer and for his feedback on this report.

I am thankful to Google and Amazon for making their cloud pricing data accessible
for developers.

Contents

Figures ix

Tables xi

Acronyms & Abbreviations xiii

1 Introduction 1
1.1 Problem Description . 1
1.2 Aims of Project . 2
1.3 Motivation . 2
1.4 Scope . 3
1.5 Structure of Report . 4

2 Related Work 5
2.1 Overview . 5
2.2 Similar Works . 6
2.3 Limitation of Related Work . 7

3 Theoretical Concepts 9
3.1 Cloud Computing . 9

3.1.1 Characteristics . 9
3.1.2 Deployment Models . 10
3.1.3 Services Models . 10

3.2 Public Clouds Providers . 11
3.2.1 Amazon Web Services . 11

viii Contents

3.2.2 Google Cloud Platform . 13
3.3 Cloud Pricing Models . 14

3.3.1 Pricing on AWS . 14
3.3.2 Pricing on GCP . 16

4 Design and Implementation 19
4.1 Overview . 19
4.2 Pricing Data . 19

4.2.1 Pricing Data Validation . 19
4.3 Framework Architecture . 20

4.3.1 Foreign Components . 21
4.3.2 Native Components . 22

4.4 Test Environment . 23
4.5 Framework Functionality . 24

4.5.1 Metering Instance Resources . 24
4.5.2 Cost Estimation . 25
4.5.3 Resource Monitoring . 29
4.5.4 Instances Recommendation . 31

5 Framework Evaluation 33
5.1 Recommendation Algorithm . 33

5.1.1 Basic Hadoop jobs . 33
5.1.2 Stress CPU for maximum usage 34

5.2 Resource Monitor . 35
5.3 Database . 35
5.4 Application . 36

6 Conclusion and Future Work 39
6.1 Future Work . 39

References 41

Appendix A 43

Figures

3.1 Services models in cloud computing and example of corresponding service
providers. 11

3.2 GCP Sustained Usage Discount scheme 18

4.1 Sample Pricing data from AWS on CSV format, showing region, instance
type, operating system, and hourly price 20

4.2 Comparison of cost estimates between AWS SMC & estimator tool . . 21

4.3 Comparison of cost estimates between GCP PC & estimator tool . . . 22

4.4 CLOUD-METRIC framework architecture 23

4.5 CLOUD-METRIC framework database schema 24

4.6 List of nodes in Hadoop cluster and their capacity of resources 25

4.7 Estimated Cost of Hadoop Cluster on AWS 28

4.8 Estimated Cost of Hadoop Cluster on GCP 28

4.9 Estimated Cost of master AWS regions 29

4.10 Estimated Cost of master node on GCP regions 29

4.11 Variation of hourly instance charges on AWS and GCP 30

4.12 Visualization of CPU, memory, and disk utilization on an individual node 30

4.13 Visualization of resources usage on Hadoop cluster 31

5.1 Instances recommended by our recommendation algorithm on two test
cases . 34

5.2 Visualization of resources monitor CPU usage on Hadoop cluster master
node . 35

5.3 Resources utilization of database . 37

x Figures

5.4 Resources utilization of the framework application 38

Tables

A.1 List of AWS instance Types and associated resource capacity obtained
from [1] . 43

A.2 List of GCE Machine Types and associated resource capacity as obtained
from [2] . 45

A.3 Results of Cost estimated obtained from AWS Simple Monthly Calculator
and Estimator tool for selected instances 47

A.4 Results of Cost estimated obtained from GCP Pricing Calculator and
Estimator tool for selected machine type 47

Acronyms & Abbreviations

AWS Amazon Web Services

CPU Central Processing Unit

CSV Comma-Separated Values

DRA Durable Reduced Availability

EC2 Elastic Compute Cloud

ECU Elastic Compute Unit

GCE Google Compute Engine

GCEU Google Compute Engine Unit

GCP Google Cloud Platform

GCS Google Cloud Storage

HDD Hard Disk Drive

IaaS Infrastructure as a Service

IOPS Input/Output Operations Per Second

JSON JavaScript Object Notation

PaaS Platform as a Service

PC Pricing Calculator

S3 Simple Storage Service

xiv Acronyms & Abbreviations

SaaS Software as a Service

SCVMM System Center Virtual Machine Monitor

SMC Simple Monthly Calculator

SNIC Swedish National Institute of Computing

SSD Solid State Drive

UML Unified Modeling Language

Chapter 1

Introduction

1.1 Problem Description

The promise of Cloud computing is to deliver scalable access to a large pool of
computational, storage and network resources, commonly known as Infrastructure-as-
a-Service (IaaS). Based on the IaaS it further enables set of high-level services such as
Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS). The model of efficient
provisioning of resources is in favor of both services provider and end-users. Users only
pay for the usage whereas service provides have well defined economic model together
with service level agreements.

Public Clouds offer competitive pricing model and platforms like Amazon Spot[3]
market allows users to rent services on even lower cost. The cost model consists of
number of parameters such as number of CPUs, Memory and disk size, operating
system and network. However the cost of running large-scale applications are still above
the borderline. One of the major reasons for this is often applications are designed to
attain best performance. This model of application development works well on the
private resources but with the growing amount of public IaaS it is essential to find a
balance between the cost and the performance of an application.

In this project we developed a framework to estimate the cost of running an
application in cloud environment. The aim is to estimate the execution cost during
the development phase so that it will be possible to tune the application accordingly.
CLOUD-METRIC will be used to maintain a balance between performance and the
execution cost of an application. Initially the focus will be on data-intensive processing

2 Introduction

environments like Hadoop and Spark. The framework will meter the execution and
based on the cost matrix it will estimate the overall price of the execution.

Finally, to provide the balance between cost and performance of application, the
framework, through an optimization model, will provide recommendation for users on
the most cost-efficient instance types on Google Cloud Platform (GCP) and Amazon
Web Services (AWS) without compromising performance of application. The model
will take parameters from resource monitoring data, pricing model from AWS and
GCP, and instance types specifications from AWS and GCP.

1.2 Aims of Project

In this project we proposed a framework for estimating cost of running applications in
cloud infrastructures. The primary aim of this project is to provide users (developers)
the ability to estimate cost of large-scale applications in public cloud infrastructures
specifically, AWS and GCP. The estimated cost are calculated based on on-demand
monthly charges from GCP and AWS billings systems.

In addition to providing the estimated monthly cost on GCP and AWS, the proposed
framework provides metrics on the resources utilization in the users development
environment as well as a recommendation for instances types that minimizes the
monthly estimated costs while maintaining or improving application’s performance.

1.3 Motivation

Cloud computing has gained significant popularity in the recent years. As a result,
many researchers and industrial professionals are considering leveraging cloud comput-
ing, which provides the compute power and the resources required to efficiently run
applications and store huge amounts of data. Although the cloud computing provides
the resources and computing power needed to support large-scale applications and
massive data storage, many researchers and professionals have reservations using the
cloud for several factors. One of the major factors is cost. In fact Cost, Networking,
and Elasticity are the top three dominant factors influencing the adoption of cloud
computing for science[4].

Is it a myth that cloud resources is cheap? Our proposed cost-effective framework
will demystify this misconception of cloud computing by providing users cost estimates

1.4 Scope 3

of running applications in two public clouds, AWS and GCP. The framework will meter
users’ development environment and recommend instances on AWS and GCP that
matches their environment. The overall impression of running applications in AWS
and GCP will be provided by our proposed framework.

