Open this publication in new window or tab >>Show others...
2024 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 361, article id 122937Article in journal (Refereed) Published
Abstract [en]
To evaluate the effects of different energy retrofit scenarios on the residential building sector, in this study, an urban building energy model (UBEM) was developed from open data, calibrated using energy performance certificates (EPCs), and validated against hourly electricity use measurement data. The calibrated and validated UBEM was used for implementing energy retrofit scenarios and improving the energy performance of the case study city of Varberg, Sweden. Additionally, possible consequences of the scenarios on the electricity grid were also evaluated in this study. The results showed that for a calibrated UBEM, the MAPE of the simulated versus delivered energy to the buildings was 26 %. Although the model was calibrated based on annual values from some of the buildings with EPCs, the validation ensured that it could produce reliable results for different spatial and temporal levels than calibrated for. Furthermore, the validation proved that the spatial aggregation over the city and temporal aggregation over the year could considerably improve the results. The implementation of the energy retrofit scenarios using the calibrated and validated UBEM resulted in a 43 % reduction of the energy use in residential buildings renovated based on the Passive House standard. If this was combined with the generation of on-site solar energy, except for the densely populated areas of the city, it was possible to reach near zero (and in some cases positive) energy districts. The results of grid simulation and power flow analysis for a chosen low-voltage distribution network indicated that energy retrofitting of buildings could lead to an increase in voltage by a maximum of 7 %. This particularly suggests that there is a possibility of occasional overvoltages when the generation and use of electricity are not in perfect balance.
Place, publisher, year, edition, pages
Elsevier, 2024
Keywords
Urban building energy modeling, Large-scale energy retrofit, Net zero energy districts, Model validation, Grid analysis
National Category
Energy Systems Energy Engineering
Identifiers
urn:nbn:se:uu:diva-508079 (URN)10.1016/j.apenergy.2024.122937 (DOI)001221470800001 ()
Funder
SOLVE
2023-07-192023-07-192024-05-27Bibliographically approved