uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Pettersson, Curt
Alternative names
Publications (10 of 43) Show all publications
Haglind, A., Hedeland, M., Arvidsson, T. & Pettersson, C. E. (2018). Major signal suppression from metal ion clusters in SFC/ESI-MS: Cause and Effects. Journal of chromatography. B, 1084, 96-105
Open this publication in new window or tab >>Major signal suppression from metal ion clusters in SFC/ESI-MS: Cause and Effects
2018 (English)In: Journal of chromatography. B, ISSN 1570-0232, E-ISSN 1873-376X, Vol. 1084, p. 96-105Article in journal (Refereed) Published
Abstract [en]

The widening application area of SFC-MS with polar analytes and water-containing samples facilitates the use of quick and simple sample preparation techniques such as “dilute and shoot” and protein precipitation. This has also introduced new polar interfering components such as alkali metal ions naturally abundant in e.g. blood plasma and urine, which have shown to be retained using screening conditions in SFC/ESI-TOF-MS and causing areas of major ion suppression. Analytes co-eluting with these clusters will have a decreased signal intensity, which might have a major effect on both quantification and identification. When investigating the composition of the alkali metal clusters using accurate mass and isotopic pattern, it could be concluded that they were previously not described in the literature. Using NaCl and KCl standards and different chromatographic conditions, varying e.g. column and modifier, the clusters proved to be formed from the alkali metal ions in combination with the alcohol modifier and make-up solvent. Their compositions were [(XOCH3)n+X]+, [(XOH)n+X]+, [(X2CO3)n+X]+ and [(XOOCOCH3)n+X]+ for X= Na+ or K+ in ESI+. In ESI-, the clusters depended more on modifier, with [(XCl)n+Cl]- and [(XOCH3)n+OCH3]- mainly formed in pure methanol and [(XOOCH)n+OOCH]- when 20 mM NH4Fa was added.

To prevent the formation of the clusters by avoiding methanol as modifier might be difficult, as this is a widely used modifier providing good solubility when analyzing polar compounds in SFC. A sample preparation with e.g. LLE would remove the alkali ions, however also introducing a time consuming and discriminating step into the method. Since the alkali metal ions were retained and affected by chromatographic adjustments as e.g. mobile phase modifications, a way to avoid them could therefore be chromatographic tuning, when analyzing samples containing them.

Keyword
SFC-MS, matrix effect, alkali metal, ion cluster, Supercritical fluid chromatography, ESI
National Category
Analytical Chemistry
Research subject
Analytical Pharmaceutical Chemistry
Identifiers
urn:nbn:se:uu:diva-345978 (URN)10.1016/j.jchromb.2018.03.024 (DOI)000430524400012 ()29579734 (PubMedID)
Available from: 2018-03-13 Created: 2018-03-13 Last updated: 2018-06-19Bibliographically approved
Svan, A., Hedeland, M., Arvidsson, T. & Pettersson, C. (2018). The differences in matrix effect between supercritical fluid chromatography and reversed phase liquid chromatography coupled to ESI/MS. Analytica Chimica Acta, 1000, 163-171
Open this publication in new window or tab >>The differences in matrix effect between supercritical fluid chromatography and reversed phase liquid chromatography coupled to ESI/MS
2018 (English)In: Analytica Chimica Acta, ISSN 0003-2670, E-ISSN 1873-4324, Vol. 1000, p. 163-171Article in journal (Refereed) Published
Abstract [en]

