Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Edvinsson, Tomas, ProfessorORCID iD iconorcid.org/0000-0003-2759-7356
Alternativa namn
Publikationer (10 of 178) Visa alla publikationer
Dürr, R. N., Maltoni, P., Feng, S., Ghorai, S., Ström, P., Tai, C.-W., . . . Edvinsson, T. (2024). Clearing Up Discrepancies in 2D and 3D Nickel Molybdate Hydrate Structures. Inorganic Chemistry, 63(5)
Öppna denna publikation i ny flik eller fönster >>Clearing Up Discrepancies in 2D and 3D Nickel Molybdate Hydrate Structures
Visa övriga...
2024 (Engelska)Ingår i: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 63, nr 5Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

When electrocatalysts are prepared, modification of the morphology is a common strategy to enhance their electrocatalytic performance. In this work, we have examined and characterized nanorods (3D) and nanosheets (2D) of nickel molybdate hydrates, which previously have been treated as the same material with just a variation in morphology. We thoroughly investigated the materials and report that they contain fundamentally different compounds with different crystal structures, chemical compositions, and chemical stabilities. The 3D nanorod structure exhibits the chemical formula NiMoO4·0.6H2O and crystallizes in a triclinic system, whereas the 2D nanosheet structures can be rationalized with Ni3MoO5–0.5x(OH)x·(2.3 – 0.5x)H2O, with a mixed valence of both Ni and Mo, which enables a layered crystal structure. The difference in structure and composition is supported by X-ray photoelectron spectroscopy, ion beam analysis, thermogravimetric analysis, X-ray diffraction, electron diffraction, infrared spectroscopy, Raman spectroscopy, and magnetic measurements. The previously proposed crystal structure for the nickel molybdate hydrate nanorods from the literature needs to be reconsidered and is here refined by ab initio molecular dynamics on a quantum mechanical level using density functional theory calculations to reproduce the experimental findings. Because the material is frequently studied as an electrocatalyst or catalyst precursor and both structures can appear in the same synthesis, a clear distinction between the two compounds is necessary to assess the underlying structure-to-function relationship and targeted electrocatalytic properties.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2024
Nyckelord
nickel molybdate hydrate; nanorods, nanosheets layered nickel molybdate, α-NiMoO4, molybdenum leaching, Raman spectroscopy
Nationell ämneskategori
Oorganisk kemi
Identifikatorer
urn:nbn:se:uu:diva-476769 (URN)10.1021/acs.inorgchem.3c03261 (DOI)001158182800001 ()38242537 (PubMedID)
Forskningsfinansiär
EU, Horisont 2020, 765376
Tillgänglig från: 2022-06-13 Skapad: 2022-06-13 Senast uppdaterad: 2024-03-01Bibliografiskt granskad
Sun, W., Ahmed, T., Elbouazzaoui, K., Edvinsson, T., Zheng, Y. & Zhu, J. (2024). Facile fabrication of AgBr/HCCN hybrids with Z-scheme heterojunction for efficient photocatalytic hydrogen evolution. Applied Surface Science, 651, Article ID 159292.
Öppna denna publikation i ny flik eller fönster >>Facile fabrication of AgBr/HCCN hybrids with Z-scheme heterojunction for efficient photocatalytic hydrogen evolution
Visa övriga...
2024 (Engelska)Ingår i: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 651, artikel-id 159292Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Constructing a Z-scheme heterojunction with enhanced photocatalytic hydrogen evolution for graphitic carbon nitride-based (g-C3N4) composites is challenging because integrating g-C3N4 with other semiconductors, without specific band structure design, typically results in type I or type II heterojunctions. These heterojunctions have lower redox ability and limited enhancement in photocatalysis. Herein, we select highly crystalline carbon nitride (HCCN) as a proof-of-concept substrate. For the first time, we develop a AgBr nanosphere/HCCN composite photocatalyst that features an all -solid -state direct Z-scheme heterojunction for visible-light photocatalytic hydrogen evolution. The electron transfer mechanism is initially studied from the band structures and Fermi levels of HCCN and AgBr. It is subsequently confirmed by X-ray photoelectron spectroscopy (XPS), and electron microscopy. The close heterojunction contact and the built-in electron field of the Z-scheme heterojunction promote the migration and separation of photogenerated electrons and holes in the composite photocatalyst. Due to the redistribution of charge carriers, the photocatalyst shows superior redox capability and a markedly enhanced hydrogen evolution performance compared to its individual components. Combining all the advantages, AgBr nanosphere/HCCN reached an apparent quantum efficiency (AQE) of 6 % under the illumination of 410 nm, which is 4 times higher than that of the single HCCN component.

