uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Publications (10 of 34) Show all publications
Lukoyanov, N., Carvalho, L., Watanabe, H., Zhang, M., Sarkisyan, D., Kononenko, O., . . . Bakalkin, G. (2018). Contralesional Hindlimb Motor Response Induced By Unilateral Brain Injury: Evidence For Extra Spinal Mechanism. Paper presented at 3rd Joint Symposium of the International-and-National-Neurotrauma-Societies-and-AANS/CNS-Section on Neurotrauma and Critical Care, AUG 11-16, 2018, Toronto, CANADA. Journal of Neurotrauma, 35(16), A201-A201
Open this publication in new window or tab >>Contralesional Hindlimb Motor Response Induced By Unilateral Brain Injury: Evidence For Extra Spinal Mechanism
Show others...
2018 (English)In: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 35, no 16, p. A201-A201Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
MARY ANN LIEBERT, INC, 2018
Keywords
Gene Expression, Neurotransmitter, Rehabilitation, Electophysiology, Endocrine
National Category
Neurosciences
Identifiers
urn:nbn:se:uu:diva-363878 (URN)000441527400543 ()
Conference
3rd Joint Symposium of the International-and-National-Neurotrauma-Societies-and-AANS/CNS-Section on Neurotrauma and Critical Care, AUG 11-16, 2018, Toronto, CANADA
Available from: 2018-11-14 Created: 2018-11-14 Last updated: 2018-11-14Bibliographically approved
Kononenko, O., Mityakina, I., Galatenko, V., Watanabe, H., Bazov, I., Gerashchenko, A., . . . Bakalkin, G. (2018). Differential effects of left and right neuropathy on opioid gene expression in lumbar spinal cord. Brain Research, 1695, 78-83
Open this publication in new window or tab >>Differential effects of left and right neuropathy on opioid gene expression in lumbar spinal cord
Show others...
2018 (English)In: Brain Research, ISSN 0006-8993, E-ISSN 1872-6240, Vol. 1695, p. 78-83Article in journal (Refereed) Published
Abstract [en]

The endogenous opioid system (EOS) controls the processing of nociceptive stimuli and is a pharmacological target for opioids. Alterations in expression of the EOS genes under neuropathic pain condition may account for low efficacy of opioid drugs. We here examined whether EOS expression patterns are altered in the lumbar spinal cord of the rats with spinal nerve ligation (SNL) as a neuropathic pain model. Effects of the left- and right-side SNL on expression of EOS genes in the ipsi- and contralateral spinal domains were analysed. The SNL-induced changes were complex and different between the genes; between the dorsal and ventral spinal domains; and between the left and right sides of the spinal cord. Prodynorphin (Pdyn) expression was upregulated in the ipsilateral dorsal domains by each the left and right-side SNL, while changes in expression mu-opioid receptor (Oprm I) and proenkephalin (Penk) genes were dependent on the SNL side. Changes in expression of the Pdyn and kappa-opioid receptor (Oprk1) genes were coordinated between the ipsi- and contralateral sides. Withdrawal response thresholds, indicators of mechanical allodynia correlated negatively with Pdyn expression in the right ventral domain after right side SNL. These findings suggest multiple roles of the EOS gene products in spinal sensitization and changes in motor reflexes, which may differ between the left and right sides. (C) 2018 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
Rat model, Neuropathic pain, Gene expression, Opioid system, Lumbar spinal cord, Lateralization
National Category
Neurosciences
Identifiers
urn:nbn:se:uu:diva-364899 (URN)10.1016/j.brainres.2018.05.043 (DOI)000440390700009 ()29852138 (PubMedID)
Funder
Swedish Research CouncilForte, Swedish Research Council for Health, Working Life and WelfareSwedish Research Council FormasSwedish Institute
Available from: 2018-11-09 Created: 2018-11-09 Last updated: 2018-11-09Bibliographically approved
Bazov, I., Sarkisyan, D., Kononenko, O., Watanabe, H., Karpyak, V. M., Yakovleva, T. & Bakalkin, G. (2018). Downregulation of the neuronal opioid gene expression concomitantly with neuronal decline in dorsolateral prefrontal cortex of human alcoholics. Translational Psychiatry, 8, Article ID 122.
Open this publication in new window or tab >>Downregulation of the neuronal opioid gene expression concomitantly with neuronal decline in dorsolateral prefrontal cortex of human alcoholics
Show others...
2018 (English)In: Translational Psychiatry, ISSN 2158-3188, E-ISSN 2158-3188, Vol. 8, article id 122Article in journal (Refereed) Published
Abstract [en]

