uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Edström, Kristina, ProfessorORCID iD iconorcid.org/0000-0003-4440-2952
Publications (10 of 273) Show all publications
Liu, C., Qiu, Z., Brant, W., Younesi, R., Ma, Y., Edström, K., . . . Zhu, J.-F. (2018). A free standing Ru–TiC nanowire array/carbon textile cathode with enhanced stability for Li–O2 batteries. Journal of Materials Chemistry A, 6, 23659-23668
Open this publication in new window or tab >>A free standing Ru–TiC nanowire array/carbon textile cathode with enhanced stability for Li–O2 batteries
Show others...
2018 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, p. 23659-23668Article in journal (Refereed) Published
Abstract [en]

The instability of carbon cathode materials is one of the key problems that hinder the development of lithium–air/lithium–oxygen (Li–O2) batteries. In this contribution, a type of TiC-based cathode is developed as a suitable alternative to carbon based cathodes, and its stability with respect to its surface properties is investigated. Here, a free-standing TiC nanowire array cathode was in situ grown on a carbon textile, covering its exposed surface. The TiC nanowire array, via deposition with Ru nanoparticles, showed enhanced oxygen reduction/evolution activity and cyclability, compared to the one without Ru modification. The battery performance of the Li–O2cells with Ru–TiC was investigated by using in operando synchrotron radiation powder X-ray diffraction (SR-PXD) during a full cycle. With the aid of surface analysis, the role of the cathode substrate and surface modification is demonstrated. The presented results are a further step toward a wise design of stable cathodes for Li–O2 batteries.

National Category
Engineering and Technology
Identifiers
urn:nbn:se:uu:diva-369118 (URN)DOI: 10.1039/c7ta10930j (DOI)000451813300047 ()
Funder
Swedish Research CouncilSwedish Energy Agency
Available from: 2018-12-10 Created: 2018-12-10 Last updated: 2019-01-15Bibliographically approved
Wang, Z., Li, M., Ruan, C., Liu, C., Zhang, C., Xu, C., . . . Nyholm, L. (2018). Conducting Polymer Paper-Derived Mesoporous 3D N-doped Carbon Current Collectors for Na and Li Metal Anodes: A Combined Experimental and Theoretical Study. The Journal of Physical Chemistry C, 122(41), 23352-23363
Open this publication in new window or tab >>Conducting Polymer Paper-Derived Mesoporous 3D N-doped Carbon Current Collectors for Na and Li Metal Anodes: A Combined Experimental and Theoretical Study
Show others...
2018 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 122, no 41, p. 23352-23363Article in journal (Refereed) Published
Abstract [en]

Herein, the manufacturing of a free-standing N-doped mesoporous carbon (CPPY) paper by straightforward carbonization of polypyrrole-coated nanocellulose paper is described. The deposition of Na and Li on these CPPY electrodes, which also serve as current collectors, is studied using a combination of experiments and theoretical calculations. The porous CPPY electrodes gave rise to decreased current densities, which helped to prolong the life-time of the Na electrodes. While the density functional theory calculations suggest that both Na and Li should be deposited uniformly on the CPPY electrodes, the experimental results clearly show that the sodium deposition was more well-defined on the surface of the CPPY electrodes. In contrast to Li, dendrite-free Na depositions could be carried out using deposition capacities up to 12 mAh cm(-2 )and a stable Na electrode cycling performance was found during 1000 h at 1 mA cm(-2). The results suggest that it was difficult to predict the Na or Li deposition behavior merely based on calculations of the metal adsorption energies, as kinetic effects should also be taken into account. Nevertheless, the experimental results clearly show that the use of the present type of porous electrodes provides new possibilities for the development of durable Na electrodes for high-performance sodium metal batteries.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2018
National Category
Materials Chemistry Physical Chemistry Engineering and Technology
Identifiers
urn:nbn:se:uu:diva-369911 (URN)10.1021/acs.jpcc.8b07481 (DOI)000448087900013 ()
Funder
Swedish Energy AgencyeSSENCE - An eScience Collaboration
Available from: 2018-12-17 Created: 2018-12-17 Last updated: 2019-01-02Bibliographically approved
Wang, Z., Pan, R., Xu, C., Ruan, C., Edström, K., Strømme, M. & Nyholm, L. (2018). Conducting polymer paper-derived separators for lithium metal batteries. Energy Storage Materials, 13, 283-292
Open this publication in new window or tab >>Conducting polymer paper-derived separators for lithium metal batteries
Show others...
2018 (English)In: Energy Storage Materials, ISSN 2405-8297, Vol. 13, p. 283-292Article in journal (Refereed) Published
Abstract [en]

