uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Alternative names
Publications (10 of 590) Show all publications
Sun, R., Zhang, P., Bajnóczi, É. G., Neagu, A., Tai, C.-W., Persson, I., . . . Cheung, O. (2018). Amorphous Calcium Carbonate Constructed from Nanoparticle Aggregates with Unprecedented Surface Area and Mesoporosity. ACS Applied Materials and Interfaces, 10(25), 21556-21564
Open this publication in new window or tab >>Amorphous Calcium Carbonate Constructed from Nanoparticle Aggregates with Unprecedented Surface Area and Mesoporosity
Show others...
2018 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 25, p. 21556-21564Article in journal (Refereed) Published
Abstract [en]

Amorphous calcium carbonate (ACC), with the highest reported specific surface area of all current forms of calcium carbonate (over 350 m2 g-1), was synthesized using a surfactant-free, one-pot method. Electron microscopy, helium pycnometry, and nitrogen sorption analysis revealed that this highly mesoporous ACC, with a pore volume of ∼0.86 cm3 g-1 and a pore-size distribution centered at 8-9 nm, is constructed from aggregated ACC nanoparticles with an estimated average diameter of 7.3 nm. The porous ACC remained amorphous and retained its high porosity for over 3 weeks under semi-air-tight storage conditions. Powder X-ray diffraction, large-angle X-ray scattering, infrared spectroscopy, and electron diffraction exposed that the porous ACC did not resemble any of the known CaCO3 structures. The atomic order of porous ACC diminished at interatomic distances over 8 Å. Porous ACC was evaluated as a potential drug carrier of poorly soluble substances in vitro. Itraconazole and celecoxib remained stable in their amorphous forms within the pores of the material. Drug release rates were significantly enhanced for both drugs (up to 65 times the dissolution rates for the crystalline forms), and supersaturation release of celecoxib was also demonstrated. Citric acid was used to enhance the stability of the ACC nanoparticles within the aggregates, which increased the surface area of the material to over 600 m2 g-1. This porous ACC has potential for use in various applications where surface area is important, including adsorption, catalysis, medication, and bone regeneration.

Keywords
amorphous calcium carbonate, drug delivery, large-angle X-ray scattering, nanoparticles, porous materials
National Category
Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
urn:nbn:se:uu:diva-358032 (URN)10.1021/acsami.8b03939 (DOI)000437811400059 ()29862822 (PubMedID)
Funder
Knut and Alice Wallenberg FoundationSwedish Research Council, 2014-3929
Available from: 2018-08-23 Created: 2018-08-23 Last updated: 2018-09-21Bibliographically approved
Strömme, M. (2018). Be ready for new opportunities! Nanotechnology will change our way of living. In: The Swedsih Lunch 2018: . Paper presented at World Economic Forum. Davos 22-24/1 2018. The Swedish Lunch 2018..
Open this publication in new window or tab >>Be ready for new opportunities! Nanotechnology will change our way of living
2018 (English)In: The Swedsih Lunch 2018, 2018Conference paper, Oral presentation with published abstract (Refereed)
National Category
Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
urn:nbn:se:uu:diva-339080 (URN)
Conference
World Economic Forum. Davos 22-24/1 2018. The Swedish Lunch 2018.
Available from: 2018-01-15 Created: 2018-01-15 Last updated: 2018-02-15Bibliographically approved
Rocha, I., Lindh, J., Hong, J., Strömme, M., Mihranyan, A. & Ferraz, N. (2018). Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads. Molecules, 23(3), Article ID 601.
Open this publication in new window or tab >>Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads
Show others...
2018 (English)In: Molecules, ISSN 1420-3049, E-ISSN 1420-3049, Vol. 23, no 3, article id 601Article in journal (Refereed) Published
Abstract [en]

Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels), coagulation activation (thrombin-antithrombin (TAT) levels) and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.

Keywords
sulfonated beads; Cladophora nanocellulose; hemocompatibility; coagulation; complement system
National Category
Nano Technology
Identifiers
urn:nbn:se:uu:diva-346209 (URN)10.3390/molecules23030601 (DOI)
Funder
Knut and Alice Wallenberg Foundation
Available from: 2018-03-15 Created: 2018-03-15 Last updated: 2018-07-27Bibliographically approved
Ruan, C., Wang, Z., Lindh, J. & Strömme, M. (2018). Carbonized cellulose beads for efficient capacitive energy storage. Cellulose (London), 25(6), 3545-3556
Open this publication in new window or tab >>Carbonized cellulose beads for efficient capacitive energy storage
2018 (English)In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 25, no 6, p. 3545-3556Article in journal (Refereed) Published
Abstract [en]

