uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Publications (10 of 34) Show all publications
Farias, F. H. G., Dahlqvist, J., Kozyrev, S. V., Leonard, D., Wilbe, M., Abramov, S., . . . Lindblad-Toh, K. (2019). A rare regulatory variant in the MEF2D gene affects gene regulation and splicing and is associated with a SLE sub-phenotype in Swedish cohorts. European Journal of Human Genetics, 27, 432-441
Open this publication in new window or tab >>A rare regulatory variant in the MEF2D gene affects gene regulation and splicing and is associated with a SLE sub-phenotype in Swedish cohorts
Show others...
2019 (English)In: European Journal of Human Genetics, ISSN 1018-4813, E-ISSN 1476-5438, Vol. 27, p. 432-441Article in journal (Refereed) Published
Abstract [en]

Systemic lupus erythematosus (SLE) is an autoimmune disorder with heterogeneous clinical presentation and complex etiology involving the interplay between genetic, epigenetic, environmental and hormonal factors. Many common SNPs identified by genome wide-association studies (GWAS) explain only a small part of the disease heritability suggesting the contribution from rare genetic variants, undetectable in GWAS, and complex epistatic interactions. Using targeted re-sequencing of coding and conserved regulatory regions within and around 215 candidate genes selected on the basis of their known role in autoimmunity and genes associated with canine immune-mediated diseases, we identified a rare regulatory variant rs200395694:G > T located in intron 4 of the MEF2D gene encoding the myocyte-specific enhancer factor 2D transcription factor and associated with SLE in Swedish cohorts (504 SLE patients and 839 healthy controls, p = 0.014, CI = 1.1-10). Fisher's exact test revealed an association between the genetic variant and a triad of disease manifestations including Raynaud, anti-U1-ribonucleoprotein (anti-RNP), and anti-Smith (anti-Sm) antibodies (p = 0.00037) among the patients. The DNA-binding activity of the allele was further studied by EMSA, reporter assays, and minigenes. The region has properties of an active cell-specific enhancer, differentially affected by the alleles of rs200395694:G > T. In addition, the risk allele exerts an inhibitory effect on the splicing of the alternative tissue-specific isoform, and thus may modify the target gene set regulated by this isoform. These findings emphasize the potential of dissecting traits of complex diseases and correlating them with rare risk alleles with strong biological effects.

National Category
Medical Genetics
Research subject
Medical Science
Identifiers
urn:nbn:se:uu:diva-368313 (URN)10.1038/s41431-018-0297-x (DOI)000458626500013 ()30459414 (PubMedID)
Funder
Swedish Research CouncilSwedish Research Council FormasSwedish Rheumatism AssociationKnut and Alice Wallenberg Foundation
Note

These authors contributed equally: Johanna Dahlqvist, Sergey V. Kozyrev, Dag Leonard, Maria Wilbe

Available from: 2018-12-04 Created: 2018-12-04 Last updated: 2019-03-11Bibliographically approved
Segerberg, F., Lundtoft, C., Reid, S., Hjorton, K., Leonard, D., Nordmark, G., . . . Hagberg, N. (2019). Autoantibodies to Killer Cell Immunoglobulin-Like Receptors in Patients With Systemic Lupus Erythematosus Induce Natural Killer Cell Hyporesponsiveness. Frontiers in Immunology, 10, Article ID 2164.
Open this publication in new window or tab >>Autoantibodies to Killer Cell Immunoglobulin-Like Receptors in Patients With Systemic Lupus Erythematosus Induce Natural Killer Cell Hyporesponsiveness
Show others...
2019 (English)In: Frontiers in Immunology, ISSN 1664-3224, E-ISSN 1664-3224, Vol. 10, article id 2164Article in journal (Refereed) Published
Abstract [en]

