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Active dose selection and dose-response
modeling for quantitative high-throughput

screening (qHTS)

Joel Ås

Populärvetenskaplig sammanfattning

Screening är en metod för att utvärdera cellers respons p̊a biologiska och kemiska preparat
och dess potentiella användning som läkemedel. Parallelisering av screening m.h.a robotik
och mikrofluedik har lett till HTS, eller high-throughput screening, vilket till̊ater många
fler preparat att screenas inom samma tidsram. Skillnaden mellan HTS och qHTS (quan-
titative HTS) är att qHTS ger information om vid vilka koncentrationer, eller doser, som
en respons kan förväntas. För att kunna studera dos-respons relationen används olika
typer matematiska modeller. P̊a varje preparat görs ett finit antal av dos-respons tester
och doserna väljs traditionellt utifr̊an spädningserier. För att pröva om ett dos-respons
modeller kan utvärderas effektivare m.h.a iterativt val av doser att testa, där valet av dos
är baserat p̊a tidigare experiment, används maskininlärning. Om man p̊a s̊a sätt kan göra
valet av doser bättre kan b̊ade tid och resurser sparas. Här presenteras resultat där iter-
ativa val av koncentrationer när man beräknar matematiska dos-response kurvor utifr̊an
experimentella mätningar. Som referens avnänds den standardiserade 4-parameters Hills
dos-respons modellen. Resultaten tyder p̊a att anvädningen av s.k. active learning-
algoritmer gör det möjligt uppskatta okända parametervärden bättre, samt upptäcka
plösliga förändingar.

Användningen av qHTS möjliggör även screening av synergisktiska effekter mellan olika
preparat. Synergi syftar p̊a om tv̊a preparat ger en oväntad fördelaktig effekt när de
kombineras. Många tester för synergi mellan preparat indikerar bara närvaro av en
s̊adan effekt men beskriver lite om hur denna beter sig. Här formuleras matematiska
modeller för dos-respons ytor för screening av synergistiska interaktioner mellan tv̊a sub-
stanser med parametrar som tydligt visar hur interaktionen beter sig. Simuleringsresul-
tat för utvärdering via active learning-algorithmer av dessa dos-respons yt-modeller är
lovande.

Examensarbete 30 hp

Civilingenjörsprogrammet i Molekylär Bioteknik

Uppsala Universitet, Augusti 2016
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1 Abbreviations

IC50 - Half maximal inhibitory concentration
IG - Information gain selection
LM - Local maximum selection
qHTS - quantitative High-Throughput Screening
RS - Response simulation
VE - Variance estimation
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2 Introduction

Historically, screening for biologically active substances with medical application has
been a tedious process, as it is very time consuming. The developments in robotics
and microfluidics allow for quantitative high throughput screening, or qHTS [1]. The
difference between HTS (high throughput screening) and qHTS is that HTS screens for
interesting substances while qHTS also estimates the relationship between applied dose
of the substance and response measured. qHTS enables for multiple compounds to be
tested at a range of doses and suitable response to be measured at a nanomolar precision.
qHTS using acoustic dispensing achieve high precision and high throughput by vibrating
the the surface of a well, containing the substances to be studied, releasing a droplet.
By acoustically transporting different numbers of droplets of a drug compound (known
concentration and volume) from a source plate to the different wells containing the cell
cultures [2], it is easy to create dose series suitable for estimation of dose-response curves.
This thesis will evaluate tests for potential cytotoxic agents, where the measured response
will be the fraction of cells alive post-exposure. The process of profiling a clinically used
drug is still a time consuming process, even when using qHTS, as the cell-wells, exposed
to the substance, needs to incubate for days.

The goals and aims of this thesis are:

• To explore different mathematical models to approximate different dose-response
curves with respect to how easy they are to use, in terms of parameter fitting,
interpretation and use in the context of active learning.

• To evaluate the potential of using active learning methods for iterative selection of
doses to evaluate, in order to reduce the resulting uncertainty about model param-
eters such as IC50 and slope in the Hill model. The aim is to reduce the amount
of resources, such as reagents, cells and substance, needed for experiments while
reaching the same or higher accuracy in the parameter estimation as the dilution
approach.

• To mathematically formulate and employ new types of response surfaces for synergy
analyses in drug combination experiments. The use of active learning methods for
these response surfaces will also be evaluated.

When selecting doses for screening a standard method of choosing concentrations is di-
lution series, commonly ranging from two-fold to ten-fold dilution. The responses in the
gradient is measured in two to four replicates and the data is fitted to a dose-response
function such as the Hill model [3] (illustrated in Figure 1 and defined in Equation 1).
These functions are traditionally sigmoidal functions meaning that the function saturates
at high and low doses.

The parameter values obtained from the curve-fitting will reflect on the properties of the
substance. It is very important that these parameter values are accurately estimated,
since they relay information on at which doses of the substance can be used clinically.
At too high doses some substances will become toxic meaning that there is a dose-range
between treating and killing the patient. One parameter in the Hill model is IC50, the
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dose at which 50% of the potential response is obtained (in Figure 1 the IC50 value is
100). Another parameter is the slope which represents how short the dynamic window
is.

Another type of experiment that is applicable to qHTS is substance combination studies.
In these types of experiments cells are exposed to multiple substances to screen for inter-
actions. Here an interaction effect is an unexpected effect only occur when two or more
substances are present. These substances interact and can have a favorable (synergistic),
unfavorable (antagonistic) or completely novel effect. What is classified as an interac-
tion effect is a debated issue [4] and many tests to measure and define such effects have
been designed [4, 5, 6]. These tests measure the presence of an unexpected effect and
what separates them is the assumption of what is expected. Two commonly used tests
for synergy are Loewe additivity [6] and Bliss independence [5]. The main problem with
these types of synergy tests is that they only indicate the presence of an interaction effect
but convey little or no information about the interaction itself. In this thesis models
to model the response surface of cells exposed to two substances is formulated. These
models allow for interaction effects and tries to quantify the interaction effect instead of
only indicating its presence. Using these models, question on how much of a synergistic
effect can be expected and at what doses. The models are designed so the parameters of
said model will be easy to interpret and any observed interaction effect can be intuitively
understood. This means that the screening for interaction effects can be performed at
the same time as the analysis of said interaction.
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Figure 1: The Hill function. Example of a dose-response curve where the response is
lowered with the increase in dose. This dose-response curve was generated using the
Hill model defined in Equation 1. This model has four parameters including the IC50

parameter. In this figure the IC50 = 100 resulting in the middle of the slope being
centered at that value.
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2.1 Background Theory

2.1.1 Dose-Response Modeling and The Hill Equation

A dose-response relationship is the relationship between a biologically active compound at
a certain concentration and a corresponding response of cells exposed to the substance.
For example the amount of surviving bacteria exposed to a certain concentration of a
antibiotic. In this case the concentration of the antibiotic would be the dose and the
measured cell survival would be the response. These relationships can be modeled and
one such model is the Hill Equation.

The Hill equation proposed by Hill A.V.J [3] in 1910 models the dissociation of haemoglobin
but models other sigmoidal dose-response relationships as well [7, 8]. The model is for-
mulated as Equation 1. For an example of a Hill function on a logarithmic dose range
see Figure 1.

H(Di) = Ri = (Ymax − Ymin)
1

1 + ( Di
IC50

)h
+ Ymin (1)

This model is convenient since each parameter can be biologically interpreted:

• Ri The response of system given dose Di

• Ymax The maximum output the system can generate.

• Ymin The minimum output the system can generate.

• Di Dose of the compound

• IC50 The dose where the system reach R = Ymax−Ymin
2

+ Ymin

• h Corresponds to the slope of the output on a logarithmic scale.

The Hill equation is only viable for Di ≥ 0 and IC50 > 0.
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2.1.2 Quantitative High-Throughput Screening

qHTS is, as the name implies, a method for high-throughput dose-response estimation.
This type of evaluation is usually performed in order to to test large substance libraries on
a cell line or test known drugs against a patient cell line to determine the most promising
treatment. The instrument used in this thesis for qHTS is LABCYTE’s ECHO R© 550
[2] and will be referred to as ECHO. The ECHO uses ultrasound to shoot nano-liter
droplets of a substance from a source plate into a well containing a cell suspension of
known volume. By counting the amount of droplets transmitted, a high-precision in
concentration is achieved. As a 384 well plate with cell suspension can be dosed with
custom concentrations of substance within minutes and the only used material is the
nL of substance and the cell plate itself this method is both high-throughput and cheap
compared to manual screening or robot-based alternatives. In this thesis project all
qHTS experiments are cell viability tests, since the tested substances are cytotoxins.
To measure effect of the substances, the cell plate is incubated for approximately 72 h
after the desired dose of substance have been applied. When the cell plate has finished
incubating, flourescein diacetate is added to each well which the live cells will metabolize
into flourescein. Flourescein is a fluorescent substance and can be measured with a
spectrometer and the amount of living cells can thus be estimated.

