uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Nestor, Marika
Alternative names
Publications (10 of 49) Show all publications
Al-Ramadan, A., Mortensen, A., Carlsson, J. & Nestor, M. V. (2018). Analysis of radiation effects in two irradiated tumor spheroid models. Oncology Letters, 15(3), 3008-3016
Open this publication in new window or tab >>Analysis of radiation effects in two irradiated tumor spheroid models
2018 (English)In: Oncology Letters, ISSN 1792-1074, E-ISSN 1792-1082, Vol. 15, no 3, p. 3008-3016Article in journal (Refereed) Published
Abstract [en]

Multicellular spheroids have proven suitable as three-dimensional in vivo-like models of non-vascularized micrometastases. Unlike monolayer-based models, spheroids mirror the cellular milieu and the pathophysiological gradients inside tumor nodules. However, there is limited knowledge of the radiation effects at the molecular level in spheroids of human origin. The present study is a presentation of selected cell biological processes that may easily be analyzed with methods available at routine pathology laboratories. Using gamma irradiated pancreatic neuroendocrine BON1 and colonic adenocarcinoma HCT116 spheroids as model systems, the present study assessed the radiobiological response in these models. Spheroid growth after irradiation was followed over time and molecular responses were subsequently assessed with immunohistochemistry (IHC) staining for descriptive analyses and semi-automatic grading of apoptosis, G(2)-phase and senescence in thin sections of the spheroids. Growth studies demonstrated the BON1 spheroids were slower growing and less sensitive to radiation compared with the HCT116 spheroids. IHC staining for G2-phase was primarily observed in the outer viable P-cell layers of the spheroids, with the 6 Gy irradiated HCT116 spheroids demonstrating a very clear increase in staining intensity compared with unirradiated spheroids. Apoptosis staining results indicated increased apoptosis with increasing radiation doses. No clear association between senescence and radiation exposure in the spheroids were observed. The present results demonstrate the feasibility of the use of multicellular spheroids of human origin in combination with IHC analyses to unravel radiobiological responses at a molecular level. The present findings inspire further investigations, including other relevant IHC-detectable molecular processes in time-and radiation dose-dependent settings.

Keywords
three-dimensional cell culture, spheroids, irradiation, IHC, pancreatic neuroendocrine cancer, colonic adenocarcinoma
National Category
Cancer and Oncology
Identifiers
urn:nbn:se:uu:diva-354258 (URN)10.3892/ol.2017.7716 (DOI)000430818300039 ()29435031 (PubMedID)
Available from: 2018-06-28 Created: 2018-06-28 Last updated: 2018-06-28Bibliographically approved
Kennedy, P. J., Sousa, F., Ferreira, D., Pereira, C., Nestor, M., Oliveira, C., . . . Sarmento, B. (2018). Fab-conjugated PLGA nanoparticles effectively target cancer cells expressing human CD44v6. Acta Biomaterialia, 81, 208-218
Open this publication in new window or tab >>Fab-conjugated PLGA nanoparticles effectively target cancer cells expressing human CD44v6
Show others...
2018 (English)In: Acta Biomaterialia, ISSN 1742-7061, E-ISSN 1878-7568, Vol. 81, p. 208-218Article in journal (Refereed) Published
Abstract [en]

Targeting of CD44 isoforms containing exon v6 (CD44v6) represents a viable strategy for the therapy and/or early diagnosis of metastatic cancers of the epithelium (e.g. gastric and colorectal cancer). We developed and characterized poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) modified with polyethylene glycol (PEG) and engrafted, by site-directed conjugation, with an engineered human Fab that specifically target human CD44v6 (v6 Fab-PLGA NPs). The v6 Fab-PLGA NPs displayed spherical morphology around 300 nm and were negatively charged. They strongly bound to a CD44v6-derived peptide and, more importantly, to cells that endogenously and exogenously express CD44v6, but not to non expressing cells and cells expressing the standard isoform of CD44. The v6 Fab-PLGA NPs also recognized CD44v6 in tumor sections from cells grown subcutaneously within mice. The NPs had nominal cytotoxicity at 50 mu g/mL and withstood simulated intestinal fluid exposure. Interestingly, v6 Fab-PLGA NPs cryopreserved in 10% trehalose and stored maintained specific cell binding. In conclusion, we envision NPs targeting CD44v6 as potential in vivo diagnostic agents and/or as anti-cancer agents in patients previously stratified with CD44v6(+) carcinomas. Statement of Significance The v6 Fab-PLGA NPs displayed many favorable qualities as a potential CD44v6-targeted drug and/or diagnostic delivery agent. The NPs were designed for optimal ligand orientation and for immediate administration into humans. v6 Fab-PLGA NPs strongly bound to cells that endogenously and exogenously express CD44v6, but not to non-expressing cells and cells expressing the standard isoform of CD44. Binding ability was retained after freeze-drying and long-term storage, providing evidences on the stability of Fab-functionalized NPs. These NPs can potentially be used as an in vivo diagnostic from parenteral or oral/rectal administration.