Ort, förlag, år, upplaga, sidor
Elsevier, 2024
Nyckelord
Highly crystalline carbon nitride, AgBr nanosphere, Z-scheme heterojunction, Photocatalysis, Hydrogen production
Nationell ämneskategori
Fysikalisk kemi Den kondenserade materiens fysik
Identifikatorer
urn:nbn:se:uu:diva-522891 (URN)10.1016/j.apsusc.2024.159292 (DOI)001152746800001 ()
Forskningsfinansiär
Energimyndigheten, 46641-1Olle Engkvists stiftelse, SOEB-2015/167
Tillgänglig från: 2024-02-12 Skapad: 2024-02-12 Senast uppdaterad: 2024-02-12Bibliografiskt granskad
Araujo, R. & Edvinsson, T. (2024). Supervised AI and Deep Neural Networks to Evaluate High-Entropy Alloys as Reduction Catalysts in Aqueous Environments. ACS Catalysis, 14(6), 3742-3755
Öppna denna publikation i ny flik eller fönster >>Supervised AI and Deep Neural Networks to Evaluate High-Entropy Alloys as Reduction Catalysts in Aqueous Environments
2024 (Engelska)Ingår i: ACS Catalysis, E-ISSN 2155-5435, Vol. 14, nr 6, s. 3742-3755Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Competitive surface adsorption energies on catalytic surfaces constitute a fundamental aspect of modeling electrochemical reactions in aqueous environments. The conventional approach to this task relies on applying density functional theory, albeit with computationally intensive demands, particularly when dealing with intricate surfaces. In this study, we present a methodological exposition of quantifying competitive relationships within complex systems. Our methodology leverages quantum-mechanical-guided deep neural networks, deployed in the investigation of quinary high-entropy alloys composed of Mo-Cr-Mn-Fe-Co-Ni-Cu-Zn. These alloys are under examination as prospective electrocatalysts, facilitating the electrochemical synthesis of ammonia in aqueous media. Even in the most favorable scenario for nitrogen fixation identified in this study, at the transition from O and OH coverage to surface hydrogenation, the probability of N2 coverage remains low. This underscores the fact that catalyst optimization alone is insufficient for achieving efficient nitrogen reduction. In particular, these insights illuminate that system consideration with oxygen- and hydrogen-repelling approaches or high-pressure solutions would be necessary for improved nitrogen reduction within an aqueous environment.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2024
Nyckelord
machine learning, deep neural networks, high-entropyalloys, scaling relations, competitive data analysis, DFT
Nationell ämneskategori
Materialkemi
Identifikatorer
urn:nbn:se:uu:diva-528882 (URN)10.1021/acscatal.3c05017 (DOI)001174410500001 ()38510666 (PubMedID)
Forskningsfinansiär
Swedish National Infrastructure for Computing (SNIC), 2019-05591VetenskapsrådetVinnova
Tillgänglig från: 2024-05-30 Skapad: 2024-05-30 Senast uppdaterad: 2024-07-04Bibliografiskt granskad
Spinelli, G., Morritt, G. H., Pavone, M., Probert, M. R., Waddel, P. G., Edvinsson, T., . . . Freitag, M. (2023). Conductivity in Thin Films of Transition Metal Coordination Complexes. ACS Applied Energy Materials, 6(4), 2122-2127
Öppna denna publikation i ny flik eller fönster >>Conductivity in Thin Films of Transition Metal Coordination Complexes
Visa övriga...