2.1.3 Active Learning and Machine Learning

Supervised machine learning is the practice of automated classification and regression
modeling using multidimensional data. As the name implies the goal is to create a
computer program that analyses and learns from the data, creating a model that can
predict a new response from a new input. In supervised learning the program is given
data with known input and corresponding output and the program tries to replicate the
implicit and underlying rules of the system giving the output.

An active learning program will create a model to explain the variation in the present
labeled data and then estimate, based on this model, what new input would be most
informative in order to improve the model.

One example of a recently published active learning strategy is the estimation-exploration
algorithm introduced by J.C. Bongard and H. Lipson [9]. The estimation-exploration al-
gorithm works in two phases, the exploration phase and the estimation phase. Here we
illustrate the idea in the context of our problem. Assume that some initial dataset is
present and that a group of response models have been approximated from it. In the
exploration phase a group of candidate test inputs, in our case doses of a substance for
which qHTS screen experiments might be conducted, is created. Each input is tested
against the response models to evaluate how informative these inputs are. An input is
defined as informative if it results in very different responses from the set of candidate
models. Therefore, the input doses that most models disagree on are identified, tested ex-
perimentally and then the observed experimental responses obtained at these test inputs
are added to the dataset. In the estimation phase a new group of models are estimated
using the expanded dataset. These two phases co-evolve until a termination criterion
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is met. Thus how informative a new input data point is can for example be defined in
terms of how much existing candidate models disagree with regards to that particular
input.

2.1.4 Maximum A Posteriori Estimation, Parameter Estimation

In order to estimate the most probable parameters of a model given a present dataset
we use Bayesian statistical tools, specifically the maximum a posteriori estimate. Here
follows one explicit example of how such an estimate can be obtained. Assume response
model in Equation 2 which contains additive noise.

tm = y(xm, w) + εm (2)

Assuming that this noise can be approximated as a normal distribution with variance
(β)−1. Finally assume that the prior information or assumptions about the possible
values of the parameter vector w can be expressed as:

P (w) =
e−α||w||

2∫
e−α||v||2dv

(3)

=
e−α||w||

2

Zα
(4)

Then Bayes theorem (see details in Appendix A) shows that the maximum a posteriori
estimate wMAP can be written as:

wMAP = arg min
w
βED(w) + α||w||2 (5)

Where

ED(w) =
M∑
m=1

|tm − y(xm, w)|2 (6)

For simplicity, Equation 5 is reformulated as:

wMAP = arg min
w
ED(w) + λ||w||2 (7)

λ =
α

β
(8)

Where λ will be referred to as the Prior Weight in the text. In the special case where
y((x)m, (w)) is a linear model (of the form y((x)m, (w)) = wTx) then the wMAP is equal
to the ridge regression solution. An intuitive way of thinking about Equation 5 is that the
maximum a posteriori estimate is the set of parameters, wMAP , that minimizes the error
between the observed data and the model. The prior α||w||2 punishes large parameter
values to avoid over-fitting.
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2.1.5 Synergy Analysis

A synergistic or antagonistic interaction between two drugs is defined as an unexpected
effect occurring when both drugs are present. If this is favorable, the interaction is syn-
ergistic and if unfavorable, it is antagonistic. These types of interactions are interesting
since they unlock new possible treatments even for ailments the drugs weren’t intended
for or shed light on what drugs shouldn’t be used together. Some commonly used tests
for drug-combination effects are Loewe additivity [6] and Bliss independence [5], both
explained in more detail below. The review written by Greco W.R et al. [4] from 1995
gives a full overview of the different synergy detection models used, as well as the multiple
definitions of synergistic and antagonistic interactions.

2.1.6 Loewe Additivity

Loewe additivity [6] is a test to calculate if drug A can be expressed as a dilution of drug
B or vice versa. Lets H(DA, DB) represent the survival of cells exposed to doses DA and
DB of drug A and drug B respectively. The single dose survivals are denoted as HA(DA)
and HB(DB). Loewe assumes that drug A and drug B act as the same drug at different
concentration. Loewe formulated Equation 9 that defines all dose-pairs (DA, DB) that
are expected to have the same survival S0 = H(Do

A, 0) = H(0, Do
B). Geometrically this

corresponds to a straight line between (Do
A, 0) and (0, Do

B).

DA

Do
A

+
DB

Do
B

= 1 (9)

A drug-pair subject to Loewe additivity can be viewed as the two drugs competing for
the same drug target while having different binding affinity to the target. Thus, if one is
observing the survival S0 in a dose combination (D∗A, D

∗
B) below this line then this point

is considered synergistic. If the survival level S0 is observed above this line that point is
considered antagonistic.

A downside of the Loewe test is that it only detects deviations from the uninteresting
case where the two drug behave as diluted versions of each other. Thus we will not get
any information on what kind of synergistic or other interaction there is at hand.
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2.1.7 Bliss Independence

The Bliss independence test [5] is, as the name implies, a test of independence for the
effects of the individual drugs and can be formulated as Equation 11 where I(DA, DB)
is a quality (Bliss index ) defined in Equation 10. Here HC(DA, DB) is the joint survival
of cells and HA(DA) and HB(DB) represent the survival when the drugs are used alone.
From this, the Bliss index is defined as:

I(DA, DB) = HA(DA)HB(DB)−H(DA, DB) (10)

As the response is cell survival, a synergistic effect between drug A and drug B results
in a lower cell survival than expected under the assumption of independence. Thus the
following classification is made:


I(DA, DB) < 0→ Antagonistic

I(DA, DB) = 0→ Independent

I(DA, DB) > 0→ Synergistic

(11)

In essence, the Bliss independence test checks if the separate cell survival rates for cells
exposed to drug A or B separately can explain the survival rate when both drugs are
applied simultaneously. This indicates whether the drugs compete for some interaction
or if the separate systems affected have some synergistic or antagonistic interaction. The
problem with this test is that it only indicates the presence of a non-independent effect
but does not relay any information on what kind of effect this is (except it not being
independent).
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3 Models and Methods

First, a work-flow of the active learning implementation is presented showing the iterative
aspect of this approach and the need for a scoring function that can rank alternative dose-
inputs for the next set of experiments. This is presented in Section 3.1. In Section 3.2
and Section 3.3 the two scoring algorithms used for single substance-response systems
in the thesis is presented. In Section 3.4 a approach for choosing new dose-pairs for
experimental evaluations for interaction models is presented. This approach is based on
Nedler-Meads simplex optimization method but is slightly modified in order to better fit
our problem.

In Section 3.5 two different mathematical dose-response models are presented: the Lin-
ear slope model, which is a segmented linear approximation of the Hill model, (Subsec-
tion 3.5.1) and Cell line pair model, which estimates the therapeutic window between a
healthy and a affected (in our case cancer) cell line. (Subsection 3.5.2). The linear slope
model was formulated to explore how a linear function would work with dose-response
data. The cell line pair model was formulated to express the difference in response of two
cell lines exposed to the same drug.

Finally, in Section 3.6 three novel mathematical models of response surfaces for combina-
tions of drugs are presented. The first model presented in Section 3.6 is the Semi-linear
surface model (Subsection 3.6.1), this model will act as a framework for the other two
models. In Subsection 3.6.2 the model from Subsection 3.6.1 is extended to include two
interaction factors which are modulating the the non-saturated dose-range. The third
and last model introduced in Subsection 3.6.3 is also an extension of the model in Sec-
tion 3.6.1. Here we introduce an interaction factor that modulates the total concentration
of the dose-pair.
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3.1 Work-Flow of Active Learning Implementation

This section will present the general work-flow of the implemented active-learning meth-
ods. The uncertainty score mentioned here is the metric used to estimate the information
of any unevaluated dose, or dose-input. This is the metric used by the active learning
strategies to decide what doses to evaluate experimentally. The general work-flow is as
follows:

1. Data exploration : In this phase all potential inputs, which in our case is doses of
substances, are evaluated with respect to how well they can reduce the uncertainty
about the parameter estimates for the dose-response model fitted to the present
data. The uncertainty score obtained from each input is based on a user defined
metric or scoring function.

2. Experimental point selection : The input that maximizes the uncertainty score
from the data exploration phase is selected for experimental evaluation. The max-
imizing input is suggested as a point to be evaluated.

3. Data evaluation : The suggested input is evaluated and added to the evaluated
dataset. If a stop criteria is meet then exit, if not go to re-explore the data and
select additional dose-inputs.

These phases are iterated until a stop criterion is reached such as reaching the maxi-
mum experiments allowed or a threshold reflecting a sufficient accuracy. However, this
work-flow suggests one point to be evaluated per iteration which cannot be used in an
experimental high-throughput environment where experiments are performed in batches.
To be able to obtain batch-wise iterations of dose-inputs some different options were
designed.

• Naive selection : The uncertainty score is calculated over the dose-range set by
the user. All of the most informative doses, according to the uncertainty score, is
selected in descending order.

• response simulation : Instead of going to phase 3 from phase 2 the response
of the suggested dose-input is simulated by estimating the parameters of the dose-
response relationship. The simulated data is used in creation of the new uncertainty
score and a dose-input can be selected. This process is iterated until the desired
number of doses have been selected.

