Logo: to the web site of Uppsala University

uu.sePublikasjoner fra Uppsala universitet
Endre søk
Link to record
Permanent link

Direct link
Persson, Jonas
Publikasjoner (10 av 12) Visa alla publikasjoner
Linde, G., Persson, J. & von Sydow, L. (2009). A highly accurate adaptive finite difference solver for the Black–Scholes equation. International Journal of Computer Mathematics, 86, 2104-2121
Åpne denne publikasjonen i ny fane eller vindu >>A highly accurate adaptive finite difference solver for the Black–Scholes equation
2009 (engelsk)Inngår i: International Journal of Computer Mathematics, ISSN 0020-7160, E-ISSN 1029-0265, Vol. 86, s. 2104-2121Artikkel i tidsskrift (Fagfellevurdert) Published
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-85675 (URN)10.1080/00207160802140023 (DOI)000273521800008 ()
Tilgjengelig fra: 2008-10-14 Laget: 2008-10-29 Sist oppdatert: 2018-01-13bibliografisk kontrollert
Pettersson, U., Larsson, E., Marcusson, G. & Persson, J. (2008). Improved radial basis function methods for multi-dimensional option pricing. Journal of Computational and Applied Mathematics, 222, 82-93
Åpne denne publikasjonen i ny fane eller vindu >>Improved radial basis function methods for multi-dimensional option pricing
2008 (engelsk)Inngår i: Journal of Computational and Applied Mathematics, ISSN 0377-0427, E-ISSN 1879-1778, Vol. 222, s. 82-93Artikkel i tidsskrift (Fagfellevurdert) Published
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-11845 (URN)10.1016/j.cam.2007.10.038 (DOI)000260709500007 ()
Tilgjengelig fra: 2007-10-26 Laget: 2008-10-01 Sist oppdatert: 2020-02-24bibliografisk kontrollert
Persson, J. (2007). Pricing American options using a space-time adaptive finite difference method.
Åpne denne publikasjonen i ny fane eller vindu >>Pricing American options using a space-time adaptive finite difference method
2007 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

American options are priced numerically using a space- and time-adaptive finite difference method. The generalized Black-Scholes operator is discretized on a Cartesian structured but non-equidistant grid in space. The space- and time-discretizations are adjusted such that a predefined tolerance level on the local discretization error is met. An operator splitting technique is used to separately handle the early exercise constraint and the solution of linear systems of equations from the finite difference discretization of the linear complementarity problem. In numerical experiments three variants of the adaptive time-stepping algorithm with and without local time-stepping are compared.

Serie
Technical report / Department of Information Technology, Uppsala University, ISSN 1404-3203 ; 2007-004
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-23576 (URN)
Tilgjengelig fra: 2007-02-01 Laget: 2009-01-28 Sist oppdatert: 2024-05-30bibliografisk kontrollert
Persson, J. & von Sydow, L. (2007). Pricing European multi-asset options using a space-time adaptive FD-method. Computing and Visualization in Science, 10, 173-183
Åpne denne publikasjonen i ny fane eller vindu >>Pricing European multi-asset options using a space-time adaptive FD-method
2007 (engelsk)Inngår i: Computing and Visualization in Science, ISSN 1432-9360, E-ISSN 1433-0369, Vol. 10, s. 173-183Artikkel i tidsskrift (Fagfellevurdert) Published
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-44304 (URN)10.1007/s00791-007-0072-y (DOI)
Tilgjengelig fra: 2007-07-06 Laget: 2007-09-05 Sist oppdatert: 2018-01-11bibliografisk kontrollert
Lötstedt, P., Persson, J., von Sydow, L. & Tysk, J. (2007). Space-time adaptive finite difference method for European multi-asset options. Computers and Mathematics with Applications, 53, 1159-1180
Åpne denne publikasjonen i ny fane eller vindu >>Space-time adaptive finite difference method for European multi-asset options
2007 (engelsk)Inngår i: Computers and Mathematics with Applications, ISSN 0898-1221, E-ISSN 1873-7668, Vol. 53, s. 1159-1180Artikkel i tidsskrift (Fagfellevurdert) Published
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-10726 (URN)10.1016/j.camwa.2006.09.014 (DOI)000247425100001 ()
Tilgjengelig fra: 2007-04-09 Laget: 2007-05-19 Sist oppdatert: 2018-01-12bibliografisk kontrollert
Persson, J. (2006). Accurate Finite Difference Methods for Option Pricing. (Doctoral dissertation). Uppsala: Acta Universitatis Upsaliensis
Åpne denne publikasjonen i ny fane eller vindu >>Accurate Finite Difference Methods for Option Pricing
2006 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Stock options are priced numerically using space- and time-adaptive finite difference methods. European options on one and several underlying assets are considered. These are priced with adaptive numerical algorithms including a second order method and a more accurate method. For American options we use the adaptive technique to price options on one stock with and without stochastic volatility. In all these methods emphasis is put on the control of errors to fulfill predefined tolerance levels. The adaptive second order method is compared to an alternative discretization technique using radial basis functions. This method is not adaptive but shows potential in option pricing for one and several underlying assets. A finite difference method and a Monte Carlo method are applied to a new financial contract called Turbo warrant. A comparison of these two methods shows that for the case considered the finite difference method is superior.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2006. s. 70
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 206
Emneord
Finite differences, Option pricing, Adaptive methods
HSV kategori
Forskningsprogram
Numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-7097 (URN)91-554-6627-3 (ISBN)
Disputas
2006-09-29, Room 2446, Polacksbacken, Lägerhyddsvägen 2D, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2006-09-08 Laget: 2006-09-08 Sist oppdatert: 2011-10-27bibliografisk kontrollert
Linde, G., Persson, J. & von Sydow, L. (2006). High-order adaptive space-discretizations for the Black-Scholes equation.
Åpne denne publikasjonen i ny fane eller vindu >>High-order adaptive space-discretizations for the Black-Scholes equation
2006 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