Several researchers including [5] and [6] provide guides to running applications in
the cloud. [6] proposed an approach to estimated the cost of running applications on
AWS during design phase. [5] proposed a guide for deploying legacy web applications
on cloud infrastructures. However, the proposed approaches in [6] and [5] does not
provide cost estimates. [6] solution is limited in providing cost estimate that reflect
billings in public cloud providers because an application implementation may differ
from its initial design. Our framework in this project provides for users the ability to
get cost of application while it is being developed. Simultaneously, the user will have
the functionality to see which part of their application is consuming more resources so
that they could tune the application.

1.4 Scope

In this thesis project, the focus is to provide an estimated cost of running applications in
public cloud infrastructures such as Google Cloud Platform and Amazon Web Services.
The estimated cost are not exactly same as the cost on the GCP Pricing Calculator
and AWS Simple Monthly Calculator. However, the estimated cost is very close to the
exact AWS and GCP billing costs.

The estimation of the cost is based on metered computer resources usage parameters
such as number of vCPUs, memory size, and disk storage size. Our framework passes
the metered parameters to our matching algorithm that maps them to a closely
matching instance on AWS and GCP that has the most minimal cost and returns an
estimated cost for each of the instances in a month. However, the framework does not
consider the low-level differences in hardware resources between our test environment
and the Google Cloud and between test environment and AWS. These differences
include processor speeds, hardware vendors, and other hardware-specific parameters
such as AWS’ ECU and GCP’s GCEU. The reason we have not considered this details
is that the public cloud providers do not use these hardware-specific details to compute
the cost of running their instances. Besides, it would be much more complicated to
provide cost estimate one instance type with varying hardware-specific details.

4 Introduction

In our proposed framework, we implemented a resource monitoring use case that
allowed us to provide recommendation for instance types on GCP and AWS that
minimizes cost and maintain or improve performance of users’ applications. In our
framework, the monitoring is limited to only basic parameters used by AWS and GCP
for cost estimation and instances type specifications such as number of CPUs, memory
usage, and disk usage.

1.5 Structure of Report

The rest of the report is organized as follows: In chapter 2, We discussed related works
in detail. We outlined relevant theoretical concepts, public cloud providers and their
respective pricing model in chapter 3. In chapter 4 we describe our framework design
and implementation. Chapter 5 discusses results of framework evaluations and in
Chapter 6 we outlined the conclusion, and future work.

Note: We have used on several occasions instances, nodes, machines, and virtual
machines or VMs interchangeably. We mean the same thing. We have also used instance
types and machine types interchangeably. This is because Google uses machine types
to refer to Compute Engine virtual machines and AWS uses instance types to refer to
EC2 virtual machines.

Chapter 2

Related Work

2.1 Overview

As cloud computing provides the needs of researchers and industry professional such
as on-demand self-service, rapid elasticity, broad network access, large pool of compute
resources, and measured services [7] there has been an increase in its adoption over
recent years. On measured services characteristic of cloud computing, several tools have
been developed, utilizing various billing models, to provide cloud services providers
the ability to bill users on for resources used on monthly basis. The most widely used
model is the “Pay-as-you-go”, which is adopted by all major cloud services providers.
On the other hand, cloud services providers have developed tools such as GCP Pricing
Calculator, AWS Simple Monthly Calculator that allow users to estimate cost of
adopting services on cloud environments such as EC2, GCE, AWS S3 etc.

However, such estimation are limited as they do not provide the users the ability
to relate the estimated cost with application-specific characteristics such as design,
implementation, performance, and resources usage. In addition, the actual cost of
running an application may be much more higher than what is being estimated using
the calculators as the application might consume lots of resources such as network,
CPU, and memory, which could be tune and optimized during development. And for
large-scale distributed applications, there is need for framework that allow developers
to see how much resources are being consumed during development. Such a framework
would allow the tuning of the application so that eventually resources utilization and
cost are minimized while performance is improved or maintained. This is the problem
we are solving in this thesis project.

6 Related Work

2.2 Similar Works

Researchers across the community have carried out several research projects relating
to metering and cost estimation in cloud environments, from smart metering systems
by [8] to monitoring resources by [9], from cost estimation on AWS by [6] to guide
to deploying legacy web application in the cloud by [5]. [5] proposed a cloud guide
that help users estimate the cost of cloud deployment and performance of legacy web
applications. In this paper, Liew at al. used a queuing model to predict the cloud
computing resources used by a targeted application and based on that it estimates the
deployment cost. The cost is estimated considering the applications’ resource costs
and services costs. The performance requirements of the application is predicted using
defined policies.

A more similar proposed solution to our work is that proposed by Huihong He
et al. in [6] in which they proposed an approach to estimating the cost of running
application of AWS during design phase. They modeled the application execution
service with a UML activity diagram. The UML activity is extracted automatically
with a proposed extraction algorithm. In addition, He at al. proposed a cost model to
estimate operating cost during design phase and performance need with an algorithm
to produce a suitable purchase solution.

[8] proposed pricing of cloud services based on dynamic operational cost of running
an instance with the base cost provided by the cloud service providers such as Amazon
and Rackspace. The charge of their proposed pricing model is based on leased period
like Amazon reserved instances. Resource monitoring tools such as Hyperic was used for
monitoring infrastructure resources. [8] also proposed the use of performance counters
from hypervisor vendors to obtain cloud instance resource utilization.

Microsoft, being one of the major public cloud services providers, have deployed a
tool that help IT managers to quickly assess the running cost of an existing on-premise
workload on Azure cloud environment[10]. The tool performs a scan on the existing
on-premise workload and recommends a matching instances on Azure. It also provides
a monthly cost of the matching instances on the Azure environment. However, the tool
is limited to Microsoft and VMware technologies such as Hyper-V, SCVMM, vCenter
and ESXi. In our proposed framework, we perform an instance matching routine
similar to their matching routine incorporated in this tool but, we match instances to
AWS and GCP instances instead.

2.3 Limitation of Related Work 7

2.3 Limitation of Related Work

Despite all the works of several researchers in the community and the industry relating
to cost estimation in cloud infrastructure, none of them have addressed the problem we
have solved in this thesis project: equipping developers with a lightweight framework
that allows them to know the cost of running applications in AWS and GCP while
in development phase and provide metrics on the resources utilized to not only allow
application tuning, but also recommend optimal instances on AWS and GCP. The
proposed solution in [6] is liable to provide inaccurate cost estimates as the initial
design of the application, with which the cost estimate were made, changes. To get
accurate cost estimate would require running the tool each time for each design changes
which would be handy.

Chapter 3

Theoretical Concepts

In this chapter, we discussed the relevant theoretical concepts to the proposed frame-
work. Later in the chapter, we outlined the public cloud providers we have considered
in the framework and their respective cloud services and pricing models.

3.1 Cloud Computing

Cloud computing, according to [7], is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources (e.g.
networks, servers, storage, applications and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction. A
cloud infrastructure is the collection of hardware and software that enables the five
essential characteristics of cloud computing. The cloud infrastructure can be viewed
as containing both a physical layer and an abstraction layer. The physical layer
consists of the hardware resources that are necessary to support the cloud services
being provided, and typically includes server, storage and network components. The
abstraction layer consists of the software deployed across the physical layer, which
manifests the essential cloud characteristics. Conceptually, the abstraction layer sits
above the physical layer[7].