Natural killer (NK) cell cytotoxicity toward self-cells is restrained by the inhibitory HLA class I-binding receptors CD94/NKG2A and the killer cell immunoglobulin-like receptors (KIRs). CD94/NKG2A and KIRs are also essential for NK cell education, which is a dynamic functional maturation process where a constitutive binding of inhibitory receptors to cognate HLA class I molecules is required for NK cells to maintain their full cytotoxic capacity. Previously, we described autoantibodies to CD94/NKG2A in patients with systemic lupus erythematosus (SLE). In this study we analyzed sera from 191 patients with SLE, 119 patients with primary Sjogren's syndrome (pSS), 48 patients with systemic sclerosis (SSc), and 100 healthy donors (HD) for autoantibodies to eight different KIRs. Anti-KIR autoantibodies were identified in sera from 23.0% of patients with SLE, 10.9% of patients with pSS, 12.5% of patients with SSc, and 3.0% of HD. IgG from anti-KIR-positive SLE patients reduced the degranulation and cytotoxicity of NK cells toward K562 tumor cells. The presence of anti-KIR-autoantibodies reacting with >3 KIRs was associated with an increased disease activity (p < 0.0001), elevated serum levels of IFN-alpha (p < 0.0001), nephritis (p = 0.001), and the presence of anti-Sm (p = 0.007), and anti-RNP (p = 0.003) autoantibodies in serum. Together these findings suggest that anti-KIR autoantibodies may contribute to the reduced function of NK cells in SLE patients, and that a defective NK cell function may be a risk factor for the development of lupus nephritis.

Keywords
autoantibody, killer cell immunoglobulin-like receptor, systemic lupus erythematosus, nephritis, natural killer cells, primary Sjogren's syndrome
National Category
Immunology in the medical area Rheumatology and Autoimmunity
Identifiers
urn:nbn:se:uu:diva-394956 (URN)10.3389/fimmu.2019.02164 (DOI)000485181000001 ()
Funder
Swedish Cancer SocietySwedish Society of MedicineSwedish Rheumatism Association
Available from: 2019-10-21 Created: 2019-10-21 Last updated: 2019-10-21Bibliographically approved
Odqvist, L., Jevnikar, Z., Riise, R., Oberg, L., Rhedin, M., Leonard, D., . . . Vaarala, O. (2019). Genetic variations in A20 DUB domain provide a genetic link to citrullination and neutrophil extracellular traps in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 78(10), 1363-1370
Open this publication in new window or tab >>Genetic variations in A20 DUB domain provide a genetic link to citrullination and neutrophil extracellular traps in systemic lupus erythematosus
Show others...
2019 (English)In: Annals of the Rheumatic Diseases, ISSN 0003-4967, E-ISSN 1468-2060, Vol. 78, no 10, p. 1363-1370Article in journal (Refereed) Published
Abstract [en]

Objectives

Genetic variations in TNFAIP3 (A20) deubiquitinase (DUB) domain increase the risk of systemic lupus erythematosus (SLE) and rheumatoid arthritis. A20 is a negative regulator of NF-kappa B but the role of its DUB domain and related genetic variants remain unclear. We aimed to study the functional effects of A20 DUB-domain alterations in immune cells and understand its link to SLE pathogenesis.

Methods

CRISPR/Cas9 was used to generate human U937 monocytes with A20 DUB-inactivating C103A knock-in (KI) mutation. Whole genome RNA-sequencing was used to identify differentially expressed genes between WT and C103A KI cells. Functional studies were performed in A20 C103A U937 cells and in immune cells from A20 C103A mice and genotyped healthy individuals with A20 DUB polymorphism rs2230926. Neutrophil extracellular trap (NET) formation was addressed ex vivo in neutrophils from A20 C103A mice and SLE-patients with rs2230926.

Results

Genetic disruption of A20 DUB domain in human and murine myeloid cells did not give rise to enhanced NF-kappa B signalling. Instead, cells with C103A mutation or rs2230926 polymorphism presented an upregulated expression of PADI4, an enzyme regulating protein citrullination and NET formation, two key mechanisms in autoimmune pathology. A20 C103A cells exhibited enhanced protein citrullination and extracellular trap formation, which could be suppressed by selective PAD4 inhibition. Moreover, SLE-patients with rs2230926 showed increased NETs and increased frequency of autoantibodies to citrullinated epitopes.

