uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Sörensen, Jens
Alternative names
Publications (10 of 130) Show all publications
Harms, H. J., Hansson, N. H., Kero, T., Baron, T., Tolbod, L. P., Kim, W. Y., . . . Sörensen, J. (2018). Automatic calculation of myocardial external efficiency using a single 11C-acetate PET scan.. Journal of Nuclear Cardiology, 1-8
Open this publication in new window or tab >>Automatic calculation of myocardial external efficiency using a single 11C-acetate PET scan.
Show others...
2018 (English)In: Journal of Nuclear Cardiology, ISSN 1071-3581, E-ISSN 1532-6551, p. 1-8Article in journal (Refereed) Published
Abstract [en]

BACKGROUND: Myocardial external efficiency (MEE) is defined as the ratio of kinetic energy associated with cardiac work [forward cardiac output (FCO)*mean systemic pressure] and the chemical energy from oxygen consumed (MVO2) by the left ventricular mass (LVM). We developed a fully automated method for estimating MEE based on a single 11C-acetate PET scan without ECG-gating.

METHODS AND RESULTS: Ten healthy controls, 34 patients with aortic valve stenosis (AVS), and 20 patients with mitral valve regurgitation (MVR) were recruited in a dual-center study. MVO2 was calculated using washout of 11C -acetate activity. FCO and LVM were calculated automatically using dynamic PET and parametric image formation. FCO and LVM were also obtained using cardiac magnetic resonance (CMR) in all subjects. The correlation between MEEPET-CMR and MEEPET was high (r = 0.85, P < 0.001) without significant bias. MEEPET was 23.6 ± 4.2% for controls and was lowered in AVS (17.2 ± 4.3%, P < 0.001) and in MVR (18.0 ± 5.2%, P = 0.004). MEEPET was strongly associated with both NYHA class (P < 0.001) and the magnitude of valvular dysfunction (mean aortic gradient: P < 0.001, regurgitant fraction: P = 0.009).

CONCLUSION: A single 11C-acetate PET yields accurate and automated MEE results on different scanners. MEE might provide an unbiased measurement of the phenotypic response to valvular disease.

Keywords
11C-acetate, Myocardial efficiency, myocardial energetics, positron emission tomography
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:uu:diva-356783 (URN)10.1007/s12350-018-1338-0 (DOI)29946824 (PubMedID)
Available from: 2018-08-07 Created: 2018-08-07 Last updated: 2018-11-08Bibliographically approved
Vorobyeva, A., Westerlund, K., Mitran, B., Altai, M., Rinne, S., Sörensen, J., . . . Karlström, A. E. (2018). Development of an optimal imaging strategy for selection of patients for affibody-based PNA-mediated radionuclide therapy. Scientific Reports, 8, Article ID 9643.
Open this publication in new window or tab >>Development of an optimal imaging strategy for selection of patients for affibody-based PNA-mediated radionuclide therapy
Show others...
2018 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 9643Article in journal (Refereed) Published
Abstract [en]

Affibody molecules are engineered scaffold proteins, which demonstrated excellent binding to selected tumor-associated molecular abnormalities in vivo and highly sensitive and specific radionuclide imaging of Her2-expressing tumors in clinics. Recently, we have shown that peptide nucleic acid (PNA)-mediated affibody-based pretargeted radionuclide therapy using beta-emitting radionuclide Lu-177 extended significantly survival of mice bearing human Her2-expressing tumor xenografts. In this study, we evaluated two approaches to use positron emission tomography (PET) for stratification of patients for affibody-based pretargeting therapy. The primary targeting probe Z(HER2:342)SR-HP1 and the secondary probe HP2 (both conjugated with DOTA chelator) were labeled with the positron-emitting radionuclide Ga. Biodistribution of both probes was measured in BALB/C nu/nu mice bearing either SKOV-3 xenografts with high Her2 expression or DU-145 xenografts with low Her2 expression. (68)GaHP2 was evaluated in the pretargeting setting. Tumor uptake of both probes was compared with the uptake of pretargeted Lu-177-HP2. The uptake of both Ga-68-Z(HER2:342)SR-HP1 and Ga-68-HP2 depended on Her2-expression level providing clear discrimination of between tumors with high and low Her2 expression. Tumor uptake of Ga-68-HP2 correlated better with the uptake of Lu-177-HP2 than the uptake of Ga-68 Z(HER2:342) SR-HP1. The use of Ga-68-HP2 as a theranostics counterpart would be preferable approach for clinical translation.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP, 2018
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:uu:diva-360010 (URN)10.1038/s41598-018-27886-0 (DOI)000436078500006 ()29942011 (PubMedID)
Funder
Swedish Research Council, 2015-02353Swedish Research Council, 2015-02509Swedish Research Council, 2016-05207VINNOVA, 2015-02509Swedish Cancer Society, CAN 2015/350Swedish Cancer Society, 2014/474Swedish Society for Medical Research (SSMF)
Available from: 2018-09-13 Created: 2018-09-13 Last updated: 2018-09-13Bibliographically approved
Lindström, E., Sundin, A., Trampal, C., Lindsjö, L., Ilan, E., Danfors, T., . . . Lubberink, M. (2018). Evaluation of penalized likelihood estimation reconstruction on a digital time-of-flight PET/CT scanner for 18F-FDG whole-body examinations. Journal of Nuclear Medicine, 59(7), 1152-1158
Open this publication in new window or tab >>Evaluation of penalized likelihood estimation reconstruction on a digital time-of-flight PET/CT scanner for 18F-FDG whole-body examinations
Show others...
2018 (English)In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 59, no 7, p. 1152-1158Article in journal (Refereed) Published
Abstract [en]

