uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Alternative names
Publications (10 of 352) Show all publications
Pujari-Palmer, M., Guo, H., Wenner, D., Autefage, H., Spicer, C. D., Stevens, M. M., . . . Engqvist, H. (2018). A Novel Class of Injectable Bioceramics that Glue Tissues and Biomaterials. Materials, 11(12), Article ID 2492.
Open this publication in new window or tab >>A Novel Class of Injectable Bioceramics that Glue Tissues and Biomaterials
Show others...
2018 (English)In: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 11, no 12, article id 2492Article in journal (Refereed) Published
Abstract [en]

Calcium phosphate cements (CPCs) are clinically effective void fillers that are capable of bridging calcified tissue defects and facilitating regeneration. However, CPCs are completely synthetic/inorganic, unlike the calcium phosphate that is found in calcified tissues, and they lack an architectural organization, controlled assembly mechanisms, and have moderate biomechanical strength, which limits their clinical effectiveness. Herein, we describe a new class of bioinspired CPCs that can glue tissues together and bond tissues to metallic and polymeric biomaterials. Surprisingly, alpha tricalcium phosphate cements that are modified with simple phosphorylated amino acid monomers of phosphoserine (PM-CPCs) bond tissues up to 40-fold stronger (2.5–4 MPa) than commercial cyanoacrylates (0.1 MPa), and 100-fold stronger than surgical fibrin glue (0.04 MPa), when cured in wet-field conditions. In addition to adhesion, phosphoserine creates other novel properties in bioceramics, including a nanoscale organic/inorganic composite microstructure, and templating of nanoscale amorphous calcium phosphate nucleation. PM-CPCs are made of the biocompatible precursors calcium, phosphate, and amino acid, and these represent the first amorphous nano-ceramic composites that are stable in liquids.

Place, publisher, year, edition, pages
Basel, Switzerland: , 2018
Keywords
cement; tissue adhesive; phosphoserine; self-assembly; amorphous calcium phosphate (ACP); correlation nuclear magnetic resonance (NMR) spectroscopy; bioinspired; biomaterial
National Category
Composite Science and Engineering Ceramics Medical Materials Biomaterials Science
Research subject
Engineering Science with specialization in Materials Science
Identifiers
urn:nbn:se:uu:diva-369970 (URN)10.3390/ma11122492 (DOI)
Funder
Swedish Foundation for Strategic Research , RMA15-0110
Available from: 2018-12-18 Created: 2018-12-18 Last updated: 2018-12-18Bibliographically approved
Qin, T., Qin, W., Ma, M., Zhang, D., Hu, S., Zhang, P., . . . Engqvist, H. (2018). A novel rapid synthesis, characterization and applications of calcium phosphate nanospheres from Baltic seawater. Ceramics International, 44(8), 9076-9079
Open this publication in new window or tab >>A novel rapid synthesis, characterization and applications of calcium phosphate nanospheres from Baltic seawater
Show others...
2018 (English)In: Ceramics International, ISSN 0272-8842, E-ISSN 1873-3956, Vol. 44, no 8, p. 9076-9079Article in journal (Refereed) Published
Abstract [en]

Due to the considerable high bio-compatibility, calcium phosphate nanoparticles are widely used in biomedical applications. This study proposes a novel strategy for low-cost manufacturing calcium phosphate nanoporous spheres. The controlled reaction only took less than five minutes, when using Baltic seawater with the dissolved calcium concentration of 2.2 mM as the calcium resources. Porous nanospheres were obtained, with spheres ranging from 50 to 130 nm. The obtained nanospheres possess high drug-loading capacity and exhibit sustained release and pH-dependent properties. In addition, this method provides a general efficient strategy to synthesize other low-cost inorganic nanospheres from seawater.

