Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 55) Visa alla publikationer
Pagnon de la Vega, M., Syvänen, S., Giedraitis, V., Hooley, M., Konstantinidis, E., Meier, S. R., . . . Sehlin, D. (2024). Altered amyloid-β structure markedly reduces gliosis in the brain of mice harboring the Uppsala APP deletion. Acta neuropathologica communications, 12(1), Article ID 22.
Öppna denna publikation i ny flik eller fönster >>Altered amyloid-β structure markedly reduces gliosis in the brain of mice harboring the Uppsala APP deletion
Visa övriga...
2024 (Engelska)Ingår i: Acta neuropathologica communications, E-ISSN 2051-5960, Vol. 12, nr 1, artikel-id 22Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Deposition of amyloid beta (Aβ) into plaques is a major hallmark of Alzheimer’s disease (AD). Different amyloid precursor protein (APP) mutations cause early-onset AD by altering the production or aggregation properties of Aβ. We recently identified the Uppsala APP mutation (APPUpp), which causes Aβ pathology by a triple mechanism: increased β-secretase and altered α-secretase APP cleavage, leading to increased formation of a unique Aβ conformer that rapidly aggregates and deposits in the brain. The aim of this study was to further explore the effects of APPUpp in a transgenic mouse model (tg-UppSwe), expressing human APP with the APPUpp mutation together with the APPSwe mutation. Aβ pathology was studied in tg-UppSwe brains at different ages, using ELISA and immunohistochemistry. In vivo PET imaging with three different PET radioligands was conducted in aged tg-UppSwe mice and two other mouse models; tg-ArcSwe and tg-Swe. Finally, glial responses to Aβ pathology were studied in cell culture models and mouse brain tissue, using ELISA and immunohistochemistry. Tg-UppSwe mice displayed increased β-secretase cleavage and suppressed α-secretase cleavage, resulting in AβUpp42 dominated diffuse plaque pathology appearing from the age of 5–6 months. The γ-secretase cleavage was not affected. Contrary to tg-ArcSwe and tg-Swe mice, tg-UppSwe mice were [11C]PiB-PET negative. Antibody-based PET with the 3D6 ligand visualized Aβ pathology in all models, whereas the Aβ protofibril selective mAb158 ligand did not give any signals in tg-UppSwe mice. Moreover, unlike the other two models, tg-UppSwe mice displayed a very faint glial response to the Aβ pathology. The tg-UppSwe mouse model thus recapitulates several pathological features of the Uppsala APP mutation carriers. The presumed unique structural features of AβUpp42 aggregates were found to affect their interaction with anti-Aβ antibodies and profoundly modify the Aβ-mediated glial response, which may be important aspects to consider for further development of AD therapies.

Ort, förlag, år, upplaga, sidor
BioMed Central (BMC), 2024
Nyckelord
Alzheimer's disease (AD), Amyloid precursor protein (APP), Amyloid-beta (A beta), PET imaging, Microglia, Astrocytes, Immunotherapy
Nationell ämneskategori
Neurovetenskaper Neurologi
Identifikatorer
urn:nbn:se:uu:diva-523728 (URN)10.1186/s40478-024-01734-x (DOI)001158145500001 ()38317196 (PubMedID)
Forskningsfinansiär
Knut och Alice Wallenbergs StiftelseUppsala universitetVetenskapsrådet, 2016‑02120Vetenskapsrådet, 2021‑01083Vetenskapsrådet, 2021‑03524AlzheimerfondenHjärnfondenTorsten Söderbergs stiftelseÅhlén-stiftelsenMagnus Bergvalls StiftelseStiftelsen Gamla TjänarinnorGun och Bertil Stohnes StiftelseKonung Gustaf V:s och Drottning Victorias FrimurarestiftelseStiftelsen Sigurd och Elsa Goljes minne
Anmärkning