Conclusions

We propose that genetic alterations disrupting the A20 DUB domain mediate increased susceptibility to SLE through the upregulation of PADI4 with resultant protein citrullination and extracellular trap formation.

National Category
Rheumatology and Autoimmunity Cell Biology
Identifiers
urn:nbn:se:uu:diva-396653 (URN)10.1136/annrheumdis-2019-215434 (DOI)000487465000024 ()31300459 (PubMedID)
Funder
Swedish Research CouncilKnut and Alice Wallenberg Foundation
Available from: 2019-11-14 Created: 2019-11-14 Last updated: 2019-11-14Bibliographically approved
Rönnblom, L. & Leonard, D. (2019). Interferon pathway in SLE: one key to unlocking the mystery of the disease. Lupus Science and Medicine, 6(1), Article ID e000270.
Open this publication in new window or tab >>Interferon pathway in SLE: one key to unlocking the mystery of the disease
2019 (English)In: Lupus Science and Medicine, ISSN 2053-8790, E-ISSN 1625-9823, Vol. 6, no 1, article id e000270Article, review/survey (Refereed) Published
Abstract [en]

SLE is characterised by an activation of the interferon (IFN) system, which leads to an increased expression of IFN-regulated genes. The reasons behind the IFN signature in SLE are (1) the existence of endogenous IFN inducers, (2) activation of several IFN-producing cell types, (3) production of many different IFNs, (4) a genetic setup promoting IFN production and (5) deficient negative feedback mechanisms. The consequences for the immune system is a continuous stimulation to an immune response, and for the patient a number of different organ manifestations leading to typical symptoms for SLE. In the current review, we will present the existing knowledge of the IFN system and pathway activation in SLE. We will also discuss how this information can contribute to our understanding of both the aetiopathogenesis and some organ manifestations of the disease. We will put forward some issues that are unresolved and should be clarified in order to make a proper stratification of patients with SLE, which seems important when selecting a therapy aiming to downregulate the IFN system.

Place, publisher, year, edition, pages
BMJ Publishing Group Ltd, 2019
National Category
Rheumatology and Autoimmunity
Identifiers
urn:nbn:se:uu:diva-401914 (URN)10.1136/lupus-2018-000270 (DOI)000494644200001 ()31497305 (PubMedID)
Funder
Swedish Research CouncilSwedish Rheumatism AssociationKing Gustaf V Jubilee FundSwedish Society of Medicine
Available from: 2020-01-13 Created: 2020-01-13 Last updated: 2020-01-13Bibliographically approved
Imgenberg-Kreuz, J., Carlsson Almlöf, J., Leonard, D., Sjöwall, C., Syvänen, A.-C., Rönnblom, L., . . . Nordmark, G. (2019). Shared and Unique Patterns of DNA Methylation in Systemic Lupus Erythematosus and Primary Sjogren's Syndrome. Frontiers in Immunology, 10, Article ID 1686.
Open this publication in new window or tab >>Shared and Unique Patterns of DNA Methylation in Systemic Lupus Erythematosus and Primary Sjogren's Syndrome
Show others...
2019 (English)In: Frontiers in Immunology, ISSN 1664-3224, E-ISSN 1664-3224, Vol. 10, article id 1686Article in journal (Refereed) Published
Abstract [en]

