uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Gyllensten, Ulf B.
Alternative names
Publications (10 of 171) Show all publications
Jiang, J., Thalamuthu, A., Ho, J. E., Mahajan, A., Ek, W. E., Brown, D. A., . . . Mather, K. A. (2018). A Meta-Analysis of Genome-Wide Association Studies of Growth Differentiation Factor-15 Concentration in Blood. Frontiers in Genetics, 9, Article ID 97.
Open this publication in new window or tab >>A Meta-Analysis of Genome-Wide Association Studies of Growth Differentiation Factor-15 Concentration in Blood
Show others...
2018 (English)In: Frontiers in Genetics, ISSN 1664-8021, E-ISSN 1664-8021, Vol. 9, article id 97Article in journal (Refereed) Published
Abstract [en]

Blood levels of growth differentiation factor-15 (GDF-15), also known as macrophage inhibitory cytokine-1 (MIC-1), have been associated with various pathological processes and diseases, including cardiovascular disease and cancer. Prior studies suggest genetic factors play a role in regulating blood MIC-1/GDF-15 concentration. In the current study, we conducted the largest genome-wide association study (GWAS) to date using a sample of similar to 5,400 community-based Caucasian participants, to determine the genetic variants associated with MIC-1/GDF-15 blood concentration. Conditional and joint (COJO), gene-based association, and gene-set enrichment analyses were also carried out to identify novel loci, genes, and pathways. Consistent with prior results, a locus on chromosome 19, which includes nine single nucleotide polymorphisms (SNPs) (top SNP, rs888663, p = 1.690 x 10(-35)), was significantly associated with blood MIC-1/GDF-15 concentration, and explained 21.47% of its variance. COJO analysis showed evidence for two independent signals within this locus. Gene-based analysis confirmed the chromosome 19 locus association and in addition, a putative locus on chromosome 1. Gene-set enrichment analyses showed that the "COPI-mediated anterograde transport" gene-set was associated with MIC-1/GDF15 blood concentration with marginal significance after FDR correction (p = 0.067). In conclusion, a locus on chromosome 19 was associated with MIC-1/GDF-15 blood concentration with genome-wide significance, with evidence for a new locus (chromosome 1). Future studies using independent cohorts are needed to confirm the observed associations especially for the chromosomes 1 locus, and to further investigate and identify the causal SNPs that contribute to MIC-1/GDF-15 levels.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2018
Keywords
genome-wide association study, growth differentiation factor-15, macrophage inhibitory cytokine-1, community-based individuals, chromosome 19
National Category
Medical Genetics
Identifiers
urn:nbn:se:uu:diva-354354 (URN)10.3389/fgene.2018.00097 (DOI)000428198300001 ()
Funder
Knut and Alice Wallenberg FoundationEU, European Research CouncilSwedish Research Council, 2012-1397Swedish Research Council, 2012-1727Swedish Research Council, 2012-2215Swedish Research Council, 80576801Swedish Research Council, 70374401Swedish Foundation for Strategic Research Australian Research Council, DP0774213Australian Research Council, DP0773584Australian Research Council, LP0669645
Available from: 2018-08-08 Created: 2018-08-08 Last updated: 2018-08-08Bibliographically approved
Höijer, I., Tsai, Y.-C., Clark, T. A., Kotturi, P., Dahl, N., Stattin, E., . . . Ameur, A. (2018). Detailed analysis of HTT repeat elements in human blood using targeted amplification-free long-read sequencing. Human Mutation, 39(9), 1262-1272
Open this publication in new window or tab >>Detailed analysis of HTT repeat elements in human blood using targeted amplification-free long-read sequencing
Show others...
2018 (English)In: Human Mutation, ISSN 1059-7794, E-ISSN 1098-1004, Vol. 39, no 9, p. 1262-1272Article in journal (Refereed) Published
Abstract [en]