Place, publisher, year, edition, pages
ELSEVIER SCI LTD, 2018
Keywords
Seawater, Nanosphere, Low cost, Drug, Calcium phosphate
National Category
Materials Chemistry Engineering and Technology
Identifiers
urn:nbn:se:uu:diva-356619 (URN)10.1016/j.ceramint.2018.02.114 (DOI)000430522200044 ()
Available from: 2018-08-20 Created: 2018-08-20 Last updated: 2018-08-23Bibliographically approved
Luo, J., Engqvist, H. & Persson, C. (2018). A ready-to-use acidic, brushite-forming calcium phosphate cement. Acta Biomaterialia, 81, 304-314
Open this publication in new window or tab >>A ready-to-use acidic, brushite-forming calcium phosphate cement
2018 (English)In: Acta Biomaterialia, ISSN 1742-7061, E-ISSN 1878-7568, Vol. 81, p. 304-314Article in journal (Refereed) Published
Abstract [en]

Premixed calcium phosphate cements have been developed to simplify the usage of traditional calcium phosphate cements and reduce the influence of the setting reaction on the delivery process. However, difficulties in achieving a good cohesion, adequate shelf life and sufficient mechanical properties have so far impeded their use in clinical applications, especially for the more degradable acidic calcium phosphate cements. In this study, a brushite cement was developed from a series of ready-to-use calcium phosphate pastes. The brushite cement paste was formed via mixing of a monocalcium phosphate monohydrate (MCPM) paste and a beta-tricalcium phosphate (beta-TCP) paste with good injectability and adequate shelf life. The MCPM paste was based on a water-immiscible liquid with two surfactants and the beta-Tcp paste on a sodium hyaluronate aqueous solution. The effect of citric acid as a retardant was assessed. Formulations with suitable amounts of citric acid showed good cohesion and mechanical performance with potential for future clinical applications. Statement of Significance Acidic calcium phosphate cements have attracted extensive attention as bone substitute materials due to their ability to resorb faster than basic calcium phosphate cements in vivo. However, traditionally, short working times and low mechanical strength have limited their clinical application. Premixed cements could simplify the clinical use as well as improve property reproducibility, but short shelf lives, low cohesion and low mechanical properties have restricted the development. In this study, an injectable ready-to-use two-phase system consisting of an MCPM paste and a beta-TCP paste was developed based on acidic cement. It shows good cohesion, compressive strength and adequate shelf life, which has the potential to be used in a dual chamber system for simplified and fast filling of bone defects in a minimally invasive manner. This will reduce surgery time, decrease the risk of contamination and ensure repeatable results.

Keywords
Ready-to-use, Acidic calcium phosphate cement, Brushite, Cohesion, Injectability, Shelf life
National Category
Ceramics
Identifiers
urn:nbn:se:uu:diva-372719 (URN)10.1016/j.actbio.2018.10.001 (DOI)000451937500024 ()30291976 (PubMedID)
Funder
Swedish Foundation for Strategic Research
Available from: 2019-01-08 Created: 2019-01-08 Last updated: 2019-01-08Bibliographically approved
Xia, W., Cai, B., Engqvist, H. & Bredenberg, S. (2018). A transdermal drug administration device. JP2018513121A.
Open this publication in new window or tab >>A transdermal drug administration device
2018 (English)Patent (Other (popular science, discussion, etc.))
National Category
Engineering and Technology
Identifiers
urn:nbn:se:uu:diva-372236 (URN)
Patent
JP2018513121A
Available from: 2019-01-07 Created: 2019-01-07 Last updated: 2019-01-07
Vallhov, H., Xia, W., Engqvist, H. & Scheynius, A. (2018). Bioceramic microneedle arrays are able to deliver OVA to dendritic cells in human skin. Journal of materials chemistry. B, 6(42), 6808-6816
Open this publication in new window or tab >>Bioceramic microneedle arrays are able to deliver OVA to dendritic cells in human skin
2018 (English)In: Journal of materials chemistry. B, ISSN 2050-750X, E-ISSN 2050-7518, Vol. 6, no 42, p. 6808-6816Article in journal (Refereed) Published
Abstract [en]

Microneedle-based vaccination into skin has several advantages over vaccination using conventional needles for intramuscular or subcutaneous injections. Microneedle (MN) arrays allow the vaccine to be delivered in a minimally invasive manner and directly into the skin, whereby the skin's superficial immune cells are not by-passed. Additionally, a systemic distribution of the vaccine may be avoided, which implies less side effects and less amount of vaccine needed. For a successful delivery, the needles need to penetrate the stratum corneum and reach the potent network of antigen-presenting dendritic cells (DCs). In this study, we evaluated patches covered with biodegradable ceramic (calcium sulphate) MNs with a tip diameter of approximately 3 μm and with two different lengths (300 and 600 μm) for their ability to penetrate and transfer the model allergen ovalbumin (OVA) into epidermis. MNs with a length of 600 μm (MN-600) and a volume average pore size of 12 ± 1 μm were more efficient in crossing the stratum corneum and to deliver OVA into CD1a+ DCs residing in the epidermis of human ex vivo skin, in comparison to MNs with a length of 300 μm. Quantitative in vitro release studies showed that approximately 90% of the loaded OVA could be released from MN-600 within 1 h. These findings support the further development of ceramic MNs for transcutaneous immunization.