Objectives: To performa cross-comparative analysis of DNA methylation in patients with systemic lupus erythematosus (SLE), patients with primary Sjogren's syndrome (pSS), and healthy controls addressing the question of epigenetic sharing and aiming to detect disease-specific alterations. Methods: DNA extracted from peripheral blood from 347 cases with SLE, 100 cases with pSS, and 400 healthy controls were analyzed on the Human Methylation 450k array, targeting 485,000 CpG sites across the genome. A linear regression model including age, sex, and blood cell type distribution as covariates was fitted, and association p-values were Bonferroni corrected. A random forest machine learning classifier was designed for prediction of disease status based on DNA methylation data. Results: We established a combined set of 4,945 shared differentially methylated CpG sites (DMCs) in SLE and pSS compared to controls. In pSS, hypomethylation at type I interferon induced genes was mainly driven by patients who were positive for Ro/SSA and/or La/SSB autoantibodies. Analysis of differential methylation between SLE and pSS identified 2,244 DMCs with a majority of sites showing decreased methylation in SLE compared to pSS. The random forest classifier demonstrated good performance in discerning between disease status with an area under the curve (AUC) between 0.83 and 0.96. Conclusions: The majority of differential DNA methylation is shared between SLE and pSS, however, important quantitative differences exist. Our data highlight neutrophil dysregulation as a shared mechanism, emphasizing the role of neutrophils in the pathogenesis of systemic autoimmune diseases. The current study provides evidence for genes and molecular pathways driving common and disease-specific pathogenic mechanisms.

Place, publisher, year, edition, pages
FRONTIERS MEDIA SA, 2019
Keywords
systemic lupus erythematosus, primary Sjogren's syndrome, DNA methylation, EWAS, epigenetics, autoimmunity, type I interferon, random forest
National Category
Rheumatology and Autoimmunity
Identifiers
urn:nbn:se:uu:diva-391357 (URN)10.3389/fimmu.2019.01686 (DOI)000477805800001 ()31428085 (PubMedID)
Funder
Knut and Alice Wallenberg Foundation, KAW 2011.0073Swedish Research Council, VR-MH Dnr 521-2014-2263Swedish Research Council, Dnr 2018-02399Swedish Research Council, Dnr 2016-01982Swedish Research CouncilKnut and Alice Wallenberg Foundation
Available from: 2019-09-24 Created: 2019-09-24 Last updated: 2019-09-24Bibliographically approved
Frodlund, M., Reid, S., Wettero, J., Dahlstrom, O., Sjowall, C. & Leonard, D. (2019). The majority of Swedish systemic lupus erythematosus patients are still affected by irreversible organ impairment: factors related to damage accrual in two regional cohorts. Lupus, 28(10), 1261-1272, Article ID UNSP 0961203319860198.
Open this publication in new window or tab >>The majority of Swedish systemic lupus erythematosus patients are still affected by irreversible organ impairment: factors related to damage accrual in two regional cohorts
Show others...
2019 (English)In: Lupus, ISSN 0961-2033, E-ISSN 1477-0962, Vol. 28, no 10, p. 1261-1272, article id UNSP 0961203319860198Article in journal (Refereed) Published
Abstract [en]

Background Although the survival of patients with systemic lupus erythematosus (SLE) has improved, irreversible organ damage remains a critical concern. We aimed to characterize damage accrual and its clinical associations and causes of death in Swedish patients. Methods Accumulation of damage was evaluated in 543 consecutively recruited and well-characterized cases during 1998-2017. The Systemic Lupus International Collaborating Clinics (SLICC)/American College of Rheumatology damage index (SDI) was used to estimate damage. Results Organ damage (SDI >= 1) was observed in 59%, and extensive damage (SDI >= 3) in 25% of cases. SDI >= 1 was significantly associated with higher age at onset, SLE duration, the number of fulfilled SLICC criteria, neurologic disorder, antiphospholipid antibody syndrome (APS), hypertension, hyperlipidemia, depression and secondary Sjogren's syndrome (SS). In addition, SDI >= 3 was associated with serositis, renal and haematological disorders and interstitial lung disease. A multiple regression model identified not only well-known risk factors like APS, antihypertensives and corticosteroids, but pericarditis, haemolytic anaemia, lymphopenia and myositis as being linked to SDI. Malignancy, infection and cardiovascular disease were the leading causes of death. Conclusions After a mean SLE duration of 17 years, the majority of today's Swedish SLE patients have accrued damage. We confirm previous observations and report some novel findings regarding disease phenotypes and damage accrual.

