uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Alternative names
Publications (10 of 24) Show all publications
Bielecki, J., Hantke, M. F., Daurer, B. J., Reddy, H. K. N., Hasse, D., Larsson, D. S. D., . . . Maia, F. R. N. (2019). Electrospray sample injection for single-particle imaging with x-ray lasers. Science Advances, 5(5), Article ID eaav8801.
Open this publication in new window or tab >>Electrospray sample injection for single-particle imaging with x-ray lasers
Show others...
2019 (English)In: Science Advances, E-ISSN 2375-2548, Vol. 5, no 5, article id eaav8801Article in journal (Refereed) Published
National Category
Biophysics
Identifiers
urn:nbn:se:uu:diva-387970 (URN)10.1126/sciadv.aav8801 (DOI)000470125000080 ()31058226 (PubMedID)
Available from: 2019-05-03 Created: 2019-06-27 Last updated: 2019-06-27Bibliographically approved
Mühlig, K., Ganan-Calvo, A. M., Andreasson, J., Larsson, D. S., Hajdu, J. & Svenda, M. (2019). Nanometre-sized droplets from a gas dynamic virtual nozzle. Journal of applied crystallography, 52, 800-808
Open this publication in new window or tab >>Nanometre-sized droplets from a gas dynamic virtual nozzle
Show others...
2019 (English)In: Journal of applied crystallography, ISSN 0021-8898, E-ISSN 1600-5767, Vol. 52, p. 800-808Article in journal (Refereed) Published
Abstract [en]

This paper reports on improved techniques to create and characterize nanometre-sized droplets from dilute aqueous solutions by using a gas dynamic virtual nozzle (GDVN). It describes a method to measure the size distribution of uncharged droplets, using an environmental scanning electron microscope, and provides theoretical models for the droplet sizes created. The results show that droplet sizes can be tuned by adjusting the gas and liquid flow rates in the GDVN, and at the lowest liquid flow rates, the size of the water droplets peaks at about 120nm. This droplet size is similar to droplet sizes produced by electrospray ionization but requires neither electrolytes nor charging of the solution. The results presented here identify a new operational regime for GDVNs and show that predictable droplet sizes, comparable to those obtained by electrospray ionization, can be produced by purely mechanical means in GDVNs.

Place, publisher, year, edition, pages
INT UNION CRYSTALLOGRAPHY, 2019
Keywords
aerosols, droplet size, gas dynamic virtual nozzles (GDVNs), environmental scanning electron microscopy, coherent X-ray diffractive imaging (CXDI), single particles, sample delivery, structural biology, nanoscience
National Category
Physical Chemistry
Identifiers
urn:nbn:se:uu:diva-391281 (URN)10.1107/S1600576719008318 (DOI)000477717400013 ()
Funder
Swedish Research CouncilKnut and Alice Wallenberg FoundationEU, European Research Council
Available from: 2019-08-22 Created: 2019-08-22 Last updated: 2019-08-22Bibliographically approved
Pietrini, A., Bielecki, J., Timneanu, N., Hantke, M. F., Andreasson, J., Loh, N. D., . . . Nettelblad, C. (2018). A statistical approach to detect protein complexes at X-ray free electron laser facilities. Communications Physics, 1, 92:1-11, Article ID 92.
Open this publication in new window or tab >>A statistical approach to detect protein complexes at X-ray free electron laser facilities
Show others...
2018 (English)In: Communications Physics, E-ISSN 2399-3650, Vol. 1, p. 92:1-11, article id 92Article in journal (Refereed) Published
National Category
Biophysics
Identifiers
urn:nbn:se:uu:diva-369876 (URN)10.1038/s42005-018-0092-6 (DOI)000452676300003 ()
Projects
eSSENCE
Available from: 2018-12-07 Created: 2018-12-17 Last updated: 2019-05-06Bibliographically approved
Lundholm, I. V., Sellberg, J. A., Ekeberg, T., Hantke, M. F., Okamoto, K., van der Schot, G., . . . Maia, F. R. N. (2018). Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging. IUCrJ, 5, 531-541
Open this publication in new window or tab >>Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging
Show others...
2018 (English)In: IUCrJ, ISSN 0972-6918, E-ISSN 2052-2525, Vol. 5, p. 531-541Article in journal (Refereed) Published
National Category
Biophysics
Identifiers
urn:nbn:se:uu:diva-360034 (URN)10.1107/S2052252518010047 (DOI)000444010100003 ()
Projects
eSSENCE
Available from: 2018-09-01 Created: 2018-09-09 Last updated: 2019-07-01Bibliographically approved
Okamoto, K., Miyazaki, N., Reddy, H. K. .., Hantke, M. F., Maia, F. R. .., Larsson, D. S., . . . Svenda, M. (2018). Cryo-EM structure of a Marseilleviridae virus particle reveals a large internal microassembly. Virology, 516, 239-245, Article ID S0042-6822(18)30028-X.
Open this publication in new window or tab >>Cryo-EM structure of a Marseilleviridae virus particle reveals a large internal microassembly
Show others...
2018 (English)In: Virology, ISSN 0042-6822, E-ISSN 1096-0341, Vol. 516, p. 239-245, article id S0042-6822(18)30028-XArticle in journal (Refereed) Published
Abstract [en]