2023 (Engelska)Ingår i: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 6, nr 4, s. 2122-2127Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Two coordination complexes have been made by combining the dithiolene complexes [M(mnt)(2)](2-) (mnt = maleonitriledithiolate; M = Ni2+ or Cu2+) as anion, with the copper(II) coordination complex [Cu(Stetra)] (Stetra = 6,6 ' - bis(4,5-dihydrothiazol-2-yl)-2,2 ' -bipyri-dine) as cation. The variation of the metal centers leads to a dramatic change in the conductivity of the materials, with the M = Cu2+ variant (Cu-Cu) displaying semiconductor behavior with a conductivity of approximately 2.5 x 10(-8) S cm(-1), while the M = Ni2+ variant (Ni-Cu) displayed no observable conductivity. Computational studies found Cu-Cu enables a minimization of reorganization energy losses and, as a result, a lower barrier to the charge transfer process, resulting in the reported higher conductivity.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2023
Nyckelord
charge transfer, electrical conductivity, energy materials, coordination complexes, copper complexes, charge transfer materials, salts
Nationell ämneskategori
Oorganisk kemi
Identifikatorer
urn:nbn:se:uu:diva-512594 (URN)10.1021/acsaem.2c02999 (DOI)000932415500001 ()36875350 (PubMedID)
Tillgänglig från: 2023-09-27 Skapad: 2023-09-27 Senast uppdaterad: 2024-01-29Bibliografiskt granskad
Valvo, M., Thyr, J. & Edvinsson, T. (2023). Defect-Induced Raman Scattering in Cu2O Nanostructures and Their Photocatalytic Performance. ChemElectroChem, 10(22), Article ID e202300376.
Öppna denna publikation i ny flik eller fönster >>Defect-Induced Raman Scattering in Cu2O Nanostructures and Their Photocatalytic Performance
2023 (Engelska)Ingår i: ChemElectroChem, E-ISSN 2196-0216, Vol. 10, nr 22, artikel-id e202300376Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Advanced oxidation processes using photogenerated charges in semiconductors constitute an approach to reduce and oxidize pollutants, with an efficiency that depends on the photo physics and defect chemistry of the photocatalyst. In this study, 2D Cu2O coatings on flat copper metal and on 3D copper nanopillars are created via low-temperature oxidation and compared. The structures are characterized by X-ray diffraction, Raman spectroscopy, and electron microscopy. The thickest surface oxide layers on the 3D structures show outgrowth of high-aspect ratio CuO nano-needles through the Cu2O layer, rationalized through a field-induced copper ion diffusion mechanism. Raman scattering provides details about both the specific copper oxide phase present and the type and extent of defects, with a resolution spanning from hundreds of nanometers to micrometers. We show that defects in Cu2O induce Raman activity in several of its modes that are purely IR-active or optically silent in pristine Cu2O. The experimental results are corroborated by linear response density functional theory (DFT) calculations for full vibrational mode analysis. The Cu-supported 2D copper oxide systems exhibit effective photocatalytic performance at quite low probe pollution concentration (10 mu M), while the 3D nanopillar structures enhance the photocatalytic efficiency by around 30 % compared to their planar counterpart under these conditions.