For many sample matrices, matrix effects are a troublesome phenomenon using the electrospray ionization source. The increasing use of supercritical fluid chromatography with CO2 in combination with the electrospray ionization source for MS detection is therefore raising questions: is the matrix effect behaving differently using SFC in comparison with reversed phase LC? This was investigated using urine, plasma, influent-and effluent-wastewater as sample matrices. The matrix effect was evaluated using the post-extraction addition method and through post-column infusions. Matrix effect profiles generated from the post-column infusions in combination with time of flight-MS detection provided the most valuable information for the study. The combination of both qualitative and semi-quantitative information with the ability to use HRMS-data for identifying interfering compounds from the same experiment was very useful, and has to the authors' knowledge not been used this way before. The results showed that both LC and SFC are affected by matrix effects, however differently depending on sample matrix. Generally, both suppressions and enhancements were seen, with a higher amount of enhancements for LC, where 65% of all compounds and all sample matrices were enhanced, compared to only 7% for SFC. Several interferences were tentatively identified, with phospholipids, creatinine, and metal ion clusters as examples of important interferences, with different impact depending on chromatographic technique. SFC needs a different strategy for limiting matrix interferences, owing to its almost reverse retention order compared to RPLC.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV, 2018
Keyword
Matrix effects, Supercritical fluid chromatography, Electrospray ionization, Liquid chromatography, Ion enhancement, Ion suppression
National Category
Analytical Chemistry
Identifiers
urn:nbn:se:uu:diva-338947 (URN)10.1016/j.aca.2017.10.014 (DOI)000418832900015 ()29289305 (PubMedID)
Available from: 2018-01-25 Created: 2018-01-25 Last updated: 2018-03-15Bibliographically approved
Häggblad Sahlberg, S., Mortensen, A. C., Haglöf, J., Engskog, M. K. R., Arvidsson, T., Pettersson, C., . . . Nestor, M. (2017). Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells. International Journal of Oncology, 50(1), 5-14
Open this publication in new window or tab >>Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells
Show others...
2017 (English)In: International Journal of Oncology, ISSN 1019-6439, Vol. 50, no 1, p. 5-14Article in journal (Refereed) Published
Abstract [en]

AKT is a central protein in many cellular pathways such as cell survival, proliferation, glucose uptake, metabolism, angiogenesis, as well as radiation and drug response. The three isoforms of AKT (AKT1, AKT2 and AKT3) are proposed to have different physiological functions, properties and expression patterns in a cell type-dependent manner. As of yet, not much is known about the influence of the different AKT isoforms in the genome and their effects in the metabolism of colorectal cancer cells. In the present study, DLD-1 isogenic AKT1, AKT2 and AKT'/2 knockout colon cancer cell lines were used as a model system in conjunction with the parental cell line in order to further elucidate the differences between the AKT isoforms and how they are involved in various cellular pathways. This was done using genome wide expression analyses, metabolic profiling and cell migration assays. In conclusion, downregulation of genes in the cell adhesion, extracellular matrix and Notch-pathways and upregulation of apoptosis and metastasis inhibitory genes in the p53-pathway, confirm that the knockout of both AKT1 and AKT2 will attenuate metastasis and tumor cell growth. This was verified with a reduction in migration rate in the AKT1 KO and AKT2 KO and most explicitly in the AKT1/2 KO. Furthermore, the knockout of AKT1, AKT2 or both, resulted in a reduction in lactate and alanine, suggesting that the metabolism of carbohydrates and glutathione was impaired. This was further verified in gene expression analyses, showing downregulation of genes involved in glucose metabolism. Additionally, both AKT1 KO and AKT2 KO demonstrated an impaired fatty acid metabolism. However, genes were upregulated in the Wnt and cell proliferation pathways, which could oppose this effect. AKT inhibition should therefore be combined with other effectors to attain the best effect.

Keyword
Microarray, metabolism, cell migration AKT1, AKT2, AKT, PKB, gene expression, colon-cancer, DLD-1, metabolomics, CD44, CD133
National Category
Biochemistry and Molecular Biology
Research subject
Biomedical Radiation Science; Biology with specialization in Molecular Cell Biology; Biology with specialization in Molecular Biology
Identifiers
urn:nbn:se:uu:diva-222834 (URN)10.3892/ijo.2016.3771 (DOI)000391419200001 ()
Available from: 2014-04-14 Created: 2014-04-14 Last updated: 2017-12-05Bibliographically approved
Fransson, A. E., Kisiel, M., Pirttilä, K., Pettersson, C., Videhult Pierre, P. & Laurell, G. (2017). Hydrogen Inhalation Protects against Ototoxicity Induced by Intravenous Cisplatin in the Guinea Pig. Frontiers in Cellular Neuroscience, 11, Article ID 280.
Open this publication in new window or tab >>Hydrogen Inhalation Protects against Ototoxicity Induced by Intravenous Cisplatin in the Guinea Pig
Show others...
2017 (English)In: Frontiers in Cellular Neuroscience, ISSN 1662-5102, E-ISSN 1662-5102, Vol. 11, article id 280Article in journal (Refereed) Published
Abstract [en]