De två sista författarna delar sistaförfattarskapet

Tillgänglig från: 2024-02-26 Skapad: 2024-02-26 Senast uppdaterad: 2024-02-26Bibliografiskt granskad
Beretta, C., Svensson, E., Dakhel, A., Zyśk, M., Hanrieder, J., Sehlin, D., . . . Erlandsson, A. (2024). Amyloid-β deposits in human astrocytes contain truncated and highly resistant proteoforms. Molecular and Cellular Neuroscience, 128, Article ID 103916.
Öppna denna publikation i ny flik eller fönster >>Amyloid-β deposits in human astrocytes contain truncated and highly resistant proteoforms
Visa övriga...
2024 (Engelska)Ingår i: Molecular and Cellular Neuroscience, ISSN 1044-7431, E-ISSN 1095-9327, Vol. 128, artikel-id 103916Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Alzheimer's disease (AD) is a neurodegenerative disorder that develops over decades. Glial cells, including astrocytes are tightly connected to the AD pathogenesis, but their impact on disease progression is still unclear. Our previous data show that astrocytes take up large amounts of aggregated amyloid-beta (Aβ) but are unable to successfully degrade the material, which is instead stored intracellularly. The aim of the present study was to analyze the astrocytic Aβ deposits composition in detail in order to understand their role in AD propagation. For this purpose, human induced pluripotent cell (hiPSC)-derived astrocytes were exposed to sonicated Aβ42 fibrils and magnetic beads. Live cell imaging and immunocytochemistry confirmed that the ingested Aβ aggregates and beads were transported to the same lysosomal compartments in the perinuclear region, which allowed us to successfully isolate the Aβ deposits from the astrocytes. Using a battery of experimental techniques, including mass spectrometry, western blot, ELISA and electron microscopy we demonstrate that human astrocytes truncate and pack the Aβ aggregates in a way that makes them highly resistant. Moreover, the astrocytes release specifically truncated forms of Aβ via different routes and thereby expose neighboring cells to pathogenic proteins. Taken together, our study establishes a role for astrocytes in mediating Aβ pathology, which could be of relevance for identifying novel treatment targets for AD.

Ort, förlag, år, upplaga, sidor
Elsevier, 2024
Nyckelord
Alzheimer's disease, Amyloid β, Astrocytes, Aggregate
Nationell ämneskategori
Övrig annan medicin och hälsovetenskap Annan biologi Neurovetenskaper
Identifikatorer
urn:nbn:se:uu:diva-525108 (URN)10.1016/j.mcn.2024.103916 (DOI)001175074700001 ()
Forskningsfinansiär
Uppsala universitetVetenskapsrådet, 2021-02563Alzheimerfonden, AF-980656Åhlén-stiftelsen, 223037Hjärnfonden, FO2022-0083Stiftelsen Gamla Tjänarinnor, 2021-01171O.E. och Edla Johanssons vetenskapliga stiftelseOlle Engkvists stiftelse, 215-0399Bertil och Ebon Norlins stiftelse för medicinsk forskningGun och Bertil Stohnes Stiftelse
Tillgänglig från: 2024-03-15 Skapad: 2024-03-15 Senast uppdaterad: 2024-04-09Bibliografiskt granskad
Eltom, K., Mothes, T., Libard, S., Ingelsson, M. & Erlandsson, A. (2024). Astrocytic accumulation of tau fibrils isolated from Alzheimer’s disease brains induces inflammation, cell-to-cell propagation and neuronal impairment. Acta neuropathologica communications, 12(1), Article ID 34.
Öppna denna publikation i ny flik eller fönster >>Astrocytic accumulation of tau fibrils isolated from Alzheimer’s disease brains induces inflammation, cell-to-cell propagation and neuronal impairment
Visa övriga...
2024 (Engelska)Ingår i: Acta neuropathologica communications, E-ISSN 2051-5960, Vol. 12, nr 1, artikel-id 34Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Accumulating evidence highlights the involvement of astrocytes in Alzheimer’s disease (AD) progression. We have previously demonstrated that human iPSC-derived astrocytes ingest and modify synthetic tau fibrils in a way that enhances their seeding efficiency. However, synthetic tau fibrils differ significantly from in vivo formed fibrils. To mimic the situation in the brain, we here analyzed astrocytes’ processing of human brain-derived tau fibrils and its consequences for cellular physiology. Tau fibrils were extracted from both AD and control brains, aiming to examine any potential differences in astrocyte response depending on the origin of fibrils. Our results show that human astrocytes internalize, but fail to degrade, both AD and control tau fibrils. Instead, pathogenic, seeding capable tau proteoforms are spread to surrounding cells via tunneling nanotubes and exocytosis. Notably, accumulation of AD tau fibrils induces a stronger reactive state in astrocytes, compared to control fibrils, evident by the augmented expression of vimentin and GFAP, as well as by an increased secretion of the pro-inflammatory cytokines IL-8 and MCP-1. Moreover, conditioned media from astrocytes with AD tau fibril deposits induce synapse and metabolic impairment in human iPSC-derived neurons. Taken together, our data suggest that the accumulation of brain-derived AD tau fibrils induces a more robust inflammatory and neurotoxic phenotype in human astrocytes, accentuating the nature of tau fibrils as an important contributing factor to inflammation and neurodegeneration in AD. 