Keywords
Human CD44v6, Targeted drug delivery, Antibody-conjugated nanoparticles, PLGA nanoparticles, Theranostics
National Category
Cancer and Oncology
Identifiers
urn:nbn:se:uu:diva-372718 (URN)10.1016/j.actbio.2018.09.043 (DOI)000451937500016 ()30267881 (PubMedID)
Available from: 2019-01-08 Created: 2019-01-08 Last updated: 2019-01-08Bibliographically approved
Spiegelberg, D., Mortensen, A. C., Lundsten, S., Brown, C. J., Lane, D. P. & Nestor, M. (2018). First in vivo study of the MDM2/MDMX-p53 antagonist PM2 as potentiator of external radiotherapy in wt p53 cancer. Paper presented at 31st Annual Congress of the European-Association-of-Nuclear-Medicine (EANM), OCT 13-17, 2018, Dusseldorf, GERMANY. European Journal of Nuclear Medicine and Molecular Imaging, 45(Supplement: 1), S30-S30
Open this publication in new window or tab >>First in vivo study of the MDM2/MDMX-p53 antagonist PM2 as potentiator of external radiotherapy in wt p53 cancer
Show others...
2018 (English)In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, no Supplement: 1, p. S30-S30Article in journal, Meeting abstract (Other academic) Published
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:uu:diva-373337 (URN)10.1007/s00259-018-4148-3 (DOI)000449266200037 ()
Conference
31st Annual Congress of the European-Association-of-Nuclear-Medicine (EANM), OCT 13-17, 2018, Dusseldorf, GERMANY
Note

Meeting Abstract OP-074

Available from: 2019-01-14 Created: 2019-01-14 Last updated: 2019-01-14Bibliographically approved
Kennedy, P. J., Perreira, I., Ferreira, D., Nestor, M., Oliveira, C., Granja, P. L. & Sarmento, B. (2018). Impact of surfactants on the target recognition of Fab-conjugated PLGA nanoparticles. European journal of pharmaceutics and biopharmaceutics, 127, 366-370
Open this publication in new window or tab >>Impact of surfactants on the target recognition of Fab-conjugated PLGA nanoparticles
Show others...
2018 (English)In: European journal of pharmaceutics and biopharmaceutics, ISSN 0939-6411, E-ISSN 1873-3441, Vol. 127, p. 366-370Article in journal (Refereed) Published
Abstract [en]