Introduction: Permanent hearing loss and tinnitus as side-effects from treatment with the anticancer drug cisplatin is a clinical problem. Ototoxicity may be reduced by co-administration of an otoprotective agent, but the results in humans have so far been modest.

Aim: The present preclinical in vivo study aimed to explore the protective efficacy of hydrogen (H2) inhalation on ototoxicity induced by intravenous cisplatin.

Materials and Methods: Albino guinea pigs were divided into four groups. The Cispt (n = 11) and Cispt+H2 (n = 11) groups were given intravenous cisplatin (8 mg/kg b.w., injection rate 0.2 ml/min). Immediately after, the Cispt+H2 group also received gaseous H2 (2% in air, 60 min). The H2 group (n = 5) received only H2 and the Control group (n = 7) received neither cisplatin nor H2. Ototoxicity was assessed by measuring frequency specific ABR thresholds before and 96 h after treatment, loss of inner (IHCs) and outer (OHCs) hair cells, and by performing densitometry-based immunohistochemistry analysis of cochlear synaptophysin, organic transporter 2 (OCT2), and copper transporter 1 (CTR1) at 12 and 7 mm from the round window. By utilizing metabolomics analysis of perilymph the change of metabolites in the perilymph was assessed.

Results: Cisplatin induced electrophysiological threshold shifts, hair cell loss, and reduced synaptophysin immunoreactivity in the synapse area around the IHCs and OHCs. H2 inhalation mitigated all these effects. Cisplatin also reduced the OCT2 intensity in the inner and outer pillar cells and in the stria vascularis as well as the CTR1 intensity in the synapse area around the IHCs, the Deiters' cells, and the stria vascularis. H2 prevented the majority of these effects.

Conclusion: H2 inhalation can reduce cisplatin-induced ototoxicity on functional, cellular, and subcellular levels. It is proposed that synaptopathy may serve as a marker for cisplatin ototoxicity. The effect of H2 on the antineoplastic activity of cisplatin needs to be further explored.

Keyword
ABR, inner hair cells, outer hair cells, synaptophysin, organic cation transporter 2, copper transporter 1, perilymph metabolomics, in vivo
National Category
Otorhinolaryngology Analytical Chemistry Pharmaceutical Sciences
Identifiers
urn:nbn:se:uu:diva-330897 (URN)10.3389/fncel.2017.00280 (DOI)000410583900001 ()28955207 (PubMedID)
Available from: 2017-10-06 Created: 2017-10-06 Last updated: 2018-01-13Bibliographically approved
Niklison-Chirou, M. V., Erngren, I., Engskog, M. K., Haglöf, J., Picard, D., Remke, M., . . . Marino, S. (2017). TAp73 is a marker of glutamine addiction in medulloblastoma. Genes & Development, 31(17), 1738-1753
Open this publication in new window or tab >>TAp73 is a marker of glutamine addiction in medulloblastoma
Show others...
2017 (English)In: Genes & Development, ISSN 0890-9369, E-ISSN 1549-5477, Vol. 31, no 17, p. 1738-1753Article in journal (Refereed) Published
Abstract [en]