The resolution and quantitative accuracy of PET are highly influenced by the reconstruction method. Penalized-likelihood estimation algorithms allow for fully convergent iterative reconstruction, generating a higher image contrast than ordered-subsets expectation maximization (OSEM) while limiting noise. In this study, a type of penalized reconstruction known as block-sequential regularized expectation maximization (BSREM) was compared with time-of-flight OSEM (TOF OSEM). Various strengths of noise penalization factor β were tested along with various acquisition durations and transaxial fields of view (FOVs) with the aim of evaluating the performance and clinical use of BSREM for 18F-FDG PET/CT, both quantitatively and in a qualitative visual evaluation. Methods: Eleven clinical whole-body 18F-FDG PET/CT examinations acquired on a digital TOF PET/CT scanner were included. The data were reconstructed using BSREM with point-spread function recovery and β-factors of 133, 267, 400, and 533—and using TOF OSEM with point-spread function—for various acquisition times per bed position and various FOVs. Noise level, signal-to-noise ratio (SNR), signal-to-background ratio (SBR), and SUV were analyzed. A masked evaluation of visual image quality, rating several aspects, was performed by 2 nuclear medicine physicians to complement the analysis. Results: The lowest levels of noise were reached with the highest β-factor, resulting in the highest SNR, which in turn resulted in the lowest SBR. A β-factor of 400 gave noise equivalent to TOF OSEM but produced a significant increase in SUVmax (11%), SNR (22%), and SBR (12%). BSREM with a β-factor of 533 at a decreased acquisition duration (2 min/bed position) was comparable to TOF OSEM at a full acquisition duration (3 min/bed position). Reconstructed FOV had an impact on BSREM outcome measures; SNR increased and SBR decreased when FOV was shifted from 70 to 50 cm. The evaluation of visual image quality resulted in similar scores for reconstructions, although a β-factor of 400 obtained the highest mean whereas a β-factor of 267 was ranked best in overall image quality, contrast, sharpness, and tumor detectability. Conclusion: In comparison with TOF OSEM, penalized BSREM reconstruction resulted in an increased tumor SUVmax and an improved SNR and SBR at a matched level of noise. BSREM allowed for a shorter acquisition than TOF OSEM, with equal image quality.

Keywords
FDG, Image Reconstruction, Molecular Imaging, PET/CT, block-sequential regularized expectation maximization, image reconstruction, penalization factor
National Category
Medical and Health Sciences Medical Image Processing
Identifiers
urn:nbn:se:uu:diva-343272 (URN)10.2967/jnumed.117.200790 (DOI)000437237200037 ()29449445 (PubMedID)
Available from: 2018-02-26 Created: 2018-02-26 Last updated: 2018-09-18Bibliographically approved
von Below, C., Wassberg, C., Grzegorek, R., Kullberg, J., Gestblom, C., Sörensen, J., . . . Ahlström, H. (2018). MRI and 11C acetate PET/CT for prediction of regional lymph node metastasis in newly diagnosed prostate cancer. Radiology and Oncology, 52(1), 90-97
Open this publication in new window or tab >>MRI and 11C acetate PET/CT for prediction of regional lymph node metastasis in newly diagnosed prostate cancer
Show others...
2018 (English)In: Radiology and Oncology, ISSN 1318-2099, E-ISSN 1581-3207, Vol. 52, no 1, p. 90-97Article in journal (Refereed) Published
Abstract [en]

Background:

C acetate PET/CT parameters in predicting regional lymph node (LN) metastasis of newly diagnosed prostate cancer (PCa).