Ort, förlag, år, upplaga, sidor
Wiley-VCH Verlagsgesellschaft, 2023
Nyckelord
copper oxide, defect-induced Raman scattering, density functional theory, electrodeposition, photocatalysis
Nationell ämneskategori
Materialkemi
Identifikatorer
urn:nbn:se:uu:diva-522488 (URN)10.1002/celc.202300376 (DOI)001085621000001 ()
Forskningsfinansiär
Vetenskapsrådet, 2019-00207Forskningsrådet Formas, 2016-00908Vetenskapsrådet, 2019-05591
Anmärkning

De två första författarna delar förstaförfattarskapet.

Tillgänglig från: 2024-02-07 Skapad: 2024-02-07 Senast uppdaterad: 2024-02-07Bibliografiskt granskad
Thyr, J. & Edvinsson, T. (2023). Evading the Illusions: Identification of False Peaks in Micro-Raman Spectroscopy and Guidelines for Scientific Best Practice. Angewandte Chemie International Edition, 62(43), Article ID e202219047.
Öppna denna publikation i ny flik eller fönster >>Evading the Illusions: Identification of False Peaks in Micro-Raman Spectroscopy and Guidelines for Scientific Best Practice
2023 (Engelska)Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 62, nr 43, artikel-id e202219047Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