Overoxidised polypyrrole (PPy) paper has been employed as a mesoporous separator for lithium metal batteries (LMBs) based on its narrow pore size distribution, good thermal stability, high ionic conductivity (1.1 mS cm−1 with a LP40 electrolyte) and high electrolyte wettability. The overoxidised PPy paper was produced from a PPy/cellulose composite using a combined base and heat-treatment process, yielding a highly interrupted pyrrole molecular structure including N-containing polar groups maintaining the readily adaptable mesoporous structure of the pristine PPy paper. This well-defined pore structure gave rise to a homogeneous current distribution which significantly increased the performance of a LiFePO4|Li cell. With the overoxidised PPy separator, a symmetric Li|Li cell could be cycled reversibly for more than 600 h without any short-circuits in a LP40 electrolyte. This approach facilitates the manufacturing of well-defined separators for fundamental investigations of the influence of the separator structure on the performance of LMBs.

Keywords
Conducting polymers, nanocellulose, separator, porosity, lithium metal, batteries
National Category
Inorganic Chemistry Engineering and Technology
Research subject
Chemistry with specialization in Inorganic Chemistry; Chemistry with specialization in Materials Chemistry; Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
urn:nbn:se:uu:diva-355543 (URN)10.1016/j.ensm.2018.02.006 (DOI)000436924800033 ()
Funder
Swedish Energy Agency, TriLiSwedish Foundation for Strategic Research , RMA-110012Carl Tryggers foundation StandUp
Available from: 2018-07-01 Created: 2018-07-01 Last updated: 2018-09-13Bibliographically approved
Nilsson, V., Younesi, R., Brandell, D., Edström, K. & Johansson, P. (2018). Critical evaluation of the stability of highly concentrated LiTFSI - Acetonitrile electrolytes vs. graphite, lithium metal and LiFePO4 electrodes. Journal of Power Sources, 384, 334-341
Open this publication in new window or tab >>Critical evaluation of the stability of highly concentrated LiTFSI - Acetonitrile electrolytes vs. graphite, lithium metal and LiFePO4 electrodes
Show others...
2018 (English)In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 384, p. 334-341Article in journal (Refereed) Published
Abstract [en]

Highly concentrated LiTFSI - acetonitrile electrolytes have recently been shown to stabilize graphite electrodes in lithium-ion batteries (LIBs) much better than comparable more dilute systems. Here we revisit this system in order to optimise the salt concentration vs. both graphite and lithium metal electrodes with respect to electrochemical stability. However, we observe an instability regardless of concentration, making lithium metal unsuitable as a counter electrode, and this also affects evaluation of e.g. graphite electrodes. While the highly concentrated electrolytes have much improved electrochemical stabilities, their reductive decomposition below ca. 1.2 V vs. Li+/Li° still makes them less practical vs. graphite electrodes, and the oxidative reaction with Al at ca. 4.1 V vs. Li+/Li° makes them problematic for high voltage LIB cells. The former originates in an insufficiently stable solid electrolyte interphase (SEI) dissolving and continuously reforming – causing self-discharge, as observed by paused galvanostatic cycling, while the latter is likely caused by aluminium current collector corrosion. Yet, we show that medium voltage LiFePO4 positive electrodes can successfully be used as counter and reference electrodes.

Keywords
Highly concentrated electrolyte, Li-ion battery, SEI, Al corrosion, Self-discharge
National Category
Materials Chemistry
Research subject
Chemistry with specialization in Materials Chemistry
Identifiers
urn:nbn:se:uu:diva-351302 (URN)10.1016/j.jpowsour.2018.03.019 (DOI)000430897700041 ()
Funder
Swedish Energy Agency, 39042-1
Available from: 2018-05-23 Created: 2018-05-23 Last updated: 2018-06-26Bibliographically approved
Björklund, E., Wikner, E., Younesi, R., Brandell, D. & Edström, K. (2018). Influence of state-of-charge in commercial LiNi0.33Mn0.33Co0.33O2/LiMn2O4-graphite cells analyzed by synchrotron-based photoelectron spectroscopy. Journal of Energy Storage, 15, 172-180
Open this publication in new window or tab >>Influence of state-of-charge in commercial LiNi0.33Mn0.33Co0.33O2/LiMn2O4-graphite cells analyzed by synchrotron-based photoelectron spectroscopy
Show others...
2018 (English)In: Journal of Energy Storage, ISSN 2352-152X, Vol. 15, p. 172-180Article in journal (Refereed) Published
Abstract [en]