Patients and methods:

C acetate PET/CT (53 patients) before extended pelvic LN dissection. For each patient the visually most suspicious LN was assessed for mean apparent diffusion coefficient (ADCmean), maximal standardized uptake value (SUVmax), size and shape and the primary tumour for T stage on MRI and ADCmean and SUVmax in the index lesion. The variables were analysed in simple and multiple logistic regression analysis.

Results:

All variables, except ADCmean and SUVmax of the primary tumor, were independent predictors of LN metastasis. In multiple logistic regression analysis the best model was ADCmean in combintion with MRI T-stage where both were independent predictors of LN metastasis, this combination had an AUC of 0.81 which was higher than the AUC of 0.65 for LN ADCmean alone and the AUC of 0.69 for MRI T-stage alone.

Conclusions:

Several quantitative and qualitative imaging parameters are predictive of regional LN metastasis in PCa. The combination of ADCmean in lymph nodes and T-stage on MRI was the best model in multiple logistic regression with increased predictive value compared to lymph node ADCmean and T-stage on MRI alone.

Keywords
diffusion magnetic resonance imaging, lymph node excision, lymph nodes, positronemission tomography, prostatic neoplasm
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:uu:diva-346994 (URN)10.2478/raon-2018-0001 (DOI)000426260900012 ()29520210 (PubMedID)
Available from: 2018-03-23 Created: 2018-03-23 Last updated: 2018-05-16Bibliographically approved
Christersson, A., Larsson, S. & Sörensen, J. (2018). Presurgical localization of infected avascular bone segments in chronic complicated posttraumatic osteomyelitis in the lower extremity using dual-tracer PET/CT.. EJNMMI Research, 8, Article ID 65.
Open this publication in new window or tab >>Presurgical localization of infected avascular bone segments in chronic complicated posttraumatic osteomyelitis in the lower extremity using dual-tracer PET/CT.
2018 (English)In: EJNMMI Research, ISSN 2191-219X, E-ISSN 2191-219X, Vol. 8, article id 65Article in journal (Refereed) Published
Abstract [en]

BACKGROUND: Localizing and removing the infected sequestrum in long-standing trauma-related chronic osteomyelitis remains a clinical challenge. PET/CT with 18F-fluorodeoxyglucose (FDG-PET) has a high sensitivity for chronic osteomyelitis and 18F-sodium-fluoride PET/CT (NaF-PET) has a high specificity for identifying non-viable bone. Combining both, high signal on FDG-PET in the bone without signal on NaF-PET could potentially guide surgery to become more precise with curative intent. Eight patients with long-standing (average 22 years) posttraumatic (n = 7) or postoperative (n = 1) chronic osteomyelitis in the lower extremity and with multiple futile attempts for curative surgery were recruited in this prospective pilot study. FDG-PET and NaF-PET were performed within a week in between using standard scanning protocols. The most likely location of the culprit sequestrum was identified and was surgically removed. Based on perioperative tissue cultures, antibiotics were given for 6-8 months. Dual-tracer (FDG- and NaF-PET/CT) was performed again after 12 months to rule out persisting signs of infection.

RESULTS: A likely culprit sequestrum could preoperatively be identified by dual-tracer PET in all eight cases and in four cases an additional sequestrum was identified at a location with no clinical sign of infection. The infected necrotic tissue was removed during surgery. Follow-up dual-tracer PET revealed no signs of persistent infection. All patients recovered with no clinical signs of recurrence for a follow-up of mean 4.5 (SD 1.3) years.

CONCLUSIONS: Dual-tracer PET/CT with FDG and NaF allows successful precise surgery with curative intent in patients with long-standing complicated posttraumatic chronic osteomyelitis with severely deranged anatomy.