• local maximum selection : Over the the dose-range evaluated there may be mul-
tiple local maximum uncertainty score. All the dose-inputs corresponding to a local
maximum is selected. If the number of dose-inputs are insufficient in numbers to
satisfy the desired number of points, all output of the selected inputs are simulated
using response simulation and the process is repeated.

18



3.2 Uncertainty Scoring using Alternative Model’s Prediction
Variation

The first algorithm used to to calculate an uncertainty score is called variance-estimation
and is derived from the estimation-exploration algorithm, see Section 2.1.3. The variance-
estimation algorithm calculates the variation of the predicted response of several dose-
response models given the same input. By trying to find the least supported regions of
the parameter estimation given a dataset of dose-responses, dose-inputs that strengthen
the estimation can be selected. Given a dataset containing N dose-responses,

(
N
k

)
unique

subsets can be generated by removing k dose-responses from the set. By calculating
wMAP for each subset a set of

(
N
k

)
candidate models can be estimated.

Each candidate model is evaluated over a user-defined dose-range and the standard devia-
tion in responses between each candidate model at each evaluated dose is calculated. The
dose with the highest standard deviation is selected for experimental evaluation. This
can be seen as the dose where the most models disagree. The pseudocode implementation
of this can be seen in Listing 1.

Listing 1: Pseudocode of the variance estimation algorithm

uniqueRemovals = getAl lUniqueSubsets ( dataSet )
f o r k in uniqueRemovals do

subSet = dataSet [−k ]
currentParameters = estimationMAP ( subSet )
candidateModels [ k , ] = currentParameters

end

doseRange = doseStar t : doseEnd
doseDeviat ion =

deviat ionAtDoses ( candidateModels , doseRange )
indexOfMaxDeviation = which . max( doseDeviat ion )
re turn ( doseRange [ indexOfMaxDeviation ] )

When batch-wise dose-inputs are desired and the response simulation setting is used, see
Section 3.1, the simulation parameter will be set to the most common parameters among
the candidate models. These parameters are selected to minimize the influence of outliers
in the input-response dataset.

When the local maximum selection option is used (see Section 3.1) all local maxima of
standard deviation of responses in the explored dose range are selected. If there are
more local maxima than dose-inputs desired, the ones with highest standard deviation of
responses will be chosen. On the other hand, if no peaks are present within in dose-range
then the candidate models will be recalculated by removing an additional dose-response
point of the data resulting in

(
N
k+1

)
new subsets. This will be repeated, increasing k each

time, until peak(s) can be selected. Due to being expensive computationally the value of
hyper-parameter k was set never to exceed 5.

A downside to this scoring algorithm is the binomial increase of candidate models which
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can result in expensive computational loads when used with large datasets. To gain
more control over the computational load, a setting for selecting the amount of candidate
models that the method should generate was introduced. Using this setting, subsets
are randomly selected using re-sampling. The sampling of dose-responses in the subset
is selected with a probability influenced by the response of the dose. The pseudocode
implementation of this can be seen in Listing 2.

Listing 2: Pseudocode of the variance-estimation algorithm using the random subsets
setting.

probabi l i tyOfDrawing = g e t P r o b a b i l i t y ( dataSet )
randomRemovals =

getRemovals ( probabi l i tyOfDrawing , dataSet )

f o r k in randomRemovals do
subSet = dataSet [−k ]
currentParameters = estimationMAP ( subSet )
candidateModels [ k , ] = currentParameters

end

doseRange = doseStar t : doseEnd
doseDeviat ion =

deviat ionAtDoses ( candidateModels , doseRange )
indexOfMaxDeviation = which . max( doseDeviat ion )
re turn ( doseRange [ indexOfMaxDeviation ] )
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3.3 Score Using Information Theory to Quantify Uncertainty

The scoring algorithm, called information gain maximization, is based on the works of
David J. C. Mackey [10] and selects dose-inputs by maximizing the differential Shannon’s
entropy. Shannon’s entropy, or data entropy, is a measurement of the unpredictability
of the output given previous data and input. In our case this will translate to the
uncertainty of a predicted response given previously collected dose-responses and the
dose-input explored. Following Mackey’s formulations we end up with Equation 12, for
a more thorough explanation of the method see Appendix B.

x∆S = arg max
x

g(x)TA−1g(x) (12)

In our case x will be the dose Di, g(x) will be the gradient of the model, with respect
to the parameters, used (for example the Hill model) and A is the Hessian, with respect
to the parameters, of the function evaluated at the maximum a posteriori estimate, see
Equation 5. The pseudocode for this can be seen in Listing 3.

Listing 3: Pseudocode of the information gain algorithm

MAPparameters = estimationMAP ( dataSet )
HessianOfM = getHessianOfM ( dataSet , MAPparameters )
doseRange = doseStar t : doseEnd

f o r dose in doseStar t : doseEnd
g = getGradientOfG ( MAPparameters , dose )
entrophyValues [ i ] =

beta∗ t ( g )∗ i n v e r t (HessianOFM)∗ g
end

return ( doseRange [ which . max( entrophyValues ) ] )

As the Hessian A can be expressed as A = ∇∇ED(w)+∇∇Ew(w) and ∇∇Ew(w) = 2αI,
A can be forced to be invertible by increasing α. This is implemented as in pseudocode 4,
this assumes that α 6= 0. The pseudocode implementation of this can be found in List-
ing 4.

Listing 4: Pseudocode for forcing solvable Hessian.

HessED = getHessianOfED ( dataSet , MAPparameters )
HessEW = Ident i tyMatr ix ( l ength (w))∗ alpha ∗2
whi le ( ! i s . i n v e r t a b l e (HessED + HessEW) ) do

alpha = 2∗ alpha
HessEW = Ident i tyMatr ix ( l ength (w))∗ alpha ∗2

end
return (HessED + HessEW)

For selecting batch-wise dose-inputs using response simulation, see Section 3.1. The
simulation parameter values used are those in the maximum a posteriori estimate wMAP .
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These parameters are calculated using the current dose-response dataset which includes
previous simulated responses.

Selecting batch-wise dose-inputs using local maximum selection, see Section 3.1, selects
all local maxima in data entropy along the predefined dose-range. If these local peaks are
insufficient in numbers, all selected dose-inputs are simulated using response simulation.
If the number of peaks is higher than desired number of dose-inputs, the dose-inputs with
highest differential entropy is selected.

3.4 Modified Nelder-Mead Scoring

This algorithm is less a scoring algorithm and more a selection algorithm, since it relies
heavily of the estimated parameters of the system. It is is only used for the semi-linear
substance-pair response model in Section 3.6.1 with any interaction function. The method
is the classic Nelder-Mead [11] peak-finding method with small tweaks to better fit our
drug-pair response surface model.

3.5 Mathematic Modeling of Single Substance Response Curves

The choice of mathematical model to approximate the true biological dose-response re-
lationship is crucial since the right model might tell us a lot about the system as some
parameters for these models might have a clear clinical impact, such as the Hill model,
see Section 2.1.1. The model choice also impacts the active learning procedure since the
different scoring algorithms (Section 3.1) might be more or less efficient depending on the
chosen model.

A model that is already proven to approximate sigmoidal dose-response curves well, is
the Hill model mentioned earlier. This model is widely used [7, 8] and is the simplest
choice for our active learning program but other dose-response models will be evaluated
as well and are listed below.

3.5.1 Linear Slope Model

Here we approximate the slope of the the Hill model as a linear correlation, see Equa-
tion 13. The idea is to approximate the Hill model by something simple, such as a linear
function, that might be more tolerant to noisy data.

Hl(Di) = Ri =


Ymax, klog10(Di) +m > Ymax

klog10(Di) +m, Ymin < klog10(Di) +m < Ymax

Ymin, klog10(Di) +m < Ymin

(13)

Looking at Figure 2 we can see that the linear approximation of slope can approximate
the sigmoidal Hill model quite well.
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Figure 2: Linear approximation of the Hill function. The segmented linear approximation
of the hill model where the lower and higher asymptotes of the Hill function have been
replaced with a static value. The slope have been linearly approximated.
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3.5.2 Cell Line Pair

This model was formulated to study the specificity of a substance, such as an antibiotic
or a cytotoxin, with respect to different cell lines. The model output the difference
between two cell lines response to the same substance at the same dose. This could be
the difference in survival between a resistant and susceptible wildtype strains of bacteria
exposed to antibiotics, or between a cancerous cell line and a healthy cell line exposed
to a cytotoxic substance. The design idea behind this model is to obtain a function
estimating the therapeutic window. The therapeutic window is the dose range where a
drug is safe for use. As an example a drug at a certain dose that kills cancer cells but
not the healthy tissue would be considered within this range.

