uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Alternative names
Publications (10 of 269) Show all publications
Sias, G., Cecconello, M., Klimek, I., Wodniak, I., Yadykin, D., Andersson Sundén, E., . . . Zychor, I. (2019). A locked mode indicator for disruption prediction on JET and ASDEX upgrade. Fusion engineering and design, 138, 254-266
Open this publication in new window or tab >>A locked mode indicator for disruption prediction on JET and ASDEX upgrade
Show others...
2019 (English)In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 138, p. 254-266Article in journal (Refereed) Published
Abstract [en]

The aim of this paper is to present a signal processing algorithm that, applied to the raw Locked Mode signal, allows us to obtain a disruption indicator in principle exploitable on different tokamaks. A common definition of such an indicator for different machines would facilitate the development of portable systems for disruption prediction, which is becoming of increasingly importance for the next tokamak generations. Moreover, the indicator allows us to overcome some intrinsic problems in the diagnostic system such as drift and offset. The behavior of the proposed indicator as disruption predictor, based on crossing optimized thresholds of the signal amplitude, has been analyzed using data of both JET and ASDEX Upgrade experiments. A thorough analysis of the disruption prediction performance shows how the indicator is able to recover some missed and tardy detections of the raw signal. Moreover, it intervenes and corrects premature or even wrong alarms due to, e.g., drifts and/or offsets.

Keywords
Tokamak, Disruption prediction, Locked mode signal, Disruption indicators, Feature extraction
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:uu:diva-377710 (URN)10.1016/j.fusengdes.2018.11.021 (DOI)000457663100032 ()
Note

For complete list of authors see http://dx.doi.org/10.1016/j.fusengdes.2018.11.021

Available from: 2019-03-08 Created: 2019-03-08 Last updated: 2019-03-08Bibliographically approved
Ström, P., Petersson, P., Rubel, M. J., Fortuna-Zaleśna, E., Widdowson, A. & Sergienko, G. (2019). Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall. Journal of Nuclear Materials, 516, 202-213
Open this publication in new window or tab >>Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall
Show others...
2019 (English)In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 516, p. 202-213Article in journal (Refereed) Published
Abstract [en]

Inconel-600 blocks and stainless steel covers for quartz microbalance crystals from remote corners in the JET-ILW divertor were studied with time-of-flight elastic recoil detection analysis and nuclear reaction analysis to obtain information about the areal densities and depth profiles of elements present in deposited material layers. Surface morphology and the composition of dust particles were examined with scanning electron microscopy and energy-dispersive X-ray spectroscopy. The analysed components were present in JET during three ITER-like wall campaigns between 2010 and 2017. Deposited layers had a stratified structure, primarily made up of beryllium, carbon and oxygen with varying atomic fractions of deuterium, up to more than 20%. The range of carbon transport from the ribs of the divertor carrier was limited to a few centimeters, and carbon/deuterium co-deposition was indicated on the Inconel blocks. High atomic fractions of deuterium were also found in almost carbon-free layers on the quartz microbalance covers. Layer thicknesses up to more than 1 mu m were indicated, but typical values were on the order of a few hundred nm. Chromium, iron and nickel fractions were less than or around 1% at layer surfaces while increasing close to the layer-substrate interface. The tungsten fraction depended on the proximity of the plasma strike point to the divertor corners. Particles of tungsten, molybdenum and copper with sizes less than or around 1 mu m were found. Nitrogen, argon and neon were present after plasma edge cooling and disruption mitigation. Oxygen-18 was found on component surfaces after injection, indicating in-vessel oxidation. Compensation of elastic recoil detection data for detection efficiency and ion-induced release of deuterium during the measurement gave quantitative agreement with nuclear reaction analysis, which strengthens the validity of the results.