Molecular changes in cortical areas of addicted brain may underlie cognitive impairment and loss of control over intake of addictive substances and alcohol. Prodynorphin (PDYN) gives rise to dynorphin (DYNs) opioid peptides which target kappa-opioid receptor (KOR). DYNs mediate alcohol-induced impairment of learning and memory, while KOR antagonists block excessive, compulsive-like drug and alcohol self-administration in animal models. In human brain, the DYN/KOR system may undergo adaptive changes, which along with neuronal loss, may contribute to alcohol-associated cognitive deficit. We addressed this hypothesis by comparing the expression levels and co-expression (transcriptionally coordinated) patterns of PDYN and KOR (OPRK1) genes in dorsolateral prefrontal cortex (dlPFC) between human alcoholics and controls. Postmortem brain specimens of 53 alcoholics and 55 controls were analyzed. PDYN was found to be downregulated in dlPFC of alcoholics, while OPRK1 transcription was not altered. PDYN downregulation was confined to subgroup of subjects carrying C, a high-risk allele of PDYN promoter SNP rs1997794 associated with alcoholism. Changes in PDYN expression did not depend on the decline in neuronal proportion in alcoholics, and thereby may be attributed to transcriptional adaptations in alcoholic brain. Absolute expression levels of PDYN were lower compared to those of OPRK1, suggesting that PDYN expression is a limiting factor in the DYN/KOR signaling, and that the PDYN downregulation diminishes efficacy of DYN/KOR signaling in dlPFC of human alcoholics. The overall outcome of the DYN/KOR downregulation may be disinhibition of neurotransmission, which when overactivated could contribute to formation of alcohol-related behavior.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP, 2018
National Category
Neurosciences Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:uu:diva-358683 (URN)10.1038/s41398-017-0075-5 (DOI)000437025300001 ()29925858 (PubMedID)
Funder
Forte, Swedish Research Council for Health, Working Life and Welfare, 2009-1709Forte, Swedish Research Council for Health, Working Life and Welfare, 259-2012-23Swedish Research Council, K2014-62X-12190-19-5
Available from: 2018-09-05 Created: 2018-09-05 Last updated: 2018-09-17Bibliographically approved
Bazov, I., Sarkisyan, D., Kononenko, O., Watanabe, H., Yakovleva, T., Hansson, A. C., . . . Bakalkin, G. (2018). Dynorphin and κ-Opioid Receptor Dysregulation in the Dopaminergic Reward System of Human Alcoholics.. Molecular Neurobiology, 55(8), 7049-7061
Open this publication in new window or tab >>Dynorphin and κ-Opioid Receptor Dysregulation in the Dopaminergic Reward System of Human Alcoholics.
Show others...
2018 (English)In: Molecular Neurobiology, ISSN 0893-7648, E-ISSN 1559-1182, Vol. 55, no 8, p. 7049-7061Article in journal (Refereed) Published
Abstract [en]