The model is formulated as the difference between a Hill model for each cell line:

HN(Di) =
Ymax,N − Ymin,N
1 + ( Di

DLD50,N
)hN

+ Ymin,N (14)

HC(Di) =
Ymax,C − Ymin,C
1 + ( Di

DLD50,C
)hC

+ Ymin,C (15)

TW (Di) = HN(Di)−HC(Di) (16)

Where HN is the Hill model for a healthy cell line and HC is Hill model specific for the
cancer line. If we assume that Ymax = 1 and Ymin = 0 for both cell lines, this would mean
that either all cells live or all cells die at the asymptotes. If the function TW (Di) gives
output of one at concentration Di than that implies that all the cancer cells are dead and
all the healthy cells still live. The aim of this model is to optimize for the safest dose to
treat with rather than estimating how a specific cell line response to it.

3.6 Mathematic Modeling of Substance-Pair Response Surfaces

In this section we explore possible models to express the interaction effects between two
substances A and B. Here HC(DA, DB) denotes our chosen model and DA is the dose of
drug A and DB is the dose of drug B.

When exploring synergistic or antagonistic effects between drugs, Loewe and Bliss tests,
see Section 2.1.7 and Section 2.1.6, are commonly used. However these tests say very little
about the interaction effect in itself. Loewe additivity tests whether the drugs act as more
potent versions of each other. If not, it can indicate if some synergistic or antagonistic
effect is present. This is valuable information, but it says little about the interaction
between the two drugs.

Due to these limitations of the Loewe and Bliss tests we now try to formulate a model
for a dose-response surface for two substances that includes an interaction function. This
function will give us a model for the drug interactions. We assume the single substance
dose-response curves to be, at least approximately, known. The justification of this
is that the number of evaluated doses needed to estimate the parameters of a single
substance model is much smaller than the number needed to estimate the parameters for
a substance-pair response surface model.
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3.6.1 Semi-Linear Substance-Pair Response Surface Model

We start with the perspective that any synergistic or antagonistic interaction between
two substances can be described mathematically in two ways. The first assumption we
make is that any interaction effect only will be present in the non-saturated part of the
dose area. The first way we can perceive an interaction effect is the as an increase of the
dose area in the non-saturated response and the position of the non-saturated dose area.
The other way to perceive synergy in this model is if the model acts as if a higher dose
had been applied than the actual dose.

First we must formulate the linear substance-pair response model without any synergy
function. Starting with the condition that the model, modeling a substance-pair response
surface H(DA, DB), must collapse into the single dose-response curves as HA(DA) =
H(DA, 0) and HB(DB) = H(0, DB). We formulate both the single response curves as
linear slope models as Equation 13:

SA(DA) = kAlog10(DA) +mA (17)

SB(DB) = kBlog10(DB) +mB (18)

S(DA, DB) = K(p)log10(DA +DB) +M(p) (19)

Here M(p) and K(p) are the parameters corresponding to the ratio p = DA
DA+DB

. The
substance-pair response surface should of course collapse into SA(DA) or SB(DB) when
only one substance is present. This is achieved by making K(p) and M(p) depend on the
ratio p. This means that K(p) and M(p) may also be written as:

K(DA, DB) = kA
DA

DA +DB

+ kB
DB

DA +DB

(20)

M(DA, DB) = mA
DA

DA +DB

+mB
DB

DA +DB

(21)

Using this we can formulate the substance-pair response surface for the non-saturated
area as:

S(DA, DB) = K(DA, DB)log(DA +DB) +M(DA, DB) (22)

As different substances have different saturation responses these must also be modeled
accordingly. Following the same trail of thought as above we formulate the saturated
values as planes between the two saturation responses as follows:

Ymax(p) = Ymax,Ap+ Ymax,B(1− p) (23)

Ymax(DA, DB) = Ymax,A
DA

DA +DB

+ Ymax,B
DB

DA +DB

(24)

Ymin(DA, DB) = Ymin,A
DA

DA +DB

+ Ymin,B
DB

DA +DB

(25)

Combining the response surface model for the non-saturated area, Equation 22, and
the response surface model for the saturated values the final semi-linear model for the
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substance-pair response surface model can be formulated as follows:

H(DA, DB) =
Ymax(DA, DB), S(DA, DB) > Ymax(DA, DB)

S(DA, DB), Ymin(DA, DB) < S(DA, DB) < Ymax(DA, DB)

Ymin(DA, DB), S(DA, DB) < Ymin(DA, DB)

(26)

3.6.2 Interaction Effect in Slope and Slope Position

Here we formulate a model for a drug-drug interaction effect that modifies the width
and position of the non-saturated response dose-area, of the semi-linear substance-pair
response surface model. First make the assumption that any interaction effect will not
affect the saturated values in the model. This means that the only part of Equation 26
that is affected by combinatorial effects will be S(DA, DB). If the slope and slope position
would change due to an interaction effect we can expect modifications in the K(DA, DB)
and M(DA, DB) functions in the model. As the name implies an interaction effect need
at least two substances, thus it is safe to assume that these functions will depend on both
DA and DB. Using this we can express non-saturated responses with functions for the
synergy effects, referred to as the interaction functions, as:

Skm(DA, DB) = K(DA, DB)Fk(DA, DB)log10(DA+DB)+M(DA, DB)FM(DA, DB) (27)

Where Fk(DA, DB) and Fm(DA, DB) are the interaction functions which define the slope
K and the intercept M are modulated by the drug interaction. To formulate the inter-
action effect as either an increase or decrease, the interaction functions Fk(DA, DB) and
Fm(DA, DB) are defined as:

Fk(DA, DB) = 1 + βkfk(DA, DB) (28)

Fm(DA, DB) = 1 + βmfm(DA, DB) (29)

fk(DA, DB) ∈ [0, 1] (30)

fm(DA, DB) ∈ [0, 1] (31)

Here f ∈ [0, 1] and β > −1. Thus the interaction functions Fk and Fm cannot be negative
and the interpretation of β is straightforward. For example if βk = 1 and fk(D̂A, D̂B) = 1
the system would have a slope twice as steep at dose-interaction {D̂A, D̂B}. If βk = 0
and βm > 1 this will tell us that there is a antagonistic interaction since the increase in
βm will move the slope position further away form zero. Thus the doses needed for the
response obtained would be lower if no interaction effect was present.

Assuming that there is a particular dose interaction that maximizes the interaction effect
and that the distribution of this effect is shaped as a two-dimensional bell curve in the dose
plane, we formulate Equation 32 and Equation 33. The parameters within these functions
will be the free parameters that need to be estimated from experimental data.
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fk = βkexp−
(

(µAk − log10(DA))2

2σ2
Ak

+
(µBk − log10(DB))2

2σ2
Bk

)
(32)

fm = βmexp−
(

(µAm − log10(DA))2

2σ2
Am

+
(µBm − log10(DB))2

2σ2
Bm

)
(33)

Using this the substance pair response surface for with interaction effects in slope and
slope position can be formulated as:

Hkm(DA, DB) =
Ymax(DA, DB), Skm(DA, DB) > Ymax(DA, DB)

Skm(DA, DB), Ymin(DA, DB) < Skm(DA, DB) < Ymax(DA, DB)

Ymin(DA, DB), Skm(DA, DB) < Ymin(DA, DB)

(34)

As mentioned earlier we assume the single substance response curves to be known. This
means that the substance pair surface without any interaction effects, H(DA, DB) in
Equation 26, would be known. Using this we can express the final model as:

H∆,km(DA, DB) = Hkm(DA, DB)−H(DA, DB) (35)

Thus any H∆,km(DA, DB) 6= 0 would indicate a interaction effect. This model will have
ten free parameters (being the parameters from the interaction functions Equation 32
and Equation 33):

w = {βk, µAk, µBk, σAk, σBk, βm, µAm, µBm, σAm, σBm}

Since there are 10 parameters, the parameter estimation becomes computationally ex-
pensive and in need of a large number of dose-response evaluations to estimate the pa-
rameters. On the other hand, this also means that the model is quite flexible allowing it
to express a larger numbers of dose-response surfaces.
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3.6.3 Dose Modulation Model

A second way to model the substance interaction effects was mentioned in the beginning
of Section 3.6.1. This model is assuming that the system acted as if higher or lower
doses of the substance was present. This means that in order to reach the same response
as obtained in a non-synergistic dose-response system would require higher doses than
the present ones. Assuming that the drug interaction effect does not affect values of
the saturated areas we can formulate the non-saturated area with the synergy function
FD(DA, DB) as:

SD(DA, DB) = K(DA, DB)log10((DA +DB)FD(DA, DB)) +M(DA, DB) (36)

This means that we express the interaction effect as an increase or decrease of the total
amount of substance applied, notably the K(DA, DB) and M(DA, DB) functions will not
change. By formulating the interaction function FD in the same way as the interaction
functions in the previous section we can express FD as:

FD = 1 + βDfD(DA, DB) (37)

fD(DA, DB) = exp

(
(µAD − log10(DA))2

2σ2
AD

+
(µBD − log10(DB))2

2σ2
BD

)
(38)

Here the parameters of the interaction are the free parameters during parameter estima-
tion. Using Equation 37 the full function can be expressed as:

HD(DA, DB) =
Ymax(DA, DB), SD(DA, DB) > Ymax(DA, DB)

SD(DA, DB), Ymin(DA, DB) < SD(DA, DB) < Ymax(DA, DB)

Ymin(DA, DB), SD(DA, DB) < Ymin(DA, DB)

(39)

Following the same reasoning as previous section we formulate the final model as:

H∆,D(DA, DB) = HD(DA, DB)−H(DA, DB) (40)

The strength of this function is also its weakness: having few free parameters. The only
free parameters will be w = {βD, µAD, µBD, σAD, σBD}. This means that the model itself
will have a low flexibility while being relatively computationally light, fewer parameters
to estimate also means less data needed for a good estimation.
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4 Results

This chapter will present experimental and simulated results. In Section 4.1, experimen-
tal data is presented showing that the experimental error can be assumed to be normally
distributed, which is a prerequisite for the information gain maximization scoring func-
tion. This section also contains the simulation setup for dose-response experiments on
single substance models. Here the parameters for the simulations are presented, as well
as the general setup of the experiments simulated and a the Probability of detection
measurement to measure performance of the active learning methods.