Keywords
Fusion, Tokamak, Plasma-wall interactions, ToF-ERDA, NRA, SEM
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:uu:diva-379019 (URN)10.1016/j.jnucmat.2018.11.027 (DOI)000458897100020 ()
Funder
Swedish Foundation for Strategic Research , RIF14-0053Swedish Research Council, 821-2012-5144Swedish Research Council, 2015-04884Swedish Research Council, 2017-00643
Note

Authors listed as Contributor / bidragsgivare above are part of EUROfusion Consortium, JET, Culham Science Centre, UK.

Available from: 2019-03-12 Created: 2019-03-12 Last updated: 2019-04-24Bibliographically approved
Drenik, A., Andersson Sundén, E., Binda, F., Cecconello, M., Conroy, S., Dzysiuk, N., . . . Zychor, I. (2019). Analysis of the outer divertor hot spot activity in the protection video camera recordings at JET. Fusion engineering and design, 139, 115-123
Open this publication in new window or tab >>Analysis of the outer divertor hot spot activity in the protection video camera recordings at JET
Show others...
2019 (English)In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 139, p. 115-123Article in journal (Refereed) Published
Abstract [en]

Hot spots on the divertor tiles at JET result in overestimation of the tile surface temperature which causes unnecessary termination of pulses. However, the appearance of hot spots can also indicate the condition of the divertor tile surfaces. To analyse the behaviour of the hot spots in the outer divertor tiles of JET, a simple image processing algorithm is developed. The algorithm isolates areas of bright pixels in the camera image and compares them to previously identified hot spots. The activity of the hot spots is then linked to values of other signals and parameters in the same time intervals. The operation of the detection algorithm was studied in a limited pulse range with high hot spot activity on the divertor tiles 5, 6 and 7. This allowed us to optimise the values of the controlling parameters. Then, the wider applicability of the method has been demonstrated by the analysis of the hot spot behaviour in a whole experimental campaign.

Keywords
JET, ITER-like wall, Plasma-wall interaction, Image analysis
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:uu:diva-378736 (URN)10.1016/j.fusengdes.2018.12.079 (DOI)000458939100016 ()
Note

For complete list of authors see http://dx.doi.org/10.1016/j.fusengdes.2018.12.079

Available from: 2019-03-11 Created: 2019-03-11 Last updated: 2019-03-11Bibliographically approved
Neverov, V. S., Andersson Sundén, E., Binda, F., Cecconello, M., Conroy, S., Dzysiuk, N., . . . Zychor, I. (2019). Determination of isotope ratio in the divertor of JET-ILW by high-resolution H alpha spectroscopy: H-D experiment and implications for D-T experiment. Nuclear Fusion, 59(4), Article ID 046011.
Open this publication in new window or tab >>Determination of isotope ratio in the divertor of JET-ILW by high-resolution H alpha spectroscopy: H-D experiment and implications for D-T experiment
Show others...
2019 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 4, article id 046011Article in journal (Refereed) Published
Abstract [en]

The data of the H alpha high-resolution spectroscopy, collected on the multiple lines of sight, which cover the entire divertor space in poloidal cross-section, during the recent hydrogen-deuterium experiments in JET-ILW (ITER-like wall), are processed. A strong spatial inhomogeneity of the hydrogen concentration, H/(H + D), in divertor is found in many pulses. Namely, the H/(H + D) ratio may be lower in the inner divertor than that in the outer divertor by the values of 0.15-0.35, depending on the conditions of gas puffing and plasma heating. This effect suggests the necessity of spatially-resolved measurements of isotope ratio in the divertor in the upcoming deuterium-tritium experiments. Also, separation of the overlapped T alpha and D alpha spectral lines is shown to be a challenging task especially when the local Doppler-broadened (Gaussian) line shapes are noticeably distorted by the net inward flux of fast non-Maxwellian neutral atoms. We use the respective, formerly developed model of an asymmetric spectral line shape, while analysing the data of the first deuterium-tritium experiment in JET-C (carbon wall), and test the model via comparing the isotope ratio results with another diagnostic's measurements. This model is shown to increase the accuracy of tritium concentration measurements in the divertor.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD, 2019
Keywords
tokamak diagnostics, spectral line shapes, inverse problems, isotope ratio
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:uu:diva-378618 (URN)10.1088/1741-4326/ab0000 (DOI)000458371300001 ()
Note