Ort, förlag, år, upplaga, sidor
BioMed Central (BMC), 2024
Nyckelord
Alzheimer’s disease; tau; astrocytes; brain-derived fibrils; inflammation; neurons
Nationell ämneskategori
Neurovetenskaper
Identifikatorer
urn:nbn:se:uu:diva-523823 (URN)10.1186/s40478-024-01745-8 (DOI)001176894300001 ()38409026 (PubMedID)
Forskningsfinansiär
Åhlén-stiftelsen, 233044Hjärnfonden, FO2022-0083Stiftelsen Gamla Tjänarinnor, 2021 − 01171O.E. och Edla Johanssons vetenskapliga stiftelseBertil och Ebon Norlins stiftelse för medicinsk forskningGun och Bertil Stohnes StiftelseStiftelsen Forska utan djurförsök, F2022-0004Uppsala universitet
Tillgänglig från: 2024-02-23 Skapad: 2024-02-23 Senast uppdaterad: 2024-04-10Bibliografiskt granskad
Brolin, E., Ingelsson, M., Bergström, J. & Erlandsson, A. (2023). Altered Distribution of SNARE Proteins in Primary Neurons Exposed to Different Alpha-Synuclein Proteoforms. Cellular and molecular neurobiology, 43(6), 3023-3035
Öppna denna publikation i ny flik eller fönster >>Altered Distribution of SNARE Proteins in Primary Neurons Exposed to Different Alpha-Synuclein Proteoforms
2023 (Engelska)Ingår i: Cellular and molecular neurobiology, ISSN 0272-4340, E-ISSN 1573-6830, Vol. 43, nr 6, s. 3023-3035Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Growing evidence indicates that the pathological alpha-synuclein (a-syn) aggregation in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) starts at the synapses. Physiologic a-syn is involved in regulating neurotransmitter release by binding to the SNARE complex protein VAMP-2 on synaptic vesicles. However, in which way the SNARE complex formation is affected by a-syn pathology remains unclear. In this study, primary cortical neurons were exposed to either a-syn monomers or preformed fibrils (PFFs) for different time points and the effect on SNARE protein distribution was analyzed with a novel proximity ligation assay (PLA). Short-term exposure to monomers or PFFs for 24 h increased the co-localization of VAMP-2 and syntaxin-1, but reduced the co-localization of SNAP-25 and syntaxin-1, indicating a direct effect of the added a-syn on SNARE protein distribution. Long-term exposure to a-syn PFFs for 7 d reduced VAMP-2 and SNAP-25 co-localization, although there was only a modest induction of ser129 phosphorylated (pS129) a-syn. Similarly, exposure to extracellular vesicles collected from astrocytes treated with a-syn PFFs for 7 d influenced VAMP-2 and SNAP-25 co-localization despite only low levels of pS129 a-syn being formed. Taken together, our results demonstrate that different a-syn proteoforms have the potential to alter the distribution of SNARE proteins at the synapse.