Amplification of DNA is required as a mandatory step during library preparation in most targeted sequencing protocols. This can be a critical limitation when targeting regions that are highly repetitive or with extreme guanine-cytosine (GC) content, including repeat expansions associated with human disease. Here, we used an amplification-free protocol for targeted enrichment utilizing the CRISPR/Cas9 system (No-Amp Targeted sequencing) in combination with single molecule, real-time (SMRT) sequencing for studying repeat elements in the huntingtin (HTT) gene, where an expanded CAG repeat is causative for Huntington disease. We also developed a robust data analysis pipeline for repeat element analysis that is independent of alignment of reads to a reference genome. The method was applied to 11 diagnostic blood samples, and for all 22 alleles the resulting CAG repeat count agreed with previous results based on fragment analysis. The amplification-free protocol also allowed for studying somatic variability of repeat elements in our samples, without the interference of PCR stutter. In summary, with No-Amp Targeted sequencing in combination with our analysis pipeline, we could accurately study repeat elements that are difficult to investigate using PCR-based methods.

Keywords
amplification-free sequencing, HTT, Huntington disease, No-Amp Targeted sequencing, repeat expansion, SMRT sequencing, somatic mosaicism, targeted enrichment, targeted sequencing
National Category
Medical Genetics
Identifiers
urn:nbn:se:uu:diva-364189 (URN)10.1002/humu.23580 (DOI)000443229000010 ()29932473 (PubMedID)
Available from: 2018-11-07 Created: 2018-11-07 Last updated: 2018-11-07Bibliographically approved
Ek, W. E., Rask-Andersen, M., Karlsson, T., Enroth, S., Gyllensten, U. B. & Johansson, Å. (2018). Genetic variants influencing phenotypic variance heterogeneity. Human Molecular Genetics, 27(5), 799-810
Open this publication in new window or tab >>Genetic variants influencing phenotypic variance heterogeneity
Show others...
2018 (English)In: Human Molecular Genetics, ISSN 0964-6906, E-ISSN 1460-2083, Vol. 27, no 5, p. 799-810Article in journal (Refereed) Published
Abstract [en]

Most genetic studies identify genetic variants associated with disease risk or with the mean value of a quantitative trait. More rarely, genetic variants associated with variance heterogeneity are considered. In this study, we have identified such variance single-nucleotide polymorphisms (vSNPs) and examined if these represent biological gene x gene or gene x environment interactions or statistical artifacts caused by multiple linked genetic variants influencing the same phenotype. We have performed a genome-wide study, to identify vSNPs associated with variance heterogeneity in DNA methylation levels. Genotype data from over 10 million single-nucleotide polymorphisms (SNPs), and DNA methylation levels at over 430 000 CpG sites, were analyzed in 729 individuals. We identified vSNPs for 7195 CpG sites (P < 9.4 x 10(-11)). This is a relatively low number compared to 52 335 CpG sites for which SNPs were associated with mean DNA methylation levels. We further showed that variance heterogeneity between genotypes mainly represents additional, often rare, SNPs in linkage disequilibrium (LD) with the respective vSNP and for some vSNPs, multiple low frequency variants co-segregating with one of the vSNP alleles. Therefore, our results suggest that variance heterogeneity of DNA methylation mainly represents phenotypic effects by multiple SNPs, rather than biological interactions. Such effects may also be important for interpreting variance heterogeneity of more complex clinical phenotypes.

Place, publisher, year, edition, pages
OXFORD UNIV PRESS, 2018
National Category
Medical Genetics
Identifiers
urn:nbn:se:uu:diva-350890 (URN)10.1093/hmg/ddx441 (DOI)000426838200003 ()29325024 (PubMedID)
Funder
Swedish Research Council, 2011-2354, 2015-03327Göran Gustafsson Foundation for Research in Natural Sciences and MedicineSwedish Society for Medical Research (SSMF)Åke Wiberg Foundation
Available from: 2018-05-28 Created: 2018-05-28 Last updated: 2018-07-06Bibliographically approved
Enroth, S., Maturi, V., Berggrund, M., Bosdotter Enroth, S., Moustakas, A., Johansson, Å. & Gyllensten, U. B. (2018). Systemic and specific effects of antihypertensive and lipid-lowering medication on plasma protein biomarkers for cardiovascular diseases. Scientific Reports, 8, Article ID 5531.
Open this publication in new window or tab >>Systemic and specific effects of antihypertensive and lipid-lowering medication on plasma protein biomarkers for cardiovascular diseases
Show others...
2018 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 5531Article in journal (Refereed) Published
Abstract [en]