Targeted drug delivery with nanoparticles (NPs) requires proper surface ligand presentation and availability. Surfactants are often used as stabilizers in the production of targeted NPs. Here, we evaluated the impact of surfactants on ligand functionalization and downstream molecular recognition. Our model system consisted of fluorescent poly(lactic-co-glycolic acid) (PLGA) NPs that were nanoprecipitated in one of a small panel of commonly-used surfactants followed by equivalent washes and conjugation of an engineered Fab antibody fragment. Size, polydispersity index and zeta potential were determined by dynamic light scattering and laser Doppler anemometry, and Fab presence on the NPs was assessed by enzyme-linked immunosorbent assay. Most importantly, Fab-decorated NP binding to the cell surface receptor was monitored by fluorescence-activated cell sorting. 2% polyvinyl alcohol, 1% sodium cholate, 0.5% Pluronic F127 (F127) and 2% Tween-80 were initially tested. Of the four surfactants tested, PLGA NPs in 0.5% F127 and 2% Tween-80 had the highest cell binding. These two surfactants were then retested in two different concentrations, 0.5% and 2%. The Fab-decorated PLGA NPs in 2% F127 had the highest cell binding. This study highlights the impact of common surfactants and their concentrations on the downstream targeting of ligand-decorated NPs. Similar principles should be applied in the development of future targeted nanosystems where surfactants are employed.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
Targeted nanoparticles, PLGA nanoparticles, Surfactant, Fab antibody fragment
National Category
Physical Chemistry
Identifiers
urn:nbn:se:uu:diva-357382 (URN)10.1016/j.ejpb.2018.03.005 (DOI)000433650400039 ()29549023 (PubMedID)
Funder
EU, Horizon 2020, NORTE-01-0145-FEDER-000012EU, Horizon 2020
Available from: 2018-08-24 Created: 2018-08-24 Last updated: 2018-08-31Bibliographically approved
Elmsjö, A., Haglöf, J., Engskog, M. K., Erngren, I., Nestor, M., Arvidsson, T. & Pettersson, C. (2018). Method selectivity evaluation using the co-feature ratio in LC/MS metabolomics: Comparison of HILIC stationary phase performance for the analysis of plasma, urine and cell extracts.. Journal of Chromatography A, 1568, 49-56
Open this publication in new window or tab >>Method selectivity evaluation using the co-feature ratio in LC/MS metabolomics: Comparison of HILIC stationary phase performance for the analysis of plasma, urine and cell extracts.
Show others...
2018 (English)In: Journal of Chromatography A, ISSN 0021-9673, E-ISSN 1873-3778, Vol. 1568, p. 49-56Article in journal (Refereed) Published
Abstract [en]

Evaluation of the chromatographic separation in metabolomics studies has primarily been done using preselected sets of standards or by counting the number of detected features. An alternative approach is to calculate each feature's co-feature ratio, which is a combined selectivity measurement for the separation (i.e. extent of co-elution) and the MS-signal (i.e. adduct formation and in-source fragmentation). The aim of this study was to demonstrate how the selectivity of different HILIC stationary phases can be evaluated using the co-feature ratio approach. The study was based on three sample types; plasma, urine and cell extracts. Samples were analyzed on an UHPLC-ESI-Q-ToF system using an amide, a bare silica and a sulfobetaine stationary phase. For each feature, a co-feature ratio was calculated and used for multivariate analysis of the selectivity differences between the three stationary phases. Unsupervised PCA models indicated that the co-feature ratios were highly dependent on type of stationary phase. For several metabolites a 15-30 fold difference in the co-feature ratio were observed between the stationary phases. Observed selectivity differences related primarily to the retention patterns of unwanted matrix components such as inorganic salts (detected as salt clusters), glycerophospholipids, and polyethylene glycols. These matrix components affected the signal intensity of co-eluting metabolites by interfering with the ionization efficiency and/or their adduct formation. Furthermore, the retention pattern of these matrix components had huge influence on the number of detected features. The co-feature ratio approach has successfully been applied for evaluation of the selectivity performance of three HILIC stationary phases. The co-feature ratio could therefore be used in metabolomics for developing selective methods fit for their purpose, thereby avoiding generic analytical approaches, which are often biased, as type and amount of interfering matrix components are metabolome dependent.