3.1.1 Characteristics

Cloud computing has several characteristics: rapid elasticity – capability to provision
compute resources on demand or release resources so as to scale up or down on customers’

10 Theoretical Concepts

demand; on-demand self-service – capability that enables user to provision resources
and services without intervention of services providers; Broad network access –
capability to access resources and services over network or standard mechanism like
thin or thick clients; Resources pooling – means computing resources are pooled
to serve multiple customers on a multi-tenant model and resources are dynamically
assigned and reassigned without customers knowledge; Measured Services – resources
and services usage are measured, controlled, and monitored to provide transparency
for both provider and consumer of the utilized service.

3.1.2 Deployment Models

Cloud computing has three deployment models namely public cloud, private cloud,
community cloud, and hybrid cloud.

• Public Cloud – In this model, multiple tenants use a single virtual machine
and each pay for the resources they consume. It is provided by a cloud service
provider. Examples include Amazon EC2, Microsoft Azure, Google Compute
Engine

• Private Cloud – In this model, a company manages its own data center that
provides scalability, provisioning, automation and management. The company
gains the benefits of cloud computing with private cloud, but incur the cost of
maintaining it as well.

• Hybrid – This model allows a company to maintain an internal private cloud
while using public cloud as needed.

3.1.3 Services Models

Cloud computing has three services models[7], which includes Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS). Each
of service models show a boundary between what the cloud services provider manage
and what customers manage. In IaaS, the customers are provided with the underlying
infrastructure where they could deploy arbitrary software including operating systems
and applications. In PaaS, customers do not manage the underlying cloud infrastructure
such as operating systems, servers, network but rather manage applications developed
using tools and libraries supported by the providers. In SaaS, the capability provided
to the customer is to use providers’ applications running on cloud infrastructure such

3.2 Public Clouds Providers 11

as email services, spreadsheets and word processor applications. Our framework is
designed to allow users to estimate cost of application running in the IaaS service
model. The figure 3.1 shows the the services models and associated providers.

Fig. 3.1 Services models in cloud computing and example of corresponding service
providers.

3.2 Public Clouds Providers

In this project, we provide estimated monthly cost from major public clouds providers.
The chosen public cloud providers are Google Cloud Platform (GCP) and Amazon Web
Services (AWS). Other public cloud providers include Microsoft Azure, and Rackspace.

3.2.1 Amazon Web Services

Amazon Web Services (AWS) is the collection of cloud computing services offered by
Amazon[11]. Being the first public cloud services provider, provides a highly reliable,
scalable, low-cost infrastructure platform in the cloud that powers hundreds of thou-
sands of businesses in 190 countries around the world[12]. AWS offers services including
Amazon EC2, Amazon S3, Amazon DynamoDB, Amazon CloudFront, Amazon EBS,

12 Theoretical Concepts

Amazon Beanstalk, etc. In this project, we consider Elastic Compute Cloud (EC2),
Elastic Block Store (EBS), and Simple Storage Service (S3).

Amazon EC2

EC2 is a web service that provides resizable compute capacity in the cloud. It provides
an interface that allows users to obtain and configure capacity with minimal friction.
The EC2 allows customers to take control of their provision compute resources. Within
EC2, there are several instance types classified in accordance with hardware resources
such as number of virtual CPUs , memory size, and an underlying hardware resource
called EC2 Compute Unit ECU. EC2 instances are further grouped into five classes
namely Compute Optimized, Memory Optimized, Storage Optimized, GPU Instances,
and General Purpose. List of AWS EC2 instance types is outlined in Appendix A,
table A.1. EC2 instance have attached EBS volumes, which provide persistent block
storage. EBS volumes offer consistent and low-latency performance for workloads. The
available EBS volumes types include EBS General Purpose SSD, EBS Provisioned
IOPS SSD, Optimized Throughput HDD, Cold HDD, and older generation Magnetic
Disks.

Amazon S3

Amazon S3 provides secure, highly-scalable, and safe object storage. Via a web interface
customers could store and retrieve large amount of data from any where on the web.
S3 provides the data storage needs of customers on AWS.

Amazon EBS

Amazon Elastic Block Store (EBS) provides persistent block-level storage volumes
for use with EC2 instances. It provides high availability and durability. It gives
customers the capacity to scale up and down with minutes while paying for only what
is provisioned. In AWS cloud, EC2 instances also differ with the kind of volume storage
available – some flavors provide EBS, others provides SSD storage[1].

3.2 Public Clouds Providers 13

3.2.2 Google Cloud Platform

Google Cloud platform is the cloud computing platform that is provided by Google.
GCP provides hosting and other cloud services on the same cloud infrastructure that
Google uses internally for its products such as Youtube, and Google Search. Over recent
years, Google has added several cloud services on top of the App Engine – the PaaS
service that was initially launched – to compete with it biggest competitor Amazon
AWS, and Microsoft Azure. These services include Compute Engine, Container Engine,
Storage, BigQuery, Vision API, etc. In this project, we are delving into its compute
infrastructure, and Storage.

GCP Compute Engine

Google’s cloud computing IaaS is GCP’s Compute Engine. Compute Engine provides
provides high-performance and scalable virtual machines (VM) running on Google’s
innovative data centers connected by a global fiber network[13]. Compute Engine
provides users the choices to create custom Machine Types or choose from a set of
predefined sizes. A list of the predefined instances is outlined in Appendix A, table
A.2.

Disk Storage

Google provide persistent block storage for its Compute Engines. The persistent block
storage is available in two types: persistent HDD volume and local SSD volumes.

Google Cloud Storage

Google Cloud Storage is the equivalent of AWS S3 on the GCP. It provides users with
durable and highly available object storage[14], which is available in three different
options for customers to choose from depending on the needs of their applications –
Standard, DRA, and Nearline storage. The storage choices in this framework uses the
standard option.

14 Theoretical Concepts

3.3 Cloud Pricing Models

Cloud pricing models varies from provider to provider. For example, the pricing model
on Amazon Web Services varies from that of Google Cloud. The most important goals
for cloud services providers is profitability and revenue maximization[15], whereas users
are more concerned with Quality of Services (QoS), high availability of resources, and
cost-effectiveness. To handle this trade-off, cloud services providers have adopted the
scheme of dynamic pricing models such as the Amazon Spot instances [3] [15]. The
most widely known pricing model is the “Pay-As-You-Go”[15] model, which is adopted
by all cloud service providers. Another pricing model is the subscription-based model
in which users subscribe to use compute resources for a fixed period of time (usually
between 1 to 3 years). As the demand for use of cloud services increases over the
years and provision of public cloud services became more competitive among Amazon,
Microsoft, and Google, several pricing discounts schemes have been incorporated on top
of existing pricing models. This has led to the huge reduction in cloud services costs
on all major providers over recent years. In the next few sections, we have outlined the
pricing schemes from Amazon AWS and Google Cloud Platform.

3.3.1 Pricing on AWS

Apart from the free usage tier, which allows potential customers to get started on
AWS services, AWS charge the rest of its cloud services. For each service, users pay
for exactly the amount resources utilized. Amazon pricing models includes:

• Pay as you go. In this model, users pay for only what they use. For EC2
instance, user pay for hourly charges from the time of starting an instance until
termination. For data storage and transfer, AWS charges per gigabytes basis.
Charge depends on the underlying infrastructure and resources consumed. This
is also referred to as “On-demand” pricing model. We have used this pricing
model in our framework for estimating the cost of running instances.