For complete list of authors see http://dx.doi.org/10.1088/1741-4326/ab0000

Available from: 2019-03-11 Created: 2019-03-11 Last updated: 2019-03-11Bibliographically approved
Yeung, M. S. Y., Djelloul, M., Steiner, E., Bernard, S., Salehpour, M., Possnert, G., . . . Frisen, J. (2019). Dynamics of oligodendrocyte generation in multiple sclerosis. Nature, 566(7745), 538-+
Open this publication in new window or tab >>Dynamics of oligodendrocyte generation in multiple sclerosis
Show others...
2019 (English)In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 566, no 7745, p. 538-+Article in journal (Refereed) Published
Abstract [en]

Oligodendrocytes wrap nerve fibres in the central nervous system with layers of specialized cell membrane to form myelin sheaths(1). Myelin is destroyed by the immune system in multiple sclerosis, but myelin is thought to regenerate and neurological function can be recovered. In animal models of demyelinating disease, myelin is regenerated by newly generated oligodendrocytes, and remaining mature oligodendrocytes do not seem to contribute to this process(2-4). Given the major differences in the dynamics of oligodendrocyte generation and adaptive myelination between rodents and humans(5-9), it is not clear how well experimental animal models reflect the situation in multiple sclerosis. Here, by measuring the integration of C-14 derived from nuclear testing in genomic DNA(10), we assess the dynamics of oligodendrocyte generation in patients with multiple sclerosis. The generation of new oligodendrocytes was increased several-fold in normal-appearing white matter in a subset of individuals with very aggressive multiple sclerosis, but not in most subjects with the disease, demonstrating an inherent potential to substantially increase oligodendrocyte generation that fails in most patients. Oligodendrocytes in shadow plaques-thinly myelinated lesions that are thought to represent remyelinated areas-were old in patients with multiple sclerosis. The absence of new oligodendrocytes in shadow plaques suggests that remyelination of lesions occurs transiently or not at all, or that myelin is regenerated by pre-existing, and not new, oligodendrocytes in multiple sclerosis. We report unexpected oligodendrocyte generation dynamics in multiple sclerosis, and this should guide the use of current, and the development of new, therapies.

National Category
Neurology Neurosciences
Identifiers
urn:nbn:se:uu:diva-379035 (URN)10.1038/s41586-018-0842-3 (DOI)000459769100050 ()30675058 (PubMedID)
Funder
Swedish Research CouncilSwedish Foundation for Strategic Research Knut and Alice Wallenberg FoundationEU, European Research Council
Available from: 2019-03-11 Created: 2019-03-11 Last updated: 2019-03-11Bibliographically approved
Vasilopoulou, T., Andersson Sundén, E., Binda, F., Cecconello, M., Conroy, S., Dzysiuk, N., . . . Zychor, I. (2019). Improved neutron activation dosimetry for fusion. Fusion engineering and design, 139, 109-114
Open this publication in new window or tab >>Improved neutron activation dosimetry for fusion
Show others...
2019 (English)In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 139, p. 109-114Article in journal (Refereed) Published
Abstract [en]

Neutron activation technique has been widely used for the monitoring of neutron fluence at the Joint European Torus (JET) whereas it is foreseen to be employed at future fusion plants, such as ITER and DEMO. Neutron activation provides a robust tool for the measurement of neutron fluence in the complex environment encountered in a tokamak. However, activation experiments previously performed at JET showed that the activation foils used need to be calibrated in a real fusion environment in order to provide accurate neutron fluence data. Triggered by this challenge, an improved neutron activation method for the evaluation of neutron fluence at fusion devices has been developed. Activation assemblies similar to those used at JET were irradiated under 14 MeV neutrons at the Frascati Neutron Generator (FNG) reference neutron field. The data obtained from the calibration experiment were applied for the analysis of activation foil measurements performed during the implemented JET Deuterium-Deuterium (D-D) campaign. The activation results were compared against thermoluminescence measurements and a satisfactory agreement was observed. The proposed method provides confidence on the use of activation technique for the precise estimation of neutron fluence at fusion devices and enables its successful implementation in the forthcoming JET Deuterium-Tritium (D-T) campaign.

