uu.seUppsala University Publications

Please wait ... |

Link to record
http://uu.diva-portal.org/smash/person.jsf?pid=authority-person:12437 $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt122_recordDirectLink",{id:"formSmash:upper:j_idt122:recordDirectLink",widgetVar:"widget_formSmash_upper_j_idt122_recordDirectLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt122_j_idt124",{id:"formSmash:upper:j_idt122:j_idt124",widgetVar:"widget_formSmash_upper_j_idt122_j_idt124",target:"formSmash:upper:j_idt122:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Direct link

Mazorchuk, Volodymyrorcid.org/0000-0002-4633-6218

Open this publication in new window or tab >>Fiat categorification of the symmetric inverse semigroup IS_{n} and the semigroup F_{n*}### Martin, Paul

### Mazorchuk, Volodymyr

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_some",{id:"formSmash:j_idt184:0:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_otherAuthors",{id:"formSmash:j_idt184:0:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_otherAuthors",multiple:true}); 2018 (English)In: Semigroup Forum, ISSN 0037-1912, E-ISSN 1432-2137, Vol. 96, no 1, p. 142-159Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

SPRINGER, 2018
##### Keywords

Categorification, 2-category, Symmetric inverse semigroup, Dual symmetric inverse semigroup
##### National Category

Algebra and Logic
##### Identifiers

urn:nbn:se:uu:diva-343777 (URN)10.1007/s00233-017-9866-5 (DOI)000423372400009 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_j_idt359",{id:"formSmash:j_idt184:0:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_j_idt365",{id:"formSmash:j_idt184:0:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_j_idt371",{id:"formSmash:j_idt184:0:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_j_idt371",multiple:true});
#####

##### Funder

Swedish Research CouncilGöran Gustafsson Foundation for Research in Natural Sciences and Medicine
Available from: 2018-03-07 Created: 2018-03-07 Last updated: 2018-03-07Bibliographically approved

Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England..

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.

Starting from the symmetric group , we construct two fiat 2-categories. One of them can be viewed as the fiat "extension" of the natural 2-category associated with the symmetric inverse semigroup (considered as an ordered semigroup with respect to the natural order). This 2-category provides a fiat categorification for the integral semigroup algebra of the symmetric inverse semigroup. The other 2-category can be viewed as the fiat "extension" of the 2-category associated with the maximal factorizable subsemigroup of the dual symmetric inverse semigroup (again, considered as an ordered semigroup with respect to the natural order). This 2-category provides a fiat categorification for the integral semigroup algebra of the maximal factorizable subsemigroup of the dual symmetric inverse semigroup.

Open this publication in new window or tab >>Graded simple Lie algebras and graded simple representations### Mazorchuk, Volodymyr

### Zhao, Kaiming

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_some",{id:"formSmash:j_idt184:1:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_otherAuthors",{id:"formSmash:j_idt184:1:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_otherAuthors",multiple:true}); 2018 (English)In: Manuscripta mathematica, ISSN 0025-2611, E-ISSN 1432-1785, Vol. 156, no 1-2, p. 215-240Article in journal (Refereed) Published
##### Abstract [en]

##### National Category

Algebra and Logic
##### Identifiers

urn:nbn:se:uu:diva-351617 (URN)10.1007/s00229-017-0960-5 (DOI)000429343400012 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_j_idt359",{id:"formSmash:j_idt184:1:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_j_idt365",{id:"formSmash:j_idt184:1:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_j_idt371",{id:"formSmash:j_idt184:1:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_j_idt371",multiple:true});
#####

##### Funder

Swedish Research CouncilThe Royal Swedish Academy of SciencesKnut and Alice Wallenberg Foundation
Available from: 2018-06-13 Created: 2018-06-13 Last updated: 2018-06-13Bibliographically approved

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.

Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada.;Hebei Normal Teachers Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Hebei, Peoples R China..

Let Q be an abelian group and a field. We prove that any Q-graded simple Lie algebra over is isomorphic to a loop algebra in case has a primitive root of unity of order |Q|, if Q is finite, or is algebraically closed and (as cardinals). For Q-graded simple modules over any Q-graded Lie algebra , we propose a similar construction of all Q-graded simple modules over any Q-graded Lie algebra over starting from nonextendable gradings of simple -modules. We prove that any Q-graded simple module over is isomorphic to a loop module in case has a primitive root of unity of order |Q| if Q is finite, or is algebraically closed and as above. The isomorphism problem for simple graded modules constructed in this way remains open. For finite-dimensional Q-graded semisimple algebras we obtain a graded analogue of the Weyl Theorem.