National Category
Medical Materials
Identifiers
urn:nbn:se:uu:diva-366114 (URN)10.1039/c8tb01476k (DOI)000451177200011 ()
Funder
Swedish Research CouncilCancer and Allergy FoundationThe Karolinska Institutet's Research Foundation
Available from: 2018-11-16 Created: 2018-11-16 Last updated: 2019-01-07Bibliographically approved
Skjöldebrand, C., Hulsart Billström, G., Engqvist, H. & Persson, C. (2018). Biocompatibility of co-sputtered Si-Fe-C-N coatings. In: : . Paper presented at 11th annual meeting, Scandinavian Society for Biomaterials, Gullmarsstrand, 25-27 April, 2018.
Open this publication in new window or tab >>Biocompatibility of co-sputtered Si-Fe-C-N coatings
2018 (English)Conference paper, Poster (with or without abstract) (Refereed)
Abstract [en]

INTRODUCTION: Hip joint arthroplasty is a common and increasingly frequent procedure that can relieve pain and restore mobility for individuals with e.g. severe osteoarthritis. While the procedure is common and to a large extent considered successful there is a need to prolong the lifespan of the implants to meet the need of a more active patient group, living longer. One of the main limiting factors behind the implant lifetime is the generation of particulate and ionic wear debris that causes an activation of the immune system. This debris originates in the articulating surfaces and one attempt to minimize the generation of debris is to deposit a ceramic coating on metal implant parts. The hard ceramic coatings, such as silicon nitride, could improve the wear resistance as well as act as a barrier for metal ion release.1,2 The silicon nitride coatings in this study were co-deposited with Fe and C in order to increase the deposition rate and tune the dissolution rate.

METHODS: The coatings were deposited using reactive magnetron sputtering onto silicon wafer substrates. The Si target (99.99% purity) was powered with pulsed DC at 200 W, 200 kHz and 2 µs. The Fe target (99.99% purity) and C target (99.99% purity) were powered by DC aggregates at 25 W and 65 W respectively. The targets were positioned at an angle (38.81˚) and no rotation was used during deposition. Nitrogen was introduced as a reactive gas in addition to the inert Ar at a ratio of 0.3. The deposition time was 10 000 s.

Based on the intended compositional gradients five points (4 corners in a square spaced 40 mm apart and the middle) on the sample were selected. No two points on the sample are identical and could be treated like individual samples.

The composition was determined using ERDA and the surface properties were estimated with atomic force microscopy (AFM) in non-contact mode.

The biocompatibility was assessed in vitro with osteo-progenitor cells from mouse (MC3T3)..

RESULTS: The ERDA investigation revealed clear compositional gradients. The Si content ranged from 26 at.% in point 4 to 34 at.% in point 1. The Fe content changed in a complementary manner with a maximum of 20 at.% in point 4 and a minimum of 10 at.% in point 1. The carbon content ranged from 8 at.% in point 1 to 14 in point 4. In addition to the expected gradients the N content ranged from 40 at.% to 47 at.%.

Despite the differences in composition the surface appearance and roughness remained similar for all the points (1-5) (Figure 1).

The cell study showed surviving cells that adhered to the Si-N-Fe-C surface for all five points.

DISCUSSION & CONCLUSIONS: Co-sputtering yielded compositional gradients along the silicon wafer. The unexpected gradient of N-content – N was present as a gas - is likely due to the ability of Si to form nitrides as seen from the low enthalpy of formation for Si3N4 (-743 kJ/mol). The low surface roughness is likely a consequence of the smooth Si-wafer substrate, it is however reasonable to assume that a polished metal substrate would also yield low surface roughness. The adhesion of the cells indicates biocompatibility. In summary the low surface roughness combined with the biocompatibility make the coatings interesting for further investigations.

 

REFERENCES

1.  Pettersson, M. et al. (2016) Mater. Sci. Eng. C. Mater. Biol. Appl. 62, 497–505 .

2.  Pettersson, M. et al. (2013) J. Mech. Behav. Biomed. Mater. 25, 41–7.

 

ACKNOWLEDGEMENTS: The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under the LifeLongJoints Project, Grant Agreement no. GA-310477.