Natural biomaterials, including polysaccharides and amino acids, provide a sustainable source of functional carbon materials for electric energy storage applications. We present a one-pot reductive amination process to functionalize 2,3-dialdehyde cellulose (DAC) beads with chitosan and l-cysteine to provide single (N)- and dual (N/S)-doped materials. The functionalization enables the physicochemical properties of the materials to be tailored and can provide carbon precursors with heteroatom doping suitable for energy storage applications. Scanning electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis were used to characterize the changes to the beads after functionalization and carbonization. The results of X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy verified that the doping was effective, while the nitrogen sorption isotherms and pore-size distributions of the carbonized beads showed the effects of doping with different hierarchical porosities. In the electrochemical experiments, three kinds of carbon beads [pyrolyzed from DAC, chitosan-crosslinked DAC (CS-DAC) and l-cysteine-functionalized DAC] were used as electrode materials. Electrodes of carbonized CS-DAC beads had a specific capacitance of up to 242 F g(-1) at a current density of 1 A g(-1). These electrodes maintained a capacitance retention of 91.5% after 1000 charge/discharge cycles, suggesting excellent cycling stability. The results indicate that reductive amination of DAC is an effective route for heteroatom doping of carbon materials to be used as electrode active materials for energy storage.

Keywords
2, 3-Dialdehyde cellulose (DAC) beads, Nitrogen doping, Nitrogen/sulfur doping, Supercapacitor
National Category
Materials Chemistry Physical Chemistry Engineering and Technology
Identifiers
urn:nbn:se:uu:diva-357553 (URN)10.1007/s10570-018-1811-6 (DOI)000432990300030 ()
Funder
Swedish Foundation for Strategic Research Stiftelsen Olle Engkvist Byggmästare
Available from: 2018-08-17 Created: 2018-08-17 Last updated: 2018-08-17Bibliographically approved
Strömme, M. (2018). Den stora ändringen i det lilla. Nanotenologin ändrar industrin. In: DnB (Ed.), Industrikonferansen 2018: Risk and Reward. Paper presented at Industrikonferansen 2018; Risk and Reward. Oslo Norway 16/1 2018..
Open this publication in new window or tab >>Den stora ändringen i det lilla. Nanotenologin ändrar industrin
2018 (Swedish)In: Industrikonferansen 2018: Risk and Reward / [ed] DnB, 2018Conference paper, Oral presentation with published abstract (Refereed)
National Category
Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
urn:nbn:se:uu:diva-339079 (URN)
Conference
Industrikonferansen 2018; Risk and Reward. Oslo Norway 16/1 2018.
Available from: 2018-01-15 Created: 2018-01-15 Last updated: 2018-02-15Bibliographically approved
Strömme, M. (2018). Det sker något stort i det lilla: Nanoteknologin ändrar industrin och våra liv. In: Nordea AB (Ed.), Group Treassure Forum 2018: . Paper presented at Group Treassure Forum 2018, 31/5 2018 Stockholm. Stockholm
Open this publication in new window or tab >>Det sker något stort i det lilla: Nanoteknologin ändrar industrin och våra liv
2018 (Swedish)In: Group Treassure Forum 2018 / [ed] Nordea AB, Stockholm, 2018Conference paper, Oral presentation with published abstract (Other academic)
Place, publisher, year, edition, pages
Stockholm: , 2018
National Category
Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
urn:nbn:se:uu:diva-351916 (URN)
Conference
Group Treassure Forum 2018, 31/5 2018 Stockholm
Available from: 2018-05-31 Created: 2018-05-31 Last updated: 2018-09-19Bibliographically approved
Strömme, M. (2018). Det sker något stort i det lilla: nanoteknologin ändrar samhället och vården. In: Klinisk kemi och farmakologi i Region Uppsala (Ed.), VårmöteKlinisk Kem 2018: . Paper presented at Vårmöte Klinisk Kemi. Uppsala Konsert & Kongress (UKK), 24-26/4 2018.
Open this publication in new window or tab >>Det sker något stort i det lilla: nanoteknologin ändrar samhället och vården
2018 (Swedish)In: VårmöteKlinisk Kem 2018 / [ed] Klinisk kemi och farmakologi i Region Uppsala, 2018Conference paper, Oral presentation with published abstract (Other academic)
National Category
Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
urn:nbn:se:uu:diva-349145 (URN)
Conference
Vårmöte Klinisk Kemi. Uppsala Konsert & Kongress (UKK), 24-26/4 2018
Available from: 2018-04-22 Created: 2018-04-22 Last updated: 2018-05-31Bibliographically approved
Xu, C., Ruan, C.-Q., Li, Y., Lindh, J. & Strömme, M. (2018). High-performance activated carbons synthesized from nanocellulose for CO2 capture and extremely selective removal of volatile organic compounds. Advanced Sustainable Systems, 2(2), Article ID 1700147.
Open this publication in new window or tab >>High-performance activated carbons synthesized from nanocellulose for CO2 capture and extremely selective removal of volatile organic compounds
Show others...
2018 (English)In: Advanced Sustainable Systems, E-ISSN 2366-7486, Vol. 2, no 2, article id 1700147Article in journal (Refereed) Published
Abstract [en]