Molecular changes induced by excessive alcohol consumption may underlie formation of dysphoric state during acute and protracted alcohol withdrawal which leads to craving and relapse. A main molecular addiction hypothesis is that the upregulation of the dynorphin (DYN)/κ-opioid receptor (KOR) system in the nucleus accumbens (NAc) of alcohol-dependent individuals causes the imbalance in activity of D1- and D2 dopamine receptor (DR) expressing neural circuits that results in dysphoria. We here analyzed post-mortem NAc samples of human alcoholics to assess changes in prodynorphin (PDYN) and KOR (OPRK1) gene expression and co-expression (transcriptionally coordinated) patterns. To address alterations in D1- and D2-receptor circuits, we studied the regulatory interactions between these pathways and the DYN/KOR system. No significant differences in PDYN and OPRK1 gene expression levels between alcoholics and controls were evident. However, PDYN and OPRK1 showed transcriptionally coordinated pattern that was significantly different between alcoholics and controls. A downregulation of DRD1 but not DRD2 expression was seen in alcoholics. Expression of DRD1 and DRD2 strongly correlated with that of PDYN and OPRK1 suggesting high levels of transcriptional coordination between these gene clusters. The differences in expression and co-expression patterns were not due to the decline in neuronal proportion in alcoholic brain and thereby represent transcriptional phenomena. Dysregulation of DYN/KOR system and dopamine signaling through both alterations in co-expression patterns of opioid genes and decreased DRD1 gene expression may contribute to imbalance in the activity of D1- and D2-containing pathways which may lead to the negative affective state in human alcoholics.

Place, publisher, year, edition, pages
Springer, 2018
Keywords
Alcohol addiction, Co-expression of gene clusters, D1-pathway, D2-pathway, Dynorphin, Dysphoria, Nucleus accumbens, Post-mortem human brain tissue, Reward system, κ-opioid receptor
National Category
Biochemistry and Molecular Biology Neurology
Identifiers
urn:nbn:se:uu:diva-343195 (URN)10.1007/s12035-017-0844-4 (DOI)000439758300057 ()29383684 (PubMedID)
Funder
Swedish Research Council, K2014-62X-12190-19-5Forte, Swedish Research Council for Health, Working Life and Welfare, 2009-1709 259-2012-23
Available from: 2018-02-26 Created: 2018-02-26 Last updated: 2018-10-17Bibliographically approved
Bazov, I., Sarkisyan, D., Kononenko, O., Watanabe, H., Taqi, M. M., Stålhandske, L., . . . Bakalkin, G. (2018). Neuronal Expression of Opioid Gene is Controlled by Dual Epigenetic and Transcriptional Mechanism in Human Brain. Cerebral Cortex, 28(9), 3129-3142
Open this publication in new window or tab >>Neuronal Expression of Opioid Gene is Controlled by Dual Epigenetic and Transcriptional Mechanism in Human Brain
Show others...
2018 (English)In: Cerebral Cortex, ISSN 1047-3211, E-ISSN 1460-2199, Vol. 28, no 9, p. 3129-3142Article in journal (Refereed) Published
Abstract [en]

Molecular mechanisms that define patterns of neuropeptide expression are essential for the formation and rewiring of neural circuits. The prodynorphin gene (PDYN) gives rise to dynorphin opioid peptides mediating depression and substance dependence. We here demonstrated that PDYN is expressed in neurons in human dorsolateral prefrontal cortex (dlPFC), and identified neuronal differentially methylated region in PDYN locus framed by CCCTC-binding factor binding sites. A short, nucleosome size human-specific promoter CpG island (CGI), a core of this region may serve as a regulatory module, which is hypomethylated in neurons, enriched in 5-hydroxymethylcytosine, and targeted by USF2, a methylation-sensitive E-box transcription factor (TF). USF2 activates PDYN transcription in model systems, and binds to nonmethylated CGI in dlPFC. USF2 and PDYN expression is correlated, and USF2 and PDYN proteins are co-localized in dlPFC. Segregation of activatory TF and repressive CGI methylation may ensure contrasting PDYN expression in neurons and glia in human brain.