Open this publication in new window or tab >>Dualities and derived equivalences for category O### Coulembier, Kevin

### Mazorchuk, Volodymyr

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_some",{id:"formSmash:j_idt184:2:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_otherAuthors",{id:"formSmash:j_idt184:2:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_otherAuthors",multiple:true}); 2017 (English)In: Israel Journal of Mathematics, ISSN 0021-2172, E-ISSN 1565-8511, Vol. 219, no 2, p. 661-706Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

HEBREW UNIV MAGNES PRESS, 2017
##### National Category

Mathematics
##### Identifiers

urn:nbn:se:uu:diva-324334 (URN)10.1007/s11856-017-1494-y (DOI)000401257400007 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_j_idt359",{id:"formSmash:j_idt184:2:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_j_idt365",{id:"formSmash:j_idt184:2:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_j_idt371",{id:"formSmash:j_idt184:2:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt371",multiple:true});
#####

##### Funder

Swedish Research CouncilKnut and Alice Wallenberg FoundationThe Royal Swedish Academy of Sciences
Available from: 2017-06-16 Created: 2017-06-16 Last updated: 2017-06-16Bibliographically approved

Univ Ghent, Dept Math Anal, Krijgslaan 281, B-9000 Ghent, Belgium..

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.

We determine the Ringel duals for all blocks in the parabolic versions of the BGG category associated to a reductive finite-dimensional Lie algebra. In particular, we find that, contrary to the original category and the specific previously known cases in the parabolic setting, the blocks are not necessarily Ringel self-dual. However, the parabolic category as a whole is still Ringel self-dual. Furthermore, we use generalisations of the Ringel duality functor to obtain large classes of derived equivalences between blocks in parabolic and original category . We subsequently classify all derived equivalence classes of blocks of category in type A which preserve the Koszul grading.

Open this publication in new window or tab >>Finitary 2-categories associated with dual projection functors### Grensing, Anna-Louise

### Mazorchuk, Volodymyr

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_some",{id:"formSmash:j_idt184:3:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_otherAuthors",{id:"formSmash:j_idt184:3:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_otherAuthors",multiple:true}); 2017 (English)In: Communications in Contemporary Mathematics, ISSN 0219-1997, Vol. 19, no 3, article id 1650016Article in journal (Refereed) Published
##### Abstract [en]

##### Keywords

Finitary 2-category, projection functor, finite dimensional algebra, bimodule, monoid, generators and relations
##### National Category

Algebra and Logic
##### Identifiers

urn:nbn:se:uu:diva-322078 (URN)10.1142/S0219199716500164 (DOI)000399087200002 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_j_idt359",{id:"formSmash:j_idt184:3:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_j_idt365",{id:"formSmash:j_idt184:3:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_j_idt371",{id:"formSmash:j_idt184:3:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_j_idt371",multiple:true});
#####

##### Funder

German Research Foundation (DFG), SPP 1388Swedish Research CouncilKnut and Alice Wallenberg FoundationThe Royal Swedish Academy of Sciences
Available from: 2017-05-19 Created: 2017-05-19 Last updated: 2017-05-19Bibliographically approved

Univ Bielefeld, Fac Math, POB 100 131, D-33501 Bielefeld, Germany..

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.

We study finitary 2-categories associated to dual projection functors for finite-dimensional associative algebras. In the case of path algebras of admissible tree quivers (which includes all Dynkin quivers of type A), we show that the monoid generated by dual projection functors is the Hecke-Kiselman monoid of the underlying quiver and also obtain a presentation for the monoid of indecomposable subbimodules of the identity bimodule.

Open this publication in new window or tab >>Koszul Duality for Semidirect Products and Generalized Takiff Algebras### Greenstein, Jacob

### Mazorchuk, Volodymyr

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_some",{id:"formSmash:j_idt184:4:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_otherAuthors",{id:"formSmash:j_idt184:4:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_otherAuthors",multiple:true}); 2017 (English)In: Algebras and Representation Theory, ISSN 1386-923X, E-ISSN 1572-9079, Vol. 20, no 3, p. 675-694Article in journal (Refereed) Published
##### Abstract [en]

##### Keywords

Module algebras, Semi-direct products, Graded algebras, Koszul duality
##### National Category

Algebra and Logic
##### Identifiers

urn:nbn:se:uu:diva-323763 (URN)10.1007/s10468-016-9660-1 (DOI)000401540300008 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_j_idt359",{id:"formSmash:j_idt184:4:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_j_idt365",{id:"formSmash:j_idt184:4:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_j_idt371",{id:"formSmash:j_idt184:4:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_j_idt371",multiple:true});
#####

##### Funder

Swedish Research CouncilKnut and Alice Wallenberg FoundationThe Royal Swedish Academy of Sciences
Available from: 2017-06-12 Created: 2017-06-12 Last updated: 2017-06-12Bibliographically approved

Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA..