Ort, förlag, år, upplaga, sidor
Springer, 2023
Nyckelord
Alpha-synuclein, SNARE, Proximity ligation assay, Synapse, Primary neurons
Nationell ämneskategori
Neurovetenskaper
Identifikatorer
urn:nbn:se:uu:diva-511391 (URN)10.1007/s10571-023-01355-3 (DOI)000981547700001 ()37130995 (PubMedID)
Forskningsfinansiär
Vetenskapsrådet, 202102563Parkinsonfonden, 1405/2022Hjärnfonden, FO2022-0062
Tillgänglig från: 2023-09-22 Skapad: 2023-09-22 Senast uppdaterad: 2023-09-22Bibliografiskt granskad
Zyśk, M., Beretta, C., Naia, L., Dakhel, A., Pavenius, L., Brismar, H., . . . Erlandsson, A. (2023). Amyloid-beta accumulation in human astrocytes induces mitochondrial disruption and changed energy metabolism. Journal of Neuroinflammation, 20, Article ID 43.
Öppna denna publikation i ny flik eller fönster >>Amyloid-beta accumulation in human astrocytes induces mitochondrial disruption and changed energy metabolism
Visa övriga...
2023 (Engelska)Ingår i: Journal of Neuroinflammation, E-ISSN 1742-2094, Vol. 20, artikel-id 43Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: Astrocytes play a central role in maintaining brain energy metabolism, but are also tightly connected to the pathogenesis of Alzheimer's disease (AD). Our previous studies demonstrate that inflammatory astrocytes accumulate large amounts of aggregated amyloid-beta (A beta). However, in which way these A beta deposits influence their energy production remain unclear.

Methods: The aim of the present study was to investigate how A beta pathology in astrocytes affects their mitochondria functionality and overall energy metabolism. For this purpose, human induced pluripotent cell (hiPSC)-derived astrocytes were exposed to sonicated A beta(42) fibrils for 7 days and analyzed over time using different experimental approaches.

Results: Our results show that to maintain stable energy production, the astrocytes initially increased their mitochondrial fusion, but eventually the A beta-mediated stress led to abnormal mitochondrial swelling and excessive fission. Moreover, we detected increased levels of phosphorylated DRP-1 in the A beta-exposed astrocytes, which co-localized with lipid droplets. Analysis of ATP levels, when blocking certain stages of the energy pathways, indicated a metabolic shift to peroxisomal-based fatty acid beta-oxidation and glycolysis.

Conclusions: Taken together, our data conclude that A beta pathology profoundly affects human astrocytes and changes their entire energy metabolism, which could result in disturbed brain homeostasis and aggravated disease progression.

Ort, förlag, år, upplaga, sidor
BioMed Central (BMC), 2023
Nyckelord
Alzheimer's disease, Glia, Lipid droplets, Mitochondria dynamics, DRP-1
Nationell ämneskategori
Neurologi Cellbiologi
Identifikatorer
urn:nbn:se:uu:diva-498551 (URN)10.1186/s12974-023-02722-z (DOI)000935963900001 ()36803838 (PubMedID)
Forskningsfinansiär
Vetenskapsrådet, 2021-02563Uppsala universitetAlzheimerfonden, AF-968209Åhlén-stiftelsen, 213021Hjärnfonden, FO2021-0174Stiftelsen Gamla Tjänarinnor, 2021-01171O.E. och Edla Johanssons vetenskapliga stiftelseOlle Engkvists stiftelse, 215-0399Bertil och Ebon Norlins stiftelse för medicinsk forskningGun och Bertil Stohnes Stiftelse
Anmärkning

De två första författarna delar förstaförfattarskapet.