Keywords
Co-feature ratio (CFR), Hydrophilic interaction chromatography, Mass spectrometry, Metabolomics, Salt clusters
National Category
Analytical Chemistry Pharmaceutical Sciences
Identifiers
urn:nbn:se:uu:diva-364208 (URN)10.1016/j.chroma.2018.05.007 (DOI)000443669600006 ()29789170 (PubMedID)
Available from: 2018-10-24 Created: 2018-10-24 Last updated: 2018-10-29Bibliographically approved
Lundsten, S., Spiegelberg, D., Raval, N., Stenerlöw, B. & Nestor, M. (2018). Potentiating Lu-177-DOTATATE Therapy By HSP90 Inhibition - First In Vivo Study. Paper presented at 31st Annual Congress of the European-Association-of-Nuclear-Medicine (EANM), OCT 13-17, 2018, Dusseldorf, GERMANY. European Journal of Nuclear Medicine and Molecular Imaging, 45, S12-S13
Open this publication in new window or tab >>Potentiating Lu-177-DOTATATE Therapy By HSP90 Inhibition - First In Vivo Study
Show others...
2018 (English)In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, p. S12-S13Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
Springer, 2018
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:uu:diva-372968 (URN)000449266200003 ()
Conference
31st Annual Congress of the European-Association-of-Nuclear-Medicine (EANM), OCT 13-17, 2018, Dusseldorf, GERMANY
Available from: 2019-01-11 Created: 2019-01-11 Last updated: 2019-01-11Bibliographically approved
Mortensen, A., Spiegelberg, D., Haylock, A.-K., Lundqvist, H. & Nestor, M. (2018). Preclinical evaluation of a novel engineered recombinant human anti-CD44v6 antibody for potential use in radio-immunotherapy. International Journal of Oncology, 52(6), 1875-1885
Open this publication in new window or tab >>Preclinical evaluation of a novel engineered recombinant human anti-CD44v6 antibody for potential use in radio-immunotherapy
Show others...
2018 (English)In: International Journal of Oncology, ISSN 1019-6439, Vol. 52, no 6, p. 1875-1885Article in journal (Refereed) Published
Abstract [en]

CD44v6 is overexpressed in a variety of cancers, rendering it a promising target for radio-immunotherapy (RIT). In this study, we have characterized a novel engineered recombinant monoclonal anti-CD44v6 antibody, AbN44v6, and assessed its potential for use in RIT using either Lu-177 or I-131 as therapeutic radionuclides. In vitro affinity and specificity assays characterized the binding of the antibody labeled with Lu-177, I-125 or I-131. The therapeutic effects of Lu-177-AbN44v6 and I-131-AbN44v6 were investigated using two in vitro 3D tumor models with different CD44v6 expression. Finally, the normal tissue biodistribution and dosimetry for Lu-177-AbN44v6 and I-125-AbN44v6/I-131-AbN44v6 were assessed in vivo using a mouse model. All AbN44v6 radioconjugates demonstrated CD44v6-specific binding in vitro. In the in vitro 3D tumor models, dose-dependent therapeutic effects were observed with both Lu-177-AbN44v6 and I-131-AbN44v6, with a greater significant therapeutic effect observed on the cells with a higher CD44v6 expression. Biodistribution experiments demonstrated a greater uptake of Lu-177-AbN44v6 in the liver, spleen and bone, compared to I-125-AbN44v6, whereas I-125-AbN44v6 demonstrated a longer circulation time. In dosimetric calculations, the critical organs for Lu-177-AbN44v6 were the liver and spleen, whereas the kidneys and red marrow were considered the critical organs for I-131-AbN44v6. The effective dose was in the order of 0.1 mSv/MBq for both labels. In conclusion, AbN44v6 bound specifically and with high affinity to CD44v6. Furthermore, in vitro RIT demonstrated growth inhibition in a CD44v6-specific activity-dependent manner for both radioconjugates, demonstrating that both Lu-177-AbN44v6 and I-131-AbN44v6 may be promising RIT candidates. Furthermore, biodistribution and dosimetric analysis supported the applicability of both conjugates for RIT. The CD44v6-specific therapeutic effects observed with radiolabeled AbN44v6 in the 3D tumor models in vitro, combined with the beneficial dosimetry in vivo, render AbN44v6 a potential candidate for RIT.

Place, publisher, year, edition, pages
SPANDIDOS PUBL LTD, 2018
Keywords
radio-immunotherapy, 3D tumor models, dosimetry, biodistribution, Lu-177, I-131
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:uu:diva-356443 (URN)10.3892/ijo.2018.4364 (DOI)000432241200010 ()29658563 (PubMedID)
Funder
Swedish Research CouncilSwedish Cancer Society
Available from: 2018-07-31 Created: 2018-07-31 Last updated: 2018-07-31Bibliographically approved
Spiegelberg, D., Mortensen, A., Lundsten, S., Brown, C. J., Lane, D. P. & Nestor, M. (2018). The MDM2/MDMX-p53 Antagonist PM2 Radiosensitizes Wild-Type p53 Tumors. Cancer Research, 78(17), 5084-5093
Open this publication in new window or tab >>The MDM2/MDMX-p53 Antagonist PM2 Radiosensitizes Wild-Type p53 Tumors
Show others...
2018 (English)In: Cancer Research, ISSN 0008-5472, E-ISSN 1538-7445, Vol. 78, no 17, p. 5084-5093Article in journal (Refereed) Published
Abstract [en]

