uu.seUppsala universitets publikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
BETA
Hurst, Jerome
Publikationer (2 of 2) Visa alla publikationer
Iacovita, C., Hurst, J., Manfredi, G., Hervieux, P. A., Donnio, B., Gallani, J. L. & Rastei, M. V. (2020). Magnetic force fields of isolated small nanoparticle clusters. Nanoscale, 12(3), 1842-1851
Öppna denna publikation i ny flik eller fönster >>Magnetic force fields of isolated small nanoparticle clusters
Visa övriga...
2020 (Engelska)Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 12, nr 3, s. 1842-1851Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The usage of magnetic nanoparticles (NPs) in applications necessitates a precise mastering of their properties at the single nanoparticle level. There has been a lot of progress in the understanding of the magnetic properties of NPs, but incomparably less when interparticle interactions govern the overall magnetic response. Here, we present a quantitative investigation of magnetic fields generated by small clusters of NPs assembled on a dielectric non-magnetic surface. Structures ranging from individual NPs to fifth-fold particulate clusters are investigated in their magnetization saturation state by magnetic force microscopy and numerical calculations. It is found that the magnetic stray field does not increase proportionally with the number of NPs in the cluster. Both measured and calculated magnetic force fields underline the great importance of the exact spatial arrangement of NPs, shedding light on the magnetic force field distribution of particulate clusters, which is relevant for the quantitative evaluation of their magnetization and perceptibly for many applications.

Ort, förlag, år, upplaga, sidor
ROYAL SOC CHEMISTRY, 2020
Nationell ämneskategori
Nanoteknik
Identifikatorer
urn:nbn:se:uu:diva-406470 (URN)10.1039/c9nr08634j (DOI)000509545700056 ()31899471 (PubMedID)
Tillgänglig från: 2020-03-09 Skapad: 2020-03-09 Senast uppdaterad: 2020-03-09Bibliografiskt granskad
Hurst, J., Oppeneer, P. M., Manfredi, G. & Hervieux, P.-A. (2018). Magnetic moment generation in small gold nanoparticles via the plasmonic inverse Faraday effect. Physical Review B, 98(13), Article ID 134439.
Öppna denna publikation i ny flik eller fönster >>Magnetic moment generation in small gold nanoparticles via the plasmonic inverse Faraday effect
2018 (Engelska)Ingår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 98, nr 13, artikel-id 134439Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We theoretically investigate the creation of a magnetic moment in gold nanoparticles by circularly polarized laser light. To this end, we describe the collective electron dynamics in gold nanoparticles using a semiclassical approach based on a quantum hydrodynamic model that incorporates the principal quantum many-body and nonlocal effects, such as the electron spill-out, the Hartree potential, and the exchange and correlation effects. We use a variational approach to investigate the breathing and the dipole dynamics induced by an external electric field. We show that gold nanoparticles can build up a static magnetic moment through the interaction with a circularly polarized laser light at the localized surface plasmon (LSP) resonance. We analyze that the responsible physical mechanism is a plasmonic, orbital inverse Faraday effect, which can be understood from the time-averaged electron current that contains currents rotating on the nanoparticle's surface. The computed laser-induced magnetic moments are sizable, of about 0.35 p. B /atom for a laser intensity of 45 x 10(10) W/cm(2) at LSP resonance.

Ort, förlag, år, upplaga, sidor
AMER PHYSICAL SOC, 2018
Nationell ämneskategori
Den kondenserade materiens fysik
Identifikatorer
urn:nbn:se:uu:diva-369905 (URN)10.1103/PhysRevB.98.134439 (DOI)000448046900002 ()
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, 2015.0060VetenskapsrådetSwedish National Infrastructure for Computing (SNIC)EU, Horisont 2020, 737709
Tillgänglig från: 2018-12-18 Skapad: 2018-12-18 Senast uppdaterad: 2018-12-18Bibliografiskt granskad
Organisationer

Sök vidare i DiVA

Visa alla publikationer