Section 4.2 contains subsections of all the results of the simulated experiments using
active learning methods for dose selection for different methods. In Subsection 4.2.1, the
results of experiments using active learning strategies with the Hill model is presented. In
Subsection 4.2.2, we present the results of the simulations using the Linear slope model for
the active learning methods.Subsection 4.2.3 present results from simulated experiments
for active learning using the cell line pair model. The cell line pair model’s response is
the difference between two Hill models and was designed to evaluate different cell-lines
responses to the same substance.

Simulated experimental results for interaction functions can be found in Section 4.3. In
this section only the substance-pair response surface model called Semi-linear substance-
pair response model, using the Dose modulation model to account for interaction effects
between the two drugs, is presented. Simulation results for the interaction model In-
teraction effect in slope and slope position will not be shown as it required too much
substance-pair response data to converge.

The last section, Section 4.4, presents results for experimental validation using qHTS.
In this section results of dose-response experiments made on the cell line HepG2 (liver
cancer) using the cytotoxic agents Mitoxantrone and Thanshinone I. The active learning
methods used for dose selection are the variance-estimation and information gain maxi-
mization scoring algorithms and the dose-response model used is the Hill model.
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4.1 Noise Model, Simulation Setup and Performance Measure-
ment for Dose-Response Simulations

In order to study how well the active learning strategies work with different dose-response
models and how they react to noisy data, we performed simulations. First we formulate
the response of a model with simulated experimental noise as Equation 41.

Ri = H(θtrue, Di) + εi (41)

H(θtrue, Di) is the response model by choice, θtrue is a vector containing the parameter
values used in the simulations and Di is the dose of the substance. For drug combinations,
Di denotes a particular dose-pair. Here, εi denotes random experimental error simulated
by means of a sample from a random number generator. To model the experimental error
we first analyzed the variance in true experimental data. A data set of 112 dose-response
curves with seven discrete doses and three replicates per unique substance were provided
and per substance standard deviation were calculated at each discrete substance replicate.
The deviation values were binned into groups from highest to lowest concentration and
a Shapiro-Wilk test of normality [12] was performed on each group. The result is in
Table 1.

Table 1: Shapiro-Wilk normality test score on standard deviation in experimental data.

Dose High → low Shapiro Score p-value σ µ N
Dose 1 0.7298381 5.491616e-23 0.05704761 -4.926732e-18 336
Dose 2 0.96893 1.312557e-06 0.04493682 3.336559e-18 336
Dose 3 0.9460481 9.831032e-10 0.06527088 1.664137e-18 336
Dose 5 0.987576 0.005624317 0.06667864 1.638565e-18 336
Dose 4 0.9732466 6.959559e-06 0.0638042 -1.488015e-18 336
Dose 6 0.9910452 0.03902672 0.06166439 1.157849e-18 336
Dose 7 0.9848169 0.001313982 0.06934198 2.801904e-18 336

As seen from the p-values in Table 1, the experimental error can be assumed to be
normally distributed. As seen in Figure 3 the error distribution is not changing notably
with the number of droplets added by the ECHO. Similar error ranges have been seen in
other studies as well [13].

Supported by these finding we simulated the experimental errors as drawn from a normal
distribution. The simulations were performed using three different standard deviation
settings for the error function, those being σ = (0.05, 0.1, 0.3) while the standard deviation
in the experimental data was σ ∼ 0.06. The experimental error ε were be simulated
as:

ε ∼ N(0, σ) (42)
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Figure 3: Distribution of deviation in experimental error. Experimental deviation from
triplicate dose evaluations binned on dose. The distributions can be seen as normally
distributed with a standard deviation of: σ ∼ 0.06.
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First we look how at the active learning strategies work with single substance dose-
response models. The initial dataset for the active learning implementations were five
doses logarithmically evenly spaced between a given minimum and maximum concentra-
tion. The simulated experiments were set up in four sets, each with five dose-response
evaluations, the initial dataset being the first. This would be equivalent to four sequential
cell plate tests. Each method was provided with a initial dataset from which to suggest
doses to evaluate. The suggested doses were given a simulated response according to
Equation 41. The new dose-response data was appended to the initial dataset and, using
the new and previous data, five more points were suggested. This processes was repeated
until each individual dataset contained 20 dose-response values. The prior weight was set
to λ = 10−5 for all simulations, this was chosen arbitrarily but had shown indications of
working in pilot simulations.

Simulating experiments, when the active learning strategies use the Hill model, the sim-
ulated experimental response was also given from the Hill model. This were also the case
when the active learning used the linear slope model. All simulations have added noise
according to Equation 42. Three different levels of noise were used σ = {0.05, 0.1, 0.3}.
Six different dataset with increasing value of the IC50 parameter were simulated. The
simulation parameters for each dataset can be seen in Table 2.

Table 2: Hill parameters used in simulations.
Data set Ymax Ymin log10(IC50) h IC50-increase

D0 1 0 −2.00 −4 0%
D20 1 0 −1.92 −4 20%
D40 1 0 −1.85 −4 40%
D80 1 0 −1.74 −4 80%
D160 1 0 −1.59 −4 160%
D320 1 0 −1.38 −4 320%

All simulations were done in two different batches, one comparing to a two-fold dilution
and one comparing to a ten-fold dilution. The five doses selected for the dilution series
were set such that the third dose was always exactly on the IC50-value and two logarith-
mically evenly spaced doses on each side of the IC50. If the same doses were selected for
all datasets, some dilution series would miss the slope and the IC50 dose and only consist
of doses for saturated values resulting in a very poor parameter estimation. Choosing
instead the optimal placement for the dilution series, equally spread around the IC50 dose
allowed us to compare the active learning methods with a dilution series at the optimal
dose placement to estimate the IC50 parameter. 150 experiments were simulated per
method, 50 per set value of σ for the error function.

To measure the performance of the methods the probability of detection was calculated
with respect to IC50. The probability of detection here refers to how well each method
can distinguish IC50 parameter estimates obtained from a dataset D0 from the IC50 value
obtained dataset Dj simulated with different standard deviations in the added noise. An
additional dataset D0,Rep was simulated with the same settings as for dataset D0. Using
these datasets, a distribution of deviations, dij,l→k, between estimated parameter values
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(for each method and noise level), could be determined according to Equation 43

dij,l→k = IC50,i,Dk − IC50,j,Dl ; i = {1, . . . , N}, j = {i, . . . , N} (43)

Starting by estimating the deviation distribution of IC50 estimations with the unchanged
IC50 simulation setting, the set of deviations E0→0,Rep were obtained. Using E0→0,Rep

we can estimate the distribution of deviations using a specific method at a specific level
of simulated noise, see the distribution label E[0 to 0] in Figure 4. We estimate the
values, [ε−, ε+], that contains 95% of all deviations in the interval between them. This
means that 97.5% of all deviations are below ε+ and 97.5% of all deviations are above ε−
in E0→0,Rep, these values are represented as dashed lines in Figure 4.

If a deviation of a IC50 estimate in a data set E0→l is within the [ε−, ε+] interval they
are classified as a miss, and conversely all estimates outside [ε−, ε+] is classified a hit.
This means that the percentage of estimate deviations in E0→l outside [ε−, ε+] is the
probability of detection for a j percentage increase in the IC50 value. In Figure 4 the
set E[0 to 40] represent the distribution of deviation between the D0 and D40 datasets.

Figure 4: Example plot of deviation distributions of IC50 parameter estimates. These
distributions are calculated from simulated experiments. The dotted lines represent the
[ε−, ε+] interval which encapsulates the 95% of the observed estimates from the unchanged
dataset.

33



4.2 Results of Active Learning Using Single Substance Dose-
Response Models

4.2.1 Active Learning Using the Hill Model

Here the active learning dose-response model is the Hill model and we estimate the
probability of detection between dose-selection methods dependent on the simulated noise
in the response.