Tillgänglig från: 2023-03-17 Skapad: 2023-03-17 Senast uppdaterad: 2024-07-04Bibliografiskt granskad
Mothes, T., Portal, B., Konstantinidis, E., Eltom, K., Libard, S., Streubel-Gallasch, L., . . . Erlandsson, A. (2023). Astrocytic uptake of neuronal corpses promotes cell-to-cell spreading of tau pathology. Acta neuropathologica communications, 11(1), Article ID 97.
Öppna denna publikation i ny flik eller fönster >>Astrocytic uptake of neuronal corpses promotes cell-to-cell spreading of tau pathology
Visa övriga...
2023 (Engelska)Ingår i: Acta neuropathologica communications, E-ISSN 2051-5960, Vol. 11, nr 1, artikel-id 97Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Tau deposits in astrocytes are frequently found in Alzheimer's disease (AD) and other tauopathies. Since astrocytes do not express tau, the inclusions have been suggested to be of neuronal origin. However, the mechanisms behind their appearance and their relevance for disease progression remain unknown. Here we demonstrate, using a battery of experimental techniques that human astrocytes serve as an intermediator, promoting cell-to-cell spreading of pathological tau. Human astrocytes engulf and process, but fail to fully degrade dead neurons with tau pathology, as well as synthetic tau fibrils and tau aggregates isolated from AD brain tissue. Instead, the pathogenic tau is spread to nearby cells via secretion and tunneling nanotube mediated transfer. By performing co-culture experiments we could show that tau-containing astrocytes induce tau pathology in healthy human neurons directly. Furthermore, our results from a FRET based seeding assay, demonstrated that the tau proteoforms secreted by astrocytes have an exceptional seeding capacity, compared to the original tau species engulfed by the cells. Taken together, our study establishes a central role for astrocytes in mediating tau pathology, which could be of relevance for identifying novel treatment targets for AD and other tauopathies.

Ort, förlag, år, upplaga, sidor
BioMed Central (BMC), 2023
Nyckelord
Alzheimer's disease, Tau, Astrocytes, Neurons, Cell-to-cell spreading, hiPSCs
Nationell ämneskategori
Neurovetenskaper
Identifikatorer
urn:nbn:se:uu:diva-506917 (URN)10.1186/s40478-023-01589-8 (DOI)001007228100001 ()37330529 (PubMedID)
Forskningsfinansiär
Uppsala universitetVetenskapsrådet, 2021–02563Alzheimerfonden, AF‑968209Åhlén-stiftelsen, 213021Hjärnfonden, FO2021‑0174Stiftelsen Gamla Tjänarinnor, 2021–01171O.E. och Edla Johanssons vetenskapliga stiftelseOlle Engkvists stiftelse, 215–0399Bertil och Ebon Norlins stiftelse för medicinsk forskningGun och Bertil Stohnes Stiftelse
Tillgänglig från: 2023-06-30 Skapad: 2023-06-30 Senast uppdaterad: 2024-02-23Bibliografiskt granskad
Konstantinidis, E., Portal, B., Mothes, T. J., Beretta, C., Lindskog, M. & Erlandsson, A. (2023). Intracellular deposits of amyloid-beta influence the ability of human iPSC-derived astrocytes to support neuronal function. Journal of Neuroinflammation, 20(1), Article ID 3.
Öppna denna publikation i ny flik eller fönster >>Intracellular deposits of amyloid-beta influence the ability of human iPSC-derived astrocytes to support neuronal function
Visa övriga...
2023 (Engelska)Ingår i: Journal of Neuroinflammation, E-ISSN 1742-2094, Vol. 20, nr 1, artikel-id 3Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background

Astrocytes are crucial for maintaining brain homeostasis and synaptic function, but are also tightly connected to the pathogenesis of Alzheimer’s disease (AD). Our previous data demonstrate that astrocytes ingest large amounts of aggregated amyloid-beta (Aβ), but then store, rather than degrade the ingested material, which leads to severe cellular stress. However, the involvement of pathological astrocytes in AD-related synaptic dysfunction remains to be elucidated.