Nucleocytoplasmic large DNA viruses (NCLDVs) blur the line between viruses and cells. Melbournevirus (MelV, family Marseilleviridae) belongs to a new family of NCLDVs. Here we present an electron cryo-microscopy structure of the MelV particle, with the large triangulation number T = 309 constructed by 3080 pseudo-hexagonal capsomers. The most distinct feature of the particle is a large and dense body (LDB) consistently found inside all particles. Electron cryo-tomography of 147 particles shows that the LDB is preferentially located in proximity to the probable lipid bilayer. The LDB is 30 nm in size and its density matches that of a genome/protein complex. The observed LDB reinforces the structural complexity of MelV, setting it apart from other NCLDVs.

Keywords
Amoeba, Capsid, Cryo-electron microscopy, Marseilleviridae, Melbournevirus, NCLDV, Protein complex, Structure, Tomography, Virus
National Category
Biophysics
Identifiers
urn:nbn:se:uu:diva-370071 (URN)10.1016/j.virol.2018.01.021 (DOI)000428004800025 ()29407382 (PubMedID)
Funder
Swedish Research Council, 628-20081109 822-2010-6157 822-2012-5260 828-2012-108Knut and Alice Wallenberg Foundation, KAW-2011.081EU, European Research Council, ERC-291602The Swedish Foundation for International Cooperation in Research and Higher Education (STINT), JA2014-5721
Available from: 2018-12-18 Created: 2018-12-18 Last updated: 2019-08-25Bibliographically approved
Gorkhover, T., Ulmer, A., Ferguson, K., Bucher, M., Maia, F. R. N., Bielecki, J., . . . Bostedt, C. (2018). Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles [Letter to the editor]. Nature Photonics, 12, 150-153
Open this publication in new window or tab >>Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles
Show others...
2018 (English)In: Nature Photonics, ISSN 1749-4885, E-ISSN 1749-4893, Vol. 12, p. 150-153Article in journal, Letter (Refereed) Published
National Category
Biophysics
Identifiers
urn:nbn:se:uu:diva-345590 (URN)10.1038/s41566-018-0110-y (DOI)000426153800014 ()
Projects
eSSENCE
Available from: 2018-02-26 Created: 2018-03-09 Last updated: 2019-07-01Bibliographically approved
Hantke, M. F., Bielecki, J., Kulyk, O., Westphal, D., Larsson, D. S. D., Svenda, M., . . . Maia, F. R. .. (2018). Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams. IUCrJ, 5, 673-680
Open this publication in new window or tab >>Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams
Show others...
2018 (English)In: IUCrJ, ISSN 0972-6918, E-ISSN 2052-2525, Vol. 5, p. 673-680Article in journal (Refereed) Published
Abstract [en]

Ultra-bright femtosecond X-ray pulses generated by X-ray free-electron lasers (XFELs) can be used to image high-resolution structures without the need for crystallization. For this approach, aerosol injection has been a successful method to deliver 70-2000 nm particles into the XFEL beam efficiently and at low noise. Improving the technique of aerosol sample delivery and extending it to single proteins necessitates quantitative aerosol diagnostics. Here a lab-based technique is introduced for Rayleigh-scattering microscopy allowing us to track and size aerosolized particles down to 40 nm in diameter as they exit the injector. This technique was used to characterize the 'Uppsala injector', which is a pioneering and frequently used aerosol sample injector for XFEL single-particle imaging. The particle-beam focus, particle velocities, particle density and injection yield were measured at different operating conditions. It is also shown how high particle densities and good injection yields can be reached for large particles (100-500 nm). It is found that with decreasing particle size, particle densities and injection yields deteriorate, indicating the need for different injection strategies to extend XFEL imaging to smaller targets, such as single proteins. This work demonstrates the power of Rayleigh-scattering microscopy for studying focused aerosol beams quantitatively. It lays the foundation for lab-based injector development and online injection diagnostics for XFEL research. In the future, the technique may also find application in other fields that employ focused aerosol beams, such as mass spectrometry, particle deposition, fuel injection and three-dimensional printing techniques.