National Category
Medical Materials Biomaterials Science
Research subject
Engineering Science with specialization in Materials Science
Identifiers
urn:nbn:se:uu:diva-367366 (URN)
Conference
11th annual meeting, Scandinavian Society for Biomaterials, Gullmarsstrand, 25-27 April, 2018
Funder
EU, FP7, Seventh Framework Programme, GA-310477
Available from: 2018-11-30 Created: 2018-11-30 Last updated: 2018-12-05
Fu, L., Xiong, Y., Carlsson, G., Palmer, M., Örn, S., Zhu, W., . . . Xia, W. (2018). Biodegradable Si3N4bioceramic sintered with Sr, Mg and Si for spinal fusion:Surface characterization and biological evaluation. Applied Materials Today, 12, 260-275
Open this publication in new window or tab >>Biodegradable Si3N4bioceramic sintered with Sr, Mg and Si for spinal fusion:Surface characterization and biological evaluation
Show others...
2018 (English)In: Applied Materials Today, Vol. 12, p. 260-275-Article in journal (Refereed) Published
Abstract [en]

Silicon nitride (Si3N4) is an industrial ceramic used in spinal fusion and maxillofacial reconstructionbecause of its excellent mechanical properties and good biocompatibility. This study compares the sur-face properties, apatite formation ability, bacterial infection, cell-biomaterial interactions, and in vivotoxicity (zebrafish) of newly developed Si3N4 bioceramics (sintered with bioactive sintering additivesSrO, MgO and SiO2) with two standard biomaterials; titanium (Ti) and traditional Si3N4 bioceramics (sin-tered with standard sintering additives Al2O3 and Y2O3). In general, Si3N4 bioceramics (both the newlydeveloped and the traditional) displayed less in vitro bacterial affinity than Ti, which may arise fromdifferences in the surface properties between these two types of material. The newly developed Si3N4bioceramics developed lower biofilm coverage and thinner biofilm, compared to traditional Si3N4 bioce-ramics. The effects of ionic dissolution products (leach) on proliferation and differentiation of MC3T3-E1cell were also investigated. Ionic dissolution products containing moderate amount of Sr, Mg and Siions (approximately 4.72 mg/L, 3.26 mg/L and 3.67 mg/L, respectively) stimulated osteoblast prolifera-tion during the first 2 days in culture. Interestingly, ionic dissolution products from the traditional Si3N4bioceramics that contained small amount of Si and Y ions achieved the greatest stimulatory effect foralkaline phosphatase activity after 7 days culture. The toxicity of ionic dissolution products was investi-gated in a putative developmental biology model: zebrafish (Danio rerio). No toxicity, or developmentalabnormalities, was observed in zebrafish embryos exposed to ionic dissolution products, for up to 144 hpost fertilization. These newly developed Si3N4 bioceramics with bioactive sintering additives show greatpotential as orthopedic implants, for applications such as spinal fusion cages. Future work will focus onevaluation of the newly developed Si3N4 bioceramics using a large animal model.

Keywords
Si3N4 bioceramic, Spinal fusion, Biocompatibility, Bioactive ions, Zebrafish
National Category
Medical Materials
Identifiers
urn:nbn:se:uu:diva-356522 (URN)10.1016/j.apmt.2018.06.002 (DOI)
Available from: 2018-07-30 Created: 2018-07-30 Last updated: 2018-11-16Bibliographically approved
Mellgren, T., Qin, T., Öhman Mägi, C., Zhang, Y., Wu, B., Xia, W. & Engqvist, H. (2018). Calcium Phosphate Microspheres as a Delivery Vehicle for Tooth-Bleaching Agents. Journal of Dental Research, 97(3), 283-288
Open this publication in new window or tab >>Calcium Phosphate Microspheres as a Delivery Vehicle for Tooth-Bleaching Agents
Show others...
2018 (English)In: Journal of Dental Research, ISSN 0022-0345, E-ISSN 1544-0591, Vol. 97, no 3, p. 283-288Article in journal (Refereed) Published
Abstract [en]