Medulloblastoma is the most common solid primary brain tumor in children. Remarkable advancements in the understanding of the genetic and epigenetic basis of these tumors have informed their recent molecular classification. However, the genotype/phenotype correlation of the subgroups remains largely uncharacterized. In particular, the metabolic phenotype is of great interest because of its druggability, which could lead to the development of novel and more tailored therapies for a subset of medulloblastoma. p73 plays a critical role in a range of cellular metabolic processes. We show overexpression of p73 in a proportion of non-WNT medulloblastoma. In these tumors, p73 sustains cell growth and proliferation via regulation of glutamine metabolism. We validated our results in a xenograft model in which we observed an increase in survival time in mice on a glutamine restriction diet. Notably, glutamine starvation has a synergistic effect with cisplatin, a component of the current medulloblastoma chemotherapy. These findings raise the possibility that glutamine depletion can be used as an adjuvant treatment for p73-expressing medulloblastoma.

Place, publisher, year, edition, pages
COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT, 2017
Keyword
medulloblastoma, p73, glutamine, metabolomics
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:uu:diva-336829 (URN)10.1101/gad.302349.117 (DOI)000412275500004 ()28971956 (PubMedID)
Available from: 2017-12-20 Created: 2017-12-20 Last updated: 2017-12-20Bibliographically approved
Elmsjö, A., Haglöf, J., Engskog, M. K. R., Nestor, M., Arvidsson, T. & Pettersson, C. (2017). The co-feature ratio, a novel method for the measurement of chromatographic and signal selectivity in LC-MS-based metabolomics.. Analytica Chimica Acta, 956, 40-47
Open this publication in new window or tab >>The co-feature ratio, a novel method for the measurement of chromatographic and signal selectivity in LC-MS-based metabolomics.
Show others...
2017 (English)In: Analytica Chimica Acta, ISSN 0003-2670, E-ISSN 1873-4324, Vol. 956, p. 40-47Article in journal (Refereed) Published
Abstract [en]

Evaluation of analytical procedures, especially in regards to measuring chromatographic and signal selectivity, is highly challenging in untargeted metabolomics. The aim of this study was to suggest a new straightforward approach for a systematic examination of chromatographic and signal selectivity in LC-MS-based metabolomics. By calculating the ratio between each feature and its co-eluting features (the co-features), a measurement of the chromatographic selectivity (i.e. extent of co-elution) as well as the signal selectivity (e.g. amount of adduct formation) of each feature could be acquired, the co-feature ratio. This approach was used to examine possible differences in chromatographic and signal selectivity present in samples exposed to three different sample preparation procedures. The capability of the co-feature ratio was evaluated both in a classical targeted setting using isotope labelled standards as well as without standards in an untargeted setting. For the targeted analysis, several metabolites showed a skewed quantitative signal due to poor chromatographic selectivity and/or poor signal selectivity. Moreover, evaluation of the untargeted approach through multivariate analysis of the co-feature ratios demonstrated the possibility to screen for metabolites displaying poor chromatographic and/or signal selectivity characteristics. We conclude that the co-feature ratio can be a useful tool in the development and evaluation of analytical procedures in LC-MS-based metabolomics investigations. Increased selectivity through proper choice of analytical procedures may decrease the false positive and false negative discovery rate and thereby increase the validity of any metabolomic investigation.

National Category
Analytical Chemistry Pharmaceutical Sciences
Research subject
Analytical Pharmaceutical Chemistry
Identifiers
urn:nbn:se:uu:diva-314239 (URN)10.1016/j.aca.2016.12.022 (DOI)000393252000005 ()28093124 (PubMedID)
Available from: 2017-01-31 Created: 2017-01-31 Last updated: 2018-01-13Bibliographically approved
Engskog, M. K., Karlsson, O., Haglöf, J., Elmsjö, A., Brittebo, E., Arvidsson, T. & Pettersson, C. (2017). The cyanobacterial amino acid beta-N-methylamino-L-alanine perturbs the intermediary metabolism in neonatal rats. Amino Acids, 49(5), 905-919, Article ID 10.1007/s00726-017-2391-8.
Open this publication in new window or tab >>The cyanobacterial amino acid beta-N-methylamino-L-alanine perturbs the intermediary metabolism in neonatal rats
Show others...
2017 (English)In: Amino Acids, ISSN 0939-4451, E-ISSN 1438-2199, Vol. 49, no 5, p. 905-919, article id 10.1007/s00726-017-2391-8Article in journal (Refereed) Published
Abstract [en]