Degradation mechanisms in 26 Ah commercial Li-ion battery cells comprising graphite as the negative electrode and mixed metal oxide of LiMn2O4 (LMO) and LiNi1/3Mn1/3Co1/3O2 (NMC) as the positive electrode are here investigated utilising extensive cycling at two different state-of-charge (SOC) ranges, 10–20% and 60–70%, as well as post-mortem analysis. To better analyze these mechanisms electrochemically, the cells were after long-term cycling reassembled into laboratory scale “half-cells” using lithium metal as the negative electrode, and thereafter cycled at different rates corresponding to 0.025 mA/cm2 and 0.754 mA/cm2. The electrodes were also analyzed by synchrotron-based hard x-ray photoelectron spectroscopy (HAXPES) using two different excitation energies to determine the chemical composition of the interfacial layers formed at different depth on the respective electrodes. It was found from the extensive cycling that the cycle life was shorter for the cell cycled in the higher SOC range, 60–70%, which is correlated to findings of an increased cell resistance and thickness of the SEI layer in the graphite electrode as well as manganese dissolution from the positive electrode.

Keywords
Li-ion battery, Commercial cells, Battery ageing, Photoelectron spectroscopy
National Category
Chemical Sciences
Identifiers
urn:nbn:se:uu:diva-338184 (URN)10.1016/j.est.2017.11.010 (DOI)000426619500015 ()
Available from: 2018-01-08 Created: 2018-01-08 Last updated: 2018-05-16Bibliographically approved
Edström, K. (2018). Interfaces in Li-ion and Na-ion batteries - what more do we need to understand?. Paper presented at 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, USA.. Abstract of Papers of the American Chemical Society, 255
Open this publication in new window or tab >>Interfaces in Li-ion and Na-ion batteries - what more do we need to understand?
2018 (English)In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
Washington, D.C.: American Chemical Society (ACS), 2018
National Category
Physical Chemistry
Identifiers
urn:nbn:se:uu:diva-368924 (URN)000435539900302 ()
Conference
255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, MAR 18-22, 2018, New Orleans, USA.
Note

Meeting Abstract: 302

Available from: 2018-12-11 Created: 2018-12-11 Last updated: 2018-12-11Bibliographically approved
Rehnlund, D., Lindgren, F., Pettersson, J., Edström, K. & Nyholm, L. (2018). Lithium Trapping in Alloy forming Electrodes and Current Collectors for Lithium based Batteries. In: : . Paper presented at The 233rd ECS Meeting, Seattle, USA, May 13-17 2018.
Open this publication in new window or tab >>Lithium Trapping in Alloy forming Electrodes and Current Collectors for Lithium based Batteries
Show others...
2018 (English)Conference paper, Oral presentation with published abstract (Other academic)
Abstract [en]

The next generation of lithium based batteries can be expected to be based on lithium alloy forming anode materials which can store up to ten times more charge than the currently used graphite anodes. This increase in the charge storage capability has motivated significant research towards the commercialization of anode materials such as Si, Sn and Al. These alloy forming anode materials are, however, known to exhibit significant capacity losses during cycling. This is typically ascribed to the volume expansion associated with the formation of the lithium alloys (the volume expansion is e.g. about 280 % for Li3.75Si) resulting in electrode pulverization as well as continuous solid electrolyte interphase (SEI) layer formation [1-3]. While significant progress has been made to decrease the volume expansion problems by the use of e.g. nanoparticles, nanorods and thin films, and/or capacity limitations [1-3], capacity losses are still generally seen [4,5]. This and previously published data suggest that the phenomenon may be due to another effect and that this in fact could stem from lithium trapping in the electrodes [6-8].