Bleaching of vital teeth has become common practice in cosmetic dentistry today. Tooth sensitivity and demineralization of the enamel are, however, common side effects associated with hydrogen and carbamide peroxide bleaching. This study investigated if calcium phosphate microspheres, which have remineralizing properties, could be used as an additive without hindering the diffusion of the bleaching agent and if the spheres could be used as a carrier for carbamide peroxide. A remineralizing agent could increase the safety of bleaching and decrease the severity of its side effects. Comparisons between current hydrogen peroxide diffusion studies and previously published work are difficult since many studies include challenging-to-replicate conditions or lack reporting of important parameters. Hence, a diffusion model was designed by Wu Lab (School of Dentistry, University of California, Los Angeles) to measure the diffusion flux and determine the diffusivity of hydrogen peroxide. Physical parameters (e.g., diffusivity) could then be used for direct comparison to the results obtained by future studies. Three whitening gels with increasing amounts of spheres were formulated and tested with 2 commercially available whitening gels. The flux of hydrogen peroxide through 1-mm discs of bovine enamel was measured at steady-state conditions, and the diffusivity was calculated. The results showed that the spheres could be used as a carrier for carbamide peroxide and that the amount of spheres did not affect the diffusivity of peroxide through the enamel discs. Hence, the microspheres are considered promising as an additive to minimize side effects in bleaching gel formulation.

Place, publisher, year, edition, pages
SAGE PUBLICATIONS INC, 2018
Keywords
dental enamel, diffusion, peroxide, tooth whitening, tooth sensitivity, tooth remineralization
National Category
Dentistry Engineering and Technology
Identifiers
urn:nbn:se:uu:diva-352988 (URN)10.1177/0022034517741295 (DOI)000429319800006 ()29125909 (PubMedID)
Funder
Swedish Research Council, 20135419
Available from: 2018-07-17 Created: 2018-07-17 Last updated: 2018-07-25Bibliographically approved
Skjöldebrand, C., Hulsart Billström, G., Engqvist, H. & Persson, C. (2018). Combinatorial coating development of Si-N-Fe-C coatings for joint implants. In: : . Paper presented at 29th Annual Congress of the European Society for Biomaterials, Masstricht, 11-13 April, 2018. Maastricht
Open this publication in new window or tab >>Combinatorial coating development of Si-N-Fe-C coatings for joint implants
2018 (English)Conference paper, Poster (with or without abstract) (Refereed)
Abstract [en]

INTRODUCTION

Joint replacements of hip and knee are generally considered successful procedures, with a survival rate of approximately 95% after 10 years. However, the increasing, more active elderly population puts higher demands on implants, which need to last longer. Some of the main limiting factors for the longevity of these implants are the generation of wear debris and release of metal ions. These wear particles and ion release could be reduced with the use of ceramic coatings e.g. silicon nitride. Silicon nitride coatings have in laboratory investigations been shown to reduce the wear rate1 and act as a barrier for metal ions and therefore warrant further investigation for use in joint implants. An addition of the biocompatible elements Fe and C could be used to tune the dissolution rate and increase the deposition rate.

METHODS

Coatings were deposited on silicon wafer substrates using magnetron co-sputtering. The targets used were Si (99.99%purity) powered by a pulsed DC aggregate at 200 W, 200 kHz and 2µs. The two other targets C and Fe were powered by DC aggregates at 65 W and 25 W respectively. During deposition N2 was introduced as reactive gas. Elemental gradients were obtained by angling of the targets and the use of no rotation.

The coatings were investigated using elastic recoil detection analysis (ERDA), atomic force microscopy (AFM), scanning electron microscopy (SEM) and nanoindentation in five different points on the sample. The different points were chosen at coordinates (0,0), (0,40), (40,0), (40,40) and (20,20) based on a coordinate system with origin in the lower left corner.

The cytotoxicity of the coatings was evaluated in vitro with mouse osteoprogenitor cells (MC3T3).

RESULTS AND DISCUSSION

Figure 1: Si, Fe, N and C composition over the substrate.

Clear elemental gradients could be obtained with 26 wt.% < Si < 34 wt.%, 10 wt.% < Fe < 20 wt.%, 8 wt.% < C < 14 wt.% and 40 wt.% < N < 47 wt.% (figure 1). The coatings appeared dense in SEM surface analysis, with a smooth surface for all investigated points (Ra ~ 2 nm, AFM). The cross-sectional morphology was slightly columnar with broader columns for higher Fe content. The modulus (202 GPa < M < 221 GPa) correlated positively to the Si content and negatively to the Fe content while for the hardness (14 GPa < H < 18 GPa) no statistically significant correlations were found.  This can be compared to earlier coatings, only containing Si and N, which have showed a Young’s modulus of 170-240 GPa and a hardness of 12-26 GPa2, as well as the currently used metals such as CoCrMo, showing a Young’s modulus of 293 GPa and a hardness of 6 GPa2 .