The neurotoxic amino acid β-N-methylamino-l-alanine (BMAA) is produced by most cyanobacteria. BMAA is considered as a potential health threat because of its putative role in neurodegenerative diseases. We have previously observed cognitive disturbances and morphological brain changes in adult rodents exposed to BMAA during the development. The aim of this study was to characterize changes of major intermediary metabolites in serum following neonatal exposure to BMAA using a non-targeted metabolomic approach. NMR spectroscopy was used to obtain serum metabolic profiles from neonatal rats exposed to BMAA (40, 150, 460mg/kg) or vehicle on postnatal days 9-10. Multivariate data analysis of binned NMR data indicated metabolic pattern differences between the different treatment groups. In particular five metabolites, d-glucose, lactate, 3-hydroxybutyrate, creatine and acetate, were changed in serum of BMAA-treated neonatal rats. These metabolites are associated with changes in energy metabolism and amino acid metabolism. Further statistical analysis disclosed that all the identified serum metabolites in the lowest dose group were significantly (p<0.05) decreased. The neonatal rat model used in this study is so far the only animal model that displays significant biochemical and behavioral effects after a low short-term dose of BMAA. The demonstrated perturbation of intermediary metabolism may contribute to BMAA-induced developmental changes that result in long-term effects on adult brain function.

Keyword
β-N-methylamino-L-alanine, cyanobacteria, energy metabolism, neurotoxin, metabolomics, NMR
National Category
Analytical Chemistry Pharmaceutical Sciences
Research subject
Analytical Pharmaceutical Chemistry; Pharmaceutical Science
Identifiers
urn:nbn:se:uu:diva-205735 (URN)10.1016/j.tox.2013.07.010 (DOI)000327005300002 ()23886855 (PubMedID)
Funder
Swedish Research Council Formas
Available from: 2013-08-22 Created: 2013-08-22 Last updated: 2018-01-11
Svan, A., Hedeland, M., Arvidsson, T. & Pettersson, C. (2017). The differences in matrix effects between supercritical fluid chromatography and reversed phase liquid chromatography coupled to ESI/MS analyzing blood plasma. In: : . Paper presented at HPLC 2017.
Open this publication in new window or tab >>The differences in matrix effects between supercritical fluid chromatography and reversed phase liquid chromatography coupled to ESI/MS analyzing blood plasma
2017 (English)Conference paper, Poster (with or without abstract) (Other academic)
Abstract [en]

Introduction

The increasing popularity of supercritical fluid chromatography (SFC) in combination with electrospray ionization mass spectrometry (ESI/MS) within several fields calls for a deeper knowledge regarding this combination of techniques. The ESI source is known for its sensitivity regarding matrix effects, often a factor controlled during method development and validation using LC. The different chemistry and chromatographic selectivity of LC and SFC give potentially different impact on the ionization process in ESI; however, this an area still not well studied.   

Aim: To investigate how the matrix effects in ESI/MS differ for human plasma samples between SFC and reversed-phase LC, using generic screening conditions for both techniques, and a set of typical low molecular weight drug substances.

Methods

Pooled human plasma (500 µl) was precipitated using ice-cold acetonitrile (1000 µl). After mixing and centrifuging, 1200 µl of the supernatant were removed and evaporated at 40 ̊C. When dry, the samples were dissolved in 500µl water+0.1% FA (for LC) or acetonitrile:water 75:25 (for SFC). The samples were analyzed using SFC (Acquity UPC2, Waters®) and LC (Acquity UPLC, Waters®) and general screening conditions, using 10 min gradients. The same MS-system, a Q-ToF (Synapt G2-S, Waters®) acquiring in full scan mode, was used for detection with both separation techniques. The matrix effect was mainly evaluated using the Matrix Effect Profile, achieved from post-column compound infusions and injections of pretreated sample matrix and neat standards. From these data the average ME% was calculated for each data-point in the chromatogram, and through the full-scan mode using ToF, the compounds co-eluting with areas of suppression could be tentatively identified, suspected of creating the suppression. 