Place, publisher, year, edition, pages
SAGE PUBLICATIONS LTD, 2019
Keywords
Damage accrual, immunosuppressants, mortality, SLE phenotypes, Sweden, systemic lupus erythematosus
National Category
Rheumatology and Autoimmunity
Identifiers
urn:nbn:se:uu:diva-396143 (URN)10.1177/0961203319860198 (DOI)000477186800001 ()31296137 (PubMedID)
Available from: 2019-11-04 Created: 2019-11-04 Last updated: 2019-11-04Bibliographically approved
Almlöf, J. C., Nystedt, S., Leonard, D., Eloranta, M.-L., Grosso, G., Sjowall, C., . . . Syvänen, A.-C. (2019). Whole-genome sequencing identifies complex contributions to genetic risk by variants in genes causing monogenic systemic lupus erythematosus. Human Genetics, 138(2), 141-150
Open this publication in new window or tab >>Whole-genome sequencing identifies complex contributions to genetic risk by variants in genes causing monogenic systemic lupus erythematosus
Show others...
2019 (English)In: Human Genetics, ISSN 0340-6717, E-ISSN 1432-1203, Vol. 138, no 2, p. 141-150Article in journal (Refereed) Published
Abstract [en]

Systemic lupus erythematosus (SLE, OMIM 152700) is a systemic autoimmune disease with a complex etiology. The mode of inheritance of the genetic risk beyond familial SLE cases is currently unknown. Additionally, the contribution of heterozygous variants in genes known to cause monogenic SLE is not fully understood. Whole-genome sequencing of DNA samples from 71 Swedish patients with SLE and their healthy biological parents was performed to investigate the general genetic risk of SLE using known SLE GWAS risk loci identified using the ImmunoChip, variants in genes associated to monogenic SLE, and the mode of inheritance of SLE risk alleles in these families. A random forest model for predicting genetic risk for SLE showed that the SLE risk variants were mainly inherited from one of the parents. In the 71 patients, we detected a significant enrichment of ultra-rare (0.1%) missense and nonsense mutations in 22 genes known to cause monogenic forms of SLE. We identified one previously reported homozygous nonsense mutation in the C1QC (Complement C1q C Chain) gene, which explains the immunodeficiency and severe SLE phenotype of that patient. We also identified seven ultra-rare, coding heterozygous variants in five genes (C1S, DNASE1L3, DNASE1, IFIH1, and RNASEH2A) involved in monogenic SLE. Our findings indicate a complex contribution to the overall genetic risk of SLE by rare variants in genes associated with monogenic forms of SLE. The rare variants were inherited from the other parent than the one who passed on the more common risk variants leading to an increased genetic burden for SLE in the child. Higher frequency SLE risk variants are mostly passed from one of the parents to the offspring affected with SLE. In contrast, the other parent, in seven cases, contributed heterozygous rare variants in genes associated with monogenic forms of SLE, suggesting a larger impact of rare variants in SLE than hitherto reported.

National Category
Rheumatology and Autoimmunity
Identifiers
urn:nbn:se:uu:diva-378191 (URN)10.1007/s00439-018-01966-7 (DOI)000458432800003 ()30707351 (PubMedID)
Funder
Knut and Alice Wallenberg FoundationSwedish Research Council, D0283001Swedish Research Council, 2017-02000Swedish Research CouncilThe King Gustaf V's Jubilee FoundationSwedish Rheumatism Association
Available from: 2019-03-04 Created: 2019-03-04 Last updated: 2019-03-04Bibliographically approved
Imgenberg-Kreuz, J., Almlöf, J. C., Leonard, D., Alexsson, A., Nordmark, G., Eloranta, M.-L., . . . Sandling, J. K. (2018). DNA methylation mapping identifies gene regulatory effects in patients with systemic lupus erythematosus. Annals of the Rheumatic Diseases, 77(5), 736-743
Open this publication in new window or tab >>DNA methylation mapping identifies gene regulatory effects in patients with systemic lupus erythematosus
Show others...
2018 (English)In: Annals of the Rheumatic Diseases, ISSN 0003-4967, E-ISSN 1468-2060, Vol. 77, no 5, p. 736-743Article in journal (Refereed) Published
Abstract [en]

Objectives: Systemic lupus erythematosus (SLE) is a chronic autoimmune condition with heterogeneous presentation and complex aetiology where DNA methylation changes are emerging as a contributing factor. In order to discover novel epigenetic associations and investigate their relationship to genetic risk for SLE, we analysed DNA methylation profiles in a large collection of patients with SLE and healthy individuals.