Radiotherapy amplifies p53 expression in cancer cells with wild-type (wt) p53. Blocking the negative regulators MDM2 and MDMX stabilizes p53 and may therefore potentiate radiotherapy outcomes. In this study, we investigate the efficacy of the novel anti-MDM2/X stapled peptide PM2 alone and in combination with externalgamma radiation in vitro and in vivo. PM2 therapy combined with radiotherapy elicited synergistic therapeutic effects compared with monotherapy in cells with wt p53 in both in vitro and in vivo assays, whereas these effects did not manifest in p53(-/-) cells. Biodistribution and autoradiography of 125I-PM2 revealed high and retained uptake homogenously distributed throughout the tumor. In mice carrying wt p53 tumors, PM2 combined with radiother-apy significantly prolonged the median survival by 50%, whereas effects of PM2 therapy on mutant and p53(-/-) tumors were negligible. PM2-dependent stabilization of p53 was confirmed with ex vivo immunohistochemistry. These data demonstrate the potential of the stapled peptide PM2 as a radiotherapy potentiator in vivo and suggest that clinical application of PM2 with radiotherapy in wt p53 cancers might improve tumor control.

Significance: These findings contribute advances to cancer radiotherapy by using novel p53-reactivating stapled peptides as radiosensitizers in wild-type p53 cancers.

Place, publisher, year, edition, pages
AMER ASSOC CANCER RESEARCH, 2018
National Category
Cancer and Oncology
Identifiers
urn:nbn:se:uu:diva-365821 (URN)10.1158/0008-5472.CAN-18-0440 (DOI)000443753700024 ()30026328 (PubMedID)
Funder
Swedish Research Council, 2013-30876-104113-30Swedish Research Council, 2013-8807Swedish Cancer Society, CAN 2015/1080Swedish Cancer Society, CAN 2015/385
Available from: 2018-11-26 Created: 2018-11-26 Last updated: 2018-11-26Bibliographically approved
Häggblad Sahlberg, S., Mortensen, A. C., Haglöf, J., Engskog, M. K. R., Arvidsson, T., Pettersson, C., . . . Nestor, M. (2017). Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells. International Journal of Oncology, 50(1), 5-14
Open this publication in new window or tab >>Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells
Show others...
2017 (English)In: International Journal of Oncology, ISSN 1019-6439, Vol. 50, no 1, p. 5-14Article in journal (Refereed) Published
Abstract [en]

AKT is a central protein in many cellular pathways such as cell survival, proliferation, glucose uptake, metabolism, angiogenesis, as well as radiation and drug response. The three isoforms of AKT (AKT1, AKT2 and AKT3) are proposed to have different physiological functions, properties and expression patterns in a cell type-dependent manner. As of yet, not much is known about the influence of the different AKT isoforms in the genome and their effects in the metabolism of colorectal cancer cells. In the present study, DLD-1 isogenic AKT1, AKT2 and AKT'/2 knockout colon cancer cell lines were used as a model system in conjunction with the parental cell line in order to further elucidate the differences between the AKT isoforms and how they are involved in various cellular pathways. This was done using genome wide expression analyses, metabolic profiling and cell migration assays. In conclusion, downregulation of genes in the cell adhesion, extracellular matrix and Notch-pathways and upregulation of apoptosis and metastasis inhibitory genes in the p53-pathway, confirm that the knockout of both AKT1 and AKT2 will attenuate metastasis and tumor cell growth. This was verified with a reduction in migration rate in the AKT1 KO and AKT2 KO and most explicitly in the AKT1/2 KO. Furthermore, the knockout of AKT1, AKT2 or both, resulted in a reduction in lactate and alanine, suggesting that the metabolism of carbohydrates and glutathione was impaired. This was further verified in gene expression analyses, showing downregulation of genes involved in glucose metabolism. Additionally, both AKT1 KO and AKT2 KO demonstrated an impaired fatty acid metabolism. However, genes were upregulated in the Wnt and cell proliferation pathways, which could oppose this effect. AKT inhibition should therefore be combined with other effectors to attain the best effect.