 

Results and discussion The Matrix Effect Profile-evaluation of the experiments, combining qualitative and quantitative information with the added ability to use HRMS-data to identify interfering compounds from the same experiments were most useful for our aim. Phospholipids, creatinine, polyethylene glycol and cluster formations are examples of important interferences co-eluting with areas of ion suppression, but with different impact depending on chromatographic technique. The results also showed several areas of enhancement using LC, an effect not seen using SFC. 

National Category
Analytical Chemistry
Research subject
Analytical Pharmaceutical Chemistry
Identifiers
urn:nbn:se:uu:diva-341331 (URN)
Conference
HPLC 2017
Available from: 2018-02-07 Created: 2018-02-07 Last updated: 2018-02-07
Engskog, M. K. R., Ersson, L., Haglöf, J., Arvidsson, T., Pettersson, C. & Brittebo, E. (2017). β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling. Amino Acids, 49(5), 905-919
Open this publication in new window or tab >>β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling
Show others...
2017 (English)In: Amino Acids, ISSN 0939-4451, E-ISSN 1438-2199, Vol. 49, no 5, p. 905-919Article in journal (Refereed) Published
Abstract [en]

β-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.

Keyword
BMAA, Global metabolite profiling, MS, Metabolism, NMR, Neurotoxin
National Category
Pharmaceutical Sciences
Identifiers
urn:nbn:se:uu:diva-322142 (URN)10.1007/s00726-017-2391-8 (DOI)000399176200006 ()28161796 (PubMedID)
Funder
Swedish Research Council Formas
Available from: 2017-05-16 Created: 2017-05-16 Last updated: 2018-01-13Bibliographically approved
Engskog, M. K. R., Haglöf, J., Arvidsson, T. & Pettersson, C. (2016). LC-MS based global metabolite profiling: the necessity of high data quality. Metabolomics, 12(7), Article ID 114.
Open this publication in new window or tab >>LC-MS based global metabolite profiling: the necessity of high data quality
2016 (English)In: Metabolomics, ISSN 1573-3882, E-ISSN 1573-3890, Vol. 12, no 7, article id 114Article, review/survey (Refereed) Published
Abstract [en]

LC-MS based global metabolite profiling currently lacks detailed guidelines to demonstrate that the obtained data is of high enough analytical quality. Insufficient data quality may result in the failure to generate a hypothesis, or in the worst case, a false or skewed hypothesis. After assessing the literature, it is apparent that an analytically focused summary and critical discussion related to this subject would be beneficial for both beginners and experts engaged in this field. A particular focus will be placed on data quality, which we here define as the degree to which a set of parameters fulfills predetermined criteria, similar to the established guidelines for targeted analysis. However, several of these parameters are difficult to assess since holistic approaches measure thousands of metabolites in parallel and seldom include predefined knowledge of which metabolites will differ between sample groups. In this review, the following parameters will be discussed in detail: reproducibility, selectivity, certainty of metabolite identification and metabolite coverage. The review systematically describes the generic workflow for LC-MS based global metabolite profiling and highlights how each separate part may affect data quality. The last part of the review describes how data quality can be evaluated as well as identifies areas where additional improvement is needed. In this review, we provide our own analytical opinions in regards to evaluation and, to some extent, improvement of data quality.

Keyword
Data quality, Global metabolite profiling, LC-MS, Validation, Metabolomic workflow, Metabolomics
National Category
Endocrinology and Diabetes
Identifiers
urn:nbn:se:uu:diva-300659 (URN)10.1007/s11306-016-1058-x (DOI)000379508500006 ()
Available from: 2016-08-10 Created: 2016-08-10 Last updated: 2017-11-28Bibliographically approved
Organisations

Search in DiVA

Show all publications