Keywords
DNA methylation, cell type-specific expression, human brain, neuropeptides, transcription
National Category
Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:uu:diva-343193 (URN)10.1093/cercor/bhx181 (DOI)000443545600005 ()28968778 (PubMedID)
Funder
Swedish Research Council, K2014-62X-12190-19-5Forte, Swedish Research Council for Health, Working Life and Welfare, 2009-1709Forte, Swedish Research Council for Health, Working Life and Welfare, 259-2012-23NIH (National Institute of Health), P30 GM103328
Available from: 2018-02-26 Created: 2018-02-26 Last updated: 2020-02-17Bibliographically approved
Sarkisyan, D., Bazov, I., Watanabe, H., Kononenko, O., Syvänen, A.-C., Schumann, G., . . . Bakalkin, G. (2017). Damaged reward areas in human alcoholics: neuronal proportion decline and astrocyte activation [Letter to the editor]. Acta Neuropathologica, 133(3), 485-487
Open this publication in new window or tab >>Damaged reward areas in human alcoholics: neuronal proportion decline and astrocyte activation
Show others...
2017 (English)In: Acta Neuropathologica, ISSN 0001-6322, E-ISSN 1432-0533, Vol. 133, no 3, p. 485-487Article in journal, Letter (Refereed) Published
National Category
Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:uu:diva-316837 (URN)10.1007/s00401-017-1675-0 (DOI)000394961100011 ()28097436 (PubMedID)
Note

Shared first authorship for Sarkisyan D., Bazov I.

Available from: 2017-03-07 Created: 2017-03-07 Last updated: 2017-04-28Bibliographically approved
Kononenko, O., Galatenko, V., Andersson, M., Bazov, I., Watanabe, H., Zhou, X., . . . Bakalkin, G. (2017). Intra- and interregional coregulation of opioid genes: broken symmetry in spinal circuits. The FASEB Journal, 31(5), 1953-1963
Open this publication in new window or tab >>Intra- and interregional coregulation of opioid genes: broken symmetry in spinal circuits
Show others...
2017 (English)In: The FASEB Journal, ISSN 0892-6638, E-ISSN 1530-6860, Vol. 31, no 5, p. 1953-1963Article in journal (Refereed) Published
Abstract [en]

Regulation of the formation and rewiring of neural circuits by neuropeptides may require coordinated production of these signaling molecules and their receptors that may be established at the transcriptional level. Here, we address this hypothesis by comparing absolute expression levels of opioid peptides with their receptors, the largest neuropeptide family, and by characterizing coexpression (transcriptionally coordinated) patterns of these genes. We demonstrated that expression patterns of opioid genes highly correlate within and across functionally and anatomically different areas. Opioid peptide genes, compared with their receptor genes, are transcribed at much greater absolute levels, which suggests formation of a neuropeptide cloud that covers the receptor-expressed circuits. Surprisingly, we found that both expression levels and the proportion of opioid receptors are strongly lateralized in the spinal cord, interregional coexpression patterns are side specific, and intraregional coexpression profiles are affected differently by left-and right-side unilateral body injury. We propose that opioid genes are regulated as interconnected components of the same molecular system distributed between distinct anatomic regions. The striking feature of this system is its asymmetric coexpression patterns, which suggest side-specific regulation of selective neural circuits by opioid neurohormones.

Keywords
neuropeptides, spinal cord, lateralization
National Category
Natural Sciences Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
urn:nbn:se:uu:diva-314798 (URN)10.1096/fj.201601039R (DOI)000399195500017 ()28122917 (PubMedID)
Funder
Swedish Research CouncilForte, Swedish Research Council for Health, Working Life and WelfareSwedish Research Council FormasSwedish InstituteThe Swedish Brain Foundation
Note

De 3 första författarna delar förstaförfattarskapet.

Available from: 2017-02-06 Created: 2017-02-06 Last updated: 2019-09-17Bibliographically approved
Kononenko, O., Bazov, I., Watanabe, H., Gerashchenko, G., Dyachok, O., Verbeek, D. S., . . . Bakalkin, G. (2017). Opioid precursor protein isoform is targeted to the cell nuclei in the human brain. Biochimica et Biophysica Acta, 1861(2), 246-255
Open this publication in new window or tab >>Opioid precursor protein isoform is targeted to the cell nuclei in the human brain
Show others...
2017 (English)In: Biochimica et Biophysica Acta, ISSN 0006-3002, E-ISSN 1878-2434, Vol. 1861, no 2, p. 246-255Article in journal (Refereed) Published
Abstract [en]

BACKGROUND: Neuropeptide precursors are traditionally viewed as proteins giving rise to small neuropeptide molecules. Prodynorphin (PDYN) is the precursor protein to dynorphins, endogenous ligands for the κ-opioid receptor. Alternative mRNA splicing of neuropeptide genes may regulate cell- and tissue-specific neuropeptide expression and produce novel protein isoforms. We here searched for novel PDYN mRNA and their protein product in the human brain.