In the present work it is demonstrated (based on e.g. elemental analyses of cycled Sn, Al and Si electrodes) that lithium trapping can account for the capacity losses seen when alloy forming anode materials are cycled versus lithium electrodes, see Figure 1. It is shown that small amounts of elemental lithium are trapped within the electrode material during the cycling as a result of a two-way diffusion process [8] causing the lithium to move into the bulk material even during the delithiation step. This phenomenon, which can be explained by the lithium concentration profiles in the electrodes, makes a complete delithiation process very time consuming. As a result of the lithium trapping effect, the lithium concentration in the electrode increases continuously during the cycling. The experimental results also show that a similar effect can be seen also for commonly used current collector metals such as Cu, Ni and Ti. The latter means that these metals are unsuitable as current collector materials for lithium alloy forming materials in the absence of a thin layer of boron doped diamond serving as a lithium diffusion barrier layer [8].

References

1    M. N. Obrovac and V. L. Chevrier, Chem. Rev., 2014, 114, 11444.

2    X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B. W. Sheldon and J. Wu, Adv. Energy Mater., 2014, 4, 1300882.

3    J. R. Szczech and S. Jin, Energy Environ. Sci., 2011, 4, 56.

4    G. Zheng, S. W. Lee, Z. Liang, H-W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu and Y. Cui, Nat. Nanotechnol., 2014, 9, 618.

5    K. Yan, H-W. Lee, T. Gao, G. Zheng, H. Yao, H. Wang, Z. Lu, Y. Zhou, Z. Liang, Z. Liu, S. Chu and Y. Cui, Nano Letters, 2014, 14, 6016.

6    G. Oltean, C-W. Tai, K. Edström and L. Nyholm, J. Power Sources, 2014, 269, 266.

7    A. L. Michan, G. Divitini, A. J. Pell, M. Leskes, C. Ducati and C. P. Grey, J. Am. Chem. Soc., 2016, 138, 7918.

8    D. Rehnlund, F. Lindgren, S. Böhme, T. Nordh, Y. Zou, J. Pettersson, U. Bexell, M. Boman, K. Edström and L. Nyholm, Energy Environ. Sci., 10 (2017) 1350.

 

Keywords
Lithium, trapping, diffusion, alloy formation, silicon, tin, aluminium
National Category
Inorganic Chemistry
Research subject
Chemistry with specialization in Inorganic Chemistry; Chemistry with specialization in Materials Chemistry; Chemistry with specialization in Organic Chemistry; Chemistry with specialization in Materials Chemistry
Identifiers
urn:nbn:se:uu:diva-355546 (URN)
Conference
The 233rd ECS Meeting, Seattle, USA, May 13-17 2018
Funder
Swedish Research Council, 2015-04421
Available from: 2018-07-01 Created: 2018-07-01 Last updated: 2018-10-31Bibliographically approved
Rehnlund, D., Pettersson, J., Edström, K. & Nyholm, L. (2018). Lithium trapping in microbatteries based on lithium- and Cu2O-coated copper nanorods. ChemistrySelect, 3(8), 2311-2314
Open this publication in new window or tab >>Lithium trapping in microbatteries based on lithium- and Cu2O-coated copper nanorods
2018 (English)In: ChemistrySelect, E-ISSN 2365-6549, Vol. 3, no 8, p. 2311-2314Article in journal (Refereed) Published
Abstract [en]

Microbatteries based on three-dimensional (3D) electrodes composed of thin films of Li and Cu2O coated on Cu nanorod current collectors by electrodeposition and spontaneous oxidation, respectively, are described and characterised electrochemically. High-resolution scanning electron microscopy (HR-SEM) data indicate that the Li electrodeposition resulted in a homogenous coverage of the Cu nanorods and elemental analyses were also used to determine the amount of lithium in the Li-coated electrodes. The results show that 3D Cu2O/Cu electrodes can be cycled versus 3D Li/Cu electrodes but that the capacity decreased during the cycling due to Li trapping in the Cu current collector of the 3D Li/Cu electrode. These findings highlight the problem of using copper current collectors together with metallic lithium as the formation of a solid solution yields considerable losses of electroactive lithium and hence capacity.