Methods

In this study, we aimed to investigate how intracellular deposits of Aβ in astrocytes affect their interplay with neurons, focusing on neuronal function and viability. For this purpose, human induced pluripotent stem cell (hiPSC)-derived astrocytes were exposed to sonicated Αβ42 fibrils. The direct and indirect effects of the Αβ-exposed astrocytes on hiPSC-derived neurons were analyzed by performing astrocyte–neuron co-cultures as well as additions of conditioned media or extracellular vesicles to pure neuronal cultures.

Results

Electrophysiological recordings revealed significantly decreased frequency of excitatory post-synaptic currents in neurons co-cultured with Aβ-exposed astrocytes, while conditioned media from Aβ-exposed astrocytes had the opposite effect and resulted in hyperactivation of the synapses. Clearly, factors secreted from control, but not from Aβ-exposed astrocytes, benefited the wellbeing of neuronal cultures. Moreover, reactive astrocytes with Aβ deposits led to an elevated clearance of dead cells in the co-cultures.

Conclusions

Taken together, our results demonstrate that inclusions of aggregated Aβ affect the reactive state of the astrocytes, as well as their ability to support neuronal function.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2023
Nationell ämneskategori
Neurovetenskaper
Identifikatorer
urn:nbn:se:uu:diva-492283 (URN)10.1186/s12974-022-02687-5 (DOI)000906707700001 ()36593462 (PubMedID)
Forskningsfinansiär
Vetenskapsrådet, 2021-02563Alzheimerfonden, AF-968209Åhlén-stiftelsen, 213021Hjärnfonden, FO2021-0174O.E. och Edla Johanssons vetenskapliga stiftelse, 2021Olle Engkvists stiftelse, 215-0399Gun och Bertil Stohnes Stiftelse, 2021Uppsala universitetBertil och Ebon Norlins stiftelse för medicinsk forskning, 2021
Tillgänglig från: 2023-01-03 Skapad: 2023-01-03 Senast uppdaterad: 2024-07-04Bibliografiskt granskad
Konstantinidis, E., Dakhel, A., Beretta, C. & Erlandsson, A. (2023). Long-term effects of amyloid-beta deposits in human iPSC-derived astrocytes. Molecular and Cellular Neuroscience, 125, Article ID 103839.
Öppna denna publikation i ny flik eller fönster >>Long-term effects of amyloid-beta deposits in human iPSC-derived astrocytes
2023 (Engelska)Ingår i: Molecular and Cellular Neuroscience, ISSN 1044-7431, E-ISSN 1095-9327, Vol. 125, artikel-id 103839Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Growing evidence indicates that astrocytes are tightly connected to Alzheimer's disease (AD) pathogenesis. However, the way in which astrocytes participate in AD initiation and progression remains to be clarified. Our previous data show that astrocytes engulf large amounts of aggregated amyloid-beta (A beta) but are unable to successfully degrade the material. In this study, we aimed to evaluate how intracellular A beta-accumulation affects the astrocytes over time. For this purpose, human induced pluripotent cell (hiPSC)-derived astrocytes were exposed to sonicated A beta-fibrils and then cultured further for one week or ten weeks in A beta-free medium. Cells from both time points were analyzed for lysosomal proteins and astrocyte reactivity markers and the media were screened for inflammatory cytokines. In addition, the overall health of cytoplasmic organelles was investigated by immunocytochemistry and electron microscopy. Our data demonstrate that long-term astrocytes retained frequent A beta-inclusions that were enclosed within LAMP1-positive organelles and sustained markers associated with reactivity. Furthermore, A beta-accumulation resulted in endoplasmic reticulum and mitochondrial swelling, increased secretion of the cytokine CCL2/MCP-1 and formation of pathological lipid structures. Taken together, our results provide valuable information of how intracellular A beta-deposits affect astrocytes, and thereby contribute to the understanding of the role of astrocytes in AD progression.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