Keywords
Rayleigh scattering, XFELs, aerosol injection, Uppsala injectors, nanoparticles
National Category
Physical Chemistry
Identifiers
urn:nbn:se:uu:diva-369603 (URN)10.1107/S2052252518010837 (DOI)000448982300005 ()30443352 (PubMedID)
Funder
Swedish Research CouncilSwedish Foundation for Strategic Research
Note

Max F. Hantke and Johan Bielecki contributed equally to this work.

Available from: 2018-12-18 Created: 2018-12-18 Last updated: 2018-12-18Bibliographically approved
Reddy, H. K. N., Yoon, C. H., Aquila, A., Awel, S., Ayyer, K., Barty, A., . . . Xavier Paulraj, L. (2017). Coherent soft X-ray diffraction imaging of Coliphage PR772 at the Linac coherent light source. Scientific Data, 4, Article ID 170079.
Open this publication in new window or tab >>Coherent soft X-ray diffraction imaging of Coliphage PR772 at the Linac coherent light source
Show others...
2017 (English)In: Scientific Data, E-ISSN 2052-4463, Vol. 4, article id 170079Article in journal (Refereed) Published
National Category
Biophysics
Identifiers
urn:nbn:se:uu:diva-328536 (URN)10.1038/sdata.2017.79 (DOI)000404232100001 ()28654088 (PubMedID)
Projects
eSSENCE
Available from: 2017-06-27 Created: 2017-08-25 Last updated: 2019-08-25Bibliographically approved
Daurer, B. J., Okamoto, K., Bielecki, J., Maia, F. R. N., Mühlig, K., Seibert, M. M., . . . Larsson, D. S. D. (2017). Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. IUCrJ, 4, 251-262
Open this publication in new window or tab >>Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses
Show others...
2017 (English)In: IUCrJ, ISSN 0972-6918, E-ISSN 2052-2525, Vol. 4, p. 251-262Article in journal (Refereed) Published
National Category
Biophysics
Identifiers
urn:nbn:se:uu:diva-323439 (URN)10.1107/S2052252517003591 (DOI)000400460500008 ()28512572 (PubMedID)
Projects
eSSENCE
Available from: 2017-04-07 Created: 2017-11-14 Last updated: 2019-07-01Bibliographically approved
Hantke, M. F., Hasse, D., Ekeberg, T., John, K., Svenda, M., Loh, D., . . . Maia, F. R. .. (2016). A data set from flash X-ray imaging of carboxysomes. Scientific Data, 3, Article ID 160061.
Open this publication in new window or tab >>A data set from flash X-ray imaging of carboxysomes
Show others...
2016 (English)In: Scientific Data, E-ISSN 2052-4463, Vol. 3, article id 160061Article in journal (Refereed) Published
Abstract [en]

Ultra-intense femtosecond X-ray pulses from X-ray lasers permit structural studies on single particles and biomolecules without crystals. We present a large data set on inherently heterogeneous, polyhedral carboxysome particles. Carboxysomes are cell organelles that vary in size and facilitate up to 40% of Earth’s carbon fixation by cyanobacteria and certain proteobacteria. Variation in size hinders crystallization. Carboxysomes appear icosahedral in the electron microscope. A protein shell encapsulates a large number of Rubisco molecules in paracrystalline arrays inside the organelle. We used carboxysomes with a mean diameter of 115±26 nm from Halothiobacillus neapolitanus. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min. Every diffraction pattern is a unique structure measurement and high-throughput imaging allows sampling the space of structural variability. The different structures can be separated and phased directly from the diffraction data and open a way for accurate, high-throughput studies on structures and structural heterogeneity in biology and elsewhere.

National Category
Biophysics
Identifiers
urn:nbn:se:uu:diva-300202 (URN)10.1038/sdata.2016.61 (DOI)000390225400006 ()
Note

Data Descriptor

Available from: 2016-08-05 Created: 2016-08-05 Last updated: 2017-11-28Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-3573-3023

Search in DiVA

Show all publications