The in vitro evaluation indicated biocompatibility with viable cells that adhered and spread across the surface.

CONCLUSIONS

Si-N-Fe-C coatings show promise for applications exposed to wear with their low surface roughness, high hardness, high modulus and biocompatibility. These combined merit further investigations into the suitability of Si-N-Fe-C coatings for joint implants.

REFERENCES

1.           Pettersson, M. et al. Mechanical and tribological behavior of silicon nitride and silicon carbon nitride coatings for total joint replacements. J. Mech. Behav. Biomed. Mater. 25, 41–7 (2013).

2.           Skjöldebrand, C. et al. Influence of substrate heating and nitrogen flow on the composition, morphological and mechanical properties of SiNx coatings aimed for joint replacements. Materials (Basel). 10, 1–11 (2017).

 

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under the LifeLongJoints Project, Grant Agreement no. GA-310477.

Place, publisher, year, edition, pages
Maastricht: , 2018
National Category
Medical Materials Biomaterials Science
Research subject
Engineering Science with specialization in Materials Science
Identifiers
urn:nbn:se:uu:diva-367364 (URN)
Conference
29th Annual Congress of the European Society for Biomaterials, Masstricht, 11-13 April, 2018
Funder
EU, FP7, Seventh Framework Programme, GA-310477
Available from: 2018-11-30 Created: 2018-11-30 Last updated: 2018-12-05
Sladkova, M., Cheng, J., Palmer, M., Chen, S., Lin, C., Xia, W., . . . de Peppo, G. M. (2018). Comparison of Decellularized Cow and Human Bone for Engineering Bone Grafts with Human Induced Pluripotent Stem Cells. Tissue Engineering. Part A
Open this publication in new window or tab >>Comparison of Decellularized Cow and Human Bone for Engineering Bone Grafts with Human Induced Pluripotent Stem Cells
Show others...
2018 (English)In: Tissue Engineering. Part A, ISSN 1937-3341, E-ISSN 1937-335XArticle in journal (Refereed) Published
Abstract [en]

Bone engineering makes it possible to grow unlimited amounts of viable tissue products for basic and applied research, and for clinical applications. A common trend in tissue engineering is the use of decellularized tissue matrices as scaffolding materials, which display structural, mechanical, and biological attributes typical of the native tissue. Due to the limited availability and high cost of human samples, decellularized tissue matrices are typically derived from animal sources. It is unclear, however, whether interspecies differences in tissue parameters will influence the quality of tissue grafts that are engineered using human stem cells. In this study, decellularized cow and human bone scaffolds were compared for engineering bone grafts using human induced pluripotent stem cell-derived mesodermal progenitor cells. After seeding, the cell-scaffold constructs were cultured for 5 weeks in osteogenic medium under dynamic conditions in perfusion bioreactors. The architectural and chemical properties of the scaffolds were studied using microscopic, spectroscopic, and thermogravimetric techniques, while cell behavior and formation of mineralized tissue were assessed using a combination of molecular assays, histological methods, and imaging technologies. The results show that while scaffolds derived from cow and human bone differ somewhat in architecture and composition, both equally support cell viability, tissue growth, and formation of a mineralized bone matrix. Taken together, the results suggest that scaffolds derived from cow bone represent a suitable and convenient alternative to engineer human bone grafts for various biomedical applications.

Place, publisher, year, edition, pages
MARY ANN LIEBERT, INC, 2018
Keywords
biomaterial scaffold, bone engineering, induced pluripotent stem cells, mesenchymal stem cells, osteogenic differentiation, tissue decellularization
National Category
Biomaterials Science Engineering and Technology
Identifiers
urn:nbn:se:uu:diva-369891 (URN)10.1089/ten.tea.2018.0149 (DOI)000448565100001 ()
Funder
EU, FP7, Seventh Framework Programme
Note

De 2 första författarna delar förstaförfattarskapet.

Available from: 2018-12-19 Created: 2018-12-19 Last updated: 2019-01-02Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-9529-650X

Search in DiVA

Show all publications