Starting with an initial dataset for active learning methods as a two-fold dilution dose-
response set centered around the IC50 dose, these doses are placed as in Figure 5.

Figure 5: The points initial doses using two fold dilution, where the middle one is on the
IC50 value.

The probability of detection using different dose-selection methods can be seen in Fig-
ure 11 at page 50. The method labeled Dilution2fold in this figure is the two-fold
dilution series taken in replicate per five data points, note that these doses are the same
as in the initial dataset for the active learning implementations. As can be seen, the prob-
ability of detection is similar for all methods except that then dilution selection generally
performs worse than the active-learning implementations. The similarity in probability
of detection between methods makes sense considering Figure 5 since three of five points
in the dilution series is on the slope where the model gains the most information on the
IC50 parameter. Even if the active learning methods put all their five selected doses on
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the slope the dilution method will have three points on the slope and one always exactly
on the IC50 dose.

In the simulation comparing active learning methods to the ten-fold dilution series, the
doses in the initial dataset and the dilution series were placed as shown in Figure 6 with
only one dose on the slope, the one at the IC50 parameter value.

Figure 6: The doses used for the initial dataset using ten fold dilution, where the middle
one is on the IC50 value.

As seen in Figure 12, at page 51, some active learning methods have a much higher
probability of detection than the ten-fold dilution series. The increase in accuracy of these
active learning methods is quite intuitive, since it allows the active learning strategies
methods to choose multiple doses on the slope on the currently estimated models. This
means that, in theory, the active learning implementation can put all five chosen doses
on the slope while the dilution series gets at most one dose on the slope per replicate
series.
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4.2.2 Active Learning Using the Linear Slope Model

Here we select the dose-response model used for active learning to be the linear slope
dose-response model, see Equation 13, while the response generated by the system is still
the Hill model.

As we can see in Figure 13, at page 52 the active learning methods perform equally or
slightly worse or slightly worse probability than the two-fold dilution series.

However, looking at the results of the simulations using a ten-fold dilution as the initial
dataset in Figure 14, at page 53, the dilution method achieve a much higher probability
of detection than the active learning methods. This is due to the active learning methods
used not being made for linear models, as both methods will place doses where the
uncertainty score is the highest; the endpoints of the linear approximation. If the linear
approximation is too shallow the active learning methods will put all the doses around the
endpoints of the perceived slope but all those doses would give saturated responses.

4.2.3 Active learning Using the Cell Line Pair Model

Here we present the results of the use of active learning when estimating a therapeutic
window. The dose-response model is the cell line-pair model, see Equation 16. Here
HN(Di) will represent the Hill model for healthy cell line and HC(Di) the model for the
cancer cell line. The parameters for these models can be seen in Table 3.

Table 3: The simulation parameter setting for simulations of two separate cell lines
simultaneously.

Model Ymax Ymin log10(IC50) h
HN 1 0 2 -4
HC 1 0 -2 -4

The dose-range explored was set to Di ∈ [10−5, 105]. The initial data was five doses
logarithmically even spaced over the whole dose-range, meaning that the first dose was
at 105, the last at 10−5 and the remaining three was logarithmically evenly spread over
the rest of the dose-range. The method Dilution in the error plots are replicates of doses
set by this initial dataset.

This simulation had 300 simulated experiments per method and level of noise. Starting at
five initial dose-responses the active learning methods would suggest five doses iteratively
until 20 dose-responses had been evaluated per simulated experiment. A final maximum
a posteriori estimation of the parameters was performed and these would be the final
output of each experiment.

The result of the error estimation of the IC50C and IC50N can be found in Figure 15,
at page 54, and Figure 16, at page 55. As seen there the dominating methods are
variance estimation using local maximum selection and information gain maximization
using response simulation. However the estimation of IC50N is more accurate than the
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estimation of IC50C . The reason why this is, is unclear, but can be due to numerical
reasons as the non-saturated part close to IC50N is a lot larger than that close to IC50C .
From this the active learning implementations might favor the larger non-saturated area
since it contains less average coverage in non-logarithmic space.

4.3 Active Learning Using Semi-Linear Substance-Pair Response
Surfaces

Unfortunately the use of active learning with the semi-linear linear response surface model
with interaction functions for modulation of slope and slope position (Section 3.6.2) was
not able to converge to the parameters used to simulate the training data within a number
of batches used (seven batches of nine substance-pair evaluations). This is probably due
to having too many parameters to estimate (ten free parameters), therefore work on this
response surface model was halted.

This means that we only present results from simulations using the semi-linear substance-
pair response surface model with interaction functions expressing dose modulation (Sec-
tion 3.6.3) linear combination model with combination effect in perceived dose. The
simulation parameters for the individual dose response curves used are presented in Ta-
ble 4.

Table 4: Parameters used for simulation for the known dose-response curves used in a
semi-linear substance-pair response model.

Substance Ymax Ymin k m
Substance A 1 0 -0.45 1.4
Substance B 1 0 -0.5 1.5

The parameters for the interaction function FD (Equation 37), which is unknown, used
for simulation is presented in Table 5.

Table 5: Parameters used for simulation of the interaction function FD (Equation 37)
βD µAD µBD σAD σBD
3 1 1 0.5 0.5

Each method started with an initial set of ten dose-pair response values. These initial
doses were equally distributed, where the semi-linear response surface model without
any interaction term would give a response equal to 50% of the potential output. Each
method was asked to fetch nine new dose combinations in each iteration. The used scoring
algorithms were variance-estimation using the random subset setting and the modified
Nelder-Mead selection method. In the random subset setting of variance-estimation the
number of random subsets was set to ten and the method would create the subset by
removing two dose-pair response data points. Each simulated experiment fetched five
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simulated batches resulting in a total of 55 dose-pair responses values each time. 24 ex-
periments was simulated per method and standard deviation of noise, σ = {0.05, 0.1, 0.3},
to study the impact of experimental noise on the methods.

Since all non-zero responses in the model (Equation 40) indicate an interaction effect,
the placement of the suggested doses are crucial. The placement of the suggested doses
using the variance estimation algorithm can be seen in Figure 7. The placement of the
suggested doses using the modified Nelder-Mead selection can be seen in Figure 8.

As can be seen, both these methods puts the bulk of the doses within the non-zero zone,
drawn as contour but the variance-estimation algorithm have a higher dose density within
the region. However we have some hot-spots where the methods have been chasing noisy
responses, especially when using the modified Nelder-Mead selection.

As seen in Figure 17, at page 56, and Figure 18, at page 57, the hardest parameter
to estimate is the βD that regulates the amplitude of the interaction effect. But its
apparent that the higher amount of doses placed within the non-zero zone by the variance-
estimation algorithm resulted in a better estimation of the parameters.

Figure 7: Placement of dose-pairs using variance-estimation. The histogram of the se-
lected doses using the variance-estimation algorithm based on 72 simulated experiments
with a total of 55 dose-pairs selected per experiment. The contour line represent the
non-zero surface of the true model. The colour legend ”count” represents the number of
doses placed in the two dimensional bins.
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Figure 8: Placement of doses using modified Nelder-Mead. The histogram of the selected
doses using the modified Nelder-Mead algorithm based on 72 simulated experiments with
a total of 55 dose-pairs selected per experiment. The contour line represents the non-zero
surface of the true model. The colour legend ”count” represents the number of doses
placed in the two dimensional bins.
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4.4 Experimental Validation

Due to time constraints, only experiments to validate the simulated results from ac-
tive learning implementations for iterative dose selection, using the Hill model as the
dose-response model, could be performed. The tested scoring algorithms were variance
estimation and information gain maximization. The tested drugs was Thanshinone I [14]
and Mitoxantrone [15] with a source solution of 10mM and 1mM . The solvent for both
of these drugs were DMSO. The final volume in each cell suspension well was 50µL and
the maximum addition volume of substance was 500nL, each droplet from the ECHO
have a volume of 2.5nL. The smallest amount added to a well was one droplet.

This results in a highest and lowest concentration in each well as displayed in Table 6.

Table 6: The highest and lowest possible concentration in a well.
Substance Highest (µM) Lowest (µM) Source well (mM)

Mitoxantrone 10 0.05 1
Tanshinone I 100 0.5 10

Ten 5:1 dilution series containing five doses each were evaluated rounded to closest feasi-
ble concentrations for each substance. Two 2:1 dilution series containing eight doses were
evaluated rounded to the closest feasible concentrations for each substance. Three even
series containing 19 doses each were evaluated for each substance, to act as the ”true”
parameters for comparison between parameter estimates obtained using active learning.
These parameters acts as a reference when estimating the precision of the different meth-
ods.

For each scoring algorithm and substance two 5:1 series was used as initial dataset
(containing five dose-responses each) and one run using three 5:1 dose series (15 dose-
responses) as initial dataset. One run per scoring algorithm and substance was also
performed using the 2:1 series as initial dataset (eight dose-responses each). The settings
for the scoring algorithms can be seen in Table 7.

Table 7: Hyper-parameter settings for the active learning implementation for dose selec-
tion.