Micro-Raman spectroscopy is an important analytical tool in a large variety of science disciplines. The technique is suitable for both identification of chemical bonds and studying more detailed phenomena like molecular interactions, material strain, crystallinity, defects, and bond formations. Raman scattering has one major weakness however: it is a very low probability process. The weak signals require very sensitive detection systems, which leads to a high probability of picking up signals from origins other than the sample. This complicates the analysis of the results and increases the risk of misinterpreting data. This work provides an overview of the sources of spurious signals occurring in Raman spectra, including photoluminescence, cosmic rays, stray light, artefacts caused by spectrometer components, and signals from other compounds in or surrounding the sample. The origins of these false Raman peaks are explained and means to identify and counteract them are provided. Raman spectroscopy is a great analysis tool but the spectra are sometimes difficult to interpret due to the occurrence of spectral artefacts. This paper dives into the details of many spurious signals and spectral artefacts that occur in Raman spectra, explains their origin, and provides the tools to identify and avoid them.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2023
Nyckelord
Measurement Protocol, Raman Spectroscopy, Scientific Best Practice, Spectral Artefacts, Unintended Raman Signal
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:uu:diva-521084 (URN)10.1002/anie.202219047 (DOI)001064601200001 ()37702274 (PubMedID)
Forskningsfinansiär
Vetenskapsrådet, 2019-05591
Tillgänglig från: 2024-01-18 Skapad: 2024-01-18 Senast uppdaterad: 2024-01-18Bibliografiskt granskad
Araujo, R. B., Bayrak Pehlivan, I. & Edvinsson, T. (2023). High-entropy alloy catalysts: Fundamental aspects, promises towards electrochemical NH3 production, and lessons to learn from deep neural networks. Nano Energy, 105, Article ID 108027.
Öppna denna publikation i ny flik eller fönster >>High-entropy alloy catalysts: Fundamental aspects, promises towards electrochemical NH3 production, and lessons to learn from deep neural networks
2023 (Engelska)Ingår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 105, artikel-id 108027Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A computational approach to judiciously predict high-entropy alloys (HEAs) as an efficient and sustainable material class for the electrochemical reduction of nitrogen is here presented. The approach employs density functional theory (DFT), adsorption energies of N atoms and N2 molecules as descriptors of the catalytic activity and deep neural networks. A probabilistic approach to quantifying the activity of HEA catalysts for nitrogen reduction reaction (NRR) is described, where catalyst elements and concentration are optimized to increase the probability of specific atomic arrangements on the surfaces. The approach provides key features for the effective filtering of HEA candidates without the need for time-consuming calculations. The relationships between activity and selectivity, which correlate with the averaged valence electron concentration and averaged electronegativity of the reference HEA catalyst, are analyzed in terms of sufficient interaction for sustained reactions and, at the same time, for the release of the active site. As a result, a complete list of 3000 HEAs consisting of quinary components of the elements Mo, Cr, Mn, Fe, Co, Ni, Cu, and Zn are reported together with their metrics to rank them from the most likely to the least likely active catalysts for NRR in gas diffusion electrodes, or for the case where non-aqueous electrolytes are utilized to suppress the competing hydrogen evolution reaction. Moreover, the energetic landscape of the electrochemical NRR transformations are computed and compared to the case of Fe. The study also analyses and discusses how the results would translate to liquid-solid reactions in aqueous electrochemical cells, further affected by changes in properties upon hydroxylation, oxygen, hydrogen, and water coverages.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
High-entropy alloys, Electrocatalytic nitrogen reduction, Scaling-relations, Machine learning, Deep neural networks
Nationell ämneskategori
Annan kemi
Identifikatorer
urn:nbn:se:uu:diva-492684 (URN)10.1016/j.nanoen.2022.108027 (DOI)000898668000003 ()
Forskningsfinansiär
Vetenskapsrådet, 2019-05591EU, Horisont 2020, 101006941Swedish National Infrastructure for Computing (SNIC), 2021/5-282
Tillgänglig från: 2023-01-10 Skapad: 2023-01-10 Senast uppdaterad: 2023-01-10Bibliografiskt granskad
Araujo, R. & Edvinsson, T. (2023). N-2 adsorption on high-entropy alloy surfaces: unveiling the role of local environments. Journal of Materials Chemistry A, 11(24), 12973-12983
Öppna denna publikation i ny flik eller fönster >>N-2 adsorption on high-entropy alloy surfaces: unveiling the role of local environments
2023 (Engelska)Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 11, nr 24, s. 12973-12983Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Developing highly active catalysts to electrochemically reduce N-2 to NH3 under ambient conditions is challenging but bears the promise of using ammonia as a potential energy vector in sustainable energy technology. One of the scientific challenges concerns the inertness of N-2 emanating from the highly stable triple bonds and the lack of dipole moments, making N-2 fixation on catalytic surfaces difficult. Another critical challenge is that electrons are more prone to reduce hydrogen than N-2 at the surface, forming a scaling relationship where the reduction ability of the catalyst most often benefits hydrogen reduction instead of nitrogen reduction. Here we show that high-entropy alloys (HEA) - a new class of catalysts with vast compositional and structural possibilities, can enhance N-2 fixation. More specifically, we investigate the role of the local environment in the first and second solvation shell of the adsorbing elements in the bond strength between the dinitrogen molecules and the HEA surfaces. Density functional theory using a Bayesian error estimation functional and vdW interactions is employed to clarify the properties dictating the local bonding. The results show that although the main property calibrating the N-2 bond strength is the d-band centers of the adsorbing elements, the value of the d-band centers of the adsorbing elements is further regulated by their local environment, mainly from the elements in the first solvation shell due to electron donor-acceptor interactions. Therefore, there exists a first solvation shell effect of the adsorbing elements on the bond strength between N-2 molecules and the surface of HEAs. The results show that apart from the direct active site, the indirect relation adds further modulation abilities where the local interactions with a breath of metallic elements could be used in HEAs to engineer specific surface environments. This is utilized here to form a strategy for delivering higher bond strength with the N-2 molecules, mitigating the fixation issue. The analysis is corroborated by correlation analysis of the properties affecting the interaction, thus forming a solid framework of the model, easily extendable to other chemical reactions and surface interaction problems.