METHODS: Novel PDYN transcripts were identified using nested PCR amplification of oligo(dT) selected full-length capped mRNA. Gene expression was analyzed by qRT-PCR, PDYN protein by western blotting and confocal imaging, dynorphin peptides by radioimmunoassay. Neuronal nuclei were isolated using fluorescence-activated nuclei sorting (FANS) from postmortem human striatal tissue. Immunofluorescence staining and confocal microscopy was performed for human caudate nucleus.

RESULTS: Two novel human PDYN mRNA splicing variants were identified. Expression of one of them was confined to the striatum where its levels constituted up to 30% of total PDYN mRNA. This transcript may be translated into ∆SP-PDYN protein lacking 13 N-terminal amino acids, a fragment of signal peptide (SP). ∆SP-PDYN was not processed to mature dynorphins and surprisingly, was targeted to the cell nuclei in a model cellular system. The endogenous PDYN protein was identified in the cell nuclei in human striatum by western blotting of isolated neuronal nuclei, and by confocal imaging.

CONCLUSIONS AND GENERAL SIGNIFICANCE: High levels of alternatively spliced ∆SP-PDYN mRNA and nuclear localization of PDYN protein suggests a nuclear function for this isoform of the opioid peptide precursor in human striatum.

Keywords
Alternative splicing, Human brain, Neuropeptide precursor protein, Nuclear localization, Prodynorphin
National Category
Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:uu:diva-316836 (URN)10.1016/j.bbagen.2016.11.002 (DOI)000392680200023 ()27838394 (PubMedID)
Funder
Swedish Research Council, K2014-62X-12190-19-5Swedish Research Council Formas, 2009-1709 259-2012-23
Note

Shared first authorship for Kononenko O., Bazov I.