• Pay less on Reserve. Users could get up to 60% discount on reserve instances
over equivalent On-Demand capacity. This, however, depends on the instance
types used.

• Pay even less per unit for 100% usage. For storage and data transfer,
pricing is tiered. Users could pay less when they used more. For EC2, user could
get up to 10% discount when they reserve more.

3.3 Cloud Pricing Models 15

AWS has three fundamental characteristics that customers pay for and have the
greatest impact on cost[16]. This characteristics include compute, storage, and data
transfer out. Our framework considers compute infrastructure and its persistent storage
costs.

EC2 Pricing

Cost estimation on Amazon EC2 considers the following:
• Clock Hours of Server Time – the total number hours server runs with a specified

period of time, e.g 30 days;
• Machine Configuration – instance pricing varies from regions, OS, number of

vCPUs, and memory;
• Machine Purchase Type – Prices varies from On-Demand, Reserve or spot

instances;
• Number of Instances – No more instance used the more charges are incurred;
• Operating Systems and Software Packages – Except for some Linux variants such

as Ubuntu, Debian,etc, OS are charge with the instance[16].

Pricing formula

Below is a formula for computing the monthly cost of a single AWS EC2 instance:

Costmonthly = Costhourly × Tuptime + Storagesize × Storageunitcost

where Costmonthly is instance monthly cost, Costhourly is hourly unit cost, Tuptime is
uptime in hours per month, Storagesize is the disk size, and Storageunitcost is unit cost
of disk type per GB per month. In AWS, EC2 unit cost includes the operating system
cost as well.

S3 Pricing

AWS S3 pricing considers storage class, storage size, requests, and data transfer[16].
Storage class includes standard storage and Standard – Infrequent Access storage, and
Glacier. The former has a higher percentage of availability than the latter, while the
percentage of durability is same – 99.999999999%. The size of storage is charged on a
per GB basis. As for requests, GET request gets more charges than others such as

16 Theoretical Concepts

PUT, and POST. Charges are incurred on data transferred out of region on a per GB
basis.

EBS Pricing

Amazon EBS provides persistent volumes storage for EC2 instances. EBS volumes
are charged by the amount provisioned per GB per month. There are three types of
EBS on AWs: General Purpose (SSD), Provisioned IOPS (SSD), and Magnetic[16].
Input Output Operations per Second (IOPS) are charge based on number of requests
made to volume on Magnetic. IOPS charge is included in General Purpose SSD cost.
In Provisioned IOPS, it is charged based on the number of IOPS provisioned. EBS
provides snapshot for backups of instances on S3 for durable recovery. EBS snapshots
are charged per GB-month of data stored.

3.3.2 Pricing on GCP

Google Cloud Platform offers pricing of up to 50% less than other cloud providers[17][18].
The GCP offers per minutes billing and automatic discounts on increased usage.
Customers pay monthly for on-demand usage of virtual machines instances. In addition,
the minimum per minute billing is 10 minutes and usage is rounded up to the nearest
minute. Furthermore, Google offers Sustained Usage discounts which means the more
customer used, the greater the discount.

Compute Engine Pricing

Google offers two categories of machine types: Predefined machine types and Custom
machine types. Predefined machine types have preset virtualized hardware properties
and a set price while custom machine types are priced with number of virtual CPUs
and memory the instance uses[17]. The Predefined machine types are further grouped
into several classes. These include Standard, Shared-core, High Memory, High CPU
machine types. This class of predefined machine types are qualified for the Sustained
Usage Discount. All machine types on GCP are charged a minimum of 10 minutes and
increments after 10 minutes are rounded up to the nearest minute.

On Compute Engine, GCP charges for premium images and the prices differ based
on machine types where they are used. The prices for all premium images such as
SUSE linux, Red Hat Enterprise Linux, and Window server images are added to the

3.3 Cloud Pricing Models 17

price of the machine type. The premium image prices differ per image and the machine
type it is running but the prices are same in all regions[19]. SUSE images are charged
$0.02 per hour for f1-micro and g1-micro machine types and $0.11 per hour for all
other machine types. RHEL images are charged $0.06 per hour for all machine types
with 4 or fewer vCPUs and $0.13 per hour machine types with more than 4 vCPUs.
Windows server images are charged $0.02 per hour for f1-micro and g1-micro machine
types and $0.04 per core per hour for all other machine types. We have added all this
details to our cost estimation routines of the framework.

GCP provides a discount scheme called Sustained Usage Discount on all its
predefined regular machine types for on-demand subscription. When a predefined
machine type runs more than 25% of a month, compute engine give an automatic
discount on every minute added. This scheme gives a net discount of up to 30%(See
figure 3.2) for an instance that run the entire month[19].

Pricing formula

Below is formula for computing the cost of a single instance on GCP:

Costmonthly = Costhourly×Tuptime×Discountsu+Storagesize×Storageunitcost+OSunitcost×Tuptime

where Costmonthly is instance monthly cost, Ch is hourly unit cost, Tuptime is uptime in
hours per month, Storagesize is the disk size, Storageunitcost is unit cost of disk type,
Discountsu is the Sustained Usage Discount which equals 0.70 for maximum monthly
usage, OSunitcost is premium operating system unit cost. In GCP, OS cost are not
included in the machine type hourly unit cost. OS is computed separately.

Disk Pricing

Users has the option attach volumes to their machine types on GCP Compute Engine.
GCP provides persistent disk, persistent snapshot and local SSD. Persistent disks are
charge for the amount of provisioned space per disk and the I/O operations charges are
included in the charge for space provisioned. Persistent Snapshot are charged only for
the total size of the snapshot and local SSD are charged for the amount of provisioned
space per machine at a rate of $0.218 per GB per month. Local SSD are sold at 375
GB increments[19].

18 Theoretical Concepts

Fig. 3.2 GCP Sustained Usage Discount scheme

Storage Pricing

GCP provides three options for cloud storage, Standard, DRA, and Nearline. The
framework uses standard storage cost for storage cost computation. GC storage cost
are as follows: Standard storage $0.026 per GB per month, DRA $0.02 per GB per
month, and Nearline $0.01 per GB per month[20].

Chapter 4

Design and Implementation

4.1 Overview

The proposed cost-effective framework is designed with portability and robustness in
mind. It is developed with Python and Flask micro-framework. The framework used a
NoSQL database – MongoDB – to store data relating to instances in users development
environment. The framework portability allows it to be deployed either on the same
network as the development environment or on an entirely different network. In this
chapter, we outlined the pricing data we used to estimate monthly cost, the framework
architecture, and the functionality.

4.2 Pricing Data

First in the framework development was the thorough literature survey on the pricing
models of GCP and AWS. You will find details of the pricing models in chapter 3.

The pricing data lists of both GCP and AWS was extracted from [21] and [22].
GCP pricing list was readily available for developers in JSON format. However, AWS
pricing list was not readily available and had to extracted by Python scripts in CSV
formats. Figure 4.1 shows the sample pricing data extracted from AWS.