In this paper we develop a high-order adaptive finite difference space-discretization for the Black-Scholes (B-S) equation. The final condition is discontinuous in the first derivative yielding that the effective rate of convergence is two, both for low-order and high-order standard finite difference (FD) schemes. To obtain a sixth-order scheme we use an extra grid in a limited space- and time-domain. The new sixth-order method is called FD6G2. The FD6G2-method is combined with space- and time-adaptivity to further enhance the method. To obtain solutions of high accuracy in several dimensions the adaptive FD6G2-method is superior to both standard and adaptive second-order FD-methods.

Serie
Technical report / Department of Information Technology, Uppsala University, ISSN 1404-3203 ; 2006-021
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-79980 (URN)
Tilgjengelig fra: 2008-02-09 Laget: 2008-02-09 Sist oppdatert: 2024-05-31bibliografisk kontrollert
Pettersson, U., Larsson, E., Marcusson, G. & Persson, J. (2006). Improved radial basis function methods for multi-dimensional option pricing.
Åpne denne publikasjonen i ny fane eller vindu >>Improved radial basis function methods for multi-dimensional option pricing
2006 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

In this paper, we have derived a radial basis function (RBF) based method for the pricing of financial contracts by solving the Black-Scholes partial differential equation. As an example of a financial contract that can be priced with this method we have chosen the multi-dimensional European basket call option. We have shown numerically that our scheme is second order accurate in time and spectrally accurate in space for constant shape parameter. For other, non-optimal choices of shape parameter values, the resulting convergence rate is algebraic. We propose an adaptive node point placement that improves the accuracy compared with a uniform distribution. Compared with an adaptive finite difference method, the RBF method is 20-40 times faster in one and two space dimensions and has approximately the same memory requirements.

Serie
Technical report / Department of Information Technology, Uppsala University, ISSN 1404-3203 ; 2006-028
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-80801 (URN)
Tilgjengelig fra: 2008-02-13 Laget: 2008-02-13 Sist oppdatert: 2024-05-31bibliografisk kontrollert
Persson, J. & Eriksson, J. (2006). Pricing turbo warrants.
Åpne denne publikasjonen i ny fane eller vindu >>Pricing turbo warrants
2006 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

We numerically price the financial contracts named turbo warrant that were released early in 2005. They have been studied mathematically in [Eriksson05] where explicit pricing formulas for the Geometric Brownian motion were derived. For more general underlying stochastic processes we have no analytical formulas and numerical methods are necessary. In this work two different methods are compared, stochastic pricing using a Monte Carlo method and a deterministic PDE approach using finite differences. The methods are evaluated in terms of numerical efficiency, computation time and accuracy. In the numerical experiments the geometric Brownian motion has been used as underlying stochastic process. Our results show that for low accuracy the methods are almost equal in efficiency but for higher accuracy the finite difference method is much more efficient.

Serie
Technical report / Department of Information Technology, Uppsala University, ISSN 1404-3203 ; 2006-015
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-78924 (URN)
Tilgjengelig fra: 2007-09-18 Laget: 2007-09-18 Sist oppdatert: 2024-05-31bibliografisk kontrollert
Pettersson, U., Larsson, E., Marcusson, G. & Persson, J. (2005). Option pricing using radial basis functions. In: Proc. ECCOMAS Thematic Conference on Meshless Methods (pp. C24.1-6). Lisboa, Portugal: Departamento de Matemática, Instituto Superior Técnico
Åpne denne publikasjonen i ny fane eller vindu >>Option pricing using radial basis functions
2005 (engelsk)Inngår i: Proc. ECCOMAS Thematic Conference on Meshless Methods, Lisboa, Portugal: Departamento de Matemática, Instituto Superior Técnico , 2005, s. C24.1-6Konferansepaper, Publicerat paper (Fagfellevurdert)
sted, utgiver, år, opplag, sider
Lisboa, Portugal: Departamento de Matemática, Instituto Superior Técnico, 2005
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-78882 (URN)972-99289-1-6 (ISBN)
Tilgjengelig fra: 2006-05-20 Laget: 2006-05-20 Sist oppdatert: 2018-01-13bibliografisk kontrollert
Organisasjoner