Keywords
Chronic osteomyelitis, FDG-PET/CT, NaF-PET/CT, Preoperative planning, Surgical treatment
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:uu:diva-357426 (URN)10.1186/s13550-018-0426-0 (DOI)000439318100002 ()30032355 (PubMedID)
Available from: 2018-08-16 Created: 2018-08-16 Last updated: 2018-10-03Bibliographically approved
Krasniqi, A., D'Huyvetter, M., Devoogdt, N., Frejd, F. Y., Sörensen, J., Orlova, A., . . . Tolmachev, V. (2018). Same-day imaging using small proteins: Clinical experience and translational prospects in oncology.. Journal of Nuclear Medicine, 59(6), 885-891
Open this publication in new window or tab >>Same-day imaging using small proteins: Clinical experience and translational prospects in oncology.
Show others...
2018 (English)In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 59, no 6, p. 885-891Article in journal (Refereed) Published
Abstract [en]

Imaging of expression of therapeutic targets may enable patients' stratification for targeted treatments. The use of small radiolabeled probes based on the heavy-chain variable region of heavy-chain-only immunoglobulins or non-immunoglobulin scaffolds permits rapid localization of radiotracers in tumors and rapid clearance from normal tissues. This makes high-contrast imaging possible on the day of injection. This mini-review focuses on small proteins for radionuclide-based imaging that would allow same-day imaging, with the emphasis on clinical applications and promising preclinical developments within the field of oncology.

Keywords
Animal Imaging, Molecular Imaging, Oncology: Breast, affibody, nanobody, radionuclide molecular imaging, scaffold proteins
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:uu:diva-351165 (URN)10.2967/jnumed.117.199901 (DOI)000435102600013 ()29545374 (PubMedID)
Funder
Swedish Cancer SocietySwedish Research Council
Note

De 2 sista författarna delar sistaförfattarskapet.

Available from: 2018-05-21 Created: 2018-05-21 Last updated: 2018-08-24Bibliographically approved
Lilja, J., Leuzy, A., Chiotis, K., Savitcheva, I., Sörensen, J. & Nordberg, A. (2018). Spatial normalization of [18F]flutemetamol PET images utilizing an adaptive principal components template.. Journal of Nuclear Medicine, Article ID jnumed.118.207811.
Open this publication in new window or tab >>Spatial normalization of [18F]flutemetamol PET images utilizing an adaptive principal components template.
Show others...
2018 (English)In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, article id jnumed.118.207811Article in journal (Refereed) Epub ahead of print
Abstract [en]

Though currently approved for visual assessment only, there is evidence to suggest that quantification of amyloid-β (Aβ) PET images may reduce inter-reader variability and aid in the monitoring of treatment effects in clinical trials. Quantification typically involves a regional atlas in standard space, requiring PET images to be spatially normalized. Different uptake patterns in Aβ-positive and Aβ-negative subjects, however, makes spatial normalization challenging. In this study we propose a method to spatially normalize [18F]flutemetamol images, using a synthetic template based on principal component images to overcome these challenges. Methods: [18F]Flutemetamol PET and corresponding MR images from a phase II trial (n = 70), including subjects ranging from Aβ-negative to Aβ-positive, were spatially normalized to standard space using an MR driven registration method (SPM12). [18F]Flutemetamol images were then intensity normalized using the pons as reference region. Principal component images were calculated from the intensity normalized images. A linear combination of the first two principal component images was then used to model a synthetic template, spanning the whole range from Aβ-negative to Aβ-positive. The synthetic template was then incorporated in our registration method, where the optimal template was calculated as part of the registration process, providing a PET only driven registration method. Evaluation of the method was done in two steps. First, co-registered gray matter masks generated using SPM12 were spatially normalized using the PET and MR driven methods, respectively. The spatially normalized gray matter masks were then visually inspected and quantified. Secondly, to quantitatively compare the two registration methods, additional data from an ongoing study were spatially normalized using both methods with correlation analysis on the resulting cortical SUVR values. Results: All scans were successfully spatially normalized using the proposed method, with no manual adjustments performed. Both visual and quantitative comparison between the PET and MR driven methods showed high agreement in cortical regions. [18F]Flutemetamol quantification showed strong agreement between the SUVR values for the PET and MR driven methods (R2=0.996; pons reference region). Conclusion: The principal component template registration method allows for robust and accurate registration of [18F]flutemetamol images to a standardized template space, without the need for an MR image.