Alzheimer?s disease, Amyloid beta, Astrocytes, Phagocytosis, Accumulation, Lysosomes, Neuroinflammation, Cytokines, Reactivity, Human iPSCs
Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
urn:nbn:se:uu:diva-500295 (URN)10.1016/j.mcn.2023.103839 (DOI)000957221400001 ()36907531 (PubMedID)
Forskningsfinansiär
Vetenskapsrådet, 2021-02563
Tillgänglig från: 2023-04-25 Skapad: 2023-04-25 Senast uppdaterad: 2023-04-25Bibliografiskt granskad
Konstantinidis, E., Molisak, A., Perrin, F., Streubel-Gallasch, L., Fayad, S., Kim, D. Y., . . . Ingelsson, M. (2022). CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer's disease PSEN1 M146L mutation. Molecular Therapy Nucleic Acids, 28, 450-461
Öppna denna publikation i ny flik eller fönster >>CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer's disease PSEN1 M146L mutation
Visa övriga...
2022 (Engelska)Ingår i: Molecular Therapy Nucleic Acids, E-ISSN 2162-2531, Vol. 28, s. 450-461Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Presenilin 1 (PS1) is a central component of γ-secretase, an enzymatic complex involved in the generation of the amyloid-β (Aβ) peptide that deposits as plaques in the Alzheimer’s disease (AD) brain. The M146L mutation in the PS1 gene (PSEN1) leads to an autosomal dominant form of early-onset AD by promoting a relative increase in the generation of the more aggregation-prone Aβ42. This change is evident not only in the brain but also in peripheral cells of mutation carriers. In this study we used the CRISPR-Cas9 system from Streptococcus pyogenes to selectively disrupt the PSEN1M146L allele in human fibroblasts. A disruption of more than 50% of mutant alleles was observed in all CRISPR-Cas9-treated samples, resulting in reduced extracellular Aβ42/40 ratios. Fluorescence resonance energy transfer-based conformation and western blot analyses indicated that CRISPR-Cas9 treatment also affects the overall PS1 conformation and reduces PS1 levels. Moreover, our guide RNA did not lead to any detectable editing at the highest-ranking candidate off-target sites identified by ONE-seq and CIRCLE-seq. Overall, our data support the effectiveness of CRISPR-Cas9 in selectively targeting the PSEN1M146L allele and counteracting the AD-associated phenotype. We believe that this system could be developed into a therapeutic strategy for patients with this and other dominant mutations leading to early-onset AD.

Nyckelord
MT, RNA/DNA editing, Alzheimer’s disease, presenilin 1, amyloid-β, fibroblasts, CRISPR-Cas9, gene editing, protein conformation, off-target effects
Nationell ämneskategori
Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci) Medicinsk genetik Neurologi
Identifikatorer
urn:nbn:se:uu:diva-475572 (URN)10.1016/j.omtn.2022.03.022 (DOI)000795090300005 ()35505961 (PubMedID)
Forskningsfinansiär
Vetenskapsrådet, 2018-03075Vetenskapsrådet, 2021-02793AlzheimerfondenHjärnfondenÅhlén-stiftelsenStiftelsen Gamla TjänarinnorGun och Bertil Stohnes StiftelseNIH (National Institutes of Health), R35 GM118158Deutsche Forschungsgemeinschaft (DFG), 417577129NIH (National Institutes of Health), AG044486NIH (National Institutes of Health), AG015379
Anmärkning

Title in Web of Science: CRISPR-Cas9 treatment partially restores amyloid-beta 42/40 in human fibroblasts with the Alzheimer's disease PSEN1 M146L mutation