Available from: 2017-03-07 Created: 2017-03-07 Last updated: 2017-11-29
Bazov, I. (2016). Epigenetic Dysregulations in the Brain of Human Alcoholics: Analysis of Opioid Genes. (Doctoral dissertation). Uppsala: Acta Universitatis Upsaliensis
Open this publication in new window or tab >>Epigenetic Dysregulations in the Brain of Human Alcoholics: Analysis of Opioid Genes
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Neuropeptides are special in their expression profiles restricted to neuronal subpopulations and low tissue mRNA levels. Genetic, epigenetic and transcriptional mechanisms that define spatiotemporal expression of the neuropeptide genes have utmost importance for the formation and functions of neural circuits in normal and pathological human brain. This thesis focuses on regulation of transcription of the opioid/nociceptin genes, the largest neuropeptide family, and on identification of adaptive changes in these mechanisms associated with alcoholism as model human pathology. Two epigenetic mechanisms, the common for most cells in the dorsolateral prefrontal cortex (dlPFC) and the neuron-subpopulation specific that may orchestrate prodynorphin (PDYN) transcription in the human dlPFC have been uncovered. The first, repressive mechanism may operate through control of DNA methylation/demethylation in a short, nucleosome size promoter CpG island (CGI). The second mechanism may involve USF2, the sequence–specific methylation–sensitive transcription factor which interaction with its target element in the CpG island results in USF2 and PDYN co-expression in the same neurons. The short PDYN promoter CGI may function as a chromatin element that integrates cellular and environmental signals through changes in methylation and transcription factor binding. Alterations in USF2–dependent PDYN transcription are affected by the promoter SNP (rs1997794: T>C) under transition to pathological state, i.e. in the alcoholic brain. This and two other PDYN SNPs that are most significantly associated with alcoholism represent CpG-SNPs, which are differentially methylated in the human dlPFC. The T, low risk allele of the promoter SNP forms a noncanonical AP-1–binding element. JUND and FOSB proteins, which may form homo- or heterodimers have been identified as dominant constituents of AP-1 complex. The C, non-risk variant of the PDYN 3′ UTR SNP (rs2235749 SNP: C>T) demonstrated significantly higher methylation in alcoholics compared to controls. PDYN mRNA and dynorphin levels significantly and positively correlated with methylation of the PDYN 3′ UTR CpG-SNP suggesting its involvement in PDYN regulation. A DNA–binding factor with differential binding affinity for the T allele and methylated and unmethylated C alleles of the PDYN 3′ UTR SNP (the T allele specific binding factor, Ta-BF) has been discovered, which may function as a regulator of PDYN transcription. These findings emphasize the complexity of PDYN regulation that determines its expression in specific neuronal subpopulations and suggest previously unknown integration of epigenetic, transcriptional and genetic mechanisms that orchestrate alcohol–induced molecular adaptations in the human brain. Given the important role of PDYN in addictive behavior, the findings provide a new insight into fundamental molecular mechanisms of human brain disorder. In addition to PDYN in the dlPFC, the PNOC gene in the hippocampus and OPRL1 gene in central amygdala that were downregulated in alcoholics may contribute to impairment of cognitive control over alcohol seeking and taking behaviour.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. p. 84
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, ISSN 1651-6192 ; 209
Keywords
neuropeptides, dynorphin, human brain, alcohol dependence, epigenetics, gene transcription
National Category
Natural Sciences Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:uu:diva-270321 (URN)978-91-554-9445-2 (ISBN)
Public defence
2016-02-26, B/B7:113a, Husargatan 3, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2016-02-04 Created: 2015-12-27 Last updated: 2016-02-12
Sarkisyan, D., Hussain, M. Z., Watanabe, H., Kononenko, O., Bazov, I., Zhou, X., . . . Bakalkin, G. (2015). Downregulation of the endogenous opioid peptides in the dorsal striatum of human alcoholics. Frontiers in Cellular Neuroscience, 9, Article ID 187.
Open this publication in new window or tab >>Downregulation of the endogenous opioid peptides in the dorsal striatum of human alcoholics
Show others...
2015 (English)In: Frontiers in Cellular Neuroscience, ISSN 1662-5102, E-ISSN 1662-5102, Vol. 9, article id 187Article in journal (Refereed) Published
Abstract [en]

The endogenous opioid peptides dynorphins and enkephalins may be involved in brain-area specific synaptic adaptations relevant for different stages of an addiction cycle. We compared the levels of prodynorphin (PDYN) and proenkephalin (PENK) mRNAs (by qRT-PCR), and dynorphins and enkephalins (by radioimmunoassay) in the caudate nucleus and putamen between alcoholics and control subjects. We also evaluated whether PDYN promoter variant rs1997794 associated with alcoholism affects PDYN expression. Postmortem specimens obtained from 24 alcoholics and 26 controls were included in final statistical analysis. PDYN mRNA and Met-enkephalin-Arg-Phe, a marker of PENK were downregulated in the caudate of alcoholics, while PDYN mRNA and Leu-enkephalin-Arg, a marker of PDYN were decreased in the putamen of alcoholics carrying high risk rs1997794 C allele. Downregulation of opioid peptides in the dorsal striatum may contribute to development of alcoholism including changes in goal directed behavior and formation of a compulsive habit in alcoholics.

Keywords
Caudate nucleus, putamen, prodynorphin, proenkephalin, alcoholism
National Category
Neurosciences
Research subject
Neuroscience
Identifiers
urn:nbn:se:uu:diva-204055 (URN)10.3389/fncel.2015.00187 (DOI)000354804000001 ()26029055 (PubMedID)
Funder
Swedish Research Council
Available from: 2013-07-21 Created: 2013-07-21 Last updated: 2018-01-11Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-4388-1656

Search in DiVA

Show all publications