We obtain Koszul-type dualities for categories of graded modules over a graded associative algebra which can be realized as the semidirect product of a bialgebra coinciding with its degree zero part and a graded module algebra for the latter. In particular, this applies to graded representations of the universal enveloping algebra of the Takiff Lie algebra (or the truncated current algebra) and its (super)analogues, and also to semidirect products of quantum groups with braided symmetric and exterior module algebras in case the latter are flat deformations of classical ones.

Open this publication in new window or tab >>Some homological properties of category O. IV### Coulembier, Kevin

### Mazorchuk, Volodymyr

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_some",{id:"formSmash:j_idt184:5:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_otherAuthors",{id:"formSmash:j_idt184:5:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_otherAuthors",multiple:true}); 2017 (English)In: Forum mathematicum, ISSN 0933-7741, E-ISSN 1435-5337, Vol. 29, no 5, p. 1083-1124Article in journal (Refereed) Published
##### Abstract [en]

##### Keywords

Projective dimension, graded length, quasi-hereditary algebra, parabolic category O
##### National Category

Mathematics
##### Identifiers

urn:nbn:se:uu:diva-334924 (URN)10.1515/forum-2016-0108 (DOI)000408650800005 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_j_idt359",{id:"formSmash:j_idt184:5:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_j_idt365",{id:"formSmash:j_idt184:5:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_j_idt371",{id:"formSmash:j_idt184:5:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt371",multiple:true});
#####

##### Funder

Swedish Research Council
Available from: 2017-11-29 Created: 2017-11-29 Last updated: 2017-11-29Bibliographically approved

Univ Sydney, Sch Math & Stat;Univ Ghent, Dept Math Anal.

We study projective dimension and graded length of structural modules in parabolic-singular blocks of the BGG category O. Some of these are calculated explicitly, others are expressed in terms of two functions. We also obtain several partial results and estimates for these two functions and relate them to monotonicity properties for quasi-hereditary algebras. The results are then applied to study blocks of O in the context of Guichardet categories, in particular, we show that blocks of O are not always weakly Guichardet.

Open this publication in new window or tab >>Endomorphisms of Cell 2-Representations### Mazorchuk, Volodymyr

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.### Miemietz, Vanessa

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_some",{id:"formSmash:j_idt184:6:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_otherAuthors",{id:"formSmash:j_idt184:6:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_otherAuthors",multiple:true}); 2016 (English)In: International mathematics research notices, ISSN 1073-7928, E-ISSN 1687-0247, no 24, p. 7471-7498Article in journal (Refereed) Published
##### Abstract [en]

##### National Category

Mathematics
##### Identifiers

urn:nbn:se:uu:diva-315940 (URN)10.1093/imrn/rnw025 (DOI)000392188600004 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_j_idt359",{id:"formSmash:j_idt184:6:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_j_idt365",{id:"formSmash:j_idt184:6:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_j_idt371",{id:"formSmash:j_idt184:6:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_j_idt371",multiple:true});
#####

##### Funder

Swedish Research CouncilThe Royal Swedish Academy of SciencesEU, European Research Council, PERG07-GA-2010-268109
Available from: 2017-02-22 Created: 2017-02-22 Last updated: 2017-11-29Bibliographically approved

Univ East Anglia, Sch Math, Norwich NR4 7TJ, Norfolk, England..

We determine the endomorphism categories of cell 2-representations of fiat 2-categories associated with strongly regular two-sided cells and classify, up to biequivalence, J-simple fiat 2-categories which have only one two-sided cell J apart from the identities.