Tillgänglig från: 2022-06-03 Skapad: 2022-06-03 Senast uppdaterad: 2023-11-03Bibliografiskt granskad
Roshanbin, S., Aniszewska, A., Gumucio, A., Masliah, E., Erlandsson, A., Bergström, J., . . . Ekmark-Lewén, S. (2021). Age-related increase of alpha-synuclein oligomers is associated with motor disturbances in L61 transgenic mice. Neurobiology of Aging, 101, 207-220
Öppna denna publikation i ny flik eller fönster >>Age-related increase of alpha-synuclein oligomers is associated with motor disturbances in L61 transgenic mice
Visa övriga...
2021 (Engelska)Ingår i: Neurobiology of Aging, ISSN 0197-4580, E-ISSN 1558-1497, Vol. 101, s. 207-220Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The pathogenesis of Parkinson's disease involves fibrillization and deposition of alpha-synuclein (alpha-syn) into Lewy bodies. Accumulating evidence suggests that alpha-syn oligomers are particularly neurotoxic. Transgenic (tg) mice overexpressing wild-type human alpha-syn under the Thy-1 promoter (L61) reproduce many Parkinson's disease features, but the pathogenetic relevance of alpha-syn oligomers in this mouse model has not been studied in detail. Here, we report an age progressive increase of alpha-syn oligomers in the brain of L61 tg mice. Interestingly, more profound motor symptoms were observed in animals with higher levels of membrane-bound oligomers. As this tg model is X-linked, we also performed subset analyses, indicating that both sexes display a similar age-related increase in alpha-syn oligomers. However, compared with females, males featured increased brain levels of oligomers from an earlier age, in addition to a more severe behavioral phenotype with hyperactivity and thigmotaxis in the open field test. Taken together, our data indicate that alpha-syn oligomers are central to the development of brain pathology and behavioral deficits in the L61 tg alpha-syn mouse model.

Ort, förlag, år, upplaga, sidor
ElsevierElsevier BV, 2021
Nyckelord
Parkinson's disease, Dementia with Lewy bodies, Alpha-synuclein, Transgenic mice, Sex differences, Aggregation, Oligomers, Thy-1, Age progression
Nationell ämneskategori
Neurologi Geriatrik
Identifikatorer
urn:nbn:se:uu:diva-446199 (URN)10.1016/j.neurobiolaging.2021.01.010 (DOI)000649652300021 ()33639338 (PubMedID)
Forskningsfinansiär
Vetenskapsrådet, MI:2018-03075
Anmärkning

Joint first authors: Sahar Roshanbin and Agata Aniszewska

Tillgänglig från: 2021-06-22 Skapad: 2021-06-22 Senast uppdaterad: 2024-01-15Bibliografiskt granskad
Projekt
Astrocyters roll för utveckling och spridning av Alzheimers sjukdom [2015-02671_VR]; Uppsala universitetAstrocyters roll för spridning av patologin vid Alzheimers sjukdom [2018-02659_VR]; Uppsala universitetAstrocyters roll för progressionen av Alzheimers sjukdom [2021-02563_VR]; Uppsala universitet; Publikationer
Beretta, C., Svensson, E., Dakhel, A., Zyśk, M., Hanrieder, J., Sehlin, D., . . . Erlandsson, A. (2024). Amyloid-β deposits in human astrocytes contain truncated and highly resistant proteoforms. Molecular and Cellular Neuroscience, 128, Article ID 103916. Eltom, K., Mothes, T., Libard, S., Ingelsson, M. & Erlandsson, A. (2024). Astrocytic accumulation of tau fibrils isolated from Alzheimer’s disease brains induces inflammation, cell-to-cell propagation and neuronal impairment. Acta neuropathologica communications, 12(1), Article ID 34.
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-7292-1608

Sök vidare i DiVA

Visa alla publikationer