4.2.1 Pricing Data Validation

Following the extraction of the price list data from AWS and GCP, is the validation
of the data in comparison with currently used pricing data on GCP PC and AWS

20 Design and Implementation

Fig. 4.1 Sample Pricing data from AWS on CSV format, showing region, instance type,
operating system, and hourly price

SMC. A simple validating tool we called estimator was developed to test the validity of
our extracted data. The estimator tool works similar to the GCP PC and AWS SMC:
it prompts user for the cloud platform, the number of instances, operating system,
region, instance type, and storage. Then it computes the cost estimates using prices
from the extracted data. On AWS SMC the monthly estimated cost was computed
for 6 different instance types, located in the US East (Virginia) data center, booted
with Linux operating system, with 500 GB of storage for a period of 1 month. The
estimated costs were recorded. The same options were selected on the estimator tool
and the corresponding results recorded. Figure 4.2 shows the cost estimated for each
chosen instance on AWS SMC and estimator tool. The recorded results are tabulated
in table A.3. Similarly on GCP PC, the monthly cost of 6 different instances types,
located in the US data centers, booted with Linux operating systems and 375 GB of
SSD volumes, with 500 GB of storage for period of 1 month. Figure 4.3 shows the
estimated monthly cost for each chosen instance on GCP PC and estimator tool. The
recorded results are tabulated in table A.4.

The results in figures 4.2 and 4.3 shows that that the extracted pricing data used
for estimation of applications’ cost on GCP and AWS is correct and up to date.

4.3 Framework Architecture

The framework was designed to be portable and efficient. The architecture consist of
two main components: foreign and native components. The architecture employed a

4.3 Framework Architecture 21

Fig. 4.2 Comparison of cost estimates between AWS SMC & estimator tool

push-based model to register multiple nodes in users’ development environment to the
framework application. This process is carried out by the foreign components resource
miner and resource monitor as shown in figure 4.4.

4.3.1 Foreign Components

These components are regarded external because they are designed to execute on
each node of users development environment. The external component consists of
the resource miner and the resource monitor. These are python scripts that run
on each node on the user’s development environment. The resource miner perform
the metering activity of the framework and the resource monitor scripts perform the
resource monitoring activity of the framework. The resource monitor sends resources
usage data (CPU, memory, disk) every 60 seconds to the database whereas the resource
miner sends metered data (number of CPU cores, memory size, storage capacity) to
the database once.

22 Design and Implementation

Fig. 4.3 Comparison of cost estimates between GCP PC & estimator tool

4.3.2 Native Components

The native components consists of a database, a python backend implementation,
and the Flask application. These component are designed to be deployed on a single
node. Although the database could be on a different node, We recommend it to be
deployed on the same node as the application framework to avoid any additional use
of under-utilized instance. The database is a NOSQL database called MongoDB. It
stores the metered data retrieved by the resource miner and the monitoring data that
is retrieved by the resource monitor.

The database consist of three collections, first collection stores clusters information,
the second collection that stores the metered data and the third stores the resource
usage data. The monitored data collection is capped to store a maximum of 2 day
of monitored data for 20 nodes in an environment. That means the monitored data
collection can not exceed 113 MB of storage. Our database design (See figure 4.5)
supports multiple user application development environments. This allow user to see
how different applications perform on the public cloud environments. The framework

4.4 Test Environment 23

Fig. 4.4 CLOUD-METRIC framework architecture

implementation uses python virtual environment that contains all the required python
libraries and dependency frameworks such as Flask and Pymongo1. The business logic
consists of modules for querying data from the mongoDB, modules for cost computation
on AWS and GCP, modules for matching instances to AWS instances types and GCP
instance types, and modules for optimization. The Flask micro-framework act as the
web server for rendering the user interface for the user.

4.4 Test Environment

On the SNIC cloud, we set up a Hadoop cluster with four nodes of varying capacity –
from nodes with 1 virtual cores to nodes with 8 virtual cores – as the test environment.
Another flavor was started and set up as the framework development environment
where we added a database and the python virtual environment. The framework was
tested on the Hadoop cluster which ran one master and four slaves. The resource miner

1Pymongo is a Python distribution containing tools for working with MongoDB

24 Design and Implementation

Fig. 4.5 CLOUD-METRIC framework database schema

was executed on each of the nodes and the resource monitor was executed as process
on each node.

4.5 Framework Functionality

The proposed framework provides functionality that achieved the project goals. The
functionality implemented on the framework includes metering of instance resources,
cost estimation for cluster on AWS and GCP, monitoring of individual nodes within
cluster, monitoring of overall cluster environment, and recommendation for optimized
instances type and instance number on both AWS and GCP.

4.5.1 Metering Instance Resources

The metering activity in our proposed framework is carried out by the resource miner,
which is an external component of the framework. Each node in the users cluster must
ran the resource miner once so that it could be detected by the framework as part of a

4.5 Framework Functionality 25

cluster. The resource miner uses psutil2 to meter the host name, operating system,
number of CPUs, memory size, and disk size of each node and sends the data to the
database. In our Hadoop test environment, we have run the resource miner on each of
the nodes to allow us to show on the user interface the number of nodes in the cluster
and capacity of resources. Figure 4.6 show the nodes in our Hadoop cluster and the
capacity of each node’s CPUs, memory, and disk storage.

Fig. 4.6 List of nodes in Hadoop cluster and their capacity of resources

4.5.2 Cost Estimation

The cost estimation is the principal component of the framework. The framework
provides estimated cost for running applications on AWS and GCP. The cost estimation
consist of two significant algorithm implementations: The matching algorithm which
map nodes to closest matching instances on AWS EC2 and GCP CE, and the cost
computation algorithm which implements the formulas outlined in sections 3.3.1 and
3.3.2.

Matching Algorithm

The matching algorithm involves one routine. The routine takes as input, a dictionary
data structure that contains instances and their respective resources capacity, the
number of virtual CPUs, and memory size of the instance being matched, and return
the closest matching instances that is computed based on a matching factor. The
instances with the lowest matching factor is returned by each routine as the closest
matching instance type. The matching factor is a function of the memory size. Initially

2psutil is a cross-platform python library for retrieving system information such a CPU, network,
memory

26 Design and Implementation

each instance in the data structure has a matching factor of 0 which means every
instance in the data structure is a match in terms of memory size. The algorithm scans
the data structure and retrieve all instances that match the CPU cores and updates the
matching factor of each retrieved instance and finally returns the instance(s) with the
lowest matching factor. The generalized matching algorithm is outlined in algorithm 1.

Algorithm 1: get Instances algorithm
Data: DictionaryofInstances
Input: numberOfCPUs, MemorySize
Output: List of matching instances

1 Min ← BIGINTEGER
2 foreach instanceType in DictionaryofInstances do
3 if inputCPU matches instanceType CPU then
4 MatchingFactor ← differenceInMemorySizes
5 if MatchingFactor < Min then
6 Min ← MatchingFactor
7 end
8 addToCPUMatchingInstance
9 end

10 end
11 foreach InstanceType in CPUMatchingInstances do
12 if matchingFactor = Min then
13 addInstanceToList
14 end
15 end

Cost estimator

The framework’s cost computation consist of 2 routines. One routine implements the
cost computation from AWS EC2 and EBS pricing data. The other implements the
cost computation on GCE. The cost computation in our framework is similar to that of
AWS and GCP in that we have used the same parameters that have significant impact
on the cost of instances such number of CPUs, memory size, disk storage. The initial
estimate of instances in a cluster takes by default US region for the cost estimation on
GCP and US-East-1 region for the cost estimation on AWS. The framework computes
only monthly estimates on both GCP and AWS which conforms to the On-Demand
(Pay-as-you-go) subscriptions on AWS and GCP. We used regular virtual machines

4.5 Framework Functionality 27

class3 for monthly estimation on GCP CE instances and On-Demand instances on
AWS EC2. The generalized algorithm for the cost computation is outlined in algorithm
2.