Substance Method Min Dose Max Dose Selection Prior Doses
(µM) (µM) method weight fetched

Mitoxantrone VE 0.05 10 LM 1e-5 8
Mitoxantrone IG 0.05 10 RS 1e-5 8
Tanshinone I VE 0.5 100 LM 1e-5 8
Tanshinone I IG 0.5 100 RS 1e-5 8

Three well-plate experiments, each containing 84 wells with HepG2 liver cancer cells,
were performed. The first being the initial datasets, the second were the doses suggested
by active learning based on the first plate and the third were doses suggested by active
learning based on the first and second plates.
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The source-well of Tanshinone I was depleted while dosing the initial plate for the groups
of three 5:1 series resulting in a truncated series, lacking the highest concentrations.
These series were grouped together into the group called Tanshinone I short. The dose
selection for suggestion doses by the information gain maximazation method were done
using Local maximum selection instead of Response simulation in the second batch, this
was due to an error. The source plate used when dosing the first plate were hydrated
as the DMSO attracts water molecules for the moisture in the air. This means that
the concentration of the substances in the source wells are lower than on record, due to
the increased volume by addition of water. The difference of this can clearly be seen in
Figure 9, especially when using Tanshinone I. Due to a coding error, the suggested doses
for all Mitoxantrone 5:1 dilution dataset were not included in the experimental result for
the third plate.

Figure 9: Observed responses given dose. All doses evaluated experimentally separated
on drug and grouped on cell plate.

The estimated reference parameters of Tanshinone I and Mitoxantrone can be found in
Table 8.

The absolute error for each method and dataset was calculated, see Table 9 at page 49.
Note that parameter estimation with a very large ∆Ymax predict maximum asymptote
to be lower than the minimum concentration range. A comparison of errors between
methods can be seen in Figure 10. As all the dilution series were made on the highly
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Table 8: Parameter estimations of Tanshinone I and Mitoxantrone used as the reference
parameters.

Substance ˆYmax ˆYmin ˆIC50 ĥ
Mitoxantrone 1.091 0.103 0.508 -0.731
Tanshinone I 1.093 0.048 6.349 -0.288

hydrated first plate no meaningful comparison between active learning selection methods
and dilution series could be made, as these where very biased towards the estimated
reference parameters, since these were taken from the same plate. A problem with the
non-hydrated Mitoxantrone was that the lowest concentration was not giving the satu-
rated response resulting in parameter estimations of Ymax being very large.

Figure 10: Estimated error of parameters estimates separated on methods and drug
compared to the reference estimation.

Unfortunately, not much can be concluded from these experimental results except that the
active learning implementations behaves the same way, when selecting doses, with true
experimental data as with simulated. As the batch-wise error was to great no meaningful
comparison between methods can be made. On the other hand, this sheds light on the
problem with hydration in source plates. This problem could possibly be adjusted by re-
calculating the concentrations with respect to the hydration. However as this issue was
not known before the experiments were performed and could not be countered rendering
some of the method comparisons useless between plates.
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5 Implementation

All simulation and active learning is implemented in R version 3.3.0 ”Supposedly Edu-
cational” running on Ubuntu 14.04 LTS. The R-packages used are:

• plyr[16] Used in parallelization of simulation code.

• doParallel [17] Used in parallelization of simulation code.

• gridExtra [18] Used in visualization of analysis.

• ggplot2 [19] Used in visualization of analysis.iteration

• reshape2 [20] Used in active learning code and analysis.

• XLConnect [21] Used to parse Excel files.

A rudimentary GUI was implemented in Java using intellj [22] and Apache POI [23].

6 Complexity

Runtime is not an important factor for the information gain maximization algorithm, as
it never takes more than ∼30 m even vith large datasets (∼100 dose-response points).
It may crash when the Hessian becomes insolvable and a unfeasible large prior weight is
needed to resolve this.

Variance estimation can be computationally expensive with medium sized dataset (∼40
dose-response points) because of its binomial increase in candidate models, it cannot be
used with too large datasets since it will result in very long runtimes. However, it is very
robust and crashes very rarely.

The main time consuming operation in all simulations have been the the parameter es-
timation implemented using the constrOptim constrained optimization function from
stats packages in R. The amount of parameters to estimate heavily influences the run-
time as a 4-parameter estimation usually takes less than a second while a 10-parameter
estimation can take minutes. This is also influenced by the amount of data supplied to
the optimization.

These runtime test were performed on a Intel R© CoreTM i7-4700HQ CPU @ 2.40GHz with
12 GB of RAM available.
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7 Conclusion

Starting with the first goal of the thesis:

”To explore different mathematical models to approximate different dose-response curves
with respect to how easy they are to use, in terms of parameter fitting, interpretation and
use in the context of active learning.”

Regarding this, different models have been explored and explained. The Hill model works
well with the active learning methods implemented and works well with parameter fitting,
but requires sufficient dose-response evaluations in both saturated response regions to get
reasonable parameter estimates. This can be seen in in the ∆Ymax estimate in Figure 10.
The large deviation in Ymax estimates is due to the parameter fitting placing the saturated
response region outside the evaluated area. Looking at the dose-responses in Cell plate

2 in Figure 9, we can see that the saturated maximum of Mitroxantrone is outside the
explored dose-range. The linear slope model (Section 3.5.1) does approximate a Hill model
well but have a less intuitive interpretation of the model parameters, since the IC50 value
needs to be calculated from the parameters obtained. Another problem with the linear
slope model is that the active learning methods implemented have not been developed
for linear models and does not work well with this model, this is illustrated in Figure 14.
The cell line model is easy to interpret as it is formulated as the difference between two
Hill models. The model works well with parameter fitting but has a tendency to favor
exploring the slope with higher IC50 value of the two Hill models, this is illustrated in
Figure 15 compared to Figure 16. The reason for this is still unclear.

The second goal:

”To evaluate the potential of using active learning methods for iterative selection of doses
to evaluate, in order to reduce the resulting uncertainty about model parameters such as
IC50 and slope in the Hill model. The aim is to reduce the amount of resources, such as
reagents, cells and substance, needed for experiments while reaching the same or higher
accuracy in the parameter estimation as the dilution approach.”

As the results from the experimental validation (Section 4.4) are inconclusive, due to
the batch-effect present between the iterative dose-selections, the conclusion of this goal
relies on the simulated experiments. As seen in Figure 12 and Figure 11, the probability
of detection of IC50 estimates using active learning is higher than the dilution series
when using the Hill model. This means that the active learning methods have a lower
uncertainty of the IC50 estimate, meaning fewer dose-response evaluations are needed
using active learning rather than dilution series to achieve the same accuracy in the
parameter estimations. As previously mentioned, the active learning methods using the
linear slope model performed worse that the dilution series (Figure 14 and Figure 13)
since the active learning models implemented is not designed for linear functions.
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The third and last goal:

”To mathematically formulate and employ new types of response-surfaces for synergy
analyses in drug combination experiments. The use of active learning methods for these
response-surfaces will also be evaluated.”

Here three novel substance-pair response surface models have been designed (Section 3.6.1,
Section 3.6.2 and Section 3.6.3), two of which have functions to model interaction effects
between the two drugs. Simulated experiments to evaluate the interaction models was
performed (Section 4.3) but only one of the interaction models was able to converge on
the model parameters used for simulation within a reasonable amount of batches (seven
batches of nine points each). This model was the semi-linear substance-pair response
surface model with the interaction function dose modulation model. The active learning
methods performed well when placing dose-pairs (see Figure 7 and Figure 8. Further
simulations is needed to conclude if the ten-parameter interaction model will converge
using a more tailor-made active learning implementation.

8 Discussion

The concentration range that is possible to evaluate with qHTS is quite large, one to
200 droplets using the ECHO with one source solution of the substance, and only a part
of the concentration range will give a non-saturated response. Due to the large range
of feasible doses, the doses selected by a dilution series might have a disproportionate
amount of doses with saturated response ranges. If this is the case, the imbalance of
doses will only increase when evaluating replicate doses. With this in mind, the higher
prediction accuracy of the simulated experiments using the active learning strategies for
dose selection becomes quite intuitive. The active learning methods can detect such
imbalances in the evaluated doses and suggest doses accordingly. The other strength of
the active learning methods is its ability to choose between all possible doses, meaning
that it can choose freely from all 200 possible doses while the dilution series will be
locked to the initial pick. With both of these properties iterative dose selection using
active learning becomes a good choice for experimental design in qHTS, as each individual
dose-response experiment is chosen intelligently and the initial dilution series do not need
to have doses on both non-saturated response asymptotes to get a good response model
estimation.

The main gain using the dose-pair response surface models formulated in this thesis is
the possibility to test for interaction effects and model the interaction effect at the same
time. In the same way as qHTS in comparison to HTS not only screens the substance
in a Hit/Miss fashion but also estimates the relationship between applied dose and the
response measured, these dose-pair response surface models screens for and estimates an
interaction effect.