Ort, förlag, år, upplaga, sidor
Royal Society of Chemistry, 2023
Nationell ämneskategori
Kemi
Forskningsämne
Kemi med inriktning mot materialkemi
Identifikatorer
urn:nbn:se:uu:diva-510960 (URN)10.1039/d2ta09348k (DOI)000959402300001 ()
Forskningsfinansiär
Swedish National Infrastructure for Computing (SNIC), SNIC 2021/5-282Vetenskapsrådet, 2019-05591VinnovaVetenskapsrådet
Tillgänglig från: 2023-09-06 Skapad: 2023-09-06 Senast uppdaterad: 2023-09-06Bibliografiskt granskad
Jacobsson, T. J., Hultqvist, A., García-Fernández, A., Anand, A., Al-Ashouri, A., Hagfeldt, A., . . . Unger, E. (2022). An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nature Energy, 7(1), 107-115
Öppna denna publikation i ny flik eller fönster >>An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles
Visa övriga...
2022 (Engelska)Ingår i: Nature Energy, E-ISSN 2058-7546, Vol. 7, nr 1, s. 107-115Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Making large datasets findable, accessible, interoperable and reusable could accelerate technology development. Now, Jacobsson et al. present an approach to build an open-access database and analysis tool for perovskite solar cells. Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences.

Ort, förlag, år, upplaga, sidor
NATURE PORTFOLIO, 2022
Nationell ämneskategori
Materialkemi
Identifikatorer
urn:nbn:se:uu:diva-470068 (URN)10.1038/s41560-021-00941-3 (DOI)000729687900004 ()
Forskningsfinansiär
EU, Horisont 2020, 841386EU, Horisont 2020, 795079EU, Horisont 2020, 840751Vetenskapsrådet, 2019-05591Energimyndigheten, 2020-005194
Tillgänglig från: 2022-04-05 Skapad: 2022-04-05 Senast uppdaterad: 2024-06-11Bibliografiskt granskad
Michaels, H., Golomb, M. J., Kim, B. J., Edvinsson, T., Cucinotta, F., Waddell, P. G., . . . Freitag, M. (2022). Copper coordination polymers with selective hole conductivity. Journal of Materials Chemistry A, 10(17), 9582-9591
Öppna denna publikation i ny flik eller fönster >>Copper coordination polymers with selective hole conductivity
Visa övriga...
2022 (Engelska)Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 10, nr 17, s. 9582-9591Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Emerging technologies in solar energy will be critical in enabling worldwide society in overcoming the present energy challenges and reaching carbon net zero. Inefficient and unstable charge transport materials limit the current emerging energy conversion and storage technologies. Low-dimensional coordination polymers represent an alternative, unprecedented class of charge transport materials, comprised of molecular building blocks. Here, we provide a comprehensive study of mixed-valence coordination polymers from an analysis of the charge transport mechanism to their implementation as hole-conducting layers. Cu-II dithiocarbamate complexes afford morphology control of 1D polymer chains linked by (CuI2X2) copper halide rhombi. Concerted theoretical and experimental efforts identified the charge transport mechanism in the transition to band-like transport with a modeled effective hole mass of 6m(e). The iodide-bridged coordination polymer showed an excellent conductivity of 1 mS cm(-1) and a hole mobility of 5.8 10(-4) cm(2) (V s)(-1) at room temperature. Nanosecond selective hole injection into coordination polymer thin films was captured by nanosecond photoluminescence of halide perovskite films. Coordination polymers constitute a sustainable, tunable alternative to the current standard of heavily doped organic hole conductors.

Nationell ämneskategori
Den kondenserade materiens fysik Materialkemi
Identifikatorer
urn:nbn:se:uu:diva-484838 (URN)10.1039/d2ta00267a (DOI)000775100700001 ()
Forskningsfinansiär
Energimyndigheten, 42037-1Energimyndigheten, 43294-1StandUp
Tillgänglig från: 2022-09-16 Skapad: 2022-09-16 Senast uppdaterad: 2022-09-16Bibliografiskt granskad
Projekt
Mot bättre förståelse av ytegenskaper under fotokatalytisk sönderdelning av vatten [2015-03814_VR]; Uppsala universitetSuperabsorberande pyritskikt för ultratunna solceller [P44648-1_Energi]; Uppsala universitetJon-förskjutning och defektfysik i solcellsmaterial av metallhalid-perovskiter [2019-05591_VR]; Uppsala universitet
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-2759-7356

Sök vidare i DiVA

Visa alla publikationer