Algorithm 2: General cost estimation algorithm
Data: PricingData, ComputedMatchingInstances
Input: instanceType, Region, StorageSize, NumberOfInstances,OS,
Output: EstimatedMonthlyCost

1 data ← readPricingData
2 uses 30.5 days as average number of days in month
3 monthHours ← (30.5 ∗ 24)
4 totalCost = 0
5 if instanceType in data then
6 instanceHourlyCost ← data[region][instanceType]
7 instanceMonthlyCost ← NumberOfInstances ∗ instanceHourlyCost ∗

monthHours
8 osHourlyCost ← data[os]
9 OSCost ← NumberOfInstances ∗ osHourlyCost ∗ monthHours

10 storageCost ← data[region][storage] * StorageSize
11 totalCost ← OSCost + instanceMonthlyCost + storageCost
12 end

Cost estimates on Individual Nodes and Cluster: The framework provides
users the functionality to estimate cost of individual nodes in the cluster as well as the
overall cluster for maximum utilization in a month. The overall cluster cost estimation
is the sum total of individual instances cost on the default regions – US data centers.
The framework provides users interface to see differences in cost of instances in all
regions on both AWS and GCP. Figures 4.7 and 4.8 show the cost of running our
Hadoop cluster on AWS and GCP respectively. Figures 4.9 and 4.10 show the various
estimated cost for running the master node of our Hadoop cluster in different regions
on AWS and GCP respectively.

AWS and GCP On-Demand Cost Estimates: The results of the cost esti-
mation showed a huge difference between the monthly cost of our Hadoop cluster on
AWS and the monthly of the cluster on GCP. This huge difference is because GCP

3Google Cloud platform provides two virtual machines (VM classes: Regular and Preemptible.
The difference is that latter is short lived and suitable for fault tolerant applications and lasts for up
to 24 hours whereas the former runs until terminated by user.

28 Design and Implementation

Fig. 4.7 Estimated Cost of Hadoop Cluster on AWS

Fig. 4.8 Estimated Cost of Hadoop Cluster on GCP

provides an automatic discount on the hourly charges of virtual machines for every
additional minute of machine usage on top of the initial 25% usage in a month. This
discount scheme called Sustained Usage Discount is discussed in detail in section 3.3.2.
AWS, on the other hand, charges a fixed hourly cost for each virtual machine for every
hour of usage in a month. The framework incorporated these on-demand subscription
discounts in its cost computation algorithm. We have provided users the interface to
see how the hourly unit cost of instances changes over a monthly period of utilization.
In figure 4.11, we visualized the variation on the hourly charges for c3.xlarge on
AWS and N1-HighCPU-4 on GCP over several percentage of usage in a month. Both
c3.xlarge and N1-HighCPU-4 are closest matching instances for the master node (4
vCPUs and 8 GB of memory) of our Hadoop test environment.

4.5 Framework Functionality 29

Fig. 4.9 Estimated Cost of master AWS regions

Fig. 4.10 Estimated Cost of master node on GCP regions

4.5.3 Resource Monitoring

The monitoring aspect of the framework provides the the ability to visualized the
performance of each node in the cluster and the overall cluster. The parameters we
monitor in each node are CPU, memory, and disk. The monitoring data is used in the
implementation of the optimization which is discussed in section 4.5.4.

Single Node monitoring

For each node in our Hadoop4 cluster, there is a resource monitor process that sends
CPU, memory, and disk usage data to the database every 60 seconds. The stored data

4Hadoop is a framework that allows for the distributed processing of large data sets across clusters
of computers

30 Design and Implementation

Fig. 4.11 Variation of hourly instance charges on AWS and GCP

is retrieved via a MongoClient5 API and displayed on the framework user interface.
Figure 4.12 shows integrated visualization of monitoring resources (CPU, memory,
disk) data of individual node.

Fig. 4.12 Visualization of CPU, memory, and disk utilization on an individual node

5A python class that provides API for connecting to MongoDB

4.5 Framework Functionality 31

Cluster Monitoring

The user is provided with the functionality within the framework to visualize the overall
performance of an entire cluster. In this case, the stored data of the nodes’ resources
(CPU, memory, and disk) is grouped on hourly basis and the average is taken for each
of CPU, memory, and disk usages. The monitoring charts display the percentage usage
against the hourly utilization of the entire cluster. Figure 4.13 shows an integrated
visualization of the CPU, memory, and disk usage of an our Hadoop cluster.

Fig. 4.13 Visualization of resources usage on Hadoop cluster

4.5.4 Instances Recommendation

The framework recommends for users instances on AWS and GCP that match resources
usage of the cluster over a period of time. The recommended instances are result of an
optimization algorithm that creates a machine type from the resources utilization of a
node in user environment over a period of time. Since the database stores just above
5MB of resource utilization data, the time period the algorithm consider for resource
utilization is maximum of 2 days. The algorithm queries for average CPU and memory
utilization and construct an instance from the data retrieved. The constructed instance
is then matched with similar instance on AWS and GCP via matching algorithm
outlined in section 4.5.2. In addition, the costs of the matching instances on AWS

32 Design and Implementation

and GCP are computed via the cost estimation algorithm in section 15. Detail of the
recommendation algorithm is outlined in algorithm 3.

We have tested the recommendation algorithm on a 2-node cluster with two test
cases, which is outlined in chapter 5

Algorithm 3: Recommendation algorithm
Data: Resource Utilization Data, Pricing Data, Instances Types on AWS and

GCP, Cluster
Output: Recommended Instances, EstimatedMonthlyCost of Recommended

Instances
1 foreach Node in Cluster do
2 retrieve CPU, memory, disk, OS
3 retrieve average CPU and Memory Utilisation
4 compute CPU and memory size from utlilization
5 end
6 foreach Computed CPU, Memory do
7 get matching instances on AWS
8 get matching instances on GCP
9 end

10 foreach Matching Instances do
11 Compute cost of instance in AWS
12 Compute cost of instance in GCP
13 end

Chapter 5

Framework Evaluation

We have proposed a portable framework that would not consume much of users compute
resources. To validate that, we have evaluated the resources utilization of both the
external (resource monitor) and internal (application and database) components of the
framework. The evaluation process for each of the framework components was carried
out with nmon

1 – read and store resource utilization data – and NMON Visualizer2 –
visualizes stored data in charts.

In the following sections, we will present the result of our evaluation of each of the
framework components – recommendation algorithm, resource monitor, database, and
application.

5.1 Recommendation Algorithm

We have evaluated our recommendation algorithm using 2-node cluster. Each of the
nodes has 8 vCPUs and 16G of memory. We tested the performance using the following
cases: ran basic Hadoop jobs and stress CPU for maximum utilization.

5.1.1 Basic Hadoop jobs

Initially, we set up the cluster and decided not to run any resource intensive jobs. We ran
the Hadoop jobs and our monitoring process on each node. Each node initially matched
c4.2xlarge instance on AWS EC2 and N1-HighCPU-8 on GCP CE. You will see

1nmon is a Linux performance and resources monitoring tool
2A jar file developed purposely for nmon data visualization

34 Framework Evaluation

detail of the instances on AWS and GCP in appendix A. The algorithm recommended
c3.xlarge and N1-HighCPU-4 for each node on AWS and GCP respectively. The
recommended instances have 4 CPUs, that is half of the number of CPUs on each node
in the cluster. There is a cost reduction of about 50% on the recommended cost. (See
figure 5.1).