Keywords
Alzheimer’s disease, Molecular Imaging, Neurology, PET, [18F]flutemetamol, adaptive template, amyloid-&#946;
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:uu:diva-357431 (URN)10.2967/jnumed.118.207811 (DOI)29903930 (PubMedID)
Available from: 2018-08-16 Created: 2018-08-16 Last updated: 2018-12-05Bibliographically approved
Fällmar, D., Lilja, J., Danfors, T., Kilander, L., Iyer, V., Lubberink, M., . . . Sörensen, J. (2018). Z-score maps from low-dose 18F-FDG PET of the brain in neurodegenerative dementia.. American Journal of Nuclear Medicine and Molecular Imaging, 8(4), 239-246
Open this publication in new window or tab >>Z-score maps from low-dose 18F-FDG PET of the brain in neurodegenerative dementia.
Show others...
2018 (English)In: American Journal of Nuclear Medicine and Molecular Imaging, ISSN 2160-8407, Vol. 8, no 4, p. 239-246Article in journal (Refereed) Published
Abstract [en]

Neuroimaging is a central part of diagnostic work-up of patients with suspected neurodegenerative disease. FDG-PET can reveal pathological changes earlier and more reliably than morphological imaging. Diagnostic accuracy can be improved by constructing 3D SSP Z-score maps, showing patterns of significant deficits. During FDG-PET, the subject receives a moderate but not insignificant dose of ionizing radiation, and a dose reduction with retained image quality is desirable. With lower dose, repeated examinations can become a useful tool for monitoring disease progress and potential effects of disease-modifying interventions. The aim of this study was to evaluate Z-maps created from low-dose and normal-dose FDG-PET of the brain, with quantitative and qualitative methods. Nine patients with neurodegenerative disorders were prospectively enrolled and nine age-matched controls were recruited through advertising. All subjects (n=18) underwent two FDG-PET scans on separate occasions; a routine and a low-dose scan. The routine dosage of FDG was 3 MBq/kg, and low dosage was 0.75 MBq/kg. 3D-SSP images showing Z-scores of < -1.96 were created from 10-minute summations. The study was comprised of a quantitative part comparing the Z-scores, and a qualitative part where experienced nuclear medicine specialists visually assessed the images. Regarding the quantitative part, Bland-Altman analysis showed a slight constant bias (0.206). Regarding qualitative discrimination between patients and controls, the performance between normal- and low-dose were equal, both showing 72% sensitivity, 83% specificity and 78% accuracy. In this study, visual assessment of 3D-SSP Z-score maps from low-dose FDG-PET provided diagnostic information highly comparable to normal-dose, with minor quantitative discrepancies.

Keywords
FDG, PET, methodology, neurodegeneration, neuroimaging, radiation
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:uu:diva-362198 (URN)000444491000001 ()30245916 (PubMedID)
Available from: 2018-10-02 Created: 2018-10-02 Last updated: 2018-11-15Bibliographically approved
Tovedal, T., Lubberink, M., Morell, A., Estrada, S., Golla, S. S., Myrdal, G., . . . Lennmyr, F. (2017). Blood Flow Quantitation by Positron Emission Tomography During Selective Antegrade Cerebral Perfusion. Annals of Thoracic Surgery, 103(2), 610-616
Open this publication in new window or tab >>Blood Flow Quantitation by Positron Emission Tomography During Selective Antegrade Cerebral Perfusion
Show others...
2017 (English)In: Annals of Thoracic Surgery, ISSN 0003-4975, E-ISSN 1552-6259, Vol. 103, no 2, p. 610-616Article in journal (Refereed) Published
Abstract [en]

BACKGROUND: Perfusion strategies during aortic surgery usually comprise hypothermic circulatory arrest (HCA), often combined with selective antegrade cerebral perfusion (SACP) or retrograde cerebral perfusion. Cerebral blood flow (CBF) is a fundamental parameter for which the optimal level has not been clearly defined. We sought to determine the CBF at a pump flow level of 6 mL/kg/min, previously shown likely to provide adequate SACP at 20°C in pigs.

METHODS: Repeated positron emission tomography (PET) scans were used to quantify the CBF and glucose metabolism throughout HCA and SACP including cooling and rewarming. Eight pigs on cardiopulmonary bypass were assigned to either HCA alone (n = 4) or HCA+SACP (n = 4). The CBF was measured by repeated [(15)O]water PET scans from baseline to rewarming. The cerebral glucose metabolism was examined by [(18)F]fluorodeoxyglucose PET scans after rewarming to 37°C.