Keywords
Neutron activation, Neutron dosimetry, JET, Fusion
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:uu:diva-378735 (URN)10.1016/j.fusengdes.2019.01.002 (DOI)000458939100015 ()
Note

For complete list of authors see http://dx.doi.org/10.1016/j.fusengdes.2019.01.002

Available from: 2019-03-08 Created: 2019-03-08 Last updated: 2019-03-08Bibliographically approved
Yi, P., Yu, Z., Chen, P., Aldahan, A., Hou, X., Fan, Y., . . . Murad, A. (2019). Late Holocene pathway of Asian Summer Monsoons imprinted in soils and societal implications. Quaternary Science Reviews, 215, 35-44
Open this publication in new window or tab >>Late Holocene pathway of Asian Summer Monsoons imprinted in soils and societal implications
Show others...
2019 (English)In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 215, p. 35-44Article in journal (Refereed) Published
Abstract [en]

The Asian Summer Monsoons (ASM) represent the main source of precipitation in China and East Asia with about one third of the world population and a region of widespread civilizations. Identifying the temporal and spatial patterns (pathways) of these monsoonal events during the Late Holocene to today has been a matter of debate amongst the scientific community. Here we show that the distribution patterns of the cosmogenic isotope Be-10 and oceanic I-127 in the topsoil across China exhibit imprints of the main ASM pathways. Our results indicate the monsoon pathway pattern persisted for several millennia or more and suggest a strong bond between Be-10 and water vapor transport patterns. Our data also reveal a(127)I distribution pattern controlled by the ASM pathways, rather than proximity to the sea or bedrock weathering. The persistent pathway of the ASM during the late Holocene, together with higher than average global soil iodine concentration, may have further strengthened the development of civilizations in this region of the world through reduction of iodine deficiency related diseases. (C) 2019 Elsevier Ltd. All rights reserved.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Be-10, I-127, Asian Summer Monsoons
National Category
Geology
Identifiers
urn:nbn:se:uu:diva-390908 (URN)10.1016/j.quascirev.2019.05.002 (DOI)000474318200003 ()
Available from: 2019-08-19 Created: 2019-08-19 Last updated: 2019-08-19Bibliographically approved
Zhou, Y., Bergsåker, H., Bykov, I., Petersson, P., Paneta, V., Possnert, G. & Romanelli, F. (2019). Micro ion beam analysis for the erosion of beryllium marker tiles in a tokamak limiter. Paper presented at 23rd International Conference on Ion Beam Analysis (IBA), OCT 08-13, 2017, Fudan Univ, Handan Campus, Shanghai, PEOPLES R CHINA. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 450, 200-204
Open this publication in new window or tab >>Micro ion beam analysis for the erosion of beryllium marker tiles in a tokamak limiter
Show others...
2019 (English)In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, ISSN 0168-583X, E-ISSN 1872-9584, Vol. 450, p. 200-204Article in journal (Refereed) Published
Abstract [en]

Beryllium limiter marker tiles were exposed to plasma in the Joint European Torus to diagnose the erosion of main chamber wall materials. A limiter marker tile consists of a beryllium coating layer (7-9 mu m) on the top of bulk beryllium, with a nickel interlayer (2-3 mu m) between them. The thickness variation of the beryllium coating layer, after exposure to plasma, could indicate the erosion measured by ion beam analysis with backscattering spectrometry. However, interpretations from broad beam backscattering spectra were limited by the non-uniform surface structures. Therefore, micro-ion beam analysis (mu-IBA) with 3 MeV proton beam for Elastic back scattering spectrometry (EBS) and PIXE was used to scan samples. The spot size was in the range of 3-10 mu m. Scanned areas were analysed with scanning electron microscopy (SEM) as well. Combining results from mu-IBA and SEM, we obtained local spectra from carefully chosen areas on which the surface structures were relatively uniform. Local spectra suggested that the scanned area (approximate to 600 mu m x 1200 mu m) contained regions with serious erosion with only 2-3 mu m coating beryllium left, regions with intact marker tile, and droplets with 90% beryllium. The nonuniform erosion, droplets mainly formed by beryllium, and the possible mixture of beryllium and nickel were the major reasons that confused interpretation from broad beam EBS.