5.1.2 Stress CPU for maximum usage

On each node in the cluster we ran 8 CPU-intensive processes to maximize CPU usage
for a period of 8 hours. Each process is the following command which utilizes a single
core 100%: $ yes > /dev/null &. The recommendation algorithm recommended
c4.2xlarge for AWS and N1-HighCPU-8 (See figure 5.1) for each of the nodes in the
cluster. In this case, the algorithm recommends the actual static matching instances
for the CPUs were maximally utilized.

(a) Output of recommendation on case 1

(b) Output of recommendation on case 2

Fig. 5.1 Instances recommended by our recommendation algorithm on two test cases

5.2 Resource Monitor 35

5.2 Resource Monitor

Since the resource monitor scripts is executed every 60 seconds on each user node,
we expect close to negligible resources (CPU, memory,and network) utilization. To
validate our expectation, we used nmon to store resources utilization data in CSV file
for a period of 24 hours. We ran the following command which captures resources
utilization including top processes every 20 seconds for a total count of 4320, that is
24hrs hours, on the master node of our Hadoop cluster.

$ nmon -ft -s 20 -c 4320

Figure 5.2 show the CPU utilization of our resource monitor python process. The
data was visualized with nmon Visualizer.

The data visualized confirmed that our resource monitoring process has an very
low CPU utilization: maximum of 0.001 over a period of 24 hours.

Fig. 5.2 Visualization of resources monitor CPU usage on Hadoop cluster master node

5.3 Database

We evaluated the CPU, memory, and disk utilization on the node that hosted the
framework mongoDB database using the nmon tool for 8 hours. The node had only
the mongoDB running. We ran the nmon command – nmon -ft -s 2 -c 14400 –
which records resources utilization of processes every 2 seconds for 8 hours. We ran

36 Framework Evaluation

the application and accessed the interface while the nmon process records the resource
utilization data. The mongoDb process recorded a maximum CPU utilization of just
above 2%. Figures 5.3a, 5.3b, 5.3c) show the CPU, memory and and disk utilization
over the period.

5.4 Application

To evaluate how our application consumes compute resources, we started a t1.micro

instance (free tier) on AWS EC2 on EU-WEST-1 region and deployed the application
on the instance. We ran the nmon command – nmon -ft -s 2 -c 14400 – which
records resources utilization of processes every 2 seconds for 8 hours. Within the period,
we access the application from our browsers for a about 1 hour.

As shown in figure 5.4 the application process (python) recorded a maximum CPU
usage of 3.490. The memory utilization, which occurs as a result of the execution of the
algorithm within the business logic and data structures of the application, showed a
maximum active memory of 286.3MB within the 8 hour period. The network utilization
results from the queries from the database, which was hosted in the SNIC cloud, and
the HTTP requests from our browsers, showed a maximum read and maximum write
of 119.571 KB per second and 5.658 KB per second respectively.

5.4 Application 37

(a) mongoDB’s CPU utilization on host

(b) mongoDB’s memory utilization on host

(c) mongoDB’s disk writes on host

Fig. 5.3 Resources utilization of database

38 Framework Evaluation

(a) Application’s CPU utilization

(b) Application Memory utilization

(c) Application network read and write

Fig. 5.4 Resources utilization of the framework application

Chapter 6

Conclusion and Future Work

We have proposed and developed CLOUD-METRIC as lightweight and portable frame-
work that extends the classic application development model with cloud infrastructure
execution cost, better estimates of required resources, and recommendation for about
execution plan. Primarily, the framework provides estimated monthly cost of running
applications on AWS and GCP. The framework provides the ability to monitor develop-
ment environment both for single node and entire cluster to assess resources utilization
which also provides the basis for the recommendation of instances types on AWS and
GCP.

The framework is designed to be pluggable to any development environment or
research environment. It is a third party tool that developers could add to their
development environment to provide cost estimates of an application in development
phase. In addition, researchers within the scientific community that consider leveraging
public clouds infrastructures such as GCP and AWS as result of limited resources in
private academic cloud deployments such as Uppmax at Uppsala University could
utilize the framework to get estimates of cost running similar workloads in the AWS
and GCP.

6.1 Future Work

It would be interesting to incorporate a learning algorithm in the instance recommen-
dation that recommend the number of instances and instance types based on resource
utilization and additional parameters such as application specific requirements such
memory intensive, CPU intensive, storage intensive. In this case the algorithm would

40 Conclusion and Future Work

learn from data from public cloud providers about different instance types and scan
the user’s application environment and identify it as either CPU intensive, memory
intensive or data intensive labels. This would provide a much more perfect recommen-
dation between applications and the instance types. Another interesting thing would
be to defined a model that tell the recommendation algorithm the condition for scaling
in and out the number of instances the user have in their environment for optimal
performance and lowest cost possible. In addition, the framework could be enhanced
to include the consideration of more details chargeable parameters that are used in
billing systems of public cloud providers, such as number of elastic IPs, number of load
balances, Data Ingress and Egress. Another further improvement would be to provide
support for other cloud providers such as Microsoft Azure, and Rackspace.

References

[1] “Ec2 instance pricing – amazon web services (aws),” 2016/4/27/. [Online].
Available: https://aws.amazon.com/ec2/pricing/

[2] “Google compute engine pricing - compute engine — google cloud platform,”
2016/2/16/. [Online]. Available: https://cloud.google.com/compute/pricing

[3] “Amazon ec2 spot instances,” 2016/4/25/. [Online]. Available: https:
//aws.amazon.com/ec2/spot/

[4] C. L. Yang, B. N. Hwang, and B. J. C. Yuan, “Key consideration factors of
adopting cloud computing for science,” in Cloud Computing Technology and
Science (CloudCom), 2012 IEEE 4th International Conference on, Dec 2012, pp.
597–600.

[5] CloudGuide: Helping users estimate cloud deployment cost and performance
for legacy web applications, ser. 4th IEEE International Conference on Cloud
Computing Technology and Science Proceedings. IEEE. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6427577

[6] An Approach to Estimating Cost of Running Cloud Applications Based on AWS, ser.
2012 19th Asia-Pacific Software Engineering Conference. IEEE. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6462712

[7] “http://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-145.pdf,”
2016/4/26/. [Online]. Available: http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf

[8] Smart metering of cloud services, ser. 2012 IEEE International Systems Conference
SysCon 2012. IEEE. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6189462

[9] Anatomy of Cloud Monitoring and Metering: A Case Study and Open Problems,
ser. Proceedings of the 6th Asia-Pacific Workshop on Systems. ACM. [Online].
Available: http://doi.acm.org/10.1145/2797022.2797039

[10] “Download microsoft azure cost estimator tool from official microsoft download
center,” 2016/4/26/. [Online]. Available: https://www.microsoft.com/en-us/
download/details.aspx?id=43376

https://aws.amazon.com/ec2/pricing/
https://cloud.google.com/compute/pricing
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6427577
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6462712
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6189462
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6189462
http://doi.acm.org/10.1145/2797022.2797039
https://www.microsoft.com/en-us/download/details.aspx?id=43376
https://www.microsoft.com/en-us/download/details.aspx?id=43376

42 References

[11] Feb 2016, ch. http: //media.amazonwebservices.com/AWS_Pricing_Overview.pdf.
[Online]. Available: http://media.amazonwebservices.com/AWS_Pricing_
Overview.pdf

[12] “https://d0.awsstatic.com/whitepapers/aws-overview.pdf,” 2016/4/26/. [Online].
Available: https://d0.awsstatic.com/whitepapers/aws-overview.pdf