A large fraction of the adult population is on lifelong medication for cardiovascular disorders, but the metabolic consequences are largely unknown. This study determines the effects of common anti-hypertensive and lipid lowering drugs on circulating plasma protein biomarkers. We studied 425 proteins in plasma together with anthropometric and lifestyle variables, and the genetic profile in a cross-sectional cohort. We found 8406 covariate-protein associations, and a two-stage GWAS identified 17253 SNPs to be associated with 109 proteins. By computationally removing variation due to lifestyle and genetic factors, we could determine that medication, per se, affected the abundance levels of 35.7% of the plasma proteins. Medication either affected a single, a few, or a large number of protein, and were found to have a negative or positive influence on known disease pathways and biomarkers. Anti-hypertensive or lipid lowering drugs affected 33.1% of the proteins. Angiotensin-converting enzyme inhibitors showed the strongest lowering effect by decreasing plasma levels of myostatin. Cell-culture experiments showed that angiotensin-converting enzyme inhibitors reducted myostatin RNA levels. Thus, understanding the effects of lifelong medication on the plasma proteome is important both for sharpening the diagnostic precision of protein biomarkers and in disease management.

National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
urn:nbn:se:uu:diva-351628 (URN)10.1038/s41598-018-23860-y (DOI)000428999200067 ()29615742 (PubMedID)
Funder
Swedish Foundation for Strategic Research Swedish National Infrastructure for Computing (SNIC), b2011203; b2014145
Available from: 2018-06-07 Created: 2018-06-07 Last updated: 2018-07-06Bibliographically approved
Ek, W. E., Ahsan, M., Rask-Andersen, M., Liang, L., Moffatt, M. F., Gyllensten, U. & Johansson, Å. (2017). Epigenome-wide DNA methylation study of IgE concentration in relation to self-reported allergies. Epigenomics, 9(4), 407-418
Open this publication in new window or tab >>Epigenome-wide DNA methylation study of IgE concentration in relation to self-reported allergies
Show others...
2017 (English)In: Epigenomics, ISSN 1750-1911, Vol. 9, no 4, p. 407-418Article in journal (Refereed) Published
Abstract [en]

AIM: Epigenetic mechanisms are critical for normal immune development and epigenetic alterations might therefore be possible contributors to immune diseases. To investigate if DNA methylation in whole blood is associated with total and allergen-specific IgE levels.

METHODS: We performed an epigenome-wide association study to investigate the association between DNA methylation and IgE level, allergen-specific IgE and self-reported immune diseases and allergies in 728 individuals.

RESULTS: We identified and replicated 15 CpG sites associated with IgE, mapping to biologically relevant genes, including ACOT7, ILR5A, KCNH2, PRG2 and EPX. A total of 331 loci were associated with allergen-specific IgE, but none of these CpG sites were associated with self-reported allergies and immune diseases.

CONCLUSION: This study shows that IgE levels are associated with DNA methylation levels at numerous CpG sites, which might provide new leads for investigating the links between IgE and allergic inflammation.

Keywords
DNA methylation, Fx5, IgE, Phadiatop, allergy, immune diseases
National Category
Medical Genetics
Identifiers
urn:nbn:se:uu:diva-318034 (URN)10.2217/epi-2016-0158 (DOI)000399344700006 ()28322575 (PubMedID)
Funder
Swedish Society of Medicine, 2011-2354 K2007-66X-20270-01-3Göran Gustafsson Foundation for promotion of scientific research at Uppala University and Royal Institute of TechnologySwedish Foundation for Strategic Research EU, European Research CouncilScience for Life Laboratory - a national resource center for high-throughput molecular bioscience
Available from: 2017-03-23 Created: 2017-03-23 Last updated: 2018-07-06Bibliographically approved
Aschard, H., Tobin, M. D., Hancock, D. B., Skurnik, D., Sood, A., James, A., . . . Kraft, P. (2017). Evidence for large-scale gene-by-smoking interaction effects on pulmonary function. International Journal of Epidemiology, 46(3), 894-904
Open this publication in new window or tab >>Evidence for large-scale gene-by-smoking interaction effects on pulmonary function
Show others...
2017 (English)In: International Journal of Epidemiology, ISSN 0300-5771, E-ISSN 1464-3685, Vol. 46, no 3, p. 894-904Article in journal (Refereed) Published
Abstract [en]