Keywords
Microbeam, Limiter, Beryllium marker tile, Joint European Torus (JET), Plasma-facing components (PFC)
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:uu:diva-390989 (URN)10.1016/j.nimb.2018.08.028 (DOI)000474501400041 ()
Conference
23rd International Conference on Ion Beam Analysis (IBA), OCT 08-13, 2017, Fudan Univ, Handan Campus, Shanghai, PEOPLES R CHINA
Note

JET contributors.

Available from: 2019-08-19 Created: 2019-08-19 Last updated: 2019-08-19Bibliographically approved
O'Hare, P., Mekhaldi, F., Adolphi, F., Raisbeck, G., Aldahan, A., Anderberg, E., . . . Muscheler, R. (2019). Multiradionuclide evidence for an extreme solar proton event around 2,610 BP (similar to 660 BC). Proceedings of the National Academy of Sciences of the United States of America, 116(13), 5961-5966
Open this publication in new window or tab >>Multiradionuclide evidence for an extreme solar proton event around 2,610 BP (similar to 660 BC)
Show others...
2019 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 116, no 13, p. 5961-5966Article in journal (Refereed) Published
Abstract [en]

Recently, it has been confirmed that extreme solar proton events can lead to significantly increased atmospheric production rates of cosmogenic radionuclides. Evidence of such events is recorded in annually resolved natural archives, such as tree rings [carbon-14 (C-14)] and ice cores [beryllium-10 (Be-10), chlorine-36 (Cl-36)]. Here, we show evidence for an extreme solar event around 2,610 years B.P. (similar to 660 BC) based on high-resolution Be-10 data from two Greenland ice cores. Our conclusions are supported by modeled C-14 production rates for the same period. Using existing Cl-36 ice core data in conjunction with Be-10, we further show that this solar event was characterized by a very hard energy spectrum. These results indicate that the 2,610-years B.P. event was an order of magnitude stronger than any solar event recorded during the instrumental period and comparable with the solar proton event of AD 774/775, the largest solar event known to date. The results illustrate the importance of multiple ice core radionuclide measurements for the reliable identification of short-term production rate increases and the assessment of their origins.

Place, publisher, year, edition, pages
NATL ACAD SCIENCES, 2019
Keywords
solar storms, radionuclides, ice cores, solar proton events
National Category
Geology
Identifiers
urn:nbn:se:uu:diva-381578 (URN)10.1073/pnas.1815725116 (DOI)000462382800026 ()30858311 (PubMedID)
Funder
Swedish Research Council, DNR2016-00218Swedish Research Council, DNR2013-8421Swedish Research CouncilSwedish Polar Research Secretariat
Available from: 2019-04-12 Created: 2019-04-12 Last updated: 2019-04-12Bibliographically approved
Joffrin, E., Andersson Sundén, E., Binda, F., Cecconello, M., Conroy, S., Ericsson, G., . . . Zychor, I. (2019). Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall. Nuclear Fusion, 59(11), Article ID 112021.
Open this publication in new window or tab >>Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
Show others...
2019 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 11, article id 112021Article in journal (Refereed) Published
Abstract [en]

For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD, 2019
Keywords
fusion power, JET, tritium, isotope
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:uu:diva-394183 (URN)10.1088/1741-4326/ab2276 (DOI)000484122200001 ()
Note

For complete list of authors see http://dx.doi.org/10.1088/1741-4326/ab2276

Available from: 2019-10-09 Created: 2019-10-09 Last updated: 2019-10-09Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-4840-291x

Search in DiVA

Show all publications