[13] “Compute engine – iaas – google cloud platform,” 2016/4/27/. [Online]. Available:
https://cloud.google.com/compute/

[14] “Cloud storage – online data storage — google cloud platform,” 2016/4/27/.
[Online]. Available: https://cloud.google.com/storage/

[15] A survey of Cloud computing variable pricing models, April 2015. [Online].
Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7320330&
isnumber=7320302

[16] “Aws pricing overview,” 2016/4/26/. [Online]. Available: https://d0.awsstatic.
com/whitepapers/aws_pricing_overview.pdf

[17] “https://cloud.google.com/files/esg-whitepaper.pdf,” 2016/4/27/. [Online]. Avail-
able: https://cloud.google.com/files/esg-whitepaper.pdf

[18] “Pricing — price performance leadership — google cloud platform,” 2016/4/27/.
[Online]. Available: https://cloud.google.com/pricing/

[19] “Google compute engine pricing - compute engine — google cloud platform,”
2016/4/28/. [Online]. Available: https://cloud.google.com/compute/pricing

[20] “Google cloud storage pricing – cloud storage —- google cloud platform,”
2016/5/6/. [Online]. Available: https://cloud.google.com/storage/pricing

[21] “Google cloud platform pricing calculator — google cloud platform,” 2016/5/9/.
[Online]. Available: https://cloud.google.com/products/calculator/

[22] “Aws pricing data,” 2016/5/9. [Online]. Available: http://a0.awsstatic.com/
pricing/1/ec2/

http://media.amazonwebservices.com/AWS_Pricing_Overview.pdf
http://media.amazonwebservices.com/AWS_Pricing_Overview.pdf
https://d0.awsstatic.com/whitepapers/aws-overview.pdf
https://cloud.google.com/compute/
https://cloud.google.com/storage/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7320330&isnumber=7320302
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7320330&isnumber=7320302
https://d0.awsstatic.com/whitepapers/aws_pricing_overview.pdf
https://d0.awsstatic.com/whitepapers/aws_pricing_overview.pdf
https://cloud.google.com/files/esg-whitepaper.pdf
https://cloud.google.com/pricing/
https://cloud.google.com/compute/pricing
https://cloud.google.com/storage/pricing
https://cloud.google.com/products/calculator/
http://a0.awsstatic.com/pricing/1/ec2/
http://a0.awsstatic.com/pricing/1/ec2/

Appendix A

Table A.1 List of AWS instance Types and associated resource capacity obtained from
[1]

vCPUs ECU Memory (GB)

General Purpose

t2.nano 1 variable 0.5

t2.micro 1 variable 1

t2.small 1 variable 2

t2.medium 2 variable 4

t2.large 2 variable 8

m4.large 2 6.5 8

m4.xlarge 4 13 16

m4.2xlarge 8 26 32

m4.4xlarge 16 53.5 64

m4.10xlarge 40 124.5 160

m3.medium 1 3 3.75

m3.large 2 6.5 7.5

44

m3.xlarge 4 13 15

m3.2xlarge 8 26 30

Compute Optimized

c4.large 2 8 3.75

c4.xlarge 4 16 7.5

c4.2xlarge 8 31 15

c4.4xlarge 16 62 30

c4.8xlarge 36 132 60

c3.large 2 7 3.75

c3.xlarge 4 14 7.5

c3.2xlarge 8 28 15

c3.4xlarge 16 55 30

c3.8xlarge 32 108 60

GPU instances

g2.2xlarge 8 26 15

g2.8xlarge 32 104 60

Memory Optimized

r3.large 2 6.5 15

r3.xlarge 4 13 30.5

r3.2xlarge 8 26 61

r3.4xlarge 16 52 122

r3.8xlarge 32 104 244

Storage Optimized

45

i2.xlarge 4 14 30.5

i2.2xlarge 8 27 61

i2.4xlarge 16 53 122

i2.8xlarge 32 104 244

d2.xlarge 4 14 30.5

d2.2xlarge 8 28 61

d2.4xlarge 16 56 122

d2.8xlarge 36 116 244

Table A.2 List of GCE Machine Types and associated resource capacity as obtained
from [2]

Machine Type Virtual CPUs Memory GCEU

Standard Machine Types

n1-standard-1 1 3.75GB 2.75

n1-standard-2 2 7.5GB 5.50

n1-standard-4 4 15GB 11

n1-standard-8 8 30GB 22

n1-standard-16 16 60GB 44

n1-standard-32 32 120GB 88

Shared-Core Machine Types

f1-micro 1 0.60GB Shared CPU

46

g1-small 1 1.70GB 1.38

High Memory Machine Types

n1-highmem-2 2 13GB 5.50

n1-highmem-4 4 26GB 11

n1-highmem-8 8 52GB 22

n1-highmem-16 16 104GB 44

n1-highmem-32 32 208GB 88

High CPU Machine Types

n1-highcpu-2 2 1.80GB 5.50

n1-highcpu-4 4 3.60GB 11

n1-highcpu-8 8 7.20GB 22

n1-highcpu-16 16 14.40GB 44

n1-highcpu-32 32 28.80GB 88

47

Table A.3 Results of Cost estimated obtained from AWS Simple Monthly Calculator
and Estimator tool for selected instances

t2.large m4.large m3.large c3.large g2.2xlarge r3.2xlarge

AWS SMC $90.67 $102.35 $111.84 $91.40 $489.25 $500.20

Estimator tool $90.98 $102.69 $112.21 $91.70 $490.68 $501.63

Table A.4 Results of Cost estimated obtained from GCP Pricing Calculator and
Estimator tool for selected machine type

standard-
1

standard-
32

highMem-
16

highCPU-
8

highCPU-
32

highMem-
32

GCP PC $119.35 $905.20 $605.06 $248.13 $710.51 $1116.11

Estimator tool $119.95 $901.15 $602.78 $247.97 $707.61 $1110.81

	Contents
	Figures
	Tables
	Acronyms & Abbreviations
	1 Introduction
	1.1 Problem Description
	1.2 Aims of Project
	1.3 Motivation
	1.4 Scope
	1.5 Structure of Report

	2 Related Work
	2.1 Overview
	2.2 Similar Works
	2.3 Limitation of Related Work

	3 Theoretical Concepts
	3.1 Cloud Computing
	3.1.1 Characteristics
	3.1.2 Deployment Models
	3.1.3 Services Models

	3.2 Public Clouds Providers
	3.2.1 Amazon Web Services
	3.2.2 Google Cloud Platform

	3.3 Cloud Pricing Models
	3.3.1 Pricing on AWS
	3.3.2 Pricing on GCP

	4 Design and Implementation
	4.1 Overview
	4.2 Pricing Data
	4.2.1 Pricing Data Validation

	4.3 Framework Architecture
	4.3.1 Foreign Components
	4.3.2 Native Components

	4.4 Test Environment
	4.5 Framework Functionality
	4.5.1 Metering Instance Resources
	4.5.2 Cost Estimation
	4.5.3 Resource Monitoring
	4.5.4 Instances Recommendation

	5 Framework Evaluation
	5.1 Recommendation Algorithm
	5.1.1 Basic Hadoop jobs
	5.1.2 Stress CPU for maximum usage

	5.2 Resource Monitor
	5.3 Database
	5.4 Application

	6 Conclusion and Future Work
	6.1 Future Work

	References
	Appendix A