Methods: DNA extracted from blood from 548 patients with SLE and 587 healthy controls were analysed on the Illumina HumanMethylation 450 k BeadChip, which targets 485 000 CpG sites across the genome. Single nucleotide polymorphism (SNP) genotype data for 196 524 SNPs on the Illumina ImmunoChip from the same individuals were utilised for methylation quantitative trait loci (cis-meQTLs) analyses.

Results: We identified and replicated differentially methylated CpGs (DMCs) in SLE at 7245 CpG sites in the genome. The largest methylation differences were observed at type I interferon-regulated genes which exhibited decreased methylation in SLE. We mapped cis-meQTLs and identified genetic regulation of methylation levels at 466 of the DMCs in SLE. The meQTLs for DMCs in SLE were enriched for genetic association to SLE, and included seven SLE genome-wide association study (GWAS) loci: PTPRC (CD45), MHC-class III, UHRF1BP1, IRF5, IRF7, IKZF3 and UBE2L3. In addition, we observed association between genotype and variance of methylation at 20 DMCs in SLE, including at the HLA-DQB2 locus.

Conclusions: Our results suggest that several of the genetic risk variants for SLE may exert their influence on the phenotype through alteration of DNA methylation levels at regulatory regions of target genes.

Keywords
gene polymorphism, systemic lupus erythematosus
National Category
Rheumatology and Autoimmunity
Identifiers
urn:nbn:se:uu:diva-342164 (URN)10.1136/annrheumdis-2017-212379 (DOI)000430492600020 ()29437559 (PubMedID)
Funder
Knut and Alice Wallenberg Foundation, KAW 2011.0073Swedish Research Council, 521-2014-2263; 521-2013-2830; 521-2014-3954; 2016-01982; 350-2012-256AstraZenecaSwedish Society for Medical Research (SSMF)Swedish Rheumatism AssociationThe King Gustaf V's Jubilee FoundationSwedish Heart Lung FoundationStockholm County CouncilScience for Life Laboratory - a national resource center for high-throughput molecular bioscience
Available from: 2018-02-19 Created: 2018-02-19 Last updated: 2018-06-19Bibliographically approved
Bremer, H. D., Landegren, N., Sjöberg, R., Hallgren, Å., Renneker, S., Lattwein, E., . . . Hansson-Hamlin, H. (2018). ILF2 and ILF3 are autoantigens in canine systemic autoimmune disease. Scientific Reports, 8, Article ID 4852.
Open this publication in new window or tab >>ILF2 and ILF3 are autoantigens in canine systemic autoimmune disease
Show others...
2018 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 4852Article in journal (Refereed) Published
Abstract [en]