BACKGROUND: Smoking is the strongest environmental risk factor for reduced pulmonary function. The genetic component of various pulmonary traits has also been demonstrated, and at least 26 loci have been reproducibly associated with either FEV1 (forced expiratory volume in 1 second) or FEV1/FVC (FEV1/forced vital capacity). Although the main effects of smoking and genetic loci are well established, the question of potential gene-by-smoking interaction effect remains unanswered. The aim of the present study was to assess, using a genetic risk score approach, whether the effect of these 26 loci on pulmonary function is influenced by smoking.

METHODS: We evaluated the interaction between smoking exposure, considered as either ever vs never or pack-years, and a 26-single nucleotide polymorphisms (SNPs) genetic risk score in relation to FEV1 or FEV1/FVC in 50 047 participants of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) and SpiroMeta consortia.

RESULTS: We identified an interaction (βint = -0.036, 95% confidence interval, -0.040 to -0.032, P = 0.00057) between an unweighted 26 SNP genetic risk score and smoking status (ever/never) on the FEV1/FVC ratio. In interpreting this interaction, we showed that the genetic risk of falling below the FEV 1: /FVC threshold used to diagnose chronic obstructive pulmonary disease is higher among ever smokers than among never smokers. A replication analysis in two independent datasets, although not statistically significant, showed a similar trend in the interaction effect.

CONCLUSIONS: This study highlights the benefit of using genetic risk scores for identifying interactions missed when studying individual SNPs and shows, for the first time, that persons with the highest genetic risk for low FEV1/FVC may be more susceptible to the deleterious effects of smoking.

Keywords
FEV1/FVC, genetic risk score, gene–environment interaction, smoking
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:uu:diva-317998 (URN)10.1093/ije/dyw318 (DOI)000406242600023 ()28082375 (PubMedID)
Available from: 2017-03-23 Created: 2017-03-23 Last updated: 2017-10-30Bibliographically approved
Wain, L. V., Shrine, N., Artigas, M. S., Erzurumluoglu, A. M., Noyvert, B., Bossini-Castillo, L., . . . Tobin, M. D. (2017). Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets.. Nature Genetics, 49(3), 416-425
Open this publication in new window or tab >>Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets.
Show others...
2017 (English)In: Nature Genetics, ISSN 1061-4036, E-ISSN 1546-1718, Vol. 49, no 3, p. 416-425Article in journal (Refereed) Published
Abstract [en]

Chronic obstructive pulmonary disease (COPD) is characterized by reduced lung function and is the third leading cause of death globally. Through genome-wide association discovery in 48,943 individuals, selected from extremes of the lung function distribution in UK Biobank, and follow-up in 95,375 individuals, we increased the yield of independent signals for lung function from 54 to 97. A genetic risk score was associated with COPD susceptibility (odds ratio per 1 s.d. of the risk score (∼6 alleles) (95% confidence interval) = 1.24 (1.20-1.27), P = 5.05 × 10(-49)), and we observed a 3.7-fold difference in COPD risk between individuals in the highest and lowest genetic risk score deciles in UK Biobank. The 97 signals show enrichment in genes for development, elastic fibers and epigenetic regulation pathways. We highlight targets for drugs and compounds in development for COPD and asthma (genes in the inositol phosphate metabolism pathway and CHRM3) and describe targets for potential drug repositioning from other clinical indications.

National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:uu:diva-317994 (URN)10.1038/ng.3787 (DOI)000394917800015 ()28166213 (PubMedID)
Available from: 2017-03-23 Created: 2017-03-23 Last updated: 2017-11-29Bibliographically approved
Warren, H. R., Evangelou, E., Cabrera, C. P., Gao, H., Ren, M., Mifsud, B., . . . Morris, A. P. (2017). Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nature Genetics, 49(3), 403-415
Open this publication in new window or tab >>Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk
Show others...
2017 (English)In: Nature Genetics, ISSN 1061-4036, E-ISSN 1546-1718, Vol. 49, no 3, p. 403-415Article in journal (Refereed) Published
Abstract [en]

Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. In combination with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure-raising genetic variants on future cardiovascular disease risk.