A series of sustainable activated carbons (ACs) with large surface areas and tunable pore sizes is synthesized from Cladophora cellulose and its chemically modified derivatives in a one-step physical carbonization/activation process. The molecular structure of the cellulose precursors and the carbonization/activation atmosphere (N2 or CO2) significantly influence the pore structure of the ACs. When using oxidized cellulose and its further cross-linkages as the precursor, the ACs have a large volume of ultramicropores (pore diameter < 0.8 nm). Activation in CO2 results in ACs with surface areas up to 1241 m2 g−1. These ACs have a high CO2 uptake capacity (2.29 mmol g−1 at 0.15 bar, 5.52 mmol g−1 at 1 bar; 273 K) and a high CO2–over–N2 selectivity (42 at 273 K). In addition, the capacity of the ACs to adsorb vapors of volatile organic compounds (VOCs) is remarkable, with values up to 0.97 mmol g−1 at very low VOC concentrations (200 ppmv). The ACs have ultrahigh VOCs–over–N2 selectivity up to 9.35 × 103 at 293 K for 0.02 vol%/99.8 vol% of benzene/N2 mixture. It is anticipated that these ACs will be useful as sorbents for the postcombustion capture of CO2 and for indoor removal and direct air capture of various VOCs.

National Category
Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
urn:nbn:se:uu:diva-333723 (URN)10.1002/adsu.201700147 (DOI)000424712800009 ()
Available from: 2017-11-16 Created: 2017-11-16 Last updated: 2018-03-28Bibliographically approved
Basu, A., Heitz, K., Strömme, M., Welch, K. & Ferraz, N. (2018). Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications. Carbohydrate Polymers, 181, 345-350
Open this publication in new window or tab >>Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications
Show others...
2018 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 181, p. 345-350Article in journal (Refereed) Published
Abstract [en]

Development of advanced dressings with antimicrobial properties for the treatment of infected wounds is an important approach in the fight against evolution of antibiotic resistant bacterial strains. Herein, the effects of ion-crosslinked nanocellulose hydrogels on bacteria commonly found in infected wounds were investigated in vitro. By using divalent calcium or copper ions as crosslinking agents, different antibacterial properties against the bacterial strains Staphylococcus epidermidis and Pseudomonas aeruginosa were obtained. Calcium crosslinked hydrogels were found to retard S. epidermidis growth (up to 266% increase in lag time, 36% increase in doubling time) and inhibited P. aeruginosa biofilm formation, while copper crosslinked hydrogels prevented S. epidermidis growth and were bacteriostatic towards P. aeruginosa (49% increase in lag time, 78% increase in doubling time). The wound dressing candidates furthermore displayed barrier properties towards both S. epidermidis and P. aeruginosa, hence making them interesting for further development of advanced wound dressings with tunable antibacterial properties.

Keywords
Nanofibrillated cellulose, Biofilm, Wound dressing, Infected wound
National Category
Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
urn:nbn:se:uu:diva-333382 (URN)10.1016/j.carbpol.2017.10.085 (DOI)000418661000041 ()29253982 (PubMedID)
Funder
Swedish Research Council Formas
Available from: 2017-11-13 Created: 2017-11-13 Last updated: 2018-02-27Bibliographically approved
Strömme, M. (2018). Nanocellulose creating novel hybrid materials for life science and energy storage applications. In: PulPaper (Ed.), PulPaper2018: . Paper presented at PulPaper 2018, 30/5 2018 Helsinki Finland.
Open this publication in new window or tab >>Nanocellulose creating novel hybrid materials for life science and energy storage applications
2018 (English)In: PulPaper2018 / [ed] PulPaper, 2018Conference paper, Oral presentation with published abstract (Other academic)
National Category
Other Materials Engineering
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
urn:nbn:se:uu:diva-351915 (URN)
Conference
PulPaper 2018, 30/5 2018 Helsinki Finland
Available from: 2018-05-31 Created: 2018-05-31 Last updated: 2018-09-20Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-5496-9664

Search in DiVA

Show all publications