RESULTS: Cooling to 20°C decreased the cortical CBF from 0.31 ± 0.06 at baseline to 0.10 ± 0.02 mL/cm(3)/min (p = 0.008). The CBF was maintained stable by SACP of 6 mL/kg/min during 45 minutes. After rewarming to 37°C, the mean CBF increased to 0.24 ± 0.07 mL/cm(3)/min, without significant differences between the groups at any time-point exclusive of the HCA period. The net cortical uptake (Ki) of [(18)F]fluorodeoxyglucose after rewarming showed no significant difference between the groups.

CONCLUSIONS: Cooling autoregulated the CBF to 0.10 mL/cm(3)/min, and 45 minutes of SACP at 6 mL/kg/min maintained the CBF in the present model. Cerebral glucose metabolism after rewarming was similar in the study groups.

National Category
Surgery
Identifiers
urn:nbn:se:uu:diva-302609 (URN)10.1016/j.athoracsur.2016.06.029 (DOI)000397165400067 ()27592601 (PubMedID)
Available from: 2016-09-07 Created: 2016-09-07 Last updated: 2018-09-03Bibliographically approved
Nordström, J., Kero, T., Harms, H. J., Widström, C., Flachskampf, F., Sörensen, J. & Lubberink, M. (2017). Calculation of left ventricular volumes and ejection fraction from dynamic cardiac-gated 15O-water PET/CT: 5D-PET. EJNMMI Physics, 4(1), Article ID 26.
Open this publication in new window or tab >>Calculation of left ventricular volumes and ejection fraction from dynamic cardiac-gated 15O-water PET/CT: 5D-PET
Show others...
2017 (English)In: EJNMMI Physics, ISSN 2197-7364, E-ISSN 2191-219X, Vol. 4, no 1, article id 26Article in journal (Refereed) Published
Abstract [en]

BACKGROUND: Quantitative measurement of myocardial blood flow (MBF) is of increasing interest in the clinical assessment of patients with suspected coronary artery disease (CAD). (15)O-water positron emission tomography (PET) is considered the gold standard for non-invasive MBF measurements. However, calculation of left ventricular (LV) volumes and ejection fraction (EF) is not possible from standard (15)O-water uptake images. The purpose of the present work was to investigate the possibility of calculating LV volumes and LVEF from cardiac-gated parametric blood volume (V B) (15)O-water images and from first pass (FP) images. Sixteen patients with mitral or aortic regurgitation underwent an eight-gate dynamic cardiac-gated (15)O-water PET/CT scan and cardiac MRI. V B and FP images were generated for each gate. Calculations of end-systolic volume (ESV), end-diastolic volume (EDV), stroke volume (SV) and LVEF were performed with automatic segmentation of V B and FP images, using commercially available software. LV volumes and LVEF were calculated with surface-, count-, and volume-based methods, and the results were compared with gold standard MRI.

RESULTS: Using V B images, high correlations between PET and MRI ESV (r = 0.89, p < 0.001), EDV (r = 0.85, p < 0.001), SV (r = 0.74, p = 0.006) and LVEF (r = 0.72, p = 0.008) were found for the volume-based method. Correlations for FP images were slightly, but not significantly, lower than those for V B images when compared to MRI. Surface- and count-based methods showed no significant difference compared with the volume-based correlations with MRI. The volume-based method showed the best agreement with MRI with no significant difference on average for EDV and LVEF but with an overestimation of values for ESV (14%, p = 0.005) and SV (18%, p = 0.004) when using V B images. Using FP images, none of the parameters showed a significant difference from MRI. Inter-operator repeatability was excellent for all parameters (ICC > 0.86, p < 0.001).

CONCLUSION: Calculation of LV volumes and LVEF from dynamic (15)O-water PET is feasible and shows good correlation with MRI. However, the analysis method is laborious, and future work is needed for more automation to make the method more easily applicable in a clinical setting.

National Category
Cardiac and Cardiovascular Systems Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:uu:diva-333781 (URN)10.1186/s40658-017-0195-2 (DOI)000415372700001 ()29138942 (PubMedID)
Available from: 2017-11-16 Created: 2017-11-16 Last updated: 2018-02-22Bibliographically approved
Organisations

Search in DiVA

Show all publications