National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:uu:diva-318933 (URN)10.1038/ng.3768 (DOI)000394917800014 ()28135244 (PubMedID)
Available from: 2017-04-10 Created: 2017-04-10 Last updated: 2018-07-06Bibliographically approved
Graff, M., Scott, R. A., Justice, A. E., Young, K. L., Feitosa, M. F., Barata, L., . . . Kilpeläinen, T. O. (2017). Genome-wide physical activity interactions in adiposity: A meta-analysis of 200,452 adults.. PLoS Genetics, 13(4), Article ID e1006528.
Open this publication in new window or tab >>Genome-wide physical activity interactions in adiposity: A meta-analysis of 200,452 adults.
Show others...
2017 (English)In: PLoS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 13, no 4, article id e1006528Article in journal (Refereed) Published
Abstract [en]

Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by ~30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.

Place, publisher, year, edition, pages
PUBLIC LIBRARY SCIENCE, 2017
Keywords
BODY-MASS INDEX; REACTIVE PROTEIN-LEVELS; GENE-EXPRESSION; IDENTICAL-TWINS; ADIPOCYTE DIFFERENTIATION; ASSOCIATION METAANALYSIS; ACTIVITY QUESTIONNAIRES; FAT DISTRIBUTION; BINDING PROTEIN; FOOD-INTAKE
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:uu:diva-321624 (URN)10.1371/journal.pgen.1006528 (DOI)000402549200002 ()28448500 (PubMedID)
Available from: 2017-05-09 Created: 2017-05-09 Last updated: 2018-07-06Bibliographically approved
Folkersen, L., Fauman, E., Sabater-Lleal, M., Strawbridge, R. J., Frånberg, M., Sennblad, B., . . . Mälarstig, A. (2017). Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. PLoS Genetics, 13(4), Article ID e1006706.
Open this publication in new window or tab >>Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease
Show others...
2017 (English)In: PLoS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 13, no 4, article id e1006706Article in journal (Refereed) Published
Abstract [en]

Recent advances in highly multiplexed immunoassays have allowed systematic large-scale measurement of hundreds of plasma proteins in large cohort studies. In combination with genotyping, such studies offer the prospect to 1) identify mechanisms involved with regulation of protein expression in plasma, and 2) determine whether the plasma proteins are likely to be causally implicated in disease. We report here the results of genome-wide association (GWA) studies of 83 proteins considered relevant to cardiovascular disease (CVD), measured in 3,394 individuals with multiple CVD risk factors. We identified 79 genome-wide significant (p<5e-8) association signals, 55 of which replicated at P<0.0007 in separate validation studies (n = 2,639 individuals). Using automated text mining, manual curation, and network-based methods incorporating information on expression quantitative trait loci (eQTL), we propose plausible causal mechanisms for 25 trans-acting loci, including a potential post-translational regulation of stem cell factor by matrix metalloproteinase 9 and receptor-ligand pairs such as RANK-RANK ligand. Using public GWA study data, we further evaluate all 79 loci for their causal effect on coronary artery disease, and highlight several potentially causal associations. Overall, a majority of the plasma proteins studied showed evidence of regulation at the genetic level. Our results enable future studies of the causal architecture of human disease, which in turn should aid discovery of new drug targets.

Place, publisher, year, edition, pages
PUBLIC LIBRARY SCIENCE, 2017
Keywords
GENOME-WIDE ASSOCIATION; INTIMA-MEDIA THICKNESS; GENETIC-VARIANTS; MENDELIAN RANDOMIZATION; EXPRESSION; RISK; POPULATION; CELLS; GWAS; LIFE
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:uu:diva-319845 (URN)10.1371/journal.pgen.1006706 (DOI)000402549200023 ()28369058 (PubMedID)
Available from: 2017-04-10 Created: 2017-04-10 Last updated: 2018-01-03Bibliographically approved
Organisations

Search in DiVA

Show all publications