The current implementation of single substance-response models requires that the un-
derlying system is a sigmoidal dose-response curve, or at least approximates well as one.
During the project, different tests with polynomial models have been explored but these
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have been very prone to over-fitting and did not converge fast enough. If development
would continue, methods for detecting and changing the active learning model per cell
plate would be implemented to optimize the data-information ratio on a substance basis.
The active learning strategy would also change to best fit the current problem. The
active learning methods with their respective models have only been tested on response
distributions with negative slopes, so far, but should in theory work just as well on a
positive slope.

A possible improvement to the active learning methods would be a quality score of the
data for possible exclusion of outliers [24]. In order to test the linear slope model re-
action to noisy data, new active learning strategies based on linear models need to be
developed.

As the variance estimation method is most computationally expensive a switch for maxi-
mum number of candidate models would be needed, since the amount of candidate models
increases binomially with the data. The multiple dose selection option response simula-
tion is never used with this method, since it would result in

∑N
i=0

(
N+i
k

)
candidate models.

This method, on the other hand, is very robust assuming that the system is non-linear
and will always select an informative input as it makes very few assumptions about the
data. The only assumption of this method is that all parameters in the active learning
model are equally important. The method itself is easily implemented under paralleliza-
tion since the parameter estimation for each subset require no additional information
than the hyper-parameters and the subset itself.

The problem with information gain maximization method is when the Hessian is insolv-
able and has very large numeric difference in values of the diagonal elements, since this
can result in a very steep increase in ∇∇Ew. Using the current prior, this would trans-
late to an increasing certainty that the parameters are centered around zero. An analysis
of the prior weight λ should be performed, since the value used in the simulations and
experimental validation were arbitrarily chosen for the current results, but to see how
this parameter should be chosen depending on the estimation of noise expected in the
data would be valuable as it could increase the accuracy of the dose selection.

A problem that can arise when selecting all local maxima in an uncertainty score is that
small amplitude oscillations may emerge resulting in a large number of doses selected
within a small dose-range. This could possibly be avoided by filtering the calculated
uncertainty score through a low-pass filter.

Most of the project duration was spent on the formulation of the model for the com-
binatorial models since the initial starting point was the Hill model, which due to the
non-transactional properties of its IC50 parameter was very hard to formulate as a multi-
dimensional problem. The current models expressing the dose-pair response surfaces
make assumptions about the additivity of the substances, much like in Loewe additivity
(Section 2.1.6) but contain a explicit encoding of the interaction effect between the drugs
as parameters.
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9 Future Work and Concluding Remarks

• To develop dose-response models for non-sigmoidal (cell line pair model not counted)
dose-response curves.

• To develop active learning methods viable when using linear dose-response models
such as the linear slope model.

• To apply a low-pass filters to the uncertainty score when using the multiple lo-
cal maxima selection strategies to even out possible oscillations that results in a
disproportionate amount of selected doses in the same region.

• To tailor active learning methods to the Semi-linear substance-pair dose response
surface models to more efficiently explore and estimate the underlying surface.

• To develop a complete GUI for input and output for easy experimental use and
analysis.

This thesis suggest that there is a clear potential efficiency gain in when employing
active learning strategies in clinical screening and profiling of medicinal substances. We
have developed models of response-surfaces that can estimate interaction effects. This
might streamline the screening for synergistic effects between substances as it allows the
researcher not only to discover but also measure interaction effects. However, these will
need further testing.
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11 Tables and Figures

Table 9: Absolute error of parameter estimations for each dataset using Table 8 as refer-
ence parameters.

∆Ymax ∆Ymin ∆IC50 ∆h Doses Dataset Method
-0.1229 -0.0297 -0.3266 -2.3792 24 Tanshinone I 2x1 VE
-0.0589 -0.0227 -0.7254 -1.3875 24 Tanshinone I 2x2 IG
-0.0323 -0.0631 -2.9214 -0.1714 21 Tanshinone I 5x1 VE
0.0610 -0.0320 -2.3233 -0.6987 21 Tanshinone I 5x2 VE
-0.1473 -0.0127 -1.9948 -3.1114 21 Tanshinone I 5x3 IG
0.0083 -0.0026 -2.0438 -3.0413 21 Tanshinone I 5x4 IG
0.9073 -0.0330 -5.4462 0.2115 34 Tanshinone I short IG
0.3517 -0.0017 -0.2961 -0.4587 16 Mitoxantrone 2x1 VE
-0.3249 0.0101 0.2138 -0.9827 16 Mitoxantrone 2x2 IG
0.9090 0.0081 -0.7865 -0.1347 13 Mitoxantrone 5x1 VE
-0.1292 0.0013 -0.1308 -0.9074 13 Mitoxantrone 5x2 VE
0.3160 0.0012 -0.5213 -0.4228 13 Mitoxantrone 5x3 IG
0.9091 0.0109 -0.7403 -0.1601 13 Mitoxantrone 5x4 IG
-0.2260 0.0802 0.0010 -6.2589 23 Mitoxantrone 5x1x3 IG
-0.1587 0.0632 -0.0638 -1.6675 31 Mitoxantrone 5x2x3 VE
-0.0647 -0.0383 3.1798 0.0151 16 Tanshinone I Di 2 Dilution2
0.0361 -0.0416 2.5829 0.1229 20 Tanshinone I Di 5 Dilution5
-0.2336 0.0083 0.4597 -0.3037 16 Mitoxantrone Di 2 Dilution2
0.9091 0.0064 -0.9066 0.2244 20 Mitoxantrone Di5 Dilution5
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A Maximum Aposteriori Estimation

The maximum aposeriori estimate is the most likely parameters given observed data. The
observed data is the data points tm given the input xm. Error between response given the
model parameters w and the observed data tm is expressed as Equation 44. The squared
summed error is expressed as ED(w) in Equation 45.

tm = y(xm, w) + εm (44)

ED(w) =
M∑
m=1

|tm − y(xm, w)|2 (45)

The assumption that the uncertainty about the observed response values tm in relation
to the true values ym can be represented by a normal distribution having variance β is
expressed mathematically in Equation 46. Assuming independent observations results in
the likelihood function shown in Equation 47.

p(tm|w, β) = (
1

β

√
2π)−1e−

β
2
|tm−y(xm,w)|2 (46)

M∏
m=1

p(tm|w, β) = p(t|w, β)

= (
1

β

√
2π)−1e−

β
2
ED(w) (47)

Employing Bayes theorem Equation 48 is obtained.

p(w|t, β) =
p(t|w, β)p(w|β)∫

v∈W p(t|v, β)p(v|β)dv
(48)

The integration
∫
v∈W p(t|v, β)p(v|β)dv, where W is the set of all plausible parameter

values, is a normalization constant to ensure that p(w|t, β) integrates to one. This means
that is can be ignored when searching for the maximum of the function. Assuming the
prior p(w|α) is a normal distribution and the parameters are likely to be close to zero
Equation 49 is obtained.

p(w|α) = (2π)−d/2
1√
α
e−α||w||

2

(49)

The logarithmic value of p(w|t, β) gives the Equation 50.

arg max
w

log(p(w|t, β, α)) = log(p(t|w, β))) + log(p(w|β)) (50)

arg max
w

log(p(w|t, β, α)) = −βED(w)− α|w|2 + log(Zβ) + log(Zα) (51)

Zβ =

(√
2π

β

)−1

(52)

Zα =

(√
2π

α

)−1

(53)
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Since Zα and Zβ is constant it can be disregarded and the maximum aposeriori estimation
can be calculated as in Equation 54

wMAP = arg min
w
−log(p(w|t, β)) (54)

= arg min
w
βED(w) + α||w||2 (55)
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B Maximizing Data Entropy

Mackey [10] defines the probability of given parameters of the system ,w (see Sec-
tion 2.1.4), as pN(w) where N is the amount of data points collected. The differential
entropy function is denoted ∆S = SN − SN+1 where SN+1 is the entropy measurement
of the system with a new point of data collected. The single entropy function is Equa-
tion 56.

SN =

∫
pN(w)log

1

pN(w)
δw (56)

The probability distribution of the parameters given data, Equation 50 is formulated as
Equation 57

M(w) = −βED(w)− αEW (w) (57)

ED(w) =
∑
|tm − y(xm, w)|2 (58)

EW (w) = −α||w||2 (59)

By quadratically approximating near wMAP gives us Equation 60

M(w) '= M(wMAP ) +
1

2
∆wA∆w (60)

Where ∆w = w−wMAP and A = ∇2
wM . Quadratic expanding the model y(x,w) around

wMAP gives Equation 61.

y(x) ' y(x,wMAP ) + g(x)∆w (61)

Where g = ∇wy. Following this reasoning the Hessian of M(w) with an additional data
point AN+1 can be approximated as AN+1 ' βggT . Where∇∇1

2
|t−y(x,w)|2 ' ggT .

Following Mackey the ∆S = SN−SN+1 is minimized by maximizing the only non-constant
term gTA−1g. This means that the input that will lead to the largest decrease in entropy
(uncertainty) is the following maximum:

x∆S = arg max
x

g(x)TA−1g(x) (62)
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