Dogs can spontaneously develop complex systemic autoimmune disorders, with similarities to human autoimmune disease. Autoantibodies directed at self-antigens are a key feature of these autoimmune diseases. Here we report the identification of interleukin enhancer-binding factors 2 and 3 (ILF2 and ILF3) as autoantigens in canine immune-mediated rheumatic disease. The ILF2 autoantibodies were discovered in a small, selected canine cohort through the use of human protein arrays; a method not previously described in dogs. Subsequently, ILF3 autoantibodies were also identified in the same cohort. The results were validated with an independent method in a larger cohort of dogs. ILF2 and ILF3 autoantibodies were found exclusively, and at a high frequency, in dogs that showed a speckled pattern of antinuclear antibodies on immunofluorescence. ILF2 and ILF3 autoantibodies were also found at low frequency in human patients with SLE and Sjogren's syndrome. These autoantibodies have the potential to be used as diagnostic biomarkers for canine, and possibly also human, autoimmune disease.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP, 2018
National Category
Immunology in the medical area
Identifiers
urn:nbn:se:uu:diva-351425 (URN)10.1038/s41598-018-23034-w (DOI)000427688100045 ()29556082 (PubMedID)
Funder
Swedish Research CouncilSwedish Research Council Formas, 2011-1404Novo NordiskRagnar Söderbergs stiftelseSwedish Rheumatism Association
Available from: 2018-06-01 Created: 2018-06-01 Last updated: 2018-06-01Bibliographically approved
Leonard, D., Svenungsson, E., Dahlqvist, J., Alexsson, A., Ärlestig, L., Taylor, K. E., . . . Rönnblom, L. (2018). Novel gene variants associated with cardiovascular disease in systemic lupus erythematosus and rheumatoid arthritis. Paper presented at Congress of the European-League-Against-Rheumatism (EULAR), JUN 13-16, 2018, Amsterdam, NETHERLANDS. Annals of the Rheumatic Diseases, 77, 1063-1069
Open this publication in new window or tab >>Novel gene variants associated with cardiovascular disease in systemic lupus erythematosus and rheumatoid arthritis
Show others...
2018 (English)In: Annals of the Rheumatic Diseases, ISSN 0003-4967, E-ISSN 1468-2060, Vol. 77, p. 1063-1069Article in journal (Refereed) Published
Abstract [en]

Objectives Patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) have increased risk of cardiovascular disease (CVD). We investigated whether single nucleotide polymorphisms (SNPs) at autoimmunity risk loci were associated with CVD in SLE and RA. Methods Patients with SLE (n=1045) were genotyped using the 200K Immunochip SNP array (Illumina). The allele frequency was compared between patients with and without different manifestations of CVD. Results were replicated in a second SLE cohort (n=1043) and in an RA cohort (n=824). We analysed publicly available genetic data from general population, performed electrophoretic mobility shift assays and measured cytokine levels and occurrence of antiphospholipid antibodies (aPLs). Results We identified two new putative risk loci associated with increased risk for CVD in two SLE populations, which remained after adjustment for traditional CVD risk factors. An IL19 risk allele, rs17581834(T) was associated with stroke/myocardial infarction (MI) in SLE (OR 2.3 (1.5 to 3.4), P=8.5×10−5) and RA (OR 2.8 (1.4 to 5.6), P=3.8×10−3), meta-analysis (OR 2.5 (2.0 to 2.9), P=3.5×10−7), but not in population controls. The IL19 risk allele affected protein binding, and SLE patients with the risk allele had increased levels of plasma-IL10 (P=0.004) and aPL (P=0.01). An SRP54-AS1 risk allele, rs799454(G) was associated with stroke/transient ischaemic attack in SLE (OR 1.7 (1.3 to 2.2), P=2.5×10−5) but not in RA. The SRP54-AS1 risk allele is an expression quantitative trait locus for four genes. Conclusions The IL19 risk allele was associated with stroke/MI in SLE and RA, but not in the general population, indicating that shared immune pathways may be involved in the CVD pathogenesis in inflammatory rheumatic diseases.

Place, publisher, year, edition, pages
BMJ Publishing Group Ltd, 2018
National Category
Rheumatology and Autoimmunity
Identifiers
urn:nbn:se:uu:diva-368663 (URN)10.1136/annrheumdis-2017-212614 (DOI)000444351000526 ()
Conference
Congress of the European-League-Against-Rheumatism (EULAR), JUN 13-16, 2018, Amsterdam, NETHERLANDS
Funder
Swedish Research Council, D0283001, A0258801, E0226301, E0395401Knut and Alice Wallenberg Foundation, 2011.0073AstraZenecaSwedish Society of MedicineSwedish Rheumatism AssociationKing Gustaf V Jubilee FundTorsten Söderbergs stiftelseStockholm County CouncilSwedish Heart Lung FoundationErik, Karin och Gösta Selanders FoundationNIH (National Institute of Health), UL1-TR-00004, P60-AR-053308, R01-AR-44804
Available from: 2018-12-10 Created: 2018-12-10 Last updated: 2019-12-10Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-6275-7282

Search in DiVA

Show all publications