Keywords
lithium trapping, microbatteries, nanorods, Cu2O, copper
National Category
Inorganic Chemistry
Research subject
Chemistry with specialization in Inorganic Chemistry
Identifiers
urn:nbn:se:uu:diva-343590 (URN)10.1002/slct.201800281 (DOI)000426495600015 ()
Funder
Swedish Research Council, 2012-4681, 2015-04421StandUpSwedish Energy Agency
Available from: 2018-02-28 Created: 2018-02-28 Last updated: 2018-05-31Bibliographically approved
Renman, V., Valvo, M., Tai, C.-W., Gómez, C. P., Edström, K. & Liivat, A. (2018). Manganese pyrosilicates as novel positive electrode materials for Na-ion batteries. SUSTAINABLE ENERGY & FUELS, 2(5), 941-945
Open this publication in new window or tab >>Manganese pyrosilicates as novel positive electrode materials for Na-ion batteries
Show others...
2018 (English)In: SUSTAINABLE ENERGY & FUELS, ISSN 2398-4902, Vol. 2, no 5, p. 941-945Article in journal (Refereed) Published
Abstract [en]

A carbon-coated pyrosilicate, Na2Mn2Si2O7/C, was synthesized and characterized for use as a new positive-electrode material for sodium ion batteries. The material consists of 20–80 nm primary particles embedded in a ≈10 nm-thick conductive carbon matrix. Reversible insertion of Na+ ions is clearly demonstrated with ≈25% of its theoretical capacity (165 mA h g−1) being accessible at room temperature at a low cycling rate. The material yields an average potential of 3.3 V vs. Na+/Na on charge and 2.2 V on discharge. DFT calculations predict an equilibrium potential for Na2Mn2Si2O7 in the range of 2.8–3.0 V vs. Na+/Na, with a possibility of a complete flip in the connectivity of neighboring Mn-polyhedra – from edge-sharing to disconnected and vice versa. This significant rearrangement in Mn coordination (≈2 Å) and large volume contraction (>10%) could explain our inability to fully desodiate the material, and illustrates well the need for a new electrode design strategy beyond the conventional “down-sizing/coating” procedure.

National Category
Inorganic Chemistry Materials Chemistry
Identifiers
urn:nbn:se:uu:diva-356076 (URN)10.1039/c7se00587c (DOI)000431422700003 ()
Funder
Swedish Research Council, 2011-6512Swedish Research Council, 2010-4824Swedish Research Council Formas, 245-2014-668Knut and Alice Wallenberg FoundationStandUp
Available from: 2018-07-13 Created: 2018-07-13 Last updated: 2018-10-05Bibliographically approved
Ma, Y., Tai, C.-W., Li, S., Edström, K. & Wei, B. (2018). Multiscale Interfacial Strategy to Engineer Mixed Metal-Oxide Anodes toward Enhanced Cycling Efficiency. ACS Applied Materials and Interfaces, 10(23), 20095-20105
Open this publication in new window or tab >>Multiscale Interfacial Strategy to Engineer Mixed Metal-Oxide Anodes toward Enhanced Cycling Efficiency
Show others...
2018 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 23, p. 20095-20105Article in journal (Refereed) Published
Abstract [en]

Interconnected macro/mesoporous structures of mixed metal oxide (MMO) are developed on nickel foam as freestanding anodes for Li-ion batteries. The sustainable production is realized via a wet chemical etching process with bio-friendly chemicals. By means of divalent iron doping during an in situ recrystallization process, the as-developed MMO anodes exhibit enhanced levels of cycling efficiency. Furthermore, this atomic-scale modification coherently synergizes with the encapsulation layer across a micrometer scale. During this step, we develop a quasi-gel-state tri-copolymer, i.e., F127-resorcinol-melamine, as the N-doped carbon source to regulate the interfacial chemistry of the MMO electrodes. Electrochemical tests of the modified FexN1-xO@NC-NiF anode in both half-cell and full-cell configurations unravel the favorable suppression of the irreversible capacity loss and satisfactory cyclability at the high rates. This study highlights a proof-of-concept modification strategy across multiple scales to govern the interfacial chemical process of the electrodes toward better reversibility.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2018
Keywords
iron doping, nickel oxide, interfacial chemistry, cycling efficiency, lithium-ion storage
National Category
Materials Chemistry
Identifiers
urn:nbn:se:uu:diva-358523 (URN)10.1021/acsami.8b02908 (DOI)000435525100089 ()29782146 (PubMedID)
Available from: 2018-09-03 Created: 2018-09-03 Last updated: 2018-09-03Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-4440-2952

Search in DiVA

Show all publications