Keywords
Microarray, metabolism, cell migration AKT1, AKT2, AKT, PKB, gene expression, colon-cancer, DLD-1, metabolomics, CD44, CD133
National Category
Biochemistry and Molecular Biology
Research subject
Biomedical Radiation Science; Biology with specialization in Molecular Cell Biology; Biology with specialization in Molecular Biology
Identifiers
urn:nbn:se:uu:diva-222834 (URN)10.3892/ijo.2016.3771 (DOI)000391419200001 ()
Available from: 2014-04-14 Created: 2014-04-14 Last updated: 2017-12-05Bibliographically approved
Haylock, A.-K., Nilvebrant, J., Mortensen, A., Velikyan, I., Nestor, M. & Falk, R. (2017). Generation and evaluation of antibody agents for molecular imaging of CD44v6-expressing cancers. OncoTarget, 8(39), 65152-65170
Open this publication in new window or tab >>Generation and evaluation of antibody agents for molecular imaging of CD44v6-expressing cancers
Show others...
2017 (English)In: OncoTarget, ISSN 1949-2553, E-ISSN 1949-2553, Vol. 8, no 39, p. 65152-65170Article in journal (Refereed) Published
Abstract [en]

Aim: The aim of this study was to generate and characterize scFv antibodies directed to human CD44v6, as well as to radiolabel and evaluate top candidates in vitro and in vivo for their potential use in CD44v6-targeted molecular imaging in cancer patients.

Materials and methods: Phage display selections were used to isolate CD44v6-specific scFvs. A chain shuffling strategy was employed for affinity maturation based on a set of CD44v6-specific first-generation clones. Two second-generation scFv clones were then chosen for labeling with 111In or 125I and assessed for CD44v6-specific binding on cultured tumor cells. In vivo uptake and distribution was evaluated in tumor-bearing mice using a dual tumor model. Finally, a proof-of-concept small animal PET-CT study was performed on one of the candidates labeled with 124I.

Results: Two affinity-matured clones, CD44v6-scFv-A11 and CD44v6-scFv-H12, displayed promising binding kinetics. Seven out of eight radiolabeled conjugates demonstrated CD44v6-specific binding. In vivo studies on selected candidates demonstrated very advantageous tumor-to-organ ratios, in particular for iodinated conjugates, where 125I-labeled scFvs exhibited favorable kinetics and tumor-to-blood ratios above five already at 24 hours p. i.. The small animal PET-CT study using 124I-labeled CD44v6-scFv-H12 was in line with the biodistribution data, clearly visualizing the high CD44v6-expressing tumor.

Conclusion: The single chain fragments, CD44v6-scFv-A11 and CD44v6-scFv-H12 specifically bind to CD44v6, and the radiolabeled counterparts provide high tumor-to-blood ratios and fast clearance from organs and blood. We conclude that radioiodinated CD44v6-scFv-A11 and CD44v6-scFv-H12 possess features highly suitable for stringent molecular imaging.

Keywords
scFv, recombinant antibody formats, CD44v6, squamous cell carcinoma, molecular imaging
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy) Cancer and Oncology Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:uu:diva-335192 (URN)10.18632/oncotarget.17996 (DOI)000410291200039 ()29029420 (PubMedID)
Funder
Swedish Cancer Society, CAN 2015/1080, CAN 2015/385Swedish Research Council, 2013-30876-104113-30, 637-2013-468Swedish Society for Medical Research (SSMF)Knut and Alice Wallenberg Foundation, 2008.0133
Note

Marika Nestor and Ronny Falk shared senior authorship.

Available from: 2017-12-08 Created: 2017-12-08 Last updated: 2017-12-08Bibliographically approved
Organisations

Search in DiVA

Show all publications