Open this publication in new window or tab >>G(l, k, d)-modules via groupoids### Mazorchuk, Volodymyr

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.### Stroppel, Catharina

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_some",{id:"formSmash:j_idt184:7:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_otherAuthors",{id:"formSmash:j_idt184:7:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_otherAuthors",multiple:true}); 2016 (English)In: Journal of Algebraic Combinatorics, ISSN 0925-9899, E-ISSN 1572-9192, Vol. 43, no 1, p. 11-32Article in journal (Refereed) Published
##### Abstract [en]

##### Keywords

Schur-Weyl duality, Wreath product, Simple module, Groupoid
##### National Category

Mathematics
##### Identifiers

urn:nbn:se:uu:diva-275534 (URN)10.1007/s10801-015-0623-0 (DOI)000367611700002 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_j_idt359",{id:"formSmash:j_idt184:7:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_j_idt365",{id:"formSmash:j_idt184:7:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_j_idt371",{id:"formSmash:j_idt184:7:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_j_idt371",multiple:true});
#####

##### Funder

Swedish Research CouncilKnut and Alice Wallenberg FoundationThe Royal Swedish Academy of Sciences
Available from: 2016-02-04 Created: 2016-02-04 Last updated: 2017-11-30Bibliographically approved

Univ Bonn, Math Inst, D-53115 Bonn, Germany..

In this note, we describe a seemingly new approach to the complex representation theory of the wreath product , where G is a finite abelian group. The approach is motivated by an appropriate version of Schur-Weyl duality. We construct a combinatorially defined groupoid in which all endomorphism algebras are direct products of symmetric groups and prove that the groupoid algebra is isomorphic to the group algebra of . This directly implies a classification of simple modules. As an application, we get a Gelfand model for from the classical involutive Gelfand model for the symmetric group. We describe the Schur-Weyl duality which motivates our approach and relate it to various Schur-Weyl dualities in the literature. Finally, we discuss an extension of these methods to all complex reflection groups of type G(l, k, d).

Open this publication in new window or tab >>Isotypic faithful 2-representations of -simple fiat 2-categories### Mazorchuk, Volodymyr

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.### Miemietz, Vanessa

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_some",{id:"formSmash:j_idt184:8:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_otherAuthors",{id:"formSmash:j_idt184:8:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_otherAuthors",multiple:true}); 2016 (English)In: Mathematische Zeitschrift, ISSN 0025-5874, E-ISSN 1432-1823, Vol. 282, no 1-2, p. 411-434Article in journal (Refereed) Published
##### Abstract [en]

##### National Category

Mathematics
##### Identifiers

urn:nbn:se:uu:diva-277996 (URN)10.1007/s00209-015-1546-0 (DOI)000368643400018 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_j_idt359",{id:"formSmash:j_idt184:8:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_j_idt365",{id:"formSmash:j_idt184:8:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_j_idt371",{id:"formSmash:j_idt184:8:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_j_idt371",multiple:true});
#####

##### Funder

Swedish Research Council
Available from: 2016-02-23 Created: 2016-02-23 Last updated: 2017-11-30Bibliographically approved

Univ E Anglia, Sch Math, Norwich NR4 7TJ, Norfolk, England..

We introduce the class of isotypic 2-representations for finitary 2-categories and the notion of inflation of 2-representations. Under some natural assumptions we show that isotypic 2-representations are equivalent to inflations of cell 2-representations.

Open this publication in new window or tab >>Morita theory for finitary 2-categories### Mazorchuk, Volodymyr

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.### Miemietz, Vanessa

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_some",{id:"formSmash:j_idt184:9:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_otherAuthors",{id:"formSmash:j_idt184:9:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_otherAuthors",multiple:true}); 2016 (English)In: Quantum Topology, ISSN 1663-487X, E-ISSN 1664-073X, Vol. 7, no 1, p. 1-28Article in journal (Refereed) Published
##### Abstract [en]

##### Keywords

2-representation theory, finitary 2-category, Morita equivalence, projective functor
##### National Category

Mathematics
##### Identifiers

urn:nbn:se:uu:diva-298710 (URN)10.4171/QT/72 (DOI)000376406500001 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_j_idt359",{id:"formSmash:j_idt184:9:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_j_idt365",{id:"formSmash:j_idt184:9:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_j_idt371",{id:"formSmash:j_idt184:9:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_j_idt371",multiple:true});
#####

Available from: 2016-07-06 Created: 2016-07-06 Last updated: 2017-11-28Bibliographically approved

Univ E Anglia, Sch Math, Norwich NR4 7TJ, Norfolk, England..

We develop Morita theory for finitary additive 2-representations of finitary 2-categories. As an application we describe Morita equivalence classes for 2-categories of projective functors associated to finite dimensional algebras and